freebsd-skq/sys/dev/mps/mps.c

1606 lines
45 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2009 Yahoo! Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/* Communications core for LSI MPT2 */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/selinfo.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/bio.h>
#include <sys/malloc.h>
#include <sys/uio.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <cam/scsi/scsi_all.h>
#include <dev/mps/mpi/mpi2_type.h>
#include <dev/mps/mpi/mpi2.h>
#include <dev/mps/mpi/mpi2_ioc.h>
#include <dev/mps/mpi/mpi2_cnfg.h>
#include <dev/mps/mpsvar.h>
#include <dev/mps/mps_table.h>
static void mps_startup(void *arg);
static void mps_startup_complete(struct mps_softc *sc, struct mps_command *cm);
static int mps_send_iocinit(struct mps_softc *sc);
static int mps_attach_log(struct mps_softc *sc);
static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data, MPI2_EVENT_NOTIFICATION_REPLY *reply);
static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm);
static void mps_periodic(void *);
SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters");
MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory");
/*
* Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of
* any state and back to its initialization state machine.
*/
static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
static int
mps_hard_reset(struct mps_softc *sc)
{
uint32_t reg;
int i, error, tries = 0;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
/* Clear any pending interrupts */
mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
/* Push the magic sequence */
error = ETIMEDOUT;
while (tries++ < 20) {
for (i = 0; i < sizeof(mpt2_reset_magic); i++)
mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
mpt2_reset_magic[i]);
DELAY(100 * 1000);
reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
error = 0;
break;
}
}
if (error)
return (error);
/* Send the actual reset. XXX need to refresh the reg? */
mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
reg | MPI2_DIAG_RESET_ADAPTER);
/* Wait up to 300 seconds in 50ms intervals */
error = ETIMEDOUT;
for (i = 0; i < 60000; i++) {
DELAY(50000);
reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
error = 0;
break;
}
}
if (error)
return (error);
mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
return (0);
}
static int
mps_soft_reset(struct mps_softc *sc)
{
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
MPI2_DOORBELL_FUNCTION_SHIFT);
DELAY(50000);
return (0);
}
static int
mps_transition_ready(struct mps_softc *sc)
{
uint32_t reg, state;
int error, tries = 0;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
error = 0;
while (tries++ < 5) {
reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg);
/*
* Ensure the IOC is ready to talk. If it's not, try
* resetting it.
*/
if (reg & MPI2_DOORBELL_USED) {
mps_hard_reset(sc);
DELAY(50000);
continue;
}
/* Is the adapter owned by another peer? */
if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
(MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
device_printf(sc->mps_dev, "IOC is under the control "
"of another peer host, aborting initialization.\n");
return (ENXIO);
}
state = reg & MPI2_IOC_STATE_MASK;
if (state == MPI2_IOC_STATE_READY) {
/* Ready to go! */
error = 0;
break;
} else if (state == MPI2_IOC_STATE_FAULT) {
mps_dprint(sc, MPS_INFO, "IOC in fault state 0x%x\n",
state & MPI2_DOORBELL_FAULT_CODE_MASK);
mps_hard_reset(sc);
} else if (state == MPI2_IOC_STATE_OPERATIONAL) {
/* Need to take ownership */
mps_soft_reset(sc);
} else if (state == MPI2_IOC_STATE_RESET) {
/* Wait a bit, IOC might be in transition */
mps_dprint(sc, MPS_FAULT,
"IOC in unexpected reset state\n");
} else {
mps_dprint(sc, MPS_FAULT,
"IOC in unknown state 0x%x\n", state);
error = EINVAL;
break;
}
/* Wait 50ms for things to settle down. */
DELAY(50000);
}
if (error)
device_printf(sc->mps_dev, "Cannot transition IOC to ready\n");
return (error);
}
static int
mps_transition_operational(struct mps_softc *sc)
{
uint32_t reg, state;
int error;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
error = 0;
reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg);
state = reg & MPI2_IOC_STATE_MASK;
if (state != MPI2_IOC_STATE_READY) {
if ((error = mps_transition_ready(sc)) != 0)
return (error);
}
error = mps_send_iocinit(sc);
return (error);
}
/* Wait for the chip to ACK a word that we've put into its FIFO */
static int
mps_wait_db_ack(struct mps_softc *sc)
{
int retry;
for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
MPI2_HIS_SYS2IOC_DB_STATUS) == 0)
return (0);
DELAY(2000);
}
return (ETIMEDOUT);
}
/* Wait for the chip to signal that the next word in its FIFO can be fetched */
static int
mps_wait_db_int(struct mps_softc *sc)
{
int retry;
for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
return (0);
DELAY(2000);
}
return (ETIMEDOUT);
}
/* Step through the synchronous command state machine, i.e. "Doorbell mode" */
static int
mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
int req_sz, int reply_sz, int timeout)
{
uint32_t *data32;
uint16_t *data16;
int i, count, ioc_sz, residual;
/* Step 1 */
mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
/* Step 2 */
if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
return (EBUSY);
/* Step 3
* Announce that a message is coming through the doorbell. Messages
* are pushed at 32bit words, so round up if needed.
