2487 lines
64 KiB
C
2487 lines
64 KiB
C
|
/*
|
||
|
* Copyright (c) 1997, 1998, 1999
|
||
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* This product includes software developed by Bill Paul.
|
||
|
* 4. Neither the name of the author nor the names of any co-contributors
|
||
|
* may be used to endorse or promote products derived from this software
|
||
|
* without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
||
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
||
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
* $Id: if_ti.c,v 1.106 1999/04/06 15:55:01 wpaul Exp $
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
|
||
|
* Manuals, sample driver and firmware source kits are available
|
||
|
* from http://www.alteon.com/support/openkits.
|
||
|
*
|
||
|
* Written by Bill Paul <wpaul@ctr.columbia.edu>
|
||
|
* Electrical Engineering Department
|
||
|
* Columbia University, New York City
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* The Alteon Networks Tigon chip contains an embedded R4000 CPU,
|
||
|
* gigabit MAC, dual DMA channels and a PCI interface unit. NICs
|
||
|
* using the Tigon may have anywhere from 512K to 2MB of SRAM. The
|
||
|
* Tigon supports hardware IP, TCP and UCP checksumming, multicast
|
||
|
* filtering and jumbo (9014 byte) frames. The hardware is largely
|
||
|
* controlled by firmware, which must be loaded into the NIC during
|
||
|
* initialization.
|
||
|
*
|
||
|
* The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
|
||
|
* revision, which supports new features such as extended commands,
|
||
|
* extended jumbo receive ring desciptors and a mini receive ring.
|
||
|
*
|
||
|
* Alteon Networks is to be commended for releasing such a vast amount
|
||
|
* of development material for the Tigon NIC without requiring an NDA
|
||
|
* (although they really should have done it a long time ago). With
|
||
|
* any luck, the other vendors will finally wise up and follow Alteon's
|
||
|
* stellar example.
|
||
|
*
|
||
|
* The firmware for the Tigon 1 and 2 NICs is compiled directly into
|
||
|
* this driver by #including it as a C header file. This bloats the
|
||
|
* driver somewhat, but it's the easiest method considering that the
|
||
|
* driver code and firmware code need to be kept in sync. The source
|
||
|
* for the firmware is not provided with the FreeBSD distribution since
|
||
|
* compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
|
||
|
*
|
||
|
* The following people deserve special thanks:
|
||
|
* - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
|
||
|
* for testing
|
||
|
* - Raymond Lee of Netgear, for providing a pair of Netgear
|
||
|
* GA620 Tigon 2 boards for testing
|
||
|
* - Ulf Zimmermann, for bringing the GA260 to my attention and
|
||
|
* convincing me to write this driver.
|
||
|
* - Andrew Gallatin for providing FreeBSD/Alpha support.
|
||
|
*/
|
||
|
|
||
|
#include "bpfilter.h"
|
||
|
#include "vlan.h"
|
||
|
|
||
|
#include <sys/param.h>
|
||
|
#include <sys/systm.h>
|
||
|
#include <sys/sockio.h>
|
||
|
#include <sys/mbuf.h>
|
||
|
#include <sys/malloc.h>
|
||
|
#include <sys/kernel.h>
|
||
|
#include <sys/socket.h>
|
||
|
#include <sys/queue.h>
|
||
|
|
||
|
#include <net/if.h>
|
||
|
#include <net/if_arp.h>
|
||
|
#include <net/ethernet.h>
|
||
|
#include <net/if_dl.h>
|
||
|
#include <net/if_media.h>
|
||
|
|
||
|
#if NBPFILTER > 0
|
||
|
#include <net/bpf.h>
|
||
|
#endif
|
||
|
|
||
|
#if NVLAN > 0
|
||
|
#include <net/if_types.h>
|
||
|
#include <net/if_vlan_var.h>
|
||
|
#endif
|
||
|
|
||
|
#include <netinet/in_systm.h>
|
||
|
#include <netinet/in.h>
|
||
|
#include <netinet/ip.h>
|
||
|
|
||
|
#include <vm/vm.h> /* for vtophys */
|
||
|
#include <vm/pmap.h> /* for vtophys */
|
||
|
#include <machine/clock.h> /* for DELAY */
|
||
|
#include <machine/bus_memio.h>
|
||
|
#include <machine/bus.h>
|
||
|
|
||
|
#include <pci/pcireg.h>
|
||
|
#include <pci/pcivar.h>
|
||
|
|
||
|
#include <pci/if_tireg.h>
|
||
|
#include <pci/ti_fw.h>
|
||
|
#include <pci/ti_fw2.h>
|
||
|
|
||
|
#ifdef M_HWCKSUM
|
||
|
/*#define TI_CSUM_OFFLOAD*/
|
||
|
#endif
|
||
|
|
||
|
#if !defined(lint)
|
||
|
static const char rcsid[] =
|
||
|
"$Id: if_ti.c,v 1.106 1999/04/06 15:55:01 wpaul Exp $";
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Various supported device vendors/types and their names.
|
||
|
*/
|
||
|
|
||
|
static struct ti_type ti_devs[] = {
|
||
|
{ ALT_VENDORID, ALT_DEVICEID_ACENIC,
|
||
|
"Alteon AceNIC Gigabit Ethernet" },
|
||
|
{ TC_VENDORID, TC_DEVICEID_3C985,
|
||
|
"3Com 3c985-SX Gigabit Ethernet" },
|
||
|
{ NG_VENDORID, NG_DEVICEID_GA620,
|
||
|
"Netgear GA620 Gigabit Ethernet" },
|
||
|
{ SGI_VENDORID, SGI_DEVICEID_TIGON,
|
||
|
"Silicon Graphics Gigabit Ethernet" },
|
||
|
{ 0, 0, NULL }
|
||
|
};
|
||
|
|
||
|
static unsigned long ti_count;
|
||
|
|
||
|
static const char *ti_probe __P((pcici_t, pcidi_t));
|
||
|
static void ti_attach __P((pcici_t, int));
|
||
|
static void ti_txeof __P((struct ti_softc *));
|
||
|
static void ti_rxeof __P((struct ti_softc *));
|
||
|
|
||
|
static void ti_stats_update __P((struct ti_softc *));
|
||
|
static int ti_encap __P((struct ti_softc *, struct mbuf *,
|
||
|
u_int32_t *));
|
||
|
|
||
|
static void ti_intr __P((void *));
|
||
|
static void ti_start __P((struct ifnet *));
|
||
|
static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
|
||
|
static void ti_init __P((void *));
|
||
|
static void ti_init2 __P((struct ti_softc *));
|
||
|
static void ti_stop __P((struct ti_softc *));
|
||
|
static void ti_watchdog __P((struct ifnet *));
|
||
|
static void ti_shutdown __P((int, void *));
|
||
|
static int ti_ifmedia_upd __P((struct ifnet *));
|
||
|
static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
|
||
|
|
||
|
static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
|
||
|
static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
|
||
|
int, u_int8_t *));
|
||
|
static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
|
||
|
|
||
|
static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
|
||
|
static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
|
||
|
static void ti_setmulti __P((struct ti_softc *));
|
||
|
|
||
|
static void ti_mem __P((struct ti_softc *, u_int32_t,
|
||
|
u_int32_t, caddr_t));
|
||
|
static void ti_loadfw __P((struct ti_softc *));
|
||
|
static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
|
||
|
static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
|
||
|
caddr_t, int));
|
||
|
static void ti_handle_events __P((struct ti_softc *));
|
||
|
static int ti_alloc_jumbo_mem __P((struct ti_softc *));
|
||
|
static void *ti_jalloc __P((struct ti_softc *));
|
||
|
static void ti_jfree __P((caddr_t, u_int));
|
||
|
static void ti_jref __P((caddr_t, u_int));
|
||
|
static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *));
|
||
|
static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *));
|
||
|
static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
|
||
|
static int ti_init_rx_ring_std __P((struct ti_softc *));
|
||
|
static void ti_free_rx_ring_std __P((struct ti_softc *));
|
||
|
static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
|
||
|
static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
|
||
|
static int ti_init_rx_ring_mini __P((struct ti_softc *));
|
||
|
static void ti_free_rx_ring_mini __P((struct ti_softc *));
|
||
|
static void ti_refill_rx_rings __P((struct ti_softc *));
|
||
|
static void ti_free_tx_ring __P((struct ti_softc *));
|
||
|
static int ti_init_tx_ring __P((struct ti_softc *));
|
||
|
|
||
|
static int ti_64bitslot_war __P((struct ti_softc *));
|
||
|
static int ti_chipinit __P((struct ti_softc *));
|
||
|
static int ti_gibinit __P((struct ti_softc *));
|
||
|
|
||
|
/*
|
||
|
* Send an instruction or address to the EEPROM, check for ACK.
|
||
|
*/
|
||
|
static u_int32_t ti_eeprom_putbyte(sc, byte)
|
||
|
struct ti_softc *sc;
|
||
|
int byte;
|
||
|
{
|
||
|
register int i, ack = 0;
|
||
|
|
||
|
/*
|
||
|
* Make sure we're in TX mode.
|
||
|
*/
|
||
|
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
|
||
|
|
||
|
/*
|
||
|
* Feed in each bit and stobe the clock.
|
||
|
*/
|
||
|
for (i = 0x80; i; i >>= 1) {
|
||
|
if (byte & i) {
|
||
|
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
|
||
|
} else {
|
||
|
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
|
||
|
}
|
||
|
DELAY(1);
|
||
|
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
|
||
|
DELAY(1);
|
||
|
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Turn off TX mode.
|
||
|
*/
|
||
|
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
|
||
|
|
||
|
/*
|
||
|
* Check for ack.
|
||
|
*/
|
||
|
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
|
||
|
ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
|
||
|
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
|
||
|
|
||
|
return(ack);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read a byte of data stored in the EEPROM at address 'addr.'
|
||
|
* We have to send two address bytes since the EEPROM can hold
|
||
|
* more than 256 bytes of data.
|
||
|
*/
|
||
|
static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
|
||
|
struct ti_softc *sc;
|
||
|
int addr;
|
||
|
u_int8_t *dest;
|
||
|
{
|
||
|
register int i;
|
||
|
u_int8_t byte = 0;
|
||
|
|
||
|
EEPROM_START;
|
||
|
|
||
|
/*
|
||
|
* Send write control code to EEPROM.
|
||
|
*/
|
||
|
if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
|
||
|
printf("ti%d: failed to send write command, status: %x\n",
|
||
|
sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
|
||
|
return(1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Send first byte of address of byte we want to read.
|
||
|
*/
|
||
|
if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
|
||
|
printf("ti%d: failed to send address, status: %x\n",
|
||
|
sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
|
||
|
return(1);
|
||
|
}
|
||
|
/*
|
||
|
* Send second byte address of byte we want to read.
