freebsd-skq/sys/dev/netmap/netmap_mem2.c

723 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (C) 2012 Matteo Landi, Luigi Rizzo. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* $FreeBSD$
* $Id: netmap_mem2.c 11445 2012-07-30 10:49:07Z luigi $
*
* New memory allocator for netmap
*/
/*
* The new version allocates three regions:
* nm_if_pool for the struct netmap_if
* nm_ring_pool for the struct netmap_ring
* nm_buf_pool for the packet buffers.
*
* All regions need to be page-sized as we export them to
* userspace through mmap. Only the latter need to be dma-able,
* but for convenience use the same type of allocator for all.
*
* Once mapped, the three regions are exported to userspace
* as a contiguous block, starting from nm_if_pool. Each
* cluster (and pool) is an integral number of pages.
* [ . . . ][ . . . . . .][ . . . . . . . . . .]
* nm_if nm_ring nm_buf
*
* The userspace areas contain offsets of the objects in userspace.
* When (at init time) we write these offsets, we find out the index
* of the object, and from there locate the offset from the beginning
* of the region.
*
* Allocator for a pool of memory objects of the same size.
* The pool is split into smaller clusters, whose size is a
* multiple of the page size. The cluster size is chosen
* to minimize the waste for a given max cluster size
* (we do it by brute force, as we have relatively few object
* per cluster).
*
* To be polite with the cache, objects are aligned to
* the cache line, or 64 bytes. Sizes are rounded to multiple of 64.
* For each object we have
* one entry in the bitmap to signal the state. Allocation scans
* the bitmap, but since this is done only on attach, we are not
* too worried about performance
*/
/*
* MEMORY SIZES:
*
* (all the parameters below will become tunables)
*
* struct netmap_if is variable size but small.
* Assuming each NIC has 8+2 rings, (4+1 tx, 4+1 rx) the netmap_if
* uses 120 bytes on a 64-bit machine.
* We allocate NETMAP_IF_MAX_SIZE (1024) which should work even for
* cards with 48 ring pairs.
* The total number of 'struct netmap_if' could be slightly larger
* that the total number of rings on all interfaces on the system.
*/
#define NETMAP_IF_MAX_SIZE 1024
#define NETMAP_IF_MAX_NUM 512
/*
* netmap rings are up to 2..4k descriptors, 8 bytes each,
* plus some glue at the beginning (32 bytes).
* We set the default ring size to 9 pages (36K) and enable
* a few hundreds of them.
*/
#define NETMAP_RING_MAX_SIZE (9*PAGE_SIZE)
#define NETMAP_RING_MAX_NUM 200 /* approx 8MB */
/*
* Buffers: the more the better. Buffer size is NETMAP_BUF_SIZE,
* 2k or slightly less, aligned to 64 bytes.
* A large 10G interface can have 2k*18 = 36k buffers per interface,
* or about 72MB of memory. Up to us to use more.
*/
#ifndef CONSERVATIVE
#define NETMAP_BUF_MAX_NUM 100000 /* 200MB */
#else /* CONSERVATIVE */
#define NETMAP_BUF_MAX_NUM 20000 /* 40MB */
#endif
struct netmap_obj_pool {
char name[16]; /* name of the allocator */
u_int objtotal; /* actual total number of objects. */
u_int objfree; /* number of free objects. */
u_int clustentries; /* actual objects per cluster */
/* the total memory space is _numclusters*_clustsize */
u_int _numclusters; /* how many clusters */
u_int _clustsize; /* cluster size */
u_int _objsize; /* actual object size */
u_int _memtotal; /* _numclusters*_clustsize */
struct lut_entry *lut; /* virt,phys addresses, objtotal entries */
uint32_t *bitmap; /* one bit per buffer, 1 means free */
};
struct netmap_mem_d {
NM_LOCK_T nm_mtx; /* protect the allocator ? */
u_int nm_totalsize; /* shorthand */
/* pointers to the three allocators */
struct netmap_obj_pool *nm_if_pool;
struct netmap_obj_pool *nm_ring_pool;
struct netmap_obj_pool *nm_buf_pool;
};
struct lut_entry *netmap_buffer_lut; /* exported */
/*
* Convert a userspace offset to a phisical address.