*/
count = (req_sz + 3) / 4;
mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
(MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
(count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
/* Step 4 */
if (mps_wait_db_int(sc) ||
(mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n");
return (ENXIO);
}
mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
if (mps_wait_db_ack(sc) != 0) {
mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n");
return (ENXIO);
}
/* Step 5 */
/* Clock out the message data synchronously in 32-bit dwords*/
data32 = (uint32_t *)req;
for (i = 0; i < count; i++) {
mps_regwrite(sc, MPI2_DOORBELL_OFFSET, data32[i]);
if (mps_wait_db_ack(sc) != 0) {
mps_dprint(sc, MPS_FAULT,
"Timeout while writing doorbell\n");
return (ENXIO);
}
}
/* Step 6 */
/* Clock in the reply in 16-bit words. The total length of the
* message is always in the 4th byte, so clock out the first 2 words
* manually, then loop the rest.
*/
data16 = (uint16_t *)reply;
if (mps_wait_db_int(sc) != 0) {
mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n");
return (ENXIO);
}
data16[0] =
mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
if (mps_wait_db_int(sc) != 0) {
mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n");
return (ENXIO);
}
data16[1] =
mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
/* Number of 32bit words in the message */
ioc_sz = reply->MsgLength;
/*
* Figure out how many 16bit words to clock in without overrunning.
* The precision loss with dividing reply_sz can safely be
* ignored because the messages can only be multiples of 32bits.
*/
residual = 0;
count = MIN((reply_sz / 4), ioc_sz) * 2;
if (count < ioc_sz * 2) {
residual = ioc_sz * 2 - count;
mps_dprint(sc, MPS_FAULT, "Driver error, throwing away %d "
"residual message words\n", residual);
}
for (i = 2; i < count; i++) {
if (mps_wait_db_int(sc) != 0) {
mps_dprint(sc, MPS_FAULT,
"Timeout reading doorbell %d\n", i);
return (ENXIO);
}
data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) &
MPI2_DOORBELL_DATA_MASK;
mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
}
/*
* Pull out residual words that won't fit into the provided buffer.
* This keeps the chip from hanging due to a driver programming
* error.
*/
while (residual--) {
if (mps_wait_db_int(sc) != 0) {
mps_dprint(sc, MPS_FAULT,
"Timeout reading doorbell\n");
return (ENXIO);
}
(void)mps_regread(sc, MPI2_DOORBELL_OFFSET);
mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
}
/* Step 7 */
if (mps_wait_db_int(sc) != 0) {
mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n");
return (ENXIO);
}
if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n");
mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
return (0);
}
static void
mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm)
{
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
cm->cm_desc.Words.Low);
mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
cm->cm_desc.Words.High);
}
int
mps_request_polled(struct mps_softc *sc, struct mps_command *cm)
{
int error, timeout = 0;
error = 0;
cm->cm_flags |= MPS_CM_FLAGS_POLLED;
cm->cm_complete = NULL;
mps_map_command(sc, cm);
while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) {
mps_intr(sc);
DELAY(50 * 1000);
if (timeout++ > 1000) {
mps_dprint(sc, MPS_FAULT, "polling failed\n");
error = ETIMEDOUT;
break;
}
}
return (error);
}
/*
* Just the FACTS, ma'am.