|
||
|
*/
|
||
|
if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
|
||
|
printf("ti%d: failed to send address, status: %x\n",
|
||
|
sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
|
||
|
return(1);
|
||
|
}
|
||
|
|
||
|
EEPROM_STOP;
|
||
|
EEPROM_START;
|
||
|
/*
|
||
|
* Send read control code to EEPROM.
|
||
|
*/
|
||
|
if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
|
||
|
printf("ti%d: failed to send read command, status: %x\n",
|
||
|
sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
|
||
|
return(1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Start reading bits from EEPROM.
|
||
|
*/
|
||
|
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
|
||
|
for (i = 0x80; i; i >>= 1) {
|
||
|
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
|
||
|
DELAY(1);
|
||
|
if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
|
||
|
byte |= i;
|
||
|
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
|
||
|
DELAY(1);
|
||
|
}
|
||
|
|
||
|
EEPROM_STOP;
|
||
|
|
||
|
/*
|
||
|
* No ACK generated for read, so just return byte.
|
||
|
*/
|
||
|
|
||
|
*dest = byte;
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read a sequence of bytes from the EEPROM.
|
||
|
*/
|
||
|
static int ti_read_eeprom(sc, dest, off, cnt)
|
||
|
struct ti_softc *sc;
|
||
|
caddr_t dest;
|
||
|
int off;
|
||
|
int cnt;
|
||
|
{
|
||
|
int err = 0, i;
|
||
|
u_int8_t byte = 0;
|
||
|
|
||
|
for (i = 0; i < cnt; i++) {
|
||
|
err = ti_eeprom_getbyte(sc, off + i, &byte);
|
||
|
if (err)
|
||
|
break;
|
||
|
*(dest + i) = byte;
|
||
|
}
|
||
|
|
||
|
return(err ? 1 : 0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* NIC memory access function. Can be used to either clear a section
|
||
|
* of NIC local memory or (if buf is non-NULL) copy data into it.
|
||
|
*/
|
||
|
static void ti_mem(sc, addr, len, buf)
|
||
|
struct ti_softc *sc;
|
||
|
u_int32_t addr, len;
|
||
|
caddr_t buf;
|
||
|
{
|
||
|
int segptr, segsize, cnt;
|
||
|
caddr_t ti_winbase, ptr;
|
||
|
|
||
|
segptr = addr;
|
||
|
cnt = len;
|
||
|
#ifdef __i386__
|
||
|
ti_winbase = (caddr_t)(sc->ti_bhandle + TI_WINDOW);
|
||
|
#endif
|
||
|
#ifdef __alpha__
|
||
|
ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
|
||
|
#endif
|
||
|
ptr = buf;
|
||
|
|
||
|
while(cnt) {
|
||
|
if (cnt < TI_WINLEN)
|
||
|
segsize = cnt;
|
||
|
else
|
||
|
segsize = TI_WINLEN - (segptr % TI_WINLEN);
|
||
|
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
|
||
|
if (buf == NULL)
|
||
|
bzero((char *)ti_winbase + (segptr &
|
||
|
(TI_WINLEN - 1)), segsize);
|
||
|
else {
|
||
|
bcopy((char *)ptr, (char *)ti_winbase +
|
||
|
(segptr & (TI_WINLEN - 1)), segsize);
|
||
|
ptr += segsize;
|
||
|
}
|
||
|
segptr += segsize;
|
||
|
cnt -= segsize;
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Load firmware image into the NIC. Check that the firmware revision
|
||
|
* is acceptable and see if we want the firmware for the Tigon 1 or
|
||
|
* Tigon 2.
|
||
|
*/
|
||
|
static void ti_loadfw(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
switch(sc->ti_hwrev) {
|
||
|
case TI_HWREV_TIGON:
|
||
|
if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
|
||
|
tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
|
||
|
tigonFwReleaseFix != TI_FIRMWARE_FIX) {
|
||
|
printf("ti%d: firmware revision mismatch; want "
|
||
|
"%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
|
||
|
TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
|
||
|
TI_FIRMWARE_FIX, tigonFwReleaseMajor,
|
||
|
tigonFwReleaseMinor, tigonFwReleaseFix);
|
||
|
return;
|
||
|
}
|
||
|
ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
|
||
|
(caddr_t)tigonFwText);
|
||
|
ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
|
||
|
(caddr_t)tigonFwData);
|
||
|
ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
|
||
|
(caddr_t)tigonFwRodata);
|
||
|
ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
|
||
|
ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
|
||
|
CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
|
||
|
break;
|
||
|
case TI_HWREV_TIGON_II:
|
||
|
if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
|
||
|
tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
|
||
|
tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
|
||
|
printf("ti%d: firmware revision mismatch; want "
|
||
|
"%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
|
||
|
TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
|
||
|
TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
|
||
|
tigon2FwReleaseMinor, tigon2FwReleaseFix);
|
||
|
return;
|
||
|
}
|
||
|
ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
|
||
|
(caddr_t)tigon2FwText);
|
||
|
ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
|
||
|
(caddr_t)tigon2FwData);
|
||
|
ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
|
||
|
(caddr_t)tigon2FwRodata);
|
||
|
ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
|
||
|
ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
|
||
|
CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
|
||
|
break;
|
||
|
default:
|
||
|
printf("ti%d: can't load firmware: unknown hardware rev\n",
|
||
|
sc->ti_unit);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Send the NIC a command via the command ring.
|
||
|
*/
|
||
|
static void ti_cmd(sc, cmd)
|
||
|
struct ti_softc *sc;
|
||
|
struct ti_cmd_desc *cmd;
|
||
|
{
|
||
|
u_int32_t index;
|
||
|
|
||
|
if (sc->ti_rdata->ti_cmd_ring == NULL)
|
||
|
return;
|
||
|
|
||
|
index = sc->ti_cmd_saved_prodidx;
|
||
|
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
|
||
|
TI_INC(index, TI_CMD_RING_CNT);
|
||
|
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
|
||
|
sc->ti_cmd_saved_prodidx = index;
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Send the NIC an extended command. The 'len' parameter specifies the
|
||
|
* number of command slots to include after the initial command.
|
||
|
*/
|
||
|
static void ti_cmd_ext(sc, cmd, arg, len)
|
||
|
struct ti_softc *sc;
|
||
|
struct ti_cmd_desc *cmd;
|
||
|
caddr_t arg;
|
||
|
int len;
|
||
|
{
|
||
|
u_int32_t index;
|
||
|
register int i;
|
||
|
|
||
|
if (sc->ti_rdata->ti_cmd_ring == NULL)
|
||
|
return;
|
||
|
|
||
|
index = sc->ti_cmd_saved_prodidx;
|
||
|
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
|
||
|
TI_INC(index, TI_CMD_RING_CNT);
|
||
|
for (i = 0; i < len; i++) {
|
||
|
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
|
||
|
*(u_int32_t *)(&arg[i * 4]));
|
||
|
TI_INC(index, TI_CMD_RING_CNT);
|
||
|
}
|
||
|
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
|
||
|
sc->ti_cmd_saved_prodidx = index;
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Handle events that have triggered interrupts.
|
||
|
*/
|
||
|
static void ti_handle_events(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
struct ti_event_desc *e;
|
||
|
|
||
|
if (sc->ti_rdata->ti_event_ring == NULL)
|
||
|
return;
|
||
|
|
||
|
while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
|
||
|
e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
|
||
|
switch(e->ti_event) {
|
||
|
case TI_EV_LINKSTAT_CHANGED:
|
||
|
sc->ti_linkstat = e->ti_code;
|
||
|
if (e->ti_code == TI_EV_CODE_LINK_UP)
|
||
|
printf("ti%d: 10/100 link up\n", sc->ti_unit);
|
||
|
else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
|
||
|
printf("ti%d: gigabit link up\n", sc->ti_unit);
|
||
|
else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
|
||
|
printf("ti%d: link down\n", sc->ti_unit);
|
||
|
break;
|
||
|
case TI_EV_ERROR:
|
||
|
if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
|
||
|
printf("ti%d: invalid command\n", sc->ti_unit);
|
||
|
else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
|
||
|
printf("ti%d: unknown command\n", sc->ti_unit);
|
||
|
else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
|
||
|
printf("ti%d: bad config data\n", sc->ti_unit);
|
||
|
break;
|
||
|
case TI_EV_FIRMWARE_UP:
|
||
|
ti_init2(sc);
|
||
|
break;
|
||
|
case TI_EV_STATS_UPDATED:
|
||
|
ti_stats_update(sc);
|
||
|
break;
|
||
|
case TI_EV_RESET_JUMBO_RING:
|
||
|
case TI_EV_MCAST_UPDATED:
|
||
|
/* Who cares. */
|
||
|
break;
|
||
|
default:
|
||
|
printf("ti%d: unknown event: %d\n",
|
||
|
sc->ti_unit, e->ti_event);
|
||
|
break;
|
||
|
}
|
||
|
/* Advance the consumer index. */
|
||
|
TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
|
||
|
CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Memory management for the jumbo receive ring is a pain in the
|
||
|
* butt. We need to allocate at least 9018 bytes of space per frame,
|
||
|
* _and_ it has to be contiguous (unless you use the extended
|
||
|
* jumbo descriptor format). Using malloc() all the time won't
|
||
|
* work: malloc() allocates memory in powers of two, which means we
|
||
|
* would end up wasting a considerable amount of space by allocating
|
||
|
* 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
|
||
|
* to do our own memory management.
|
||
|
*
|
||
|
* The driver needs to allocate a contiguous chunk of memory at boot
|
||
|
* time. We then chop this up ourselves into 9K pieces and use them
|
||
|
* as external mbuf storage.
|
||
|
*
|
||
|
* One issue here is how much memory to allocate. The jumbo ring has
|
||
|
* 256 slots in it, but at 9K per slot than can consume over 2MB of
|
||
|
* RAM. This is a bit much, especially considering we also need
|
||
|
* RAM for the standard ring and mini ring (on the Tigon 2). To
|
||
|
* save space, we only actually allocate enough memory for 64 slots
|
||
|
* by default, which works out to between 500 and 600K. This can
|
||
|
* be tuned by changing a #define in if_tireg.h.
|
||
|
*/
|
||
|
|
||
|
static int ti_alloc_jumbo_mem(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
caddr_t ptr;
|
||
|
register int i;
|
||
|
struct ti_jpool_entry *entry;
|
||
|
|
||
|
/* Grab a big chunk o' storage. */
|
||
|
sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
|
||
|
M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
|
||
|
|
||
|
if (sc->ti_cdata.ti_jumbo_buf == NULL) {
|
||
|
printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
|
||
|
return(ENOBUFS);
|
||
|
}
|
||
|
|
||
|
SLIST_INIT(&sc->ti_jfree_listhead);
|
||
|
SLIST_INIT(&sc->ti_jinuse_listhead);
|
||
|
|
||
|
/*
|
||
|
* Now divide it up into 9K pieces and save the addresses
|
||
|
* in an array. Note that we play an evil trick here by using
|
||
|
* the first few bytes in the buffer to hold the the address
|
||
|
* of the softc structure for this interface. This is because
|
||
|
* ti_jfree() needs it, but it is called by the mbuf management
|
||
|
* code which will not pass it to us explicitly.
