freebsd-skq/sys/kern/subr_pcpu.c

399 lines
9.4 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2001 Wind River Systems, Inc.
* All rights reserved.
* Written by: John Baldwin <jhb@FreeBSD.org>
*
* Copyright (c) 2009 Jeffrey Roberson <jeff@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This module provides MI support for per-cpu data.
*
* Each architecture determines the mapping of logical CPU IDs to physical
* CPUs. The requirements of this mapping are as follows:
* - Logical CPU IDs must reside in the range 0 ... MAXCPU - 1.
* - The mapping is not required to be dense. That is, there may be
* gaps in the mappings.
* - The platform sets the value of MAXCPU in <machine/param.h>.
* - It is suggested, but not required, that in the non-SMP case, the
* platform define MAXCPU to be 1 and define the logical ID of the
* sole CPU as 0.
*/
2003-06-11 00:56:59 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <sys/sx.h>
#include <ddb/ddb.h>
MALLOC_DEFINE(M_PCPU, "Per-cpu", "Per-cpu resource accouting.");
struct dpcpu_free {
uintptr_t df_start;
int df_len;
TAILQ_ENTRY(dpcpu_free) df_link;
};
static DPCPU_DEFINE(char, modspace[DPCPU_MODMIN]);
static TAILQ_HEAD(, dpcpu_free) dpcpu_head = TAILQ_HEAD_INITIALIZER(dpcpu_head);
static struct sx dpcpu_lock;
uintptr_t dpcpu_off[MAXCPU];
struct pcpu *cpuid_to_pcpu[MAXCPU];
struct cpuhead cpuhead = STAILQ_HEAD_INITIALIZER(cpuhead);
/*
* Initialize the MI portions of a struct pcpu.
*/
void
pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
{
bzero(pcpu, size);
KASSERT(cpuid >= 0 && cpuid < MAXCPU,
("pcpu_init: invalid cpuid %d", cpuid));
pcpu->pc_cpuid = cpuid;
Commit the support for removing cpumask_t and replacing it directly with cpuset_t objects. That is going to offer the underlying support for a simple bump of MAXCPU and then support for number of cpus > 32 (as it is today). Right now, cpumask_t is an int, 32 bits on all our supported architecture. cpumask_t on the other side is implemented as an array of longs, and easilly extendible by definition. The architectures touched by this commit are the following: - amd64 - i386 - pc98 - arm - ia64 - XEN while the others are still missing. Userland is believed to be fully converted with the changes contained here. Some technical notes: - This commit may be considered an ABI nop for all the architectures different from amd64 and ia64 (and sparc64 in the future) - per-cpu members, which are now converted to cpuset_t, needs to be accessed avoiding migration, because the size of cpuset_t should be considered unknown - size of cpuset_t objects is different from kernel and userland (this is primirally done in order to leave some more space in userland to cope with KBI extensions). If you need to access kernel cpuset_t from the userland please refer to example in this patch on how to do that correctly (kgdb may be a good source, for example). - Support for other architectures is going to be added soon - Only MAXCPU for amd64 is bumped now The patch has been tested by sbruno and Nicholas Esborn on opteron 4 x 12 pack CPUs. More testing on big SMP is expected to came soon. pluknet tested the patch with his 8-ways on both amd64 and i386. Tested by: pluknet, sbruno, gianni, Nicholas Esborn Reviewed by: jeff, jhb, sbruno
2011-05-05 14:39:14 +00:00
CPU_SETOF(cpuid, &pcpu->pc_cpumask);
cpuid_to_pcpu[cpuid] = pcpu;
STAILQ_INSERT_TAIL(&cpuhead, pcpu, pc_allcpu);
cpu_pcpu_init(pcpu, cpuid, size);
pcpu->pc_rm_queue.rmq_next = &pcpu->pc_rm_queue;
pcpu->pc_rm_queue.rmq_prev = &pcpu->pc_rm_queue;
#ifdef KTR
snprintf(pcpu->pc_name, sizeof(pcpu->pc_name), "CPU %d", cpuid);
#endif
}
void
dpcpu_init(void *dpcpu, int cpuid)
{
struct pcpu *pcpu;
pcpu = pcpu_find(cpuid);
pcpu->pc_dynamic = (uintptr_t)dpcpu - DPCPU_START;
/*
* Initialize defaults from our linker section.
*/
memcpy(dpcpu, (void *)DPCPU_START, DPCPU_BYTES);
/*
* Place it in the global pcpu offset array.
