freebsd-skq/sbin/hastd/secondary.c

749 lines
22 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2009-2010 The FreeBSD Foundation
* Copyright (c) 2010 Pawel Jakub Dawidek <pjd@FreeBSD.org>
* All rights reserved.
*
* This software was developed by Pawel Jakub Dawidek under sponsorship from
* the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/time.h>
#include <sys/bio.h>
#include <sys/disk.h>
#include <sys/stat.h>
#include <assert.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <libgeom.h>
#include <pthread.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <sysexits.h>
#include <unistd.h>
#include <activemap.h>
#include <nv.h>
#include <pjdlog.h>
#include "control.h"
#include "event.h"
#include "hast.h"
#include "hast_proto.h"
#include "hastd.h"
#include "hooks.h"
#include "metadata.h"
#include "proto.h"
#include "subr.h"
#include "synch.h"
struct hio {
uint64_t hio_seq;
int hio_error;
struct nv *hio_nv;
void *hio_data;
uint8_t hio_cmd;
uint64_t hio_offset;
uint64_t hio_length;
TAILQ_ENTRY(hio) hio_next;
};
static struct hast_resource *gres;
/*
* Free list holds unused structures. When free list is empty, we have to wait
* until some in-progress requests are freed.
*/
static TAILQ_HEAD(, hio) hio_free_list;
static pthread_mutex_t hio_free_list_lock;
static pthread_cond_t hio_free_list_cond;
/*
* Disk thread (the one that do I/O requests) takes requests from this list.
*/
static TAILQ_HEAD(, hio) hio_disk_list;
static pthread_mutex_t hio_disk_list_lock;
static pthread_cond_t hio_disk_list_cond;
/*
* There is one recv list for every component, although local components don't
* use recv lists as local requests are done synchronously.
*/
static TAILQ_HEAD(, hio) hio_send_list;
static pthread_mutex_t hio_send_list_lock;
static pthread_cond_t hio_send_list_cond;
/*
* Maximum number of outstanding I/O requests.
*/
#define HAST_HIO_MAX 256
static void *recv_thread(void *arg);
static void *disk_thread(void *arg);
static void *send_thread(void *arg);
#define QUEUE_INSERT(name, hio) do { \
bool _wakeup; \
\
mtx_lock(&hio_##name##_list_lock); \
_wakeup = TAILQ_EMPTY(&hio_##name##_list); \
TAILQ_INSERT_TAIL(&hio_##name##_list, (hio), hio_next); \
mtx_unlock(&hio_##name##_list_lock); \
if (_wakeup) \
cv_signal(&hio_##name##_list_cond); \
} while (0)
#define QUEUE_TAKE(name, hio) do { \
mtx_lock(&hio_##name##_list_lock); \
while (((hio) = TAILQ_FIRST(&hio_##name##_list)) == NULL) { \
cv_wait(&hio_##name##_list_cond, \
&hio_##name##_list_lock); \
} \
TAILQ_REMOVE(&hio_##name##_list, (hio), hio_next); \
mtx_unlock(&hio_##name##_list_lock); \
} while (0)
static void
init_environment(void)
{
struct hio *hio;
unsigned int ii;
/*
* Initialize lists, their locks and theirs condition variables.
*/
TAILQ_INIT(&hio_free_list);
mtx_init(&hio_free_list_lock);
cv_init(&hio_free_list_cond);
TAILQ_INIT(&hio_disk_list);
mtx_init(&hio_disk_list_lock);
cv_init(&hio_disk_list_cond);
TAILQ_INIT(&hio_send_list);
mtx_init(&hio_send_list_lock);
cv_init(&hio_send_list_cond);
/*
* Allocate requests pool and initialize requests.