|
||
|
*/
|
||
|
ptr = sc->ti_cdata.ti_jumbo_buf;
|
||
|
for (i = 0; i < TI_JSLOTS; i++) {
|
||
|
u_int64_t **aptr;
|
||
|
aptr = (u_int64_t **)ptr;
|
||
|
aptr[0] = (u_int64_t *)sc;
|
||
|
ptr += sizeof(u_int64_t);
|
||
|
sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
|
||
|
sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
|
||
|
ptr += (TI_JLEN - sizeof(u_int64_t));
|
||
|
entry = malloc(sizeof(struct ti_jpool_entry),
|
||
|
M_DEVBUF, M_NOWAIT);
|
||
|
if (entry == NULL) {
|
||
|
free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
|
||
|
sc->ti_cdata.ti_jumbo_buf = NULL;
|
||
|
printf("ti%d: no memory for jumbo "
|
||
|
"buffer queue!\n", sc->ti_unit);
|
||
|
return(ENOBUFS);
|
||
|
}
|
||
|
entry->slot = i;
|
||
|
SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
|
||
|
}
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate a jumbo buffer.
|
||
|
*/
|
||
|
static void *ti_jalloc(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
struct ti_jpool_entry *entry;
|
||
|
|
||
|
entry = SLIST_FIRST(&sc->ti_jfree_listhead);
|
||
|
|
||
|
if (entry == NULL) {
|
||
|
printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
|
||
|
return(NULL);
|
||
|
}
|
||
|
|
||
|
SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
|
||
|
SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
|
||
|
sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
|
||
|
return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Adjust usage count on a jumbo buffer. In general this doesn't
|
||
|
* get used much because our jumbo buffers don't get passed around
|
||
|
* too much, but it's implemented for correctness.
|
||
|
*/
|
||
|
static void ti_jref(buf, size)
|
||
|
caddr_t buf;
|
||
|
u_int size;
|
||
|
{
|
||
|
struct ti_softc *sc;
|
||
|
u_int64_t **aptr;
|
||
|
register int i;
|
||
|
|
||
|
/* Extract the softc struct pointer. */
|
||
|
aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
|
||
|
sc = (struct ti_softc *)(aptr[0]);
|
||
|
|
||
|
if (sc == NULL)
|
||
|
panic("ti_jref: can't find softc pointer!");
|
||
|
|
||
|
if (size != TI_JUMBO_FRAMELEN - ETHER_ALIGN)
|
||
|
panic("ti_jref: adjusting refcount of buf of wrong size!");
|
||
|
|
||
|
/* calculate the slot this buffer belongs to */
|
||
|
|
||
|
i = ((vm_offset_t)aptr
|
||
|
- (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
|
||
|
|
||
|
if ((i < 0) || (i >= TI_JSLOTS))
|
||
|
panic("ti_jref: asked to reference buffer "
|
||
|
"that we don't manage!");
|
||
|
else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
|
||
|
panic("ti_jref: buffer already free!");
|
||
|
else
|
||
|
sc->ti_cdata.ti_jslots[i].ti_inuse++;
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Release a jumbo buffer.
|
||
|
*/
|
||
|
static void ti_jfree(buf, size)
|
||
|
caddr_t buf;
|
||
|
u_int size;
|
||
|
{
|
||
|
struct ti_softc *sc;
|
||
|
u_int64_t **aptr;
|
||
|
int i;
|
||
|
struct ti_jpool_entry *entry;
|
||
|
|
||
|
/* Extract the softc struct pointer. */
|
||
|
aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
|
||
|
sc = (struct ti_softc *)(aptr[0]);
|
||
|
|
||
|
if (sc == NULL)
|
||
|
panic("ti_jfree: can't find softc pointer!");
|
||
|
|
||
|
if (size != TI_JUMBO_FRAMELEN - ETHER_ALIGN)
|
||
|
panic("ti_jfree: freeing buffer of wrong size!");
|
||
|
|
||
|
/* calculate the slot this buffer belongs to */
|
||
|
|
||
|
i = ((vm_offset_t)aptr
|
||
|
- (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
|
||
|
|
||
|
if ((i < 0) || (i >= TI_JSLOTS))
|
||
|
panic("ti_jfree: asked to free buffer that we don't manage!");
|
||
|
else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
|
||
|
panic("ti_jfree: buffer already free!");
|
||
|
else {
|
||
|
sc->ti_cdata.ti_jslots[i].ti_inuse--;
|
||
|
if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
|
||
|
entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
|
||
|
if (entry == NULL)
|
||
|
panic("ti_jfree: buffer not in use!");
|
||
|
entry->slot = i;
|
||
|
SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead,
|
||
|
jpool_entries);
|
||
|
SLIST_INSERT_HEAD(&sc->ti_jfree_listhead,
|
||
|
entry, jpool_entries);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Intialize a standard receive ring descriptor.
|
||
|
*/
|
||
|
static int ti_newbuf_std(sc, i, m)
|
||
|
struct ti_softc *sc;
|
||
|
int i;
|
||
|
struct mbuf *m;
|
||
|
{
|
||
|
struct mbuf *m_new = NULL;
|
||
|
struct ti_rx_desc *r;
|
||
|
|
||
|
if (m != NULL) {
|
||
|
m_new = m;
|
||
|
} else {
|
||
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
||
|
if (m_new == NULL) {
|
||
|
printf("ti%d: mbuf allocation failed "
|
||
|
"-- packet dropped!\n", sc->ti_unit);
|
||
|
return(ENOBUFS);
|
||
|
}
|
||
|
|
||
|
MCLGET(m_new, M_DONTWAIT);
|
||
|
if (!(m_new->m_flags & M_EXT)) {
|
||
|
printf("ti%d: cluster allocation failed "
|
||
|
"-- packet dropped!\n", sc->ti_unit);
|
||
|
m_freem(m_new);
|
||
|
return(ENOBUFS);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
m_new->m_len -= ETHER_ALIGN;
|
||
|
m_new->m_data += ETHER_ALIGN;
|
||
|
sc->ti_cdata.ti_rx_std_chain[i] = m_new;
|
||
|
r = &sc->ti_rdata->ti_rx_std_ring[i];
|
||
|
TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
|
||
|
r->ti_type = TI_BDTYPE_RECV_BD;
|
||
|
#ifdef TI_CSUM_OFFLOAD
|
||
|
r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
|
||
|
#else
|
||
|
r->ti_flags = 0;
|
||
|
#endif
|
||
|
r->ti_len = MCLBYTES - ETHER_ALIGN;
|
||
|
r->ti_idx = i;
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Intialize a mini receive ring descriptor. This only applies to
|
||
|
* the Tigon 2.
|
||
|
*/
|
||
|
static int ti_newbuf_mini(sc, i, m)
|
||
|
struct ti_softc *sc;
|
||
|
int i;
|
||
|
struct mbuf *m;
|
||
|
{
|
||
|
struct mbuf *m_new = NULL;
|
||
|
struct ti_rx_desc *r;
|
||
|
|
||
|
if (m != NULL) {
|
||
|
m_new = m;
|
||
|
} else {
|
||
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
||
|
if (m_new == NULL) {
|
||
|
printf("ti%d: mbuf allocation failed "
|
||
|
"-- packet dropped!\n", sc->ti_unit);
|
||
|
return(ENOBUFS);
|
||
|
}
|
||
|
}
|
||
|
m_new->m_len -= ETHER_ALIGN;
|
||
|
m_new->m_data += ETHER_ALIGN;
|
||
|
r = &sc->ti_rdata->ti_rx_mini_ring[i];
|
||
|
sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
|
||
|
TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
|
||
|
r->ti_type = TI_BDTYPE_RECV_BD;
|
||
|
r->ti_flags = TI_BDFLAG_MINI_RING;
|
||
|
#ifdef TI_CSUM_OFFLOAD
|
||
|
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
|
||
|
#endif
|
||
|
r->ti_len = MHLEN - ETHER_ALIGN;
|
||
|
r->ti_idx = i;
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize a jumbo receive ring descriptor. This allocates
|
||
|
* a jumbo buffer from the pool managed internally by the driver.
|
||
|
*/
|
||
|
static int ti_newbuf_jumbo(sc, i, m)
|
||
|
struct ti_softc *sc;
|
||
|
int i;
|
||
|
struct mbuf *m;
|
||
|
{
|
||
|
struct mbuf *m_new = NULL;
|
||
|
struct ti_rx_desc *r;
|
||
|
|
||
|
if (m != NULL) {
|
||
|
m_new = m;
|
||
|
} else {
|
||
|
caddr_t *buf = NULL;
|
||
|
|
||
|
/* Allocate the mbuf. */
|
||
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
||
|
if (m_new == NULL) {
|
||
|
printf("ti%d: mbuf allocation failed "
|
||
|
"-- packet dropped!\n", sc->ti_unit);
|
||
|
return(ENOBUFS);
|
||
|
}
|
||
|
|
||
|
/* Allocate the jumbo buffer */
|
||
|
buf = ti_jalloc(sc);
|
||
|
if (buf == NULL) {
|
||
|
m_freem(m_new);
|
||
|
printf("ti%d: jumbo allocation failed "
|
||
|
"-- packet dropped!\n", sc->ti_unit);
|
||
|
return(ENOBUFS);
|
||
|
}
|
||
|
|
||
|
/* Attach the buffer to the mbuf. */
|
||
|
m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
|
||
|
m_new->m_data += ETHER_ALIGN;
|
||
|
m_new->m_flags |= M_EXT;
|
||
|
m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN - ETHER_ALIGN;
|
||
|
m_new->m_ext.ext_free = ti_jfree;
|
||
|
m_new->m_ext.ext_ref = ti_jref;
|
||
|
}
|
||
|
|
||
|
/* Set up the descriptor. */
|
||
|
r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
|
||
|
sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
|
||
|
TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
|
||
|
r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
|
||
|
r->ti_flags = TI_BDFLAG_JUMBO_RING;
|
||
|
#ifdef TI_CSUM_OFFLOAD
|
||
|
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
|
||
|
#endif
|
||
|
r->ti_len = TI_JUMBO_FRAMELEN - ETHER_ALIGN;
|
||
|
r->ti_idx = i;
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
|
||
|
* that's 1MB or memory, which is a lot. For now, we fill only the first
|
||
|
* 256 ring entries and hope that our CPU is fast enough to keep up with
|
||
|
* the NIC.