*/
dpcpu_off[cpuid] = pcpu->pc_dynamic;
}
static void
dpcpu_startup(void *dummy __unused)
{
struct dpcpu_free *df;
df = malloc(sizeof(*df), M_PCPU, M_WAITOK | M_ZERO);
df->df_start = (uintptr_t)&DPCPU_NAME(modspace);
df->df_len = DPCPU_MODMIN;
TAILQ_INSERT_HEAD(&dpcpu_head, df, df_link);
sx_init(&dpcpu_lock, "dpcpu alloc lock");
}
SYSINIT(dpcpu, SI_SUB_KLD, SI_ORDER_FIRST, dpcpu_startup, 0);
/*
* First-fit extent based allocator for allocating space in the per-cpu
* region reserved for modules. This is only intended for use by the
* kernel linkers to place module linker sets.
*/
void *
dpcpu_alloc(int size)
{
struct dpcpu_free *df;
void *s;
s = NULL;
size = roundup2(size, sizeof(void *));
sx_xlock(&dpcpu_lock);
TAILQ_FOREACH(df, &dpcpu_head, df_link) {
if (df->df_len < size)
continue;
if (df->df_len == size) {
s = (void *)df->df_start;
TAILQ_REMOVE(&dpcpu_head, df, df_link);
free(df, M_PCPU);
break;
}
s = (void *)df->df_start;
df->df_len -= size;
df->df_start = df->df_start + size;
break;
}
sx_xunlock(&dpcpu_lock);
return (s);
}
/*
* Free dynamic per-cpu space at module unload time.
*/
void
dpcpu_free(void *s, int size)
{
struct dpcpu_free *df;
struct dpcpu_free *dn;
uintptr_t start;
uintptr_t end;
size = roundup2(size, sizeof(void *));
start = (uintptr_t)s;
end = start + size;
/*
* Free a region of space and merge it with as many neighbors as
* possible. Keeping the list sorted simplifies this operation.
*/
sx_xlock(&dpcpu_lock);
TAILQ_FOREACH(df, &dpcpu_head, df_link) {
if (df->df_start > end)
break;
/*
* If we expand at the end of an entry we may have to
* merge it with the one following it as well.
*/
if (df->df_start + df->df_len == start) {
df->df_len += size;
dn = TAILQ_NEXT(df, df_link);
if (df->df_start + df->df_len == dn->df_start) {
df->df_len += dn->df_len;
TAILQ_REMOVE(&dpcpu_head, dn, df_link);
free(dn, M_PCPU);
}
sx_xunlock(&dpcpu_lock);
return;
}
if (df->df_start == end) {
df->df_start = start;
df->df_len += size;
sx_xunlock(&dpcpu_lock);
return;
}
}
dn = malloc(sizeof(*df), M_PCPU, M_WAITOK | M_ZERO);
dn->df_start = start;
dn->df_len = size;
if (df)
TAILQ_INSERT_BEFORE(df, dn, df_link);
else
TAILQ_INSERT_TAIL(&dpcpu_head, dn, df_link);
sx_xunlock(&dpcpu_lock);
}
/*
* Initialize the per-cpu storage from an updated linker-set region.
*/
void
dpcpu_copy(void *s, int size)
{
#ifdef SMP
uintptr_t dpcpu;
int i;
for (i = 0; i < mp_ncpus; ++i) {
dpcpu = dpcpu_off[i];
if (dpcpu == 0)
continue;
memcpy((void *)(dpcpu + (uintptr_t)s), s, size);
}
#else
memcpy((void *)(dpcpu_off[0] + (uintptr_t)s), s, size);
#endif
}
/*
* Destroy a struct pcpu.
*/
void
pcpu_destroy(struct pcpu *pcpu)
{
STAILQ_REMOVE(&cpuhead, pcpu, pcpu, pc_allcpu);
cpuid_to_pcpu[pcpu->pc_cpuid] = NULL;
dpcpu_off[pcpu->pc_cpuid] = 0;
}
/*
* Locate a struct pcpu by cpu id.