* XXX re-do in a simpler way.
*
* The idea here is to hide userspace applications the fact that pre-allocated
* memory is not contiguous, but fragmented across different clusters and
* smaller memory allocators. Consequently, first of all we need to find which
* allocator is owning provided offset, then we need to find out the physical
* address associated to target page (this is done using the look-up table.
*/
static inline vm_paddr_t
netmap_ofstophys(vm_offset_t offset)
{
const struct netmap_obj_pool *p[] = {
nm_mem->nm_if_pool,
nm_mem->nm_ring_pool,
nm_mem->nm_buf_pool };
int i;
vm_offset_t o = offset;
for (i = 0; i < 3; offset -= p[i]->_memtotal, i++) {
if (offset >= p[i]->_memtotal)
continue;
// XXX now scan the clusters
return p[i]->lut[offset / p[i]->_objsize].paddr +
offset % p[i]->_objsize;
}
D("invalid ofs 0x%x out of 0x%x 0x%x 0x%x", (u_int)o,
p[0]->_memtotal, p[0]->_memtotal + p[1]->_memtotal,
p[0]->_memtotal + p[1]->_memtotal + p[2]->_memtotal);
return 0; // XXX bad address
}
/*
* we store objects by kernel address, need to find the offset
* within the pool to export the value to userspace.
* Algorithm: scan until we find the cluster, then add the
* actual offset in the cluster
*/
static ssize_t
netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
{
int i, k = p->clustentries, n = p->objtotal;
ssize_t ofs = 0;
for (i = 0; i < n; i += k, ofs += p->_clustsize) {
const char *base = p->lut[i].vaddr;
ssize_t relofs = (const char *) vaddr - base;
if (relofs < 0 || relofs > p->_clustsize)
continue;
ofs = ofs + relofs;
ND("%s: return offset %d (cluster %d) for pointer %p",
p->name, ofs, i, vaddr);
return ofs;
}
D("address %p is not contained inside any cluster (%s)",
vaddr, p->name);
return 0; /* An error occurred */
}
/* Helper functions which convert virtual addresses to offsets */
#define netmap_if_offset(v) \
netmap_obj_offset(nm_mem->nm_if_pool, (v))
#define netmap_ring_offset(v) \
(nm_mem->nm_if_pool->_memtotal + \
netmap_obj_offset(nm_mem->nm_ring_pool, (v)))
#define netmap_buf_offset(v) \
(nm_mem->nm_if_pool->_memtotal + \
nm_mem->nm_ring_pool->_memtotal + \
netmap_obj_offset(nm_mem->nm_buf_pool, (v)))
static void *
netmap_obj_malloc(struct netmap_obj_pool *p, int len)
{
uint32_t i = 0; /* index in the bitmap */
uint32_t mask, j; /* slot counter */
void *vaddr = NULL;
if (len > p->_objsize) {
D("%s request size %d too large", p->name, len);
// XXX cannot reduce the size
return NULL;
}
if (p->objfree == 0) {
D("%s allocator: run out of memory", p->name);
return NULL;
}
/* termination is guaranteed by p->free */
while (vaddr == NULL) {
uint32_t cur = p->bitmap[i];
if (cur == 0) { /* bitmask is fully used */
i++;
continue;
}
/* locate a slot */
for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
;
p->bitmap[i] &= ~mask; /* mark object as in use */
p->objfree--;
vaddr = p->lut[i * 32 + j].vaddr;
}
ND("%s allocator: allocated object @ [%d][%d]: vaddr %p", i, j, vaddr);
return vaddr;
}
/*
* free by index, not by address
*/
static void
netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
{