|
||
|
*/
|
||
|
static int ti_init_rx_ring_std(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
register int i;
|
||
|
struct ti_cmd_desc cmd;
|
||
|
|
||
|
for (i = 0; i < TI_SSLOTS; i++) {
|
||
|
if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
|
||
|
return(ENOBUFS);
|
||
|
};
|
||
|
|
||
|
TI_UPDATE_STDPROD(sc, i - 1);
|
||
|
sc->ti_std_old = sc->ti_std = i - 1;
|
||
|
sc->ti_std_cnt = 0;
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
static void ti_free_rx_ring_std(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
register int i;
|
||
|
|
||
|
for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
|
||
|
if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
|
||
|
m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
|
||
|
sc->ti_cdata.ti_rx_std_chain[i] = NULL;
|
||
|
}
|
||
|
bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
|
||
|
sizeof(struct ti_rx_desc));
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static int ti_init_rx_ring_jumbo(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
register int i;
|
||
|
struct ti_cmd_desc cmd;
|
||
|
|
||
|
for (i = 0; i < (TI_JSLOTS - 20); i++) {
|
||
|
if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
|
||
|
return(ENOBUFS);
|
||
|
};
|
||
|
|
||
|
TI_UPDATE_JUMBOPROD(sc, i - 1);
|
||
|
sc->ti_jumbo_old = sc->ti_jumbo = i - 1;
|
||
|
sc->ti_jumbo_cnt = 0;
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
static void ti_free_rx_ring_jumbo(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
register int i;
|
||
|
|
||
|
for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
|
||
|
if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
|
||
|
m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
|
||
|
sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
|
||
|
}
|
||
|
bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
|
||
|
sizeof(struct ti_rx_desc));
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static int ti_init_rx_ring_mini(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
register int i;
|
||
|
|
||
|
for (i = 0; i < TI_MSLOTS; i++) {
|
||
|
if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
|
||
|
return(ENOBUFS);
|
||
|
};
|
||
|
|
||
|
TI_UPDATE_MINIPROD(sc, i - 1);
|
||
|
sc->ti_mini_old = sc->ti_mini = i - 1;
|
||
|
sc->ti_mini_cnt = 0;
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
static void ti_free_rx_ring_mini(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
register int i;
|
||
|
|
||
|
for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
|
||
|
if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
|
||
|
m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
|
||
|
sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
|
||
|
}
|
||
|
bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
|
||
|
sizeof(struct ti_rx_desc));
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* In order to reduce the amount of work we have to do in the interrupt
|
||
|
* handler, we delay putting new buffers in the receive rings until a
|
||
|
* certain amount have been used. This lets us hand over descriptors to
|
||
|
* the NIC in fairly large chunks instead of one (or a few) at a time,
|
||
|
* and it lets tx_rxeof() run a bit faster some of the time.
|
||
|
*/
|
||
|
static void ti_refill_rx_rings(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
register int i;
|
||
|
struct ti_cmd_desc cmd;
|
||
|
|
||
|
if (sc->ti_std_cnt > 15) {
|
||
|
for (i = sc->ti_std_old; i != sc->ti_std;
|
||
|
TI_INC(i, TI_STD_RX_RING_CNT)) {
|
||
|
if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
|
||
|
break;
|
||
|
};
|
||
|
TI_UPDATE_STDPROD(sc, i);
|
||
|
sc->ti_std_old = i;
|
||
|
sc->ti_std_cnt = 0;
|
||
|
}
|
||
|
|
||
|
if (sc->ti_jumbo_cnt > 15) {
|
||
|
for (i = sc->ti_jumbo_old; i != sc->ti_jumbo;
|
||
|
TI_INC(i, TI_JUMBO_RX_RING_CNT)) {
|
||
|
if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
|
||
|
break;
|
||
|
};
|
||
|
TI_UPDATE_JUMBOPROD(sc, i);
|
||
|
sc->ti_jumbo_old = i;
|
||
|
sc->ti_jumbo_cnt = 0;
|
||
|
}
|
||
|
|
||
|
if (sc->ti_mini_cnt > 15) {
|
||
|
for (i = sc->ti_mini_old; i != sc->ti_mini;
|
||
|
TI_INC(i, TI_MINI_RX_RING_CNT)) {
|
||
|
if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
|
||
|
break;
|
||
|
};
|
||
|
TI_UPDATE_MINIPROD(sc, i);
|
||
|
sc->ti_mini_old = i;
|
||
|
sc->ti_mini_cnt = 0;
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static void ti_free_tx_ring(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
register int i;
|
||
|
|
||
|
if (sc->ti_rdata->ti_tx_ring == NULL)
|
||
|
return;
|
||
|
|
||
|
for (i = 0; i < TI_TX_RING_CNT; i++) {
|
||
|
if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
|
||
|
m_freem(sc->ti_cdata.ti_tx_chain[i]);
|
||
|
sc->ti_cdata.ti_tx_chain[i] = NULL;
|
||
|
}
|
||
|
bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
|
||
|
sizeof(struct ti_tx_desc));
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static int ti_init_tx_ring(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
sc->ti_tx_saved_considx = 0;
|
||
|
CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The Tigon 2 firmware has a new way to add/delete multicast addresses,
|
||
|
* but we have to support the old way too so that Tigon 1 cards will
|
||
|
* work.
|
||
|
*/
|
||
|
void ti_add_mcast(sc, addr)
|
||
|
struct ti_softc *sc;
|
||
|
struct ether_addr *addr;
|
||
|
{
|
||
|
struct ti_cmd_desc cmd;
|
||
|
u_int16_t *m;
|
||
|
u_int32_t ext[2] = {0, 0};
|
||
|
|
||
|
m = (u_int16_t *)&addr->octet[0];
|
||
|
|
||
|
switch(sc->ti_hwrev) {
|
||
|
case TI_HWREV_TIGON:
|
||
|
CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
|
||
|
CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
|
||
|
TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
|
||
|
break;
|
||
|
case TI_HWREV_TIGON_II:
|
||
|
ext[0] = htons(m[0]);
|
||
|
ext[1] = (htons(m[1]) << 16) | htons(m[2]);
|
||
|
TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
|
||
|
break;
|
||
|
default:
|
||
|
printf("ti%d: unknown hwrev\n", sc->ti_unit);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
void ti_del_mcast(sc, addr)
|
||
|
struct ti_softc *sc;
|
||
|
struct ether_addr *addr;
|
||
|
{
|
||
|
struct ti_cmd_desc cmd;
|
||
|
u_int16_t *m;
|
||
|
u_int32_t ext[2] = {0, 0};
|
||
|
|
||
|
m = (u_int16_t *)&addr->octet[0];
|
||
|
|
||
|
switch(sc->ti_hwrev) {
|
||
|
case TI_HWREV_TIGON:
|
||
|
CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
|
||
|
CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
|
||
|
TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
|
||
|
break;
|
||
|
case TI_HWREV_TIGON_II:
|
||
|
ext[0] = htons(m[0]);
|
||
|
ext[1] = (htons(m[1]) << 16) | htons(m[2]);
|
||
|
TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
|
||
|
break;
|
||
|
default:
|
||
|
printf("ti%d: unknown hwrev\n", sc->ti_unit);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Configure the Tigon's multicast address filter.
|
||
|
*
|
||
|
* The actual multicast table management is a bit of a pain, thanks to
|
||
|
* slight brain damage on the part of both Alteon and us. With our
|
||
|
* multicast code, we are only alerted when the multicast address table
|
||
|
* changes and at that point we only have the current list of addresses:
|
||
|
* we only know the current state, not the previous state, so we don't
|
||
|
* actually know what addresses were removed or added. The firmware has
|
||
|
* state, but we can't get our grubby mits on it, and there is no 'delete
|
||
|
* all multicast addresses' command. Hence, we have to maintain our own
|
||
|
* state so we know what addresses have been programmed into the NIC at
|
||
|
* any given time.
|
||
|
*/
|
||
|
static void ti_setmulti(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
struct ifnet *ifp;
|
||
|
struct ifmultiaddr *ifma;
|
||
|
struct ti_cmd_desc cmd;
|
||
|
struct ti_mc_entry *mc;
|
||
|
u_int32_t intrs;
|
||
|
|
||
|
ifp = &sc->arpcom.ac_if;
|
||
|
|
||
|
if (ifp->if_flags & IFF_ALLMULTI) {
|
||
|
TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
|
||
|
return;
|
||
|
} else {
|
||
|
TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
|
||
|
}
|
||
|
|
||
|
/* Disable interrupts. */
|
||
|
intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
|
||
|
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
|
||
|
|
||
|
/* First, zot all the existing filters. */
|
||
|
while (sc->ti_mc_listhead.slh_first != NULL) {
|
||
|
mc = sc->ti_mc_listhead.slh_first;
|
||
|
ti_del_mcast(sc, &mc->mc_addr);
|
||
|
SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
|
||
|
free(mc, M_DEVBUF);
|
||
|
}
|
||
|
|
||
|
/* Now program new ones. */
|
||
|
for (ifma = ifp->if_multiaddrs.lh_first;
|
||
|
ifma != NULL; ifma = ifma->ifma_link.le_next) {
|
||
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
||
|
continue;
|
||
|
mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
|
||
|
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
|
||
|
(char *)&mc->mc_addr, ETHER_ADDR_LEN);
|
||
|
SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
|
||
|
ti_add_mcast(sc, &mc->mc_addr);
|
||
|
}
|
||
|
|
||
|
/* Re-enable interrupts. */
|
||
|
CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check to see if the BIOS has configured us for a 64 bit slot when
|
||
|
* we aren't actually in one. If we detect this condition, we can work
|
||
|
* around it on the Tigon 2 by setting a bit in the PCI state register,
|
||
|
* but for the Tigon 1 we must give up and abort the interface attach.
|
||
|
*/
|
||
|
static int ti_64bitslot_war(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
|
||
|
CSR_WRITE_4(sc, 0x600, 0);
|
||
|
CSR_WRITE_4(sc, 0x604, 0);
|
||
|
CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
|
||
|
if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
|
||
|
if (sc->ti_hwrev == TI_HWREV_TIGON)
|
||
|
return(EINVAL);
|
||
|
else {
|
||
|
TI_SETBIT(sc, TI_PCI_STATE,
|
||
|
TI_PCISTATE_32BIT_BUS);
|
||
|
return(0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Do endian, PCI and DMA initialization. Also check the on-board ROM
|
||
|
* self-test results.