*/
static int
mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
{
MPI2_DEFAULT_REPLY *reply;
MPI2_IOC_FACTS_REQUEST request;
int error, req_sz, reply_sz;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
reply = (MPI2_DEFAULT_REPLY *)facts;
bzero(&request, req_sz);
request.Function = MPI2_FUNCTION_IOC_FACTS;
error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
return (error);
}
static int
mps_get_portfacts(struct mps_softc *sc, MPI2_PORT_FACTS_REPLY *facts, int port)
{
MPI2_PORT_FACTS_REQUEST *request;
MPI2_PORT_FACTS_REPLY *reply;
struct mps_command *cm;
int error;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
if ((cm = mps_alloc_command(sc)) == NULL)
return (EBUSY);
request = (MPI2_PORT_FACTS_REQUEST *)cm->cm_req;
request->Function = MPI2_FUNCTION_PORT_FACTS;
request->PortNumber = port;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
cm->cm_data = NULL;
error = mps_request_polled(sc, cm);
reply = (MPI2_PORT_FACTS_REPLY *)cm->cm_reply;
if ((reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
error = ENXIO;
bcopy(reply, facts, sizeof(MPI2_PORT_FACTS_REPLY));
mps_free_command(sc, cm);
return (error);
}
static int
mps_send_iocinit(struct mps_softc *sc)
{
MPI2_IOC_INIT_REQUEST init;
MPI2_DEFAULT_REPLY reply;
int req_sz, reply_sz, error;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
bzero(&init, req_sz);
bzero(&reply, reply_sz);
/*
* Fill in the init block. Note that most addresses are
* deliberately in the lower 32bits of memory. This is a micro-
* optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
*/
init.Function = MPI2_FUNCTION_IOC_INIT;
init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
init.MsgVersion = MPI2_VERSION;
init.HeaderVersion = MPI2_HEADER_VERSION;
init.SystemRequestFrameSize = sc->facts->IOCRequestFrameSize;
init.ReplyDescriptorPostQueueDepth = sc->pqdepth;
init.ReplyFreeQueueDepth = sc->fqdepth;
init.SenseBufferAddressHigh = 0;
init.SystemReplyAddressHigh = 0;
init.SystemRequestFrameBaseAddress.High = 0;
init.SystemRequestFrameBaseAddress.Low = (uint32_t)sc->req_busaddr;
init.ReplyDescriptorPostQueueAddress.High = 0;
init.ReplyDescriptorPostQueueAddress.Low = (uint32_t)sc->post_busaddr;
init.ReplyFreeQueueAddress.High = 0;
init.ReplyFreeQueueAddress.Low = (uint32_t)sc->free_busaddr;
init.TimeStamp.High = 0;
init.TimeStamp.Low = (uint32_t)time_uptime;
error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
error = ENXIO;
mps_dprint(sc, MPS_INFO, "IOCInit status= 0x%x\n", reply.IOCStatus);
return (error);
}
static int
mps_send_portenable(struct mps_softc *sc)
{
MPI2_PORT_ENABLE_REQUEST *request;
struct mps_command *cm;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
if ((cm = mps_alloc_command(sc)) == NULL)
return (EBUSY);
request = (MPI2_PORT_ENABLE_REQUEST *)cm->cm_req;
request->Function = MPI2_FUNCTION_PORT_ENABLE;
request->MsgFlags = 0;
request->VP_ID = 0;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
cm->cm_complete = mps_startup_complete;
mps_enqueue_request(sc, cm);
return (0);
}
static int
mps_send_mur(struct mps_softc *sc)
{
/* Placeholder */
return (0);
}
void
mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
bus_addr_t *addr;
addr = arg;
*addr = segs[0].ds_addr;
}
static int
mps_alloc_queues(struct mps_softc *sc)
{
bus_addr_t queues_busaddr;
uint8_t *queues;
int qsize, fqsize, pqsize;
/*
* The reply free queue contains 4 byte entries in multiples of 16 and
* aligned on a 16 byte boundary. There must always be an unused entry.
* This queue supplies fresh reply frames for the firmware to use.
*
* The reply descriptor post queue contains 8 byte entries in
* multiples of 16 and aligned on a 16 byte boundary. This queue
* contains filled-in reply frames sent from the firmware to the host.
*
* These two queues are allocated together for simplicity.
*/
sc->fqdepth = roundup2((sc->num_replies + 1), 16);
sc->pqdepth = roundup2((sc->num_replies + 1), 16);
fqsize= sc->fqdepth * 4;
pqsize = sc->pqdepth * 8;
qsize = fqsize + pqsize;
if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
16, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
qsize, /* maxsize */
1, /* nsegments */
qsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->queues_dmat)) {
device_printf(sc->mps_dev, "Cannot allocate queues DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
&sc->queues_map)) {
device_printf(sc->mps_dev, "Cannot allocate queues memory\n");
return (ENOMEM);
}
bzero(queues, qsize);
bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
mps_memaddr_cb, &queues_busaddr, 0);
sc->free_queue = (uint32_t *)queues;
sc->free_busaddr = queues_busaddr;
sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
sc->post_busaddr = queues_busaddr + fqsize;
return (0);
}
static int
mps_alloc_replies(struct mps_softc *sc)
{
int rsize;
rsize = sc->facts->ReplyFrameSize * sc->num_replies * 4;
if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
4, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
rsize, /* maxsize */
1, /* nsegments */
rsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->reply_dmat)) {
device_printf(sc->mps_dev, "Cannot allocate replies DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
BUS_DMA_NOWAIT, &sc->reply_map)) {
device_printf(sc->mps_dev, "Cannot allocate replies memory\n");
return (ENOMEM);
}
bzero(sc->reply_frames, rsize);
bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
mps_memaddr_cb, &sc->reply_busaddr, 0);
return (0);
}
static int
mps_alloc_requests(struct mps_softc *sc)
{