if (j >= p->objtotal) {
D("invalid index %u, max %u", j, p->objtotal);
return;
}
p->bitmap[j / 32] |= (1 << (j % 32));
p->objfree++;
return;
}
static void
netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
{
int i, j, n = p->_memtotal / p->_clustsize;
for (i = 0, j = 0; i < n; i++, j += p->clustentries) {
void *base = p->lut[i * p->clustentries].vaddr;
ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
/* Given address, is out of the scope of the current cluster.*/
if (vaddr < base || relofs > p->_clustsize)
continue;
j = j + relofs / p->_objsize;
KASSERT(j != 0, ("Cannot free object 0"));
netmap_obj_free(p, j);
return;
}
ND("address %p is not contained inside any cluster (%s)",
vaddr, p->name);
}
#define netmap_if_malloc(len) netmap_obj_malloc(nm_mem->nm_if_pool, len)
#define netmap_if_free(v) netmap_obj_free_va(nm_mem->nm_if_pool, (v))
#define netmap_ring_malloc(len) netmap_obj_malloc(nm_mem->nm_ring_pool, len)
#define netmap_buf_malloc() \
netmap_obj_malloc(nm_mem->nm_buf_pool, NETMAP_BUF_SIZE)
/* Return the index associated to the given packet buffer */
#define netmap_buf_index(v) \
(netmap_obj_offset(nm_mem->nm_buf_pool, (v)) / nm_mem->nm_buf_pool->_objsize)
static void
netmap_new_bufs(struct netmap_if *nifp,
struct netmap_slot *slot, u_int n)
{
struct netmap_obj_pool *p = nm_mem->nm_buf_pool;
uint32_t i = 0; /* slot counter */
(void)nifp; /* UNUSED */
for (i = 0; i < n; i++) {
void *vaddr = netmap_buf_malloc();
if (vaddr == NULL) {
D("unable to locate empty packet buffer");
goto cleanup;
}
slot[i].buf_idx = netmap_buf_index(vaddr);
KASSERT(slot[i].buf_idx != 0,
("Assigning buf_idx=0 to just created slot"));
slot[i].len = p->_objsize;
slot[i].flags = NS_BUF_CHANGED; // XXX GAETANO hack
}
ND("allocated %d buffers, %d available", n, p->objfree);
return;
cleanup:
while (i > 0) {
i--;
netmap_obj_free(nm_mem->nm_buf_pool, slot[i].buf_idx);
}
}
static void
netmap_free_buf(struct netmap_if *nifp, uint32_t i)
{
struct netmap_obj_pool *p = nm_mem->nm_buf_pool;
if (i < 2 || i >= p->objtotal) {
D("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
return;
}
netmap_obj_free(nm_mem->nm_buf_pool, i);
}
/*
* Free all resources related to an allocator.
*/
static void
netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
{
if (p == NULL)
return;
if (p->bitmap)
free(p->bitmap, M_NETMAP);
if (p->lut) {
int i;
for (i = 0; i < p->objtotal; i += p->clustentries) {
if (p->lut[i].vaddr)
contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
}
bzero(p->lut, sizeof(struct lut_entry) * p->objtotal);
free(p->lut, M_NETMAP);
}
bzero(p, sizeof(*p));
free(p, M_NETMAP);
}
/*
* We receive a request for objtotal objects, of size objsize each.
* Internally we may round up both numbers, as we allocate objects
* in small clusters multiple of the page size.
* In the allocator we don't need to store the objsize,
* but we do need to keep track of objtotal' and clustentries,
* as they are needed when freeing memory.
*
* XXX note -- userspace needs the buffers to be contiguous,
* so we cannot afford gaps at the end of a cluster.