|
||
|
*/
|
||
|
static int ti_chipinit(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
u_int32_t cacheline;
|
||
|
u_int32_t pci_writemax = 0;
|
||
|
|
||
|
/* Initialize link to down state. */
|
||
|
sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
|
||
|
|
||
|
/* Set endianness before we access any non-PCI registers. */
|
||
|
#if BYTE_ORDER == BIG_ENDIAN
|
||
|
CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
|
||
|
TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
|
||
|
#else
|
||
|
CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
|
||
|
TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
|
||
|
#endif
|
||
|
|
||
|
/* Check the ROM failed bit to see if self-tests passed. */
|
||
|
if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
|
||
|
printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
|
||
|
return(ENODEV);
|
||
|
}
|
||
|
|
||
|
/* Halt the CPU. */
|
||
|
TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
|
||
|
|
||
|
/* Figure out the hardware revision. */
|
||
|
switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
|
||
|
case TI_REV_TIGON_I:
|
||
|
sc->ti_hwrev = TI_HWREV_TIGON;
|
||
|
break;
|
||
|
case TI_REV_TIGON_II:
|
||
|
sc->ti_hwrev = TI_HWREV_TIGON_II;
|
||
|
break;
|
||
|
default:
|
||
|
printf("ti%d: unsupported chip revision\n", sc->ti_unit);
|
||
|
return(ENODEV);
|
||
|
}
|
||
|
|
||
|
/* Do special setup for Tigon 2. */
|
||
|
if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
|
||
|
TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
|
||
|
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
|
||
|
TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
|
||
|
}
|
||
|
|
||
|
/* Set up the PCI state register. */
|
||
|
CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
|
||
|
if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
|
||
|
TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
|
||
|
}
|
||
|
|
||
|
/* Clear the read/write max DMA parameters. */
|
||
|
TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
|
||
|
TI_PCISTATE_READ_MAXDMA));
|
||
|
|
||
|
/* Get cache line size. */
|
||
|
cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
|
||
|
|
||
|
/*
|
||
|
* If the system has set enabled the PCI memory write
|
||
|
* and invalidate command in the command register, set
|
||
|
* the write max parameter accordingly. This is necessary
|
||
|
* to use MWI with the Tigon 2.
|
||
|
*/
|
||
|
if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
|
||
|
switch(cacheline) {
|
||
|
case 1:
|
||
|
case 4:
|
||
|
case 8:
|
||
|
case 16:
|
||
|
case 32:
|
||
|
case 64:
|
||
|
break;
|
||
|
default:
|
||
|
/* Disable PCI memory write and invalidate. */
|
||
|
if (bootverbose)
|
||
|
printf("ti%d: cache line size %d not "
|
||
|
"supported; disabling PCI MWI\n",
|
||
|
sc->ti_unit, cacheline);
|
||
|
CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
|
||
|
TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef __brokenalpha__
|
||
|
/*
|
||
|
* From the Alteon sample driver:
|
||
|
* Must insure that we do not cross an 8K (bytes) boundary
|
||
|
* for DMA reads. Our highest limit is 1K bytes. This is a
|
||
|
* restriction on some ALPHA platforms with early revision
|
||
|
* 21174 PCI chipsets, such as the AlphaPC 164lx
|
||
|
*/
|
||
|
TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
|
||
|
#else
|
||
|
TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
|
||
|
#endif
|
||
|
|
||
|
/* This sets the min dma param all the way up (0xff). */
|
||
|
TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
|
||
|
|
||
|
/* Configure DMA variables. */
|
||
|
#if BYTE_ORDER == BIG_ENDIAN
|
||
|
CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
|
||
|
TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
|
||
|
TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
|
||
|
TI_OPMODE_DONT_FRAG_JUMBO);
|
||
|
#else
|
||
|
CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
|
||
|
TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
|
||
|
TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Only allow 1 DMA channel to be active at a time.
|
||
|
* I don't think this is a good idea, but without it
|
||
|
* the firmware racks up lots of nicDmaReadRingFull
|
||
|
* errors.
|
||
|
*/
|
||
|
#ifndef TI_CSUM_OFFLOAD
|
||
|
TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
|
||
|
#endif
|
||
|
|
||
|
/* Recommended settings from Tigon manual. */
|
||
|
CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
|
||
|
CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
|
||
|
|
||
|
if (ti_64bitslot_war(sc)) {
|
||
|
printf("ti%d: bios thinks we're in a 64 bit slot, "
|
||
|
"but we aren't", sc->ti_unit);
|
||
|
return(EINVAL);
|
||
|
}
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize the general information block and firmware, and
|
||
|
* start the CPU(s) running.
|
||
|
*/
|
||
|
static int ti_gibinit(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
struct ti_rcb *rcb;
|
||
|
int i;
|
||
|
struct ifnet *ifp;
|
||
|
|
||
|
ifp = &sc->arpcom.ac_if;
|
||
|
|
||
|
/* Disable interrupts for now. */
|
||
|
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
|
||
|
|
||
|
/* Tell the chip where to find the general information block. */
|
||
|
CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
|
||
|
CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
|
||
|
|
||
|
/* Load the firmware into SRAM. */
|
||
|
ti_loadfw(sc);
|
||
|
|
||
|
/* Set up the contents of the general info and ring control blocks. */
|
||
|
|
||
|
/* Set up the event ring and producer pointer. */
|
||
|
rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
|
||
|
|
||
|
TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
|
||
|
rcb->ti_flags = 0;
|
||
|
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
|
||
|
vtophys(&sc->ti_ev_prodidx);
|
||
|
sc->ti_ev_prodidx.ti_idx = 0;
|
||
|
CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
|
||
|
sc->ti_ev_saved_considx = 0;
|
||
|
|
||
|
/* Set up the command ring and producer mailbox. */
|
||
|
rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
|
||
|
|
||
|
#ifdef __i386__
|
||
|
sc->ti_rdata->ti_cmd_ring =
|
||
|
(struct ti_cmd_desc *)(sc->ti_bhandle + TI_GCR_CMDRING);
|
||
|
#endif
|
||
|
#ifdef __alpha__
|
||
|
sc->ti_rdata->ti_cmd_ring =
|
||
|
(struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
|
||
|
#endif
|
||
|
TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
|
||
|
rcb->ti_flags = 0;
|
||
|
rcb->ti_max_len = 0;
|
||
|
for (i = 0; i < TI_CMD_RING_CNT; i++) {
|
||
|
CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
|
||
|
}
|
||
|
CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
|
||
|
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
|
||
|
sc->ti_cmd_saved_prodidx = 0;
|
||
|
|
||
|
/*
|
||
|
* Assign the address of the stats refresh buffer.
|
||
|
* We re-use the current stats buffer for this to
|
||
|
* conserve memory.
|
||
|
*/
|
||
|
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
|
||
|
vtophys(&sc->ti_rdata->ti_info.ti_stats);
|
||
|
|
||
|
/* Set up the standard receive ring. */
|
||
|
rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
|
||
|
TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
|
||
|
rcb->ti_max_len = TI_FRAMELEN;
|
||
|
rcb->ti_flags = 0;
|
||
|
#ifdef TI_CSUM_OFFLOAD
|
||
|
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
|
||
|
#endif
|
||
|
#if NVLAN > 0
|
||
|
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
|
||
|
#endif
|
||
|
|
||
|
/* Set up the jumbo receive ring. */
|
||
|
rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
|
||
|
TI_HOSTADDR(rcb->ti_hostaddr) =
|
||
|
vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
|
||
|
rcb->ti_max_len = TI_JUMBO_FRAMELEN - ETHER_ALIGN;
|
||
|
rcb->ti_flags = 0;
|
||
|
#ifdef TI_CSUM_OFFLOAD
|
||
|
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
|
||
|
#endif
|
||
|
#if NVLAN > 0
|
||
|
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Set up the mini ring. Only activated on the
|
||
|
* Tigon 2 but the slot in the config block is
|
||
|
* still there on the Tigon 1.
|
||
|
*/
|
||
|
rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
|
||
|
TI_HOSTADDR(rcb->ti_hostaddr) =
|
||
|
vtophys(&sc->ti_rdata->ti_rx_mini_ring);
|
||
|
rcb->ti_max_len = MHLEN;
|
||
|
if (sc->ti_hwrev == TI_HWREV_TIGON)
|
||
|
rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
|
||
|
else
|
||
|
rcb->ti_flags = 0;
|
||
|
#ifdef TI_CSUM_OFFLOAD
|
||
|
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
|
||
|
#endif
|
||
|
#if NVLAN > 0
|
||
|
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Set up the receive return ring.
|
||
|
*/
|
||
|
rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
|
||
|
TI_HOSTADDR(rcb->ti_hostaddr) =
|
||
|
vtophys(&sc->ti_rdata->ti_rx_return_ring);
|
||
|
rcb->ti_flags = 0;
|
||
|
rcb->ti_max_len = TI_RETURN_RING_CNT;
|
||
|
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
|
||
|
vtophys(&sc->ti_return_prodidx);
|
||
|
|
||
|
/*
|
||
|
* Set up the tx ring. Note: for the Tigon 2, we have the option
|
||
|
* of putting the transmit ring in the host's address space and
|
||
|
* letting the chip DMA it instead of leaving the ring in the NIC's
|
||
|
* memory and accessing it through the shared memory region. We
|
||
|
* do this for the Tigon 2, but it doesn't work on the Tigon 1,
|
||
|
* so we have to revert to the shared memory scheme if we detect
|
||
|
* a Tigon 1 chip.
|
||
|
*/
|
||
|
CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
|
||
|
if (sc->ti_hwrev == TI_HWREV_TIGON) {
|
||
|
#ifdef __i386__
|
||
|
sc->ti_rdata->ti_tx_ring_nic =
|
||
|
(struct ti_tx_desc *)(sc->ti_bhandle + TI_WINDOW);
|
||
|
#endif
|
||
|
#ifdef __alpha__
|
||
|
sc->ti_rdata->ti_tx_ring_nic =
|
||
|
(struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
|
||
|
#endif
|
||
|
}
|
||
|
bzero((char *)sc->ti_rdata->ti_tx_ring,
|
||
|
TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
|
||
|
rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
|
||
|
if (sc->ti_hwrev == TI_HWREV_TIGON)
|
||
|
rcb->ti_flags = 0;
|
||
|
else
|
||
|
rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
|
||
|
#if NVLAN > 0
|
||
|
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
|
||
|
#endif
|
||
|
rcb->ti_max_len = TI_TX_RING_CNT;
|
||
|
if (sc->ti_hwrev == TI_HWREV_TIGON)
|
||
|
TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
|
||
|
else
|
||
|
TI_HOSTADDR(rcb->ti_hostaddr) =
|
||
|
vtophys(&sc->ti_rdata->ti_tx_ring);
|
||
|
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
|
||
|
vtophys(&sc->ti_tx_considx);
|
||
|
|
||
|
/* Set up tuneables */
|
||
|
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
|
||
|
CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
|
||
|
(sc->ti_rx_coal_ticks / 10));
|
||
|
else
|
||
|
CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
|
||
|
CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
|
||
|
CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
|
||
|
CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
|
||
|
CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
|
||
|
CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
|
||
|
|
||
|
/* Turn interrupts on. */
|
||
|
CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
|
||
|
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
|
||
|
|
||
|
/* Start CPU. */
|
||
|
TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Probe for a Tigon chip. Check the PCI vendor and device IDs
|
||
|
* against our list and return its name if we find a match.