struct mps_command *cm;
struct mps_chain *chain;
int i, rsize, nsegs;
rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
16, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
rsize, /* maxsize */
1, /* nsegments */
rsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->req_dmat)) {
device_printf(sc->mps_dev, "Cannot allocate request DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
BUS_DMA_NOWAIT, &sc->req_map)) {
device_printf(sc->mps_dev, "Cannot allocate request memory\n");
return (ENOMEM);
}
bzero(sc->req_frames, rsize);
bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
mps_memaddr_cb, &sc->req_busaddr, 0);
rsize = sc->facts->IOCRequestFrameSize * MPS_CHAIN_FRAMES * 4;
if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
16, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
rsize, /* maxsize */
1, /* nsegments */
rsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->chain_dmat)) {
device_printf(sc->mps_dev, "Cannot allocate chain DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
BUS_DMA_NOWAIT, &sc->chain_map)) {
device_printf(sc->mps_dev, "Cannot allocate chain memory\n");
return (ENOMEM);
}
bzero(sc->chain_frames, rsize);
bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
mps_memaddr_cb, &sc->chain_busaddr, 0);
rsize = MPS_SENSE_LEN * sc->num_reqs;
if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
rsize, /* maxsize */
1, /* nsegments */
rsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sense_dmat)) {
device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
BUS_DMA_NOWAIT, &sc->sense_map)) {
device_printf(sc->mps_dev, "Cannot allocate sense memory\n");
return (ENOMEM);
}
bzero(sc->sense_frames, rsize);
bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
mps_memaddr_cb, &sc->sense_busaddr, 0);
sc->chains = malloc(sizeof(struct mps_chain) * MPS_CHAIN_FRAMES,
M_MPT2, M_WAITOK | M_ZERO);
for (i = 0; i < MPS_CHAIN_FRAMES; i++) {
chain = &sc->chains[i];
chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
i * sc->facts->IOCRequestFrameSize * 4);
chain->chain_busaddr = sc->chain_busaddr +
i * sc->facts->IOCRequestFrameSize * 4;
mps_free_chain(sc, chain);
}
/* XXX Need to pick a more precise value */
nsegs = (MAXPHYS / PAGE_SIZE) + 1;
if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
nsegs, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
busdma_lock_mutex, /* lockfunc */
&sc->mps_mtx, /* lockarg */
&sc->buffer_dmat)) {
device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n");
return (ENOMEM);
}
/*
* SMID 0 cannot be used as a free command per the firmware spec.
* Just drop that command instead of risking accounting bugs.
*/
sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs,
M_MPT2, M_WAITOK | M_ZERO);
for (i = 1; i < sc->num_reqs; i++) {
cm = &sc->commands[i];
cm->cm_req = sc->req_frames +
i * sc->facts->IOCRequestFrameSize * 4;
cm->cm_req_busaddr = sc->req_busaddr +
i * sc->facts->IOCRequestFrameSize * 4;
cm->cm_sense = &sc->sense_frames[i];
cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN;
cm->cm_desc.Default.SMID = i;
cm->cm_sc = sc;
TAILQ_INIT(&cm->cm_chain_list);
callout_init(&cm->cm_callout, 1 /*MPSAFE*/);
/* XXX Is a failure here a critical problem? */
if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
mps_free_command(sc, cm);
else {
sc->num_reqs = i;
break;
}
}
return (0);
}
static int
mps_init_queues(struct mps_softc *sc)
{
int i;
memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
if (sc->num_replies >= sc->fqdepth)
return (EINVAL);
for (i = 0; i < sc->num_replies; i++)
sc->free_queue[i] = sc->reply_busaddr + i * sc->facts->ReplyFrameSize * 4;
sc->replyfreeindex = sc->num_replies;
return (0);
}
int
mps_attach(struct mps_softc *sc)
{
int i, error;
char tmpstr[80], tmpstr2[80];
/*
* Grab any tunable-set debug level so that tracing works as early
* as possible.
*/
snprintf(tmpstr, sizeof(tmpstr), "hw.mps.%d.debug_level",
device_get_unit(sc->mps_dev));
TUNABLE_INT_FETCH(tmpstr, &sc->mps_debug);
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF);
callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0);
TAILQ_INIT(&sc->event_list);
/*
* Setup the sysctl variable so the user can change the debug level
* on the fly.
*/
snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d",
device_get_unit(sc->mps_dev));
snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev));
sysctl_ctx_init(&sc->sysctl_ctx);
sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2, CTLFLAG_RD,
0, tmpstr);
if (sc->sysctl_tree == NULL)
return (ENOMEM);
SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mps_debug, 0,
"mps debug level");
if ((error = mps_transition_ready(sc)) != 0)
return (error);
sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2,
M_ZERO|M_NOWAIT);
if ((error = mps_get_iocfacts(sc, sc->facts)) != 0)
return (error);
mps_print_iocfacts(sc, sc->facts);
mps_printf(sc, "Firmware: %02d.%02d.%02d.%02d\n",
sc->facts->FWVersion.Struct.Major,
sc->facts->FWVersion.Struct.Minor,
sc->facts->FWVersion.Struct.Unit,
sc->facts->FWVersion.Struct.Dev);
mps_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
"\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
"\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
"\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
/*
* If the chip doesn't support event replay then a hard reset will be
* required to trigger a full discovery. Do the reset here then
* retransition to Ready. A hard reset might have already been done,
* but it doesn't hurt to do it again.