*/
for (ii = 0; ii < HAST_HIO_MAX; ii++) {
hio = malloc(sizeof(*hio));
if (hio == NULL) {
pjdlog_exitx(EX_TEMPFAIL,
"Unable to allocate memory (%zu bytes) for hio request.",
sizeof(*hio));
}
hio->hio_error = 0;
hio->hio_data = malloc(MAXPHYS);
if (hio->hio_data == NULL) {
pjdlog_exitx(EX_TEMPFAIL,
"Unable to allocate memory (%zu bytes) for gctl_data.",
(size_t)MAXPHYS);
}
TAILQ_INSERT_HEAD(&hio_free_list, hio, hio_next);
}
}
static void
init_local(struct hast_resource *res)
{
if (metadata_read(res, true) < 0)
exit(EX_NOINPUT);
}
static void
init_remote(struct hast_resource *res, struct nv *nvin)
{
uint64_t resuid;
struct nv *nvout;
unsigned char *map;
size_t mapsize;
map = NULL;
mapsize = 0;
nvout = nv_alloc();
nv_add_int64(nvout, (int64_t)res->hr_datasize, "datasize");
nv_add_int32(nvout, (int32_t)res->hr_extentsize, "extentsize");
resuid = nv_get_uint64(nvin, "resuid");
res->hr_primary_localcnt = nv_get_uint64(nvin, "localcnt");
res->hr_primary_remotecnt = nv_get_uint64(nvin, "remotecnt");
nv_add_uint64(nvout, res->hr_secondary_localcnt, "localcnt");
nv_add_uint64(nvout, res->hr_secondary_remotecnt, "remotecnt");
mapsize = activemap_calc_ondisk_size(res->hr_local_mediasize -
METADATA_SIZE, res->hr_extentsize, res->hr_local_sectorsize);
map = malloc(mapsize);
if (map == NULL) {
pjdlog_exitx(EX_TEMPFAIL,
"Unable to allocate memory (%zu bytes) for activemap.",
mapsize);
}
nv_add_uint32(nvout, (uint32_t)mapsize, "mapsize");
/*
* When we work as primary and secondary is missing we will increase
* localcnt in our metadata. When secondary is connected and synced
* we make localcnt be equal to remotecnt, which means nodes are more
* or less in sync.
* Split-brain condition is when both nodes are not able to communicate
* and are both configured as primary nodes. In turn, they can both
* make incompatible changes to the data and we have to detect that.
* Under split-brain condition we will increase our localcnt on first
* write and remote node will increase its localcnt on first write.
* When we connect we can see that primary's localcnt is greater than
* our remotecnt (primary was modified while we weren't watching) and
* our localcnt is greater than primary's remotecnt (we were modified
* while primary wasn't watching).
* There are many possible combinations which are all gathered below.
* Don't pay too much attention to exact numbers, the more important
* is to compare them. We compare secondary's local with primary's
* remote and secondary's remote with primary's local.
* Note that every case where primary's localcnt is smaller than
* secondary's remotecnt and where secondary's localcnt is smaller than
* primary's remotecnt should be impossible in practise. We will perform
* full synchronization then. Those cases are marked with an asterisk.
* Regular synchronization means that only extents marked as dirty are
* synchronized (regular synchronization).
*
* SECONDARY METADATA PRIMARY METADATA
* local=3 remote=3 local=2 remote=2* ?! Full sync from secondary.
* local=3 remote=3 local=2 remote=3* ?! Full sync from primary.
* local=3 remote=3 local=2 remote=4* ?! Full sync from primary.
* local=3 remote=3 local=3 remote=2 Primary is out-of-date,
* regular sync from secondary.
* local=3 remote=3 local=3 remote=3 Regular sync just in case.
* local=3 remote=3 local=3 remote=4* ?! Full sync from primary.
* local=3 remote=3 local=4 remote=2 Split-brain condition.
* local=3 remote=3 local=4 remote=3 Secondary out-of-date,
* regular sync from primary.
* local=3 remote=3 local=4 remote=4* ?! Full sync from primary.
*/
if (res->hr_resuid == 0) {
/*
* Provider is used for the first time. Initialize everything.