|
||
|
*/
|
||
|
static const char *
|
||
|
ti_probe(config_id, device_id)
|
||
|
pcici_t config_id;
|
||
|
pcidi_t device_id;
|
||
|
{
|
||
|
struct ti_type *t;
|
||
|
|
||
|
t = ti_devs;
|
||
|
|
||
|
while(t->ti_name != NULL) {
|
||
|
if ((device_id & 0xFFFF) == t->ti_vid &&
|
||
|
((device_id >> 16) & 0xFFFF) == t->ti_did)
|
||
|
return(t->ti_name);
|
||
|
t++;
|
||
|
}
|
||
|
|
||
|
return(NULL);
|
||
|
}
|
||
|
|
||
|
|
||
|
static void
|
||
|
ti_attach(config_id, unit)
|
||
|
pcici_t config_id;
|
||
|
int unit;
|
||
|
{
|
||
|
vm_offset_t pbase, vbase;
|
||
|
int s;
|
||
|
u_int32_t command;
|
||
|
struct ifnet *ifp;
|
||
|
struct ti_softc *sc;
|
||
|
|
||
|
s = splimp();
|
||
|
|
||
|
/* First, allocate memory for the softc struct. */
|
||
|
sc = malloc(sizeof(struct ti_softc), M_DEVBUF, M_NOWAIT);
|
||
|
if (sc == NULL) {
|
||
|
printf("ti%d: no memory for softc struct!\n", unit);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
bzero(sc, sizeof(struct ti_softc));
|
||
|
|
||
|
/*
|
||
|
* Map control/status registers.
|
||
|
*/
|
||
|
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
|
||
|
command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
|
||
|
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command);
|
||
|
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
|
||
|
|
||
|
if (!(command & PCIM_CMD_MEMEN)) {
|
||
|
printf("ti%d: failed to enable memory mapping!\n", unit);
|
||
|
free(sc, M_DEVBUF);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
#ifdef __i386__
|
||
|
if (!pci_map_mem(config_id, TI_PCI_LOMEM, &vbase, &pbase)) {
|
||
|
printf ("ti%d: couldn't map memory\n", unit);
|
||
|
free(sc, M_DEVBUF);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
sc->ti_bhandle = vbase;
|
||
|
sc->ti_btag = I386_BUS_SPACE_MEM;
|
||
|
#endif
|
||
|
|
||
|
#ifdef __alpha__
|
||
|
if (!(pci_map_bwx(config_id, TI_PCI_LOMEM, &vbase, &pbase) ||
|
||
|
pci_map_dense(config_id, TI_PCI_LOMEM, &vbase, &pbase))){
|
||
|
printf ("ti%d: couldn't map memory\n", unit);
|
||
|
free(sc, M_DEVBUF);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
sc->ti_bhandle = pbase;
|
||
|
sc->ti_vhandle = vbase;
|
||
|
sc->ti_btag = ALPHA_BUS_SPACE_MEM;
|
||
|
#endif
|
||
|
/* Allocate interrupt */
|
||
|
if (!pci_map_int(config_id, ti_intr, sc, &net_imask)) {
|
||
|
printf("ti%d: couldn't map interrupt\n", unit);
|
||
|
free(sc, M_DEVBUF);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
sc->ti_unit = unit;
|
||
|
|
||
|
if (ti_chipinit(sc)) {
|
||
|
printf("ti%d: chip initialization failed\n", sc->ti_unit);
|
||
|
free(sc, M_DEVBUF);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/* Zero out the NIC's on-board SRAM. */
|
||
|
ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
|
||
|
|
||
|
/* Init again -- zeroing memory may have clobbered some registers. */
|
||
|
if (ti_chipinit(sc)) {
|
||
|
printf("ti%d: chip initialization failed\n", sc->ti_unit);
|
||
|
free(sc, M_DEVBUF);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get station address from the EEPROM. Note: the manual states
|
||
|
* that the MAC address is at offset 0x8c, however the data is
|
||
|
* stored as two longwords (since that's how it's loaded into
|
||
|
* the NIC). This means the MAC address is actually preceeded
|
||
|
* by two zero bytes. We need to skip over those.
|
||
|
*/
|
||
|
if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
|
||
|
TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
|
||
|
printf("ti%d: failed to read station address\n", unit);
|
||
|
free(sc, M_DEVBUF);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* A Tigon chip was detected. Inform the world.
|
||
|
*/
|
||
|
printf("ti%d: Ethernet address: %6D\n", unit,
|
||
|
sc->arpcom.ac_enaddr, ":");
|
||
|
|
||
|
/* Allocate the general information block and ring buffers. */
|
||
|
sc->ti_rdata_ptr = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
|
||
|
M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
|
||
|
|
||
|
if (sc->ti_rdata_ptr == NULL) {
|
||
|
free(sc, M_DEVBUF);
|
||
|
printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
sc->ti_rdata = (struct ti_ring_data *)sc->ti_rdata_ptr;
|
||
|
bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
|
||
|
|
||
|
/* Try to allocate memory for jumbo buffers. */
|
||
|
if (ti_alloc_jumbo_mem(sc)) {
|
||
|
printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
|
||
|
free(sc->ti_rdata_ptr, M_DEVBUF);
|
||
|
free(sc, M_DEVBUF);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/* Set default tuneable values. */
|
||
|
sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
|
||
|
sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
|
||
|
sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
|
||
|
sc->ti_rx_max_coal_bds = 64;
|
||
|
sc->ti_tx_max_coal_bds = 128;
|
||
|
sc->ti_tx_buf_ratio = 21;
|
||
|
|
||
|
/* Set up ifnet structure */
|
||
|
ifp = &sc->arpcom.ac_if;
|
||
|
ifp->if_softc = sc;
|
||
|
ifp->if_unit = sc->ti_unit;
|
||
|
ifp->if_name = "ti";
|
||
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
||
|
ifp->if_ioctl = ti_ioctl;
|
||
|
ifp->if_output = ether_output;
|
||
|
ifp->if_start = ti_start;
|
||
|
ifp->if_watchdog = ti_watchdog;
|
||
|
ifp->if_init = ti_init;
|
||
|
ifp->if_mtu = ETHERMTU;
|
||
|
ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
|
||
|
|
||
|
/* Set up ifmedia support. */
|
||
|
ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
|
||
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
|
||
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
|
||
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
|
||
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX, 0, NULL);
|
||
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
|
||
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
|
||
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
|
||
|
ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
|
||
|
|
||
|
/*
|
||
|
* Call MI attach routines.
|
||
|
*/
|
||
|
if_attach(ifp);
|
||
|
ether_ifattach(ifp);
|
||
|
|
||
|
#if NBPFILTER > 0
|
||
|
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
|
||
|
#endif
|
||
|
|
||
|
at_shutdown(ti_shutdown, sc, SHUTDOWN_POST_SYNC);
|
||
|
|
||
|
fail:
|
||
|
splx(s);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Frame reception handling. This is called if there's a frame
|
||
|
* on the receive return list.
|
||
|
*
|
||
|
* Note: we have to be able to handle three possibilities here:
|
||
|
* 1) the frame is from the mini receive ring (can only happen)
|
||
|
* on Tigon 2 boards)
|
||
|
* 2) the frame is from the jumbo recieve ring
|
||
|
* 3) the frame is from the standard receive ring
|
||
|
*/
|
||
|
int ti_cksumok = 0;
|
||
|
|
||
|
static void ti_rxeof(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
struct ifnet *ifp;
|
||
|
|
||
|
ifp = &sc->arpcom.ac_if;
|
||
|
|
||
|
while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
|
||
|
struct ti_rx_desc *cur_rx;
|
||
|
u_int32_t rxidx;
|
||
|
struct ether_header *eh;
|
||
|
struct mbuf *m = NULL;
|
||
|
#if NVLAN > 0
|
||
|
u_int16_t vlan_tag = 0;
|
||
|
int have_tag = 0;
|
||
|
#endif
|
||
|
#ifdef TI_CSUM_OFFLOAD
|
||
|
struct ip *ip;
|
||
|
#endif
|
||
|
|
||
|
cur_rx =
|
||
|
&sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
|
||
|
rxidx = cur_rx->ti_idx;
|
||
|
TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
|
||
|
|
||
|
#if NVLAN > 0
|
||
|
if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
|
||
|
have_tag = 1;
|
||
|
vlan_tag = cur_rx->ti_vlan_tag;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
|
||
|
TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
|
||
|
m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
|
||
|
sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
|
||
|
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
|
||
|
ifp->if_ierrors++;
|
||
|
ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
|
||
|
TI_INC(sc->ti_jumbo_old, TI_JUMBO_RX_RING_CNT);
|
||
|
continue;
|
||
|
}
|
||
|
sc->ti_jumbo_cnt++;
|
||
|
} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
|
||
|
TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
|
||
|
m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
|
||
|
sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
|
||
|
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
|
||
|
ifp->if_ierrors++;
|
||
|
ti_newbuf_mini(sc, sc->ti_mini, m);
|
||
|
TI_INC(sc->ti_mini_old, TI_MINI_RX_RING_CNT);
|
||
|
continue;
|
||
|
}
|
||
|
sc->ti_mini_cnt++;
|
||
|
} else {
|
||
|
TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
|
||
|
m = sc->ti_cdata.ti_rx_std_chain[rxidx];
|
||
|
sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
|
||
|
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
|
||
|
ifp->if_ierrors++;
|
||
|
ti_newbuf_std(sc, sc->ti_std, m);
|
||
|
TI_INC(sc->ti_std_old, TI_STD_RX_RING_CNT);
|
||
|
continue;
|
||
|
}
|
||
|
sc->ti_std_cnt++;
|
||
|
}
|
||
|
|
||
|
m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
|
||
|
ifp->if_ipackets++;
|
||
|
eh = mtod(m, struct ether_header *);
|
||
|
m->m_pkthdr.rcvif = ifp;
|
||
|
|
||
|
#if NBPFILTER > 0
|
||
|
/*
|
||
|
* Handle BPF listeners. Let the BPF user see the packet, but
|
||
|
* don't pass it up to the ether_input() layer unless it's
|
||
|
* a broadcast packet, multicast packet, matches our ethernet
|
||
|
* address or the interface is in promiscuous mode.