*/
if ((sc->facts->IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
mps_hard_reset(sc);
if ((error = mps_transition_ready(sc)) != 0)
return (error);
}
/*
* Size the queues. Since the reply queues always need one free entry,
* we'll just deduct one reply message here.
*/
sc->num_reqs = MIN(MPS_REQ_FRAMES, sc->facts->RequestCredit);
sc->num_replies = MIN(MPS_REPLY_FRAMES + MPS_EVT_REPLY_FRAMES,
sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
TAILQ_INIT(&sc->req_list);
TAILQ_INIT(&sc->chain_list);
if (((error = mps_alloc_queues(sc)) != 0) ||
((error = mps_alloc_replies(sc)) != 0) ||
((error = mps_alloc_requests(sc)) != 0)) {
mps_free(sc);
return (error);
}
if (((error = mps_init_queues(sc)) != 0) ||
((error = mps_transition_operational(sc)) != 0)) {
mps_free(sc);
return (error);
}
/*
* Finish the queue initialization.
* These are set here instead of in mps_init_queues() because the
* IOC resets these values during the state transition in
* mps_transition_operational(). The free index is set to 1
* because the corresponding index in the IOC is set to 0, and the
* IOC treats the queues as full if both are set to the same value.
* Hence the reason that the queue can't hold all of the possible
* replies.
*/
sc->replypostindex = 0;
sc->replycurindex = 0;
mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
sc->pfacts = malloc(sizeof(MPI2_PORT_FACTS_REPLY) *
sc->facts->NumberOfPorts, M_MPT2, M_ZERO|M_WAITOK);
for (i = 0; i < sc->facts->NumberOfPorts; i++) {
if ((error = mps_get_portfacts(sc, &sc->pfacts[i], i)) != 0) {
mps_free(sc);
return (error);
}
mps_print_portfacts(sc, &sc->pfacts[i]);
}
/* Attach the subsystems so they can prepare their event masks. */
/* XXX Should be dynamic so that IM/IR and user modules can attach */
if (((error = mps_attach_log(sc)) != 0) ||
((error = mps_attach_sas(sc)) != 0)) {
mps_free(sc);
return (error);
}
if ((error = mps_pci_setup_interrupts(sc)) != 0) {
mps_free(sc);
return (error);
}
/* Start the periodic watchdog check on the IOC Doorbell */
mps_periodic(sc);
/*
* The portenable will kick off discovery events that will drive the
* rest of the initialization process. The CAM/SAS module will
* hold up the boot sequence until discovery is complete.
*/
sc->mps_ich.ich_func = mps_startup;
sc->mps_ich.ich_arg = sc;
if (config_intrhook_establish(&sc->mps_ich) != 0) {
mps_dprint(sc, MPS_FAULT, "Cannot establish MPS config hook\n");
error = EINVAL;
}
return (error);
}
static void
mps_startup(void *arg)
{
struct mps_softc *sc;
sc = (struct mps_softc *)arg;
mps_lock(sc);
mps_unmask_intr(sc);
mps_send_portenable(sc);
mps_unlock(sc);
}
/* Periodic watchdog. Is called with the driver lock already held. */
static void
mps_periodic(void *arg)
{
struct mps_softc *sc;
uint32_t db;
sc = (struct mps_softc *)arg;
if (sc->mps_flags & MPS_FLAGS_SHUTDOWN)
return;
db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
device_printf(sc->mps_dev, "IOC Fault 0x%08x, Resetting\n", db);
/* XXX Need to broaden this to re-initialize the chip */
mps_hard_reset(sc);
db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
device_printf(sc->mps_dev, "Second IOC Fault 0x%08x, "
"Giving up!\n", db);
return;
}
}
callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc);
}
static void
mps_startup_complete(struct mps_softc *sc, struct mps_command *cm)
{
MPI2_PORT_ENABLE_REPLY *reply;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
reply = (MPI2_PORT_ENABLE_REPLY *)cm->cm_reply;
if ((reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
mps_dprint(sc, MPS_FAULT, "Portenable failed\n");
mps_free_command(sc, cm);
config_intrhook_disestablish(&sc->mps_ich);
}
static void
mps_log_evt_handler(struct mps_softc *sc, uintptr_t data,
MPI2_EVENT_NOTIFICATION_REPLY *event)
{
MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
mps_print_event(sc, event);
switch (event->Event) {
case MPI2_EVENT_LOG_DATA:
device_printf(sc->mps_dev, "MPI2_EVENT_LOG_DATA:\n");
hexdump(event->EventData, event->EventDataLength, NULL, 0);
break;
case MPI2_EVENT_LOG_ENTRY_ADDED:
entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
mps_dprint(sc, MPS_INFO, "MPI2_EVENT_LOG_ENTRY_ADDED event "
"0x%x Sequence %d:\n", entry->LogEntryQualifier,
entry->LogSequence);
break;
default:
break;
}
return;
}
static int
mps_attach_log(struct mps_softc *sc)
{
uint8_t events[16];
bzero(events, 16);
setbit(events, MPI2_EVENT_LOG_DATA);
setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
mps_register_events(sc, events, mps_log_evt_handler, NULL,
&sc->mps_log_eh);
return (0);
}
static int
mps_detach_log(struct mps_softc *sc)
{
if (sc->mps_log_eh != NULL)
mps_deregister_events(sc, sc->mps_log_eh);
return (0);
}
/*
* Free all of the driver resources and detach submodules. Should be called
* without the lock held.