*/
assert(res->hr_secondary_localcnt == 0);
res->hr_resuid = resuid;
if (metadata_write(res) < 0)
exit(EX_NOINPUT);
memset(map, 0xff, mapsize);
nv_add_uint8(nvout, HAST_SYNCSRC_PRIMARY, "syncsrc");
} else if (
/* Is primary is out-of-date? */
(res->hr_secondary_localcnt > res->hr_primary_remotecnt &&
res->hr_secondary_remotecnt == res->hr_primary_localcnt) ||
/* Node are more or less in sync? */
(res->hr_secondary_localcnt == res->hr_primary_remotecnt &&
res->hr_secondary_remotecnt == res->hr_primary_localcnt) ||
/* Is secondary is out-of-date? */
(res->hr_secondary_localcnt == res->hr_primary_remotecnt &&
res->hr_secondary_remotecnt < res->hr_primary_localcnt)) {
/*
* Nodes are more or less in sync or one of the nodes is
* out-of-date.
* It doesn't matter at this point which one, we just have to
* send out local bitmap to the remote node.
*/
if (pread(res->hr_localfd, map, mapsize, METADATA_SIZE) !=
(ssize_t)mapsize) {
pjdlog_exit(LOG_ERR, "Unable to read activemap");
}
if (res->hr_secondary_localcnt > res->hr_primary_remotecnt &&
res->hr_secondary_remotecnt == res->hr_primary_localcnt) {
/* Primary is out-of-date, sync from secondary. */
nv_add_uint8(nvout, HAST_SYNCSRC_SECONDARY, "syncsrc");
} else {
/*
* Secondary is out-of-date or counts match.
* Sync from primary.
*/
nv_add_uint8(nvout, HAST_SYNCSRC_PRIMARY, "syncsrc");
}
} else if (res->hr_secondary_localcnt > res->hr_primary_remotecnt &&
res->hr_primary_localcnt > res->hr_secondary_remotecnt) {
/*
* Not good, we have split-brain condition.
*/
pjdlog_error("Split-brain detected, exiting.");
nv_add_string(nvout, "Split-brain condition!", "errmsg");
free(map);
map = NULL;
mapsize = 0;
} else /* if (res->hr_secondary_localcnt < res->hr_primary_remotecnt ||
res->hr_primary_localcnt < res->hr_secondary_remotecnt) */ {
/*
* This should never happen in practise, but we will perform
* full synchronization.
*/
assert(res->hr_secondary_localcnt < res->hr_primary_remotecnt ||
res->hr_primary_localcnt < res->hr_secondary_remotecnt);
mapsize = activemap_calc_ondisk_size(res->hr_local_mediasize -
METADATA_SIZE, res->hr_extentsize,
res->hr_local_sectorsize);
memset(map, 0xff, mapsize);
if (res->hr_secondary_localcnt > res->hr_primary_remotecnt) {
/* In this one of five cases sync from secondary. */
nv_add_uint8(nvout, HAST_SYNCSRC_SECONDARY, "syncsrc");
} else {
/* For the rest four cases sync from primary. */
nv_add_uint8(nvout, HAST_SYNCSRC_PRIMARY, "syncsrc");
}
pjdlog_warning("This should never happen, asking for full synchronization (primary(local=%ju, remote=%ju), secondary(local=%ju, remote=%ju)).",
(uintmax_t)res->hr_primary_localcnt,
(uintmax_t)res->hr_primary_remotecnt,
(uintmax_t)res->hr_secondary_localcnt,
(uintmax_t)res->hr_secondary_remotecnt);
}
if (hast_proto_send(res, res->hr_remotein, nvout, map, mapsize) < 0) {
pjdlog_errno(LOG_WARNING, "Unable to send activemap to %s",
res->hr_remoteaddr);
nv_free(nvout);
exit(EX_TEMPFAIL);
}
nv_free(nvout);
if (res->hr_secondary_localcnt > res->hr_primary_remotecnt &&
res->hr_primary_localcnt > res->hr_secondary_remotecnt) {
/* Exit on split-brain. */
event_send(res, EVENT_SPLITBRAIN);
exit(EX_CONFIG);
}
}
void
hastd_secondary(struct hast_resource *res, struct nv *nvin)
{
pthread_t td;
pid_t pid;
int error;
/*
* Create communication channel between parent and child.
*/
if (proto_client("socketpair://", &res->hr_ctrl) < 0) {
KEEP_ERRNO((void)pidfile_remove(pfh));
pjdlog_exit(EX_OSERR,
"Unable to create control sockets between parent and child");
}
/*
* Create communication channel between child and parent.