|
||
|
*/
|
||
|
if (ifp->if_bpf) {
|
||
|
bpf_mtap(ifp, m);
|
||
|
if (ifp->if_flags & IFF_PROMISC &&
|
||
|
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
|
||
|
ETHER_ADDR_LEN) &&
|
||
|
(eh->ether_dhost[0] & 1) == 0)) {
|
||
|
m_freem(m);
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Remove header from mbuf and pass it on. */
|
||
|
m_adj(m, sizeof(struct ether_header));
|
||
|
|
||
|
#ifdef TI_CSUM_OFFLOAD
|
||
|
ip = mtod(m, struct ip *);
|
||
|
if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
|
||
|
!(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF))) {
|
||
|
m->m_flags |= M_HWCKSUM;
|
||
|
ti_cksumok++;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if NVLAN > 0
|
||
|
/*
|
||
|
* If we received a packet with a vlan tag, pass it
|
||
|
* to vlan_input() instead of ether_input().
|
||
|
*/
|
||
|
if (have_tag) {
|
||
|
vlan_input_tag(eh, m, vlan_tag);
|
||
|
have_tag = vlan_tag = 0;
|
||
|
continue;
|
||
|
}
|
||
|
#endif
|
||
|
ether_input(ifp, eh, m);
|
||
|
}
|
||
|
|
||
|
/* Only necessary on the Tigon 1. */
|
||
|
if (sc->ti_hwrev == TI_HWREV_TIGON)
|
||
|
CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
|
||
|
sc->ti_rx_saved_considx);
|
||
|
|
||
|
ti_refill_rx_rings(sc);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static void ti_txeof(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
struct ti_tx_desc *cur_tx = NULL;
|
||
|
struct ifnet *ifp;
|
||
|
|
||
|
ifp = &sc->arpcom.ac_if;
|
||
|
|
||
|
/*
|
||
|
* Go through our tx ring and free mbufs for those
|
||
|
* frames that have been sent.
|
||
|
*/
|
||
|
while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
|
||
|
u_int32_t idx = 0;
|
||
|
|
||
|
idx = sc->ti_tx_saved_considx;
|
||
|
if (sc->ti_hwrev == TI_HWREV_TIGON) {
|
||
|
if (idx > 383)
|
||
|
CSR_WRITE_4(sc, TI_WINBASE,
|
||
|
TI_TX_RING_BASE + 6144);
|
||
|
else if (idx > 255)
|
||
|
CSR_WRITE_4(sc, TI_WINBASE,
|
||
|
TI_TX_RING_BASE + 4096);
|
||
|
else if (idx > 127)
|
||
|
CSR_WRITE_4(sc, TI_WINBASE,
|
||
|
TI_TX_RING_BASE + 2048);
|
||
|
else
|
||
|
CSR_WRITE_4(sc, TI_WINBASE,
|
||
|
TI_TX_RING_BASE);
|
||
|
cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
|
||
|
} else
|
||
|
cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
|
||
|
if (cur_tx->ti_flags & TI_BDFLAG_END)
|
||
|
ifp->if_opackets++;
|
||
|
if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
|
||
|
m_freem(sc->ti_cdata.ti_tx_chain[idx]);
|
||
|
sc->ti_cdata.ti_tx_chain[idx] = NULL;
|
||
|
}
|
||
|
TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
|
||
|
ifp->if_timer = 0;
|
||
|
}
|
||
|
|
||
|
if (cur_tx != NULL)
|
||
|
ifp->if_flags &= ~IFF_OACTIVE;
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static void ti_intr(xsc)
|
||
|
void *xsc;
|
||
|
{
|
||
|
struct ti_softc *sc;
|
||
|
struct ifnet *ifp;
|
||
|
|
||
|
sc = xsc;
|
||
|
ifp = &sc->arpcom.ac_if;
|
||
|
|
||
|
#ifdef notdef
|
||
|
/* Avoid this for now -- checking this register is expensive. */
|
||
|
/* Make sure this is really our interrupt. */
|
||
|
if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
|
||
|
return;
|
||
|
#endif
|
||
|
|
||
|
/* Ack interrupt and stop others from occuring. */
|
||
|
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
|
||
|
|
||
|
if (ifp->if_flags & IFF_RUNNING) {
|
||
|
/* Check RX return ring producer/consumer */
|
||
|
ti_rxeof(sc);
|
||
|
|
||
|
/* Check TX ring producer/consumer */
|
||
|
ti_txeof(sc);
|
||
|
}
|
||
|
|
||
|
ti_handle_events(sc);
|
||
|
|
||
|
/* Re-enable interrupts. */
|
||
|
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
|
||
|
|
||
|
if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
|
||
|
ti_start(ifp);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static void ti_stats_update(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
struct ifnet *ifp;
|
||
|
|
||
|
ifp = &sc->arpcom.ac_if;
|
||
|
|
||
|
ifp->if_collisions +=
|
||
|
(sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
|
||
|
sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
|
||
|
sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
|
||
|
sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
|
||
|
ifp->if_collisions;
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
|
||
|
* pointers to descriptors.
|
||
|
*/
|
||
|
static int ti_encap(sc, m_head, txidx)
|
||
|
struct ti_softc *sc;
|
||
|
struct mbuf *m_head;
|
||
|
u_int32_t *txidx;
|
||
|
{
|
||
|
struct ti_tx_desc *f = NULL;
|
||
|
struct mbuf *m;
|
||
|
u_int32_t frag, cur;
|
||
|
#if NVLAN > 0
|
||
|
struct ifvlan *ifv = NULL;
|
||
|
|
||
|
if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
|
||
|
m_head->m_pkthdr.rcvif != NULL &&
|
||
|
m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
|
||
|
ifv = m_head->m_pkthdr.rcvif->if_softc;
|
||
|
#endif
|
||
|
|
||
|
m = m_head;
|
||
|
cur = frag = *txidx;
|
||
|
|
||
|
/*
|
||
|
* Start packing the mbufs in this chain into
|
||
|
* the fragment pointers. Stop when we run out
|
||
|
* of fragments or hit the end of the mbuf chain.
|
||
|
*/
|
||
|
for (m = m_head; m != NULL; m = m->m_next) {
|
||
|
if (m->m_len != 0) {
|
||
|
if (sc->ti_hwrev == TI_HWREV_TIGON) {
|
||
|
if (frag > 383)
|
||
|
CSR_WRITE_4(sc, TI_WINBASE,
|
||
|
TI_TX_RING_BASE + 6144);
|
||
|
else if (frag > 255)
|
||
|
CSR_WRITE_4(sc, TI_WINBASE,
|
||
|
TI_TX_RING_BASE + 4096);
|
||
|
else if (frag > 127)
|
||
|
CSR_WRITE_4(sc, TI_WINBASE,
|
||
|
TI_TX_RING_BASE + 2048);
|
||
|
else
|
||
|
CSR_WRITE_4(sc, TI_WINBASE,
|
||
|
TI_TX_RING_BASE);
|
||
|
f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
|
||
|
} else
|
||
|
f = &sc->ti_rdata->ti_tx_ring[frag];
|
||
|
if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
|
||
|
break;
|
||
|
TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
|
||
|
f->ti_len = m->m_len;
|
||
|
f->ti_flags = 0;
|
||
|
#if NVLAN > 0
|
||
|
if (ifv != NULL) {
|
||
|
f->ti_flags |= TI_BDFLAG_VLAN_TAG;
|
||
|
f->ti_vlan_tag = ifv->ifv_tag;
|
||
|
} else {
|
||
|
f->ti_vlan_tag = 0;
|
||
|
}
|
||
|
#endif
|
||
|
cur = frag;
|
||
|
TI_INC(frag, TI_TX_RING_CNT);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (m != NULL)
|
||
|
return(ENOBUFS);
|
||
|
|
||
|
if (sc->ti_hwrev == TI_HWREV_TIGON)
|
||
|
sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
|
||
|
TI_BDFLAG_END;
|
||
|
else
|
||
|
sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
|
||
|
sc->ti_cdata.ti_tx_chain[*txidx] = m_head;
|
||
|
|
||
|
*txidx = frag;
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
|
||
|
* to the mbuf data regions directly in the transmit descriptors.
|
||
|
*/
|
||
|
static void ti_start(ifp)
|
||
|
struct ifnet *ifp;
|
||
|
{
|
||
|
struct ti_softc *sc;
|
||
|
struct mbuf *m_head = NULL;
|
||
|
u_int32_t prodidx = 0;
|
||
|
|
||
|
sc = ifp->if_softc;
|
||
|
|
||
|
prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
|
||
|
|
||
|
while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
|
||
|
IF_DEQUEUE(&ifp->if_snd, m_head);
|
||
|
if (m_head == NULL)
|
||
|
break;
|
||
|
|
||
|
/*
|
||
|
* Pack the data into the transmit ring. If we
|
||
|
* don't have room, set the OACTIVE flag and wait
|
||
|
* for the NIC to drain the ring.
|
||
|
*/
|
||
|
if (ti_encap(sc, m_head, &prodidx)) {
|
||
|
IF_PREPEND(&ifp->if_snd, m_head);
|
||
|
ifp->if_flags |= IFF_OACTIVE;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If there's a BPF listener, bounce a copy of this frame
|
||
|
* to him.
|
||
|
*/
|
||
|
#if NBPFILTER > 0
|
||
|
if (ifp->if_bpf)
|
||
|
bpf_mtap(ifp, m_head);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* Transmit */
|
||
|
CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
|
||
|
|
||
|
/*
|
||
|
* Set a timeout in case the chip goes out to lunch.
|
||
|
*/
|
||
|
ifp->if_timer = 5;
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static void ti_init(xsc)
|
||
|
void *xsc;
|
||
|
{
|
||
|
struct ti_softc *sc = xsc;
|
||
|
int s;
|
||
|
|
||
|
s = splimp();
|
||
|
|
||
|
/* Cancel pending I/O and flush buffers. */
|
||
|
ti_stop(sc);
|
||
|
|
||
|
/* Init the gen info block, ring control blocks and firmware. */
|
||
|
if (ti_gibinit(sc)) {
|
||
|
printf("ti%d: initialization failure\n", sc->ti_unit);
|
||
|
splx(s);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
splx(s);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static void ti_init2(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
struct ti_cmd_desc cmd;
|
||
|
struct ifnet *ifp;
|
||
|
u_int16_t *m;
|
||
|
struct ifmedia *ifm;
|
||
|
int tmp;
|
||
|
|
||
|
ifp = &sc->arpcom.ac_if;
|
||
|
|
||
|
/* Specify MTU and interface index. */
|
||
|
CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
|
||
|
CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
|
||
|
ETHER_HDR_LEN + ETHER_CRC_LEN);
|
||
|
TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
|
||
|
|
||
|
/* Load our MAC address. */
|
||
|
m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
|
||
|
CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
|
||
|
CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
|
||
|
TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
|
||
|
|
||
|
/* Enable or disable promiscuous mode as needed. */
|
||
|
if (ifp->if_flags & IFF_PROMISC) {
|
||
|
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
|
||
|
} else {
|
||
|
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
|
||
|
}
|
||
|
|
||
|
/* Program multicast filter. */
|
||
|
ti_setmulti(sc);
|
||
|
|
||
|
/*
|
||
|
* If this is a Tigon 1, we should tell the
|
||
|
* firmware to use software packet filtering.