*/
int
mps_free(struct mps_softc *sc)
{
struct mps_command *cm;
int i, error;
/* Turn off the watchdog */
mps_lock(sc);
sc->mps_flags |= MPS_FLAGS_SHUTDOWN;
mps_unlock(sc);
/* Lock must not be held for this */
callout_drain(&sc->periodic);
if (((error = mps_detach_log(sc)) != 0) ||
((error = mps_detach_sas(sc)) != 0))
return (error);
/* Put the IOC back in the READY state. */
mps_lock(sc);
if ((error = mps_send_mur(sc)) != 0) {
mps_unlock(sc);
return (error);
}
mps_unlock(sc);
if (sc->facts != NULL)
free(sc->facts, M_MPT2);
if (sc->pfacts != NULL)
free(sc->pfacts, M_MPT2);
if (sc->post_busaddr != 0)
bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
if (sc->post_queue != NULL)
bus_dmamem_free(sc->queues_dmat, sc->post_queue,
sc->queues_map);
if (sc->queues_dmat != NULL)
bus_dma_tag_destroy(sc->queues_dmat);
if (sc->chain_busaddr != 0)
bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
if (sc->chain_frames != NULL)
bus_dmamem_free(sc->chain_dmat, sc->chain_frames,sc->chain_map);
if (sc->chain_dmat != NULL)
bus_dma_tag_destroy(sc->chain_dmat);
if (sc->sense_busaddr != 0)
bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
if (sc->sense_frames != NULL)
bus_dmamem_free(sc->sense_dmat, sc->sense_frames,sc->sense_map);
if (sc->sense_dmat != NULL)
bus_dma_tag_destroy(sc->sense_dmat);
if (sc->reply_busaddr != 0)
bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
if (sc->reply_frames != NULL)
bus_dmamem_free(sc->reply_dmat, sc->reply_frames,sc->reply_map);
if (sc->reply_dmat != NULL)
bus_dma_tag_destroy(sc->reply_dmat);
if (sc->req_busaddr != 0)
bus_dmamap_unload(sc->req_dmat, sc->req_map);
if (sc->req_frames != NULL)
bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
if (sc->req_dmat != NULL)
bus_dma_tag_destroy(sc->req_dmat);
if (sc->chains != NULL)
free(sc->chains, M_MPT2);
if (sc->commands != NULL) {
for (i = 1; i < sc->num_reqs; i++) {
cm = &sc->commands[i];
bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
}
free(sc->commands, M_MPT2);
}
if (sc->buffer_dmat != NULL)
bus_dma_tag_destroy(sc->buffer_dmat);
if (sc->sysctl_tree != NULL)
sysctl_ctx_free(&sc->sysctl_ctx);
mtx_destroy(&sc->mps_mtx);
return (0);
}
void
mps_intr(void *data)
{
struct mps_softc *sc;
uint32_t status;
sc = (struct mps_softc *)data;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
/*
* Check interrupt status register to flush the bus. This is
* needed for both INTx interrupts and driver-driven polling
*/
status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
return;
mps_lock(sc);
mps_intr_locked(data);
mps_unlock(sc);
return;
}
/*
* In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
* chip. Hopefully this theory is correct.
*/
void
mps_intr_msi(void *data)
{
struct mps_softc *sc;
sc = (struct mps_softc *)data;
mps_lock(sc);
mps_intr_locked(data);
mps_unlock(sc);
return;
}
/*
* The locking is overly broad and simplistic, but easy to deal with for now.