*/
static struct netmap_obj_pool *
netmap_new_obj_allocator(const char *name, u_int objtotal, u_int objsize)
{
struct netmap_obj_pool *p;
int i, n;
u_int clustsize; /* the cluster size, multiple of page size */
u_int clustentries; /* how many objects per entry */
#define MAX_CLUSTSIZE (1<<17)
#define LINE_ROUND 64
if (objsize >= MAX_CLUSTSIZE) {
/* we could do it but there is no point */
D("unsupported allocation for %d bytes", objsize);
return NULL;
}
/* make sure objsize is a multiple of LINE_ROUND */
i = (objsize & (LINE_ROUND - 1));
if (i) {
D("XXX aligning object by %d bytes", LINE_ROUND - i);
objsize += LINE_ROUND - i;
}
/*
* Compute number of objects using a brute-force approach:
* given a max cluster size,
* we try to fill it with objects keeping track of the
* wasted space to the next page boundary.
*/
for (clustentries = 0, i = 1;; i++) {
u_int delta, used = i * objsize;
if (used > MAX_CLUSTSIZE)
break;
delta = used % PAGE_SIZE;
if (delta == 0) { // exact solution
clustentries = i;
break;
}
if (delta > ( (clustentries*objsize) % PAGE_SIZE) )
clustentries = i;
}
// D("XXX --- ouch, delta %d (bad for buffers)", delta);
/* compute clustsize and round to the next page */
clustsize = clustentries * objsize;
i = (clustsize & (PAGE_SIZE - 1));
if (i)
clustsize += PAGE_SIZE - i;
D("objsize %d clustsize %d objects %d",
objsize, clustsize, clustentries);
p = malloc(sizeof(struct netmap_obj_pool), M_NETMAP,
M_WAITOK | M_ZERO);
if (p == NULL) {
D("Unable to create '%s' allocator", name);
return NULL;
}
/*
* Allocate and initialize the lookup table.
*
* The number of clusters is n = ceil(objtotal/clustentries)
* objtotal' = n * clustentries
*/
strncpy(p->name, name, sizeof(p->name));
p->clustentries = clustentries;
p->_clustsize = clustsize;
n = (objtotal + clustentries - 1) / clustentries;
p->_numclusters = n;
p->objtotal = n * clustentries;
p->objfree = p->objtotal - 2; /* obj 0 and 1 are reserved */
p->_objsize = objsize;
p->_memtotal = p->_numclusters * p->_clustsize;
p->lut = malloc(sizeof(struct lut_entry) * p->objtotal,
M_NETMAP, M_WAITOK | M_ZERO);
if (p->lut == NULL) {
D("Unable to create lookup table for '%s' allocator", name);
goto clean;
}
/* Allocate the bitmap */
n = (p->objtotal + 31) / 32;
p->bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, M_WAITOK | M_ZERO);
if (p->bitmap == NULL) {
D("Unable to create bitmap (%d entries) for allocator '%s'", n,
name);
goto clean;
}
/*
* Allocate clusters, init pointers and bitmap
*/
for (i = 0; i < p->objtotal;) {
int lim = i + clustentries;
char *clust;
clust = contigmalloc(clustsize, M_NETMAP, M_WAITOK | M_ZERO,
0, -1UL, PAGE_SIZE, 0);
if (clust == NULL) {
/*
* If we get here, there is a severe memory shortage,
* so halve the allocated memory to reclaim some.