*/
if (proto_client("socketpair://", &res->hr_event) < 0) {
KEEP_ERRNO((void)pidfile_remove(pfh));
pjdlog_exit(EX_OSERR,
"Unable to create event sockets between child and parent");
}
pid = fork();
if (pid < 0) {
KEEP_ERRNO((void)pidfile_remove(pfh));
pjdlog_exit(EX_OSERR, "Unable to fork");
}
if (pid > 0) {
/* This is parent. */
proto_close(res->hr_remotein);
res->hr_remotein = NULL;
proto_close(res->hr_remoteout);
res->hr_remoteout = NULL;
/* Declare that we are receiver. */
proto_recv(res->hr_event, NULL, 0);
res->hr_workerpid = pid;
return;
}
gres = res;
(void)pidfile_close(pfh);
hook_fini();
setproctitle("%s (secondary)", res->hr_name);
signal(SIGHUP, SIG_DFL);
signal(SIGCHLD, SIG_DFL);
/* Declare that we are sender. */
proto_send(res->hr_event, NULL, 0);
/* Error in setting timeout is not critical, but why should it fail? */
if (proto_timeout(res->hr_remotein, 0) < 0)
pjdlog_errno(LOG_WARNING, "Unable to set connection timeout");
if (proto_timeout(res->hr_remoteout, res->hr_timeout) < 0)
pjdlog_errno(LOG_WARNING, "Unable to set connection timeout");
init_local(res);
init_environment();
/*
* Create the control thread before sending any event to the parent,
* as we can deadlock when parent sends control request to worker,
* but worker has no control thread started yet, so parent waits.
* In the meantime worker sends an event to the parent, but parent
* is unable to handle the event, because it waits for control
* request response.
*/
error = pthread_create(&td, NULL, ctrl_thread, res);
assert(error == 0);
init_remote(res, nvin);
event_send(res, EVENT_CONNECT);
error = pthread_create(&td, NULL, recv_thread, res);
assert(error == 0);
error = pthread_create(&td, NULL, disk_thread, res);
assert(error == 0);
(void)send_thread(res);
}
static void
reqlog(int loglevel, int debuglevel, int error, struct hio *hio, const char *fmt, ...)
{
char msg[1024];
va_list ap;
int len;
va_start(ap, fmt);
len = vsnprintf(msg, sizeof(msg), fmt, ap);
va_end(ap);
if ((size_t)len < sizeof(msg)) {
switch (hio->hio_cmd) {
case HIO_READ:
(void)snprintf(msg + len, sizeof(msg) - len,
"READ(%ju, %ju).", (uintmax_t)hio->hio_offset,
(uintmax_t)hio->hio_length);
break;
case HIO_DELETE:
(void)snprintf(msg + len, sizeof(msg) - len,
"DELETE(%ju, %ju).", (uintmax_t)hio->hio_offset,
(uintmax_t)hio->hio_length);
break;
case HIO_FLUSH:
(void)snprintf(msg + len, sizeof(msg) - len, "FLUSH.");
break;
case HIO_WRITE:
(void)snprintf(msg + len, sizeof(msg) - len,
"WRITE(%ju, %ju).", (uintmax_t)hio->hio_offset,
(uintmax_t)hio->hio_length);
break;
case HIO_KEEPALIVE:
(void)snprintf(msg + len, sizeof(msg) - len, "KEEPALIVE.");
break;
default:
(void)snprintf(msg + len, sizeof(msg) - len,
"UNKNOWN(%u).", (unsigned int)hio->hio_cmd);
break;
}
}
pjdlog_common(loglevel, debuglevel, error, "%s", msg);
}
static int
requnpack(struct hast_resource *res, struct hio *hio)
{
hio->hio_cmd = nv_get_uint8(hio->hio_nv, "cmd");
if (hio->hio_cmd == 0) {
pjdlog_error("Header contains no 'cmd' field.");