*/
void
mps_intr_locked(void *data)
{
MPI2_REPLY_DESCRIPTORS_UNION *desc;
struct mps_softc *sc;
struct mps_command *cm = NULL;
uint8_t flags;
u_int pq;
sc = (struct mps_softc *)data;
pq = sc->replypostindex;
for ( ;; ) {
cm = NULL;
desc = &sc->post_queue[pq];
flags = desc->Default.ReplyFlags &
MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
if (flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
break;
switch (flags) {
case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
cm = &sc->commands[desc->SCSIIOSuccess.SMID];
cm->cm_reply = NULL;
break;
case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
{
uint32_t baddr;
uint8_t *reply;
reply = sc->reply_frames +
sc->replycurindex * sc->facts->ReplyFrameSize * 4;
baddr = desc->AddressReply.ReplyFrameAddress;
if (desc->AddressReply.SMID == 0) {
mps_dispatch_event(sc, baddr,
(MPI2_EVENT_NOTIFICATION_REPLY *) reply);
} else {
cm = &sc->commands[desc->AddressReply.SMID];
cm->cm_reply = reply;
cm->cm_reply_data =
desc->AddressReply.ReplyFrameAddress;
}
if (++sc->replycurindex >= sc->fqdepth)
sc->replycurindex = 0;
break;
}
case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
default:
/* Unhandled */
device_printf(sc->mps_dev, "Unhandled reply 0x%x\n",
desc->Default.ReplyFlags);
cm = NULL;
break;
}
if (cm != NULL) {
if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
if (cm->cm_complete != NULL)
cm->cm_complete(sc, cm);
if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP)
wakeup(cm);
}
desc->Words.Low = 0xffffffff;
desc->Words.High = 0xffffffff;
if (++pq >= sc->pqdepth)
pq = 0;
}
if (pq != sc->replypostindex) {
mps_dprint(sc, MPS_INFO, "writing postindex %d\n", pq);
mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, pq);
sc->replypostindex = pq;
}
return;
}
static void
mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
MPI2_EVENT_NOTIFICATION_REPLY *reply)
{
struct mps_event_handle *eh;
int event, handled = 0;;
event = reply->Event;
TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
if (isset(eh->mask, event)) {
eh->callback(sc, data, reply);
handled++;
}
}
if (handled == 0)
device_printf(sc->mps_dev, "Unhandled event 0x%x\n", event);
}
/*
* For both register_events and update_events, the caller supplies a bitmap
* of events that it _wants_. These functions then turn that into a bitmask
* suitable for the controller.
*/
int
mps_register_events(struct mps_softc *sc, uint8_t *mask,
mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle)
{
struct mps_event_handle *eh;
int error = 0;
eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO);
eh->callback = cb;
eh->data = data;
TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
if (mask != NULL)
error = mps_update_events(sc, eh, mask);
*handle = eh;
return (error);
}
int
mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle,
uint8_t *mask)
{
MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
MPI2_EVENT_NOTIFICATION_REPLY *reply;
struct mps_command *cm;
struct mps_event_handle *eh;
int error, i;
mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
if ((mask != NULL) && (handle != NULL))
bcopy(mask, &handle->mask[0], 16);
memset(sc->event_mask, 0xff, 16);
TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
for (i = 0; i < 16; i++)
sc->event_mask[i] &= ~eh->mask[i];
}
if ((cm = mps_alloc_command(sc)) == NULL)
return (EBUSY);
evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
evtreq->MsgFlags = 0;
evtreq->SASBroadcastPrimitiveMasks = 0;
#ifdef MPS_DEBUG_ALL_EVENTS
{
u_char fullmask[16];
memset(fullmask, 0x00, 16);
bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
}
#else
bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
#endif
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
cm->cm_data = NULL;
error = mps_request_polled(sc, cm);
reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
if ((reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
error = ENXIO;
mps_print_event(sc, reply);
mps_free_command(sc, cm);
return (error);
}
int
mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle)
{
TAILQ_REMOVE(&sc->event_list, handle, eh_list);
free(handle, M_MPT2);
return (mps_update_events(sc, NULL, NULL));
}
static void
mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
MPI2_SGE_SIMPLE64 *sge;
MPI2_SGE_CHAIN32 *sgc;
struct mps_softc *sc;
struct mps_command *cm;
struct mps_chain *chain;
u_int i, segsleft, sglspace, dir, flags, sflags;
cm = (struct mps_command *)arg;
sc = cm->cm_sc;
segsleft = nsegs;
sglspace = cm->cm_sglsize;
sge = (MPI2_SGE_SIMPLE64 *)&cm->cm_sge->MpiSimple;
/*
* Set up DMA direction flags. Note no support for
* bi-directional transactions.
*/
sflags = MPI2_SGE_FLAGS_ADDRESS_SIZE;
if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) {
sflags |= MPI2_SGE_FLAGS_DIRECTION;
dir = BUS_DMASYNC_PREWRITE;
} else
dir = BUS_DMASYNC_PREREAD;
/*
* case 1: 1 more segment, enough room for it
* case 2: 2 more segments, enough room for both
* case 3: >=2 more segments, only enough room for 1 and a chain
* case 4: >=1 more segment, enough room for only a chain
* case 5: >=1 more segment, no room for anything (error)
*/
for (i = 0; i < nsegs; i++) {
/* Case 5 Error. This should never happen. */
if (sglspace < MPS_SGC_SIZE) {
panic("MPS: Need SGE Error Code\n");
}
/*
* Case 4, Fill in a chain element, allocate a chain,
* fill in one SGE element, continue.
*/
if ((sglspace >= MPS_SGC_SIZE) && (sglspace < MPS_SGE64_SIZE)) {
chain = mps_alloc_chain(sc);
if (chain == NULL) {
/* Resource shortage, roll back! */
mps_printf(sc, "out of chain frames\n");
return;
}
/*
* Note: a double-linked list is used to make it
* easier to walk for debugging.