|
||
|
*/
|
||
|
if (sc->ti_hwrev == TI_HWREV_TIGON) {
|
||
|
TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
|
||
|
}
|
||
|
|
||
|
/* Init RX ring. */
|
||
|
ti_init_rx_ring_std(sc);
|
||
|
|
||
|
/* Init jumbo RX ring. */
|
||
|
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
|
||
|
ti_init_rx_ring_jumbo(sc);
|
||
|
|
||
|
/*
|
||
|
* If this is a Tigon 2, we can also configure the
|
||
|
* mini ring.
|
||
|
*/
|
||
|
if (sc->ti_hwrev == TI_HWREV_TIGON_II)
|
||
|
ti_init_rx_ring_mini(sc);
|
||
|
|
||
|
CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
|
||
|
sc->ti_rx_saved_considx = 0;
|
||
|
|
||
|
/* Init TX ring. */
|
||
|
ti_init_tx_ring(sc);
|
||
|
|
||
|
/* Tell firmware we're alive. */
|
||
|
TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
|
||
|
|
||
|
/* Enable host interrupts. */
|
||
|
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
|
||
|
|
||
|
ifp->if_flags |= IFF_RUNNING;
|
||
|
ifp->if_flags &= ~IFF_OACTIVE;
|
||
|
|
||
|
/*
|
||
|
* Make sure to set media properly. We have to do this
|
||
|
* here since we have to issue commands in order to set
|
||
|
* the link negotiation and we can't issue commands until
|
||
|
* the firmware is running.
|
||
|
*/
|
||
|
ifm = &sc->ifmedia;
|
||
|
tmp = ifm->ifm_media;
|
||
|
ifm->ifm_media = ifm->ifm_cur->ifm_media;
|
||
|
ti_ifmedia_upd(ifp);
|
||
|
ifm->ifm_media = tmp;
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set media options.
|
||
|
*/
|
||
|
static int ti_ifmedia_upd(ifp)
|
||
|
struct ifnet *ifp;
|
||
|
{
|
||
|
struct ti_softc *sc;
|
||
|
struct ifmedia *ifm;
|
||
|
struct ti_cmd_desc cmd;
|
||
|
|
||
|
sc = ifp->if_softc;
|
||
|
ifm = &sc->ifmedia;
|
||
|
|
||
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
||
|
return(EINVAL);
|
||
|
|
||
|
switch(IFM_SUBTYPE(ifm->ifm_media)) {
|
||
|
case IFM_AUTO:
|
||
|
CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
|
||
|
TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
|
||
|
TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
|
||
|
CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
|
||
|
TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
|
||
|
TI_LNK_AUTONEGENB|TI_LNK_ENB);
|
||
|
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
|
||
|
TI_CMD_CODE_NEGOTIATE_BOTH, 0);
|
||
|
break;
|
||
|
case IFM_1000_SX:
|
||
|
CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
|
||
|
TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
|
||
|
CSR_WRITE_4(sc, TI_GCR_LINK, 0);
|
||
|
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
|
||
|
TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
|
||
|
break;
|
||
|
case IFM_100_FX:
|
||
|
case IFM_10_FL:
|
||
|
CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
|
||
|
CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
|
||
|
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX) {
|
||
|
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
|
||
|
} else {
|
||
|
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
|
||
|
}
|
||
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
|
||
|
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
|
||
|
} else {
|
||
|
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
|
||
|
}
|
||
|
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
|
||
|
TI_CMD_CODE_NEGOTIATE_10_100, 0);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return(0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Report current media status.
|
||
|
*/
|
||
|
static void ti_ifmedia_sts(ifp, ifmr)
|
||
|
struct ifnet *ifp;
|
||
|
struct ifmediareq *ifmr;
|
||
|
{
|
||
|
struct ti_softc *sc;
|
||
|
|
||
|
sc = ifp->if_softc;
|
||
|
|
||
|
ifmr->ifm_status = IFM_AVALID;
|
||
|
ifmr->ifm_active = IFM_ETHER;
|
||
|
|
||
|
if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
|
||
|
return;
|
||
|
|
||
|
ifmr->ifm_status |= IFM_ACTIVE;
|
||
|
|
||
|
if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
|
||
|
ifmr->ifm_active |= IFM_1000_SX|IFM_FDX;
|
||
|
else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
|
||
|
u_int32_t media;
|
||
|
media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
|
||
|
if (media & TI_LNK_100MB)
|
||
|
ifmr->ifm_active |= IFM_100_FX;
|
||
|
if (media & TI_LNK_10MB)
|
||
|
ifmr->ifm_active |= IFM_10_FL;
|
||
|
if (media & TI_LNK_FULL_DUPLEX)
|
||
|
ifmr->ifm_active |= IFM_FDX;
|
||
|
if (media & TI_LNK_HALF_DUPLEX)
|
||
|
ifmr->ifm_active |= IFM_HDX;
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static int ti_ioctl(ifp, command, data)
|
||
|
struct ifnet *ifp;
|
||
|
u_long command;
|
||
|
caddr_t data;
|
||
|
{
|
||
|
struct ti_softc *sc = ifp->if_softc;
|
||
|
struct ifreq *ifr = (struct ifreq *) data;
|
||
|
int s, error = 0;
|
||
|
struct ti_cmd_desc cmd;
|
||
|
|
||
|
s = splimp();
|
||
|
|
||
|
switch(command) {
|
||
|
case SIOCSIFADDR:
|
||
|
case SIOCGIFADDR:
|
||
|
error = ether_ioctl(ifp, command, data);
|
||
|
break;
|
||
|
case SIOCSIFMTU:
|
||
|
if (ifr->ifr_mtu > TI_JUMBO_MTU)
|
||
|
error = EINVAL;
|
||
|
else {
|
||
|
ifp->if_mtu = ifr->ifr_mtu;
|
||
|
ti_init(sc);
|
||
|
}
|
||
|
break;
|
||
|
case SIOCSIFFLAGS:
|
||
|
if (ifp->if_flags & IFF_UP) {
|
||
|
/*
|
||
|
* If only the state of the PROMISC flag changed,
|
||
|
* then just use the 'set promisc mode' command
|
||
|
* instead of reinitializing the entire NIC. Doing
|
||
|
* a full re-init means reloading the firmware and
|
||
|
* waiting for it to start up, which may take a
|
||
|
* second or two.
|
||
|
*/
|
||
|
if (ifp->if_flags & IFF_RUNNING &&
|
||
|
ifp->if_flags & IFF_PROMISC &&
|
||
|
!(sc->ti_if_flags & IFF_PROMISC)) {
|
||
|
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
|
||
|
TI_CMD_CODE_PROMISC_ENB, 0);
|
||
|
} else if (ifp->if_flags & IFF_RUNNING &&
|
||
|
!(ifp->if_flags & IFF_PROMISC) &&
|
||
|
sc->ti_if_flags & IFF_PROMISC) {
|
||
|
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
|
||
|
TI_CMD_CODE_PROMISC_DIS, 0);
|
||
|
} else
|
||
|
ti_init(sc);
|
||
|
} else {
|
||
|
if (ifp->if_flags & IFF_RUNNING) {
|
||
|
ti_stop(sc);
|
||
|
}
|
||
|
}
|
||
|
sc->ti_if_flags = ifp->if_flags;
|
||
|
error = 0;
|
||
|
break;
|
||
|
case SIOCADDMULTI:
|
||
|
case SIOCDELMULTI:
|
||
|
if (ifp->if_flags & IFF_RUNNING) {
|
||
|
ti_setmulti(sc);
|
||
|
error = 0;
|
||
|
}
|
||
|
break;
|
||
|
case SIOCSIFMEDIA:
|
||
|
case SIOCGIFMEDIA:
|
||
|
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
|
||
|
break;
|
||
|
default:
|
||
|
error = EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
(void)splx(s);
|
||
|
|
||
|
return(error);
|
||
|
}
|
||
|
|
||
|
static void ti_watchdog(ifp)
|
||
|
struct ifnet *ifp;
|
||
|
{
|
||
|
struct ti_softc *sc;
|
||
|
|
||
|
sc = ifp->if_softc;
|
||
|
|
||
|
printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
|
||
|
ti_stop(sc);
|
||
|
ti_init(sc);
|
||
|
|
||
|
ifp->if_oerrors++;
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Stop the adapter and free any mbufs allocated to the
|
||
|
* RX and TX lists.
|
||
|
*/
|
||
|
static void ti_stop(sc)
|
||
|
struct ti_softc *sc;
|
||
|
{
|
||
|
struct ifnet *ifp;
|
||
|
struct ti_cmd_desc cmd;
|
||
|
|
||
|
ifp = &sc->arpcom.ac_if;
|
||
|
|
||
|
/* Disable host interrupts. */
|
||
|
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
|
||
|
/*
|
||
|
* Tell firmware we're shutting down.
|
||
|
*/
|
||
|
TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
|
||
|
|
||
|
/* Halt and reinitialize. */
|
||
|
ti_chipinit(sc);
|
||
|
ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
|
||
|
ti_chipinit(sc);
|
||
|
|
||
|
/* Free the RX lists. */
|
||
|
ti_free_rx_ring_std(sc);
|
||
|
|
||
|
/* Free jumbo RX list. */
|
||
|
ti_free_rx_ring_jumbo(sc);
|
||
|
|
||
|
/* Free mini RX list. */
|
||
|
ti_free_rx_ring_mini(sc);
|
||
|
|
||
|
/* Free TX buffers. */
|
||
|
ti_free_tx_ring(sc);
|
||
|
|
||
|
sc->ti_ev_prodidx.ti_idx = 0;
|
||
|
sc->ti_return_prodidx.ti_idx = 0;
|
||
|
sc->ti_tx_considx.ti_idx = 0;
|
||
|
sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
|
||
|
|
||
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Stop all chip I/O so that the kernel's probe routines don't
|
||
|
* get confused by errant DMAs when rebooting.
|
||
|
*/
|
||
|
static void ti_shutdown(howto, xsc)
|
||
|
int howto;
|
||
|
void *xsc;
|
||
|
{
|
||
|
struct ti_softc *sc;
|
||
|
|
||
|
sc = xsc;
|
||
|
|
||
|
ti_chipinit(sc);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
static struct pci_device ti_device = {
|
||
|
"ti",
|
||
|
ti_probe,
|
||
|
ti_attach,
|
||
|
&ti_count,
|
||
|
NULL
|
||
|
};
|
||
|
DATA_SET(pcidevice_set, ti_device);
|