*/
D("Unable to create cluster at %d for '%s' allocator",
i, name);
lim = i / 2;
for (; i >= lim; i--) {
p->bitmap[ (i>>5) ] &= ~( 1 << (i & 31) );
if (i % clustentries == 0 && p->lut[i].vaddr)
contigfree(p->lut[i].vaddr,
p->_clustsize, M_NETMAP);
}
p->objtotal = i;
p->objfree = p->objtotal - 2;
p->_numclusters = i / clustentries;
p->_memtotal = p->_numclusters * p->_clustsize;
break;
}
for (; i < lim; i++, clust += objsize) {
p->bitmap[ (i>>5) ] |= ( 1 << (i & 31) );
p->lut[i].vaddr = clust;
p->lut[i].paddr = vtophys(clust);
}
}
p->bitmap[0] = ~3; /* objs 0 and 1 is always busy */
D("Pre-allocated %d clusters (%d/%dKB) for '%s'",
p->_numclusters, p->_clustsize >> 10,
p->_memtotal >> 10, name);
return p;
clean:
netmap_destroy_obj_allocator(p);
return NULL;
}
static int
netmap_memory_init(void)
{
struct netmap_obj_pool *p;
nm_mem = malloc(sizeof(struct netmap_mem_d), M_NETMAP,
M_WAITOK | M_ZERO);
if (nm_mem == NULL)
goto clean;
p = netmap_new_obj_allocator("netmap_if",
NETMAP_IF_MAX_NUM, NETMAP_IF_MAX_SIZE);
if (p == NULL)
goto clean;
nm_mem->nm_if_pool = p;
p = netmap_new_obj_allocator("netmap_ring",
NETMAP_RING_MAX_NUM, NETMAP_RING_MAX_SIZE);
if (p == NULL)
goto clean;
nm_mem->nm_ring_pool = p;
p = netmap_new_obj_allocator("netmap_buf",
NETMAP_BUF_MAX_NUM, NETMAP_BUF_SIZE);
if (p == NULL)
goto clean;
netmap_total_buffers = p->objtotal;
netmap_buffer_lut = p->lut;
nm_mem->nm_buf_pool = p;
netmap_buffer_base = p->lut[0].vaddr;
mtx_init(&nm_mem->nm_mtx, "netmap memory allocator lock", NULL,
MTX_DEF);
nm_mem->nm_totalsize =
nm_mem->nm_if_pool->_memtotal +
nm_mem->nm_ring_pool->_memtotal +
nm_mem->nm_buf_pool->_memtotal;
D("Have %d KB for interfaces, %d KB for rings and %d MB for buffers",
nm_mem->nm_if_pool->_memtotal >> 10,
nm_mem->nm_ring_pool->_memtotal >> 10,
nm_mem->nm_buf_pool->_memtotal >> 20);
return 0;
clean:
if (nm_mem) {
netmap_destroy_obj_allocator(nm_mem->nm_ring_pool);
netmap_destroy_obj_allocator(nm_mem->nm_if_pool);
free(nm_mem, M_NETMAP);
}
return ENOMEM;
}
static void
netmap_memory_fini(void)
{
if (!nm_mem)
return;
netmap_destroy_obj_allocator(nm_mem->nm_if_pool);
netmap_destroy_obj_allocator(nm_mem->nm_ring_pool);
netmap_destroy_obj_allocator(nm_mem->nm_buf_pool);
mtx_destroy(&nm_mem->nm_mtx);
free(nm_mem, M_NETMAP);
}
static void *
netmap_if_new(const char *ifname, struct netmap_adapter *na)
{
struct netmap_if *nifp;
struct netmap_ring *ring;
ssize_t base; /* handy for relative offsets between rings and nifp */
u_int i, len, ndesc;
u_int ntx = na->num_tx_rings + 1; /* shorthand, include stack ring */
u_int nrx = na->num_rx_rings + 1; /* shorthand, include stack ring */
struct netmap_kring *kring;
NMA_LOCK();
/*
* the descriptor is followed inline by an array of offsets
* to the tx and rx rings in the shared memory region.
*/
len = sizeof(struct netmap_if) + (nrx + ntx) * sizeof(ssize_t);
nifp = netmap_if_malloc(len);
if (nifp == NULL) {
NMA_UNLOCK();
return NULL;
}
/* initialize base fields -- override const */
*(int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
*(int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
strncpy(nifp->ni_name, ifname, IFNAMSIZ);
(na->refcount)++; /* XXX atomic ? we are under lock */
if (na->refcount > 1) { /* already setup, we are done */
NMA_UNLOCK();
goto final;
}
/*
* First instance, allocate netmap rings and buffers for this card
* The rings are contiguous, but have variable size.