hio->hio_error = EINVAL;
goto end;
}
switch (hio->hio_cmd) {
case HIO_KEEPALIVE:
break;
case HIO_READ:
case HIO_WRITE:
case HIO_DELETE:
hio->hio_offset = nv_get_uint64(hio->hio_nv, "offset");
if (nv_error(hio->hio_nv) != 0) {
pjdlog_error("Header is missing 'offset' field.");
hio->hio_error = EINVAL;
goto end;
}
hio->hio_length = nv_get_uint64(hio->hio_nv, "length");
if (nv_error(hio->hio_nv) != 0) {
pjdlog_error("Header is missing 'length' field.");
hio->hio_error = EINVAL;
goto end;
}
if (hio->hio_length == 0) {
pjdlog_error("Data length is zero.");
hio->hio_error = EINVAL;
goto end;
}
if (hio->hio_length > MAXPHYS) {
pjdlog_error("Data length is too large (%ju > %ju).",
(uintmax_t)hio->hio_length, (uintmax_t)MAXPHYS);
hio->hio_error = EINVAL;
goto end;
}
if ((hio->hio_offset % res->hr_local_sectorsize) != 0) {
pjdlog_error("Offset %ju is not multiple of sector size.",
(uintmax_t)hio->hio_offset);
hio->hio_error = EINVAL;
goto end;
}
if ((hio->hio_length % res->hr_local_sectorsize) != 0) {
pjdlog_error("Length %ju is not multiple of sector size.",
(uintmax_t)hio->hio_length);
hio->hio_error = EINVAL;
goto end;
}
if (hio->hio_offset + hio->hio_length >
(uint64_t)res->hr_datasize) {
pjdlog_error("Data offset is too large (%ju > %ju).",
(uintmax_t)(hio->hio_offset + hio->hio_length),
(uintmax_t)res->hr_datasize);
hio->hio_error = EINVAL;
goto end;
}
break;
default:
pjdlog_error("Header contains invalid 'cmd' (%hhu).",
hio->hio_cmd);
hio->hio_error = EINVAL;
goto end;
}
hio->hio_error = 0;
end:
return (hio->hio_error);
}
static __dead2 void
secondary_exit(int exitcode, const char *fmt, ...)
{
va_list ap;
assert(exitcode != EX_OK);
va_start(ap, fmt);
pjdlogv_errno(LOG_ERR, fmt, ap);
va_end(ap);
event_send(gres, EVENT_DISCONNECT);
exit(exitcode);
}
/*
* Thread receives requests from the primary node.
*/
static void *
recv_thread(void *arg)
{
struct hast_resource *res = arg;
struct hio *hio;
for (;;) {
pjdlog_debug(2, "recv: Taking free request.");
QUEUE_TAKE(free, hio);
pjdlog_debug(2, "recv: (%p) Got request.", hio);
if (hast_proto_recv_hdr(res->hr_remotein, &hio->hio_nv) < 0) {
secondary_exit(EX_TEMPFAIL,
"Unable to receive request header");
}
if (requnpack(res, hio) != 0) {
pjdlog_debug(2,
"recv: (%p) Moving request to the send queue.",
hio);
QUEUE_INSERT(send, hio);
continue;
}
reqlog(LOG_DEBUG, 2, -1, hio,
"recv: (%p) Got request header: ", hio);
if (hio->hio_cmd == HIO_KEEPALIVE) {
pjdlog_debug(2,
"recv: (%p) Moving request to the free queue.",
hio);
nv_free(hio->hio_nv);
QUEUE_INSERT(free, hio);
continue;
} else if (hio->hio_cmd == HIO_WRITE) {
if (hast_proto_recv_data(res, res->hr_remotein,
hio->hio_nv, hio->hio_data, MAXPHYS) < 0) {
secondary_exit(EX_TEMPFAIL,
"Unable to receive request data");
}
}
pjdlog_debug(2, "recv: (%p) Moving request to the disk queue.",
hio);
QUEUE_INSERT(disk, hio);
}
/* NOTREACHED */
return (NULL);
}
/*
* Thread reads from or writes to local component and also handles DELETE and
* FLUSH requests.