*/
struct pcpu *
pcpu_find(u_int cpuid)
{
return (cpuid_to_pcpu[cpuid]);
}
int
sysctl_dpcpu_quad(SYSCTL_HANDLER_ARGS)
{
uintptr_t dpcpu;
int64_t count;
int i;
count = 0;
for (i = 0; i < mp_ncpus; ++i) {
dpcpu = dpcpu_off[i];
if (dpcpu == 0)
continue;
count += *(int64_t *)(dpcpu + (uintptr_t)arg1);
}
return (SYSCTL_OUT(req, &count, sizeof(count)));
}
int
sysctl_dpcpu_long(SYSCTL_HANDLER_ARGS)
{
uintptr_t dpcpu;
long count;
int i;
count = 0;
for (i = 0; i < mp_ncpus; ++i) {
dpcpu = dpcpu_off[i];
if (dpcpu == 0)
continue;
count += *(long *)(dpcpu + (uintptr_t)arg1);
}
return (SYSCTL_OUT(req, &count, sizeof(count)));
}
int
sysctl_dpcpu_int(SYSCTL_HANDLER_ARGS)
{
uintptr_t dpcpu;
int count;
int i;
count = 0;
for (i = 0; i < mp_ncpus; ++i) {
dpcpu = dpcpu_off[i];
if (dpcpu == 0)
continue;
count += *(int *)(dpcpu + (uintptr_t)arg1);
}
return (SYSCTL_OUT(req, &count, sizeof(count)));
}
#ifdef DDB
DB_SHOW_COMMAND(dpcpu_off, db_show_dpcpu_off)
{
int id;
CPU_FOREACH(id) {
db_printf("dpcpu_off[%2d] = 0x%jx (+ DPCPU_START = %p)\n",
id, (uintmax_t)dpcpu_off[id],
(void *)(uintptr_t)(dpcpu_off[id] + DPCPU_START));
}
}
static void
show_pcpu(struct pcpu *pc)
{
struct thread *td;
db_printf("cpuid = %d\n", pc->pc_cpuid);
db_printf("dynamic pcpu = %p\n", (void *)pc->pc_dynamic);
db_printf("curthread = ");
td = pc->pc_curthread;
if (td != NULL)
db_printf("%p: pid %d \"%s\"\n", td, td->td_proc->p_pid,
td->td_name);
else
db_printf("none\n");
db_printf("curpcb = %p\n", pc->pc_curpcb);
db_printf("fpcurthread = ");
td = pc->pc_fpcurthread;
if (td != NULL)
db_printf("%p: pid %d \"%s\"\n", td, td->td_proc->p_pid,
td->td_name);
else
db_printf("none\n");
db_printf("idlethread = ");
td = pc->pc_idlethread;
if (td != NULL)
db_printf("%p: tid %d \"%s\"\n", td, td->td_tid, td->td_name);
else
db_printf("none\n");
db_show_mdpcpu(pc);
Change the curvnet variable from a global const struct vnet *, previously always pointing to the default vnet context, to a dynamically changing thread-local one. The currvnet context should be set on entry to networking code via CURVNET_SET() macros, and reverted to previous state via CURVNET_RESTORE(). Recursions on curvnet are permitted, though strongly discuouraged. This change should have no functional impact on nooptions VIMAGE kernel builds, where CURVNET_* macros expand to whitespace. The curthread->td_vnet (aka curvnet) variable's purpose is to be an indicator of the vnet context in which the current network-related operation takes place, in case we cannot deduce the current vnet context from any other source, such as by looking at mbuf's m->m_pkthdr.rcvif->if_vnet, sockets's so->so_vnet etc. Moreover, so far curvnet has turned out to be an invaluable consistency checking aid: it helps to catch cases when sockets, ifnets or any other vnet-aware structures may have leaked from one vnet to another. The exact placement of the CURVNET_SET() / CURVNET_RESTORE() macros was a result of an empirical iterative process, whith an aim to reduce recursions on CURVNET_SET() to a minimum, while still reducing the scope of CURVNET_SET() to networking only operations - the alternative would be calling CURVNET_SET() on each system call entry. In general, curvnet has to be set in three typicall cases: when processing socket-related requests from userspace or from within the kernel; when processing inbound traffic flowing from device drivers to upper layers of the networking stack, and when executing timer-driven networking functions. This change also introduces a DDB subcommand to show the list of all vnet instances. Approved by: julian (mentor)
2009-05-05 10:56:12 +00:00
#ifdef VIMAGE
db_printf("curvnet = %p\n", pc->pc_curthread->td_vnet);
#endif
#ifdef WITNESS
db_printf("spin locks held:\n");
witness_list_locks(&pc->pc_spinlocks, db_printf);
#endif
}
DB_SHOW_COMMAND(pcpu, db_show_pcpu)
{
struct pcpu *pc;
int id;
if (have_addr)
id = ((addr >> 4) % 16) * 10 + (addr % 16);
else
id = PCPU_GET(cpuid);
pc = pcpu_find(id);
if (pc == NULL) {
db_printf("CPU %d not found\n", id);
return;
}
show_pcpu(pc);
}
DB_SHOW_ALL_COMMAND(pcpu, db_show_cpu_all)
{
struct pcpu *pc;
int id;
db_printf("Current CPU: %d\n\n", PCPU_GET(cpuid));
for (id = 0; id <= mp_maxid; id++) {
pc = pcpu_find(id);
if (pc != NULL) {
show_pcpu(pc);
db_printf("\n");
}
}
}
DB_SHOW_ALIAS(allpcpu, db_show_cpu_all);
#endif