*/
TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain,chain_link);
sgc = (MPI2_SGE_CHAIN32 *)sge;
sgc->Length = 128;
sgc->NextChainOffset = 0;
sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT;
sgc->Address = chain->chain_busaddr;
sge = (MPI2_SGE_SIMPLE64 *)&chain->chain->MpiSimple;
sglspace = 128;
}
flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
sge->FlagsLength = segs[i].ds_len |
((sflags | flags) << MPI2_SGE_FLAGS_SHIFT);
mps_from_u64(segs[i].ds_addr, &sge->Address);
/* Case 1, Fill in one SGE element and break */
if (segsleft == 1)
break;
sglspace -= MPS_SGE64_SIZE;
segsleft--;
/* Case 3, prepare for a chain on the next loop */
if ((segsleft > 0) && (sglspace < MPS_SGE64_SIZE))
sge->FlagsLength |=
(MPI2_SGE_FLAGS_LAST_ELEMENT <<
MPI2_SGE_FLAGS_SHIFT);
/* Advance to the next element to be filled in. */
sge++;
}
/* Last element of the last segment of the entire buffer */
flags = MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST;
sge->FlagsLength |= (flags << MPI2_SGE_FLAGS_SHIFT);
bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
mps_enqueue_request(sc, cm);
return;
}
int
mps_map_command(struct mps_softc *sc, struct mps_command *cm)
{
MPI2_SGE_SIMPLE32 *sge;
int error = 0;
if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
cm->cm_data, cm->cm_length, mps_data_cb, cm, 0);
} else {
/* Add a zero-length element as needed */
if (cm->cm_sge != NULL) {
sge = (MPI2_SGE_SIMPLE32 *)cm->cm_sge;
sge->FlagsLength = (MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST |
MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
MPI2_SGE_FLAGS_SHIFT;
sge->Address = 0;
}
mps_enqueue_request(sc, cm);
}
return (error);
}
/*
* The MPT driver had a verbose interface for config pages. In this driver,
* reduce it to much simplier terms, similar to the Linux driver.
*/
int
mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params)
{
MPI2_CONFIG_REQUEST *req;
struct mps_command *cm;
int error;
if (sc->mps_flags & MPS_FLAGS_BUSY) {
return (EBUSY);
}
cm = mps_alloc_command(sc);
if (cm == NULL) {
return (EBUSY);
}
req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
req->Function = MPI2_FUNCTION_CONFIG;
req->Action = params->action;
req->SGLFlags = 0;
req->ChainOffset = 0;
req->PageAddress = params->page_address;
if (params->hdr.Ext.ExtPageType != 0) {
MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
hdr = &params->hdr.Ext;
req->ExtPageType = hdr->ExtPageType;
req->ExtPageLength = hdr->ExtPageLength;
req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
req->Header.PageLength = 0; /* Must be set to zero */
req->Header.PageNumber = hdr->PageNumber;
req->Header.PageVersion = hdr->PageVersion;
} else {
MPI2_CONFIG_PAGE_HEADER *hdr;
hdr = &params->hdr.Struct;
req->Header.PageType = hdr->PageType;
req->Header.PageNumber = hdr->PageNumber;
req->Header.PageLength = hdr->PageLength;
req->Header.PageVersion = hdr->PageVersion;
}
cm->cm_data = params->buffer;
cm->cm_length = params->length;
cm->cm_sge = &req->PageBufferSGE;
cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN;
cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
if (params->callback != NULL) {
cm->cm_complete = mps_config_complete;
cm->cm_complete_data = params;
return (mps_map_command(sc, cm));
} else {
cm->cm_complete = NULL;
cm->cm_flags |= MPS_CM_FLAGS_WAKEUP;
if ((error = mps_map_command(sc, cm)) != 0)
return (error);
msleep(cm, &sc->mps_mtx, 0, "mpswait", 0);
mps_config_complete(sc, cm);
}
return (0);
}
int
mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params)
{
return (EINVAL);
}
static void
mps_config_complete(struct mps_softc *sc, struct mps_command *cm)
{
MPI2_CONFIG_REPLY *reply;
struct mps_config_params *params;
params = cm->cm_complete_data;
if (cm->cm_data != NULL) {
bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
}
reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
params->status = reply->IOCStatus;
if (params->hdr.Ext.ExtPageType != 0) {
params->hdr.Ext.ExtPageType = reply->ExtPageType;
params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
} else {
params->hdr.Struct.PageType = reply->Header.PageType;
params->hdr.Struct.PageNumber = reply->Header.PageNumber;
params->hdr.Struct.PageLength = reply->Header.PageLength;
params->hdr.Struct.PageVersion = reply->Header.PageVersion;
}
mps_free_command(sc, cm);
if (params->callback != NULL)
params->callback(sc, params);
return;
}