*/
static void *
disk_thread(void *arg)
{
struct hast_resource *res = arg;
struct hio *hio;
ssize_t ret;
bool clear_activemap;
clear_activemap = true;
for (;;) {
pjdlog_debug(2, "disk: Taking request.");
QUEUE_TAKE(disk, hio);
while (clear_activemap) {
unsigned char *map;
size_t mapsize;
/*
* When first request is received, it means that primary
* already received our activemap, merged it and stored
* locally. We can now safely clear our activemap.
*/
mapsize =
activemap_calc_ondisk_size(res->hr_local_mediasize -
METADATA_SIZE, res->hr_extentsize,
res->hr_local_sectorsize);
map = calloc(1, mapsize);
if (map == NULL) {
pjdlog_warning("Unable to allocate memory to clear local activemap.");
break;
}
if (pwrite(res->hr_localfd, map, mapsize,
METADATA_SIZE) != (ssize_t)mapsize) {
pjdlog_errno(LOG_WARNING,
"Unable to store cleared activemap");
free(map);
break;
}
free(map);
clear_activemap = false;
pjdlog_debug(1, "Local activemap cleared.");
}
reqlog(LOG_DEBUG, 2, -1, hio, "disk: (%p) Got request: ", hio);
/* Handle the actual request. */
switch (hio->hio_cmd) {
case HIO_READ:
ret = pread(res->hr_localfd, hio->hio_data,
hio->hio_length,
hio->hio_offset + res->hr_localoff);
if (ret < 0)
hio->hio_error = errno;
else if (ret != (int64_t)hio->hio_length)
hio->hio_error = EIO;
else
hio->hio_error = 0;
break;
case HIO_WRITE:
ret = pwrite(res->hr_localfd, hio->hio_data,
hio->hio_length,
hio->hio_offset + res->hr_localoff);
if (ret < 0)
hio->hio_error = errno;
else if (ret != (int64_t)hio->hio_length)
hio->hio_error = EIO;
else
hio->hio_error = 0;
break;
case HIO_DELETE:
ret = g_delete(res->hr_localfd,
hio->hio_offset + res->hr_localoff,
hio->hio_length);
if (ret < 0)
hio->hio_error = errno;
else
hio->hio_error = 0;
break;
case HIO_FLUSH:
ret = g_flush(res->hr_localfd);
if (ret < 0)
hio->hio_error = errno;
else
hio->hio_error = 0;
break;
}
if (hio->hio_error != 0) {
reqlog(LOG_ERR, 0, hio->hio_error, hio,
"Request failed: ");
}
pjdlog_debug(2, "disk: (%p) Moving request to the send queue.",
hio);
QUEUE_INSERT(send, hio);
}
/* NOTREACHED */
return (NULL);
}
/*
* Thread sends requests back to primary node.
*/
static void *
send_thread(void *arg)
{
struct hast_resource *res = arg;
struct nv *nvout;
struct hio *hio;
void *data;
size_t length;
for (;;) {
pjdlog_debug(2, "send: Taking request.");
QUEUE_TAKE(send, hio);
reqlog(LOG_DEBUG, 2, -1, hio, "send: (%p) Got request: ", hio);
nvout = nv_alloc();
/* Copy sequence number. */
nv_add_uint64(nvout, nv_get_uint64(hio->hio_nv, "seq"), "seq");
switch (hio->hio_cmd) {
case HIO_READ:
if (hio->hio_error == 0) {
data = hio->hio_data;
length = hio->hio_length;
break;
}
/*
* We send no data in case of an error.
*/
/* FALLTHROUGH */
case HIO_DELETE:
case HIO_FLUSH:
case HIO_WRITE:
data = NULL;
length = 0;
break;
default:
abort();
break;
}
if (hio->hio_error != 0)
nv_add_int16(nvout, hio->hio_error, "error");
if (hast_proto_send(res, res->hr_remoteout, nvout, data,
length) < 0) {
secondary_exit(EX_TEMPFAIL, "Unable to send reply.");
}
nv_free(nvout);
pjdlog_debug(2, "send: (%p) Moving request to the free queue.",
hio);
nv_free(hio->hio_nv);
hio->hio_error = 0;
QUEUE_INSERT(free, hio);
}
/* NOTREACHED */
return (NULL);
}