*/
for (i = 0; i < ntx; i++) { /* Transmit rings */
kring = &na->tx_rings[i];
ndesc = na->num_tx_desc;
bzero(kring, sizeof(*kring));
len = sizeof(struct netmap_ring) +
ndesc * sizeof(struct netmap_slot);
ring = netmap_ring_malloc(len);
if (ring == NULL) {
D("Cannot allocate tx_ring[%d] for %s", i, ifname);
goto cleanup;
}
ND("txring[%d] at %p ofs %d", i, ring);
kring->na = na;
kring->ring = ring;
*(int *)(uintptr_t)&ring->num_slots = kring->nkr_num_slots = ndesc;
*(ssize_t *)(uintptr_t)&ring->buf_ofs =
(nm_mem->nm_if_pool->_memtotal +
nm_mem->nm_ring_pool->_memtotal) -
netmap_ring_offset(ring);
/*
* IMPORTANT:
* Always keep one slot empty, so we can detect new
* transmissions comparing cur and nr_hwcur (they are
* the same only if there are no new transmissions).
*/
ring->avail = kring->nr_hwavail = ndesc - 1;
ring->cur = kring->nr_hwcur = 0;
*(int *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
ND("initializing slots for txring[%d]", i);
netmap_new_bufs(nifp, ring->slot, ndesc);
}
for (i = 0; i < nrx; i++) { /* Receive rings */
kring = &na->rx_rings[i];
ndesc = na->num_rx_desc;
bzero(kring, sizeof(*kring));
len = sizeof(struct netmap_ring) +
ndesc * sizeof(struct netmap_slot);
ring = netmap_ring_malloc(len);
if (ring == NULL) {
D("Cannot allocate rx_ring[%d] for %s", i, ifname);
goto cleanup;
}
ND("rxring[%d] at %p ofs %d", i, ring);
kring->na = na;
kring->ring = ring;
*(int *)(uintptr_t)&ring->num_slots = kring->nkr_num_slots = ndesc;
*(ssize_t *)(uintptr_t)&ring->buf_ofs =
(nm_mem->nm_if_pool->_memtotal +
nm_mem->nm_ring_pool->_memtotal) -
netmap_ring_offset(ring);
ring->cur = kring->nr_hwcur = 0;
ring->avail = kring->nr_hwavail = 0; /* empty */
*(int *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
ND("initializing slots for rxring[%d]", i);
netmap_new_bufs(nifp, ring->slot, ndesc);
}
NMA_UNLOCK();
#ifdef linux
// XXX initialize the selrecord structs.
for (i = 0; i < ntx; i++)
init_waitqueue_head(&na->tx_rings[i].si);
for (i = 0; i < nrx; i++)
init_waitqueue_head(&na->rx_rings[i].si);
init_waitqueue_head(&na->tx_si);
init_waitqueue_head(&na->rx_si);
#endif
final:
/*
* fill the slots for the rx and tx rings. They contain the offset
* between the ring and nifp, so the information is usable in
* userspace to reach the ring from the nifp.
*/
base = netmap_if_offset(nifp);
for (i = 0; i < ntx; i++) {
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] =
netmap_ring_offset(na->tx_rings[i].ring) - base;
}
for (i = 0; i < nrx; i++) {
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+ntx] =
netmap_ring_offset(na->rx_rings[i].ring) - base;
}
return (nifp);
cleanup:
// XXX missing
NMA_UNLOCK();
return NULL;
}
static void
netmap_free_rings(struct netmap_adapter *na)
{
int i;
for (i = 0; i < na->num_tx_rings + 1; i++)
netmap_obj_free_va(nm_mem->nm_ring_pool,
na->tx_rings[i].ring);
for (i = 0; i < na->num_rx_rings + 1; i++)
netmap_obj_free_va(nm_mem->nm_ring_pool,
na->rx_rings[i].ring);
}