freebsd-skq/sys/vm/vm_radix.c

549 lines
14 KiB
C
Raw Normal View History

/*
* Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
* Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Radix tree implementation.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/ktr.h>
#include <vm/uma.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_radix.h>
#include <vm/vm_object.h>
#include <sys/kdb.h>
CTASSERT(sizeof(struct vm_radix_node) < PAGE_SIZE);
static uma_zone_t vm_radix_node_zone;
#if 0
static void *
vm_radix_node_zone_allocf(uma_zone_t zone, int size, uint8_t *flags, int wait)
{
vm_offset_t addr;
vm_page_t m;
int pflags;
/* Inform UMA that this allocator uses kernel_map. */
*flags = UMA_SLAB_KERNEL;
pflags = VM_ALLOC_WIRED | VM_ALLOC_NOOBJ;
/*
* As kmem_alloc_nofault() can however fail, let just assume that
* M_NOWAIT is on and act accordingly.
*/
pflags |= ((wait & M_USE_RESERVE) != 0) ? VM_ALLOC_INTERRUPT :
VM_ALLOC_SYSTEM;
if ((wait & M_ZERO) != 0)
pflags |= VM_ALLOC_ZERO;
addr = kmem_alloc_nofault(kernel_map, size);
if (addr == 0)
return (NULL);
/* Just one page allocation is assumed here. */
m = vm_page_alloc(NULL, OFF_TO_IDX(addr - VM_MIN_KERNEL_ADDRESS),
pflags);
if (m == NULL) {
kmem_free(kernel_map, addr, size);
return (NULL);
}
if ((wait & M_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
pmap_qenter(addr, &m, 1);
return ((void *)addr);
}
static void
vm_radix_node_zone_freef(void *item, int size, uint8_t flags)
{
vm_page_t m;
vm_offset_t voitem;
MPASS((flags & UMA_SLAB_KERNEL) != 0);
/* Just one page allocation is assumed here. */
voitem = (vm_offset_t)item;
m = PHYS_TO_VM_PAGE(pmap_kextract(voitem));
pmap_qremove(voitem, 1);
vm_page_free(m);
kmem_free(kernel_map, voitem, size);
}
static void
init_vm_radix_alloc(void *dummy __unused)
{
uma_zone_set_allocf(vm_radix_node_zone, vm_radix_node_zone_allocf);
uma_zone_set_freef(vm_radix_node_zone, vm_radix_node_zone_freef);
}
SYSINIT(vm_radix, SI_SUB_KMEM, SI_ORDER_SECOND, init_vm_radix_alloc, NULL);
#endif
/*
* Radix node zone destructor.
*/
#ifdef INVARIANTS
static void
vm_radix_node_zone_dtor(void *mem, int size, void *arg)
{
struct vm_radix_node *rnode;
rnode = mem;
KASSERT(rnode->rn_count == 0,
("vm_radix_node_put: Freeing a node with %d children\n",
rnode->rn_count));
}
#endif
/*
* Allocate a radix node. Initializes all elements to 0.
*/
static struct vm_radix_node *
vm_radix_node_get(void)
{
return (uma_zalloc(vm_radix_node_zone, M_NOWAIT | M_ZERO));
}
/*
* Free radix node.
*/
static void
vm_radix_node_put(struct vm_radix_node *rnode)
{
uma_zfree(vm_radix_node_zone, rnode);
}
/*
* Return the position in the array for a given level.
*/
static inline int
vm_radix_slot(vm_pindex_t index, int level)
{
return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
}
void
vm_radix_init(void)
{
vm_radix_node_zone = uma_zcreate("RADIX NODE",
sizeof(struct vm_radix_node), NULL,
#ifdef INVARIANTS
vm_radix_node_zone_dtor,
#else
NULL,
#endif
NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
}
/*
* Inserts the key-value pair in to the radix tree. Returns errno.
* Panics if the key already exists.
*/
int
vm_radix_insert(struct vm_radix *rtree, vm_pindex_t index, void *val)
{
struct vm_radix_node *rnode;
int slot;
int level;
CTR3(KTR_VM,
"insert: tree %p, index %p, val %p", rtree, (void *)index, val);
if (index == -1)
panic("vm_radix_insert: -1 is not a valid index.\n");
/*
* Increase the height by adding nodes at the root until
* there is sufficient space.
*/
while (rtree->rt_height == 0 ||
index > VM_RADIX_MAX(rtree->rt_height)) {
CTR3(KTR_VM, "insert: expanding %jd > %jd height %d",
index, VM_RADIX_MAX(rtree->rt_height), rtree->rt_height);
/*
* Only allocate tree nodes if they are needed.
*/
if (rtree->rt_root == NULL || rtree->rt_root->rn_count != 0) {
rnode = vm_radix_node_get();
if (rnode == NULL)
return (ENOMEM);
if (rtree->rt_root) {
rnode->rn_child[0] = rtree->rt_root;
rnode->rn_count = 1;
}
rtree->rt_root = rnode;
}
rtree->rt_height++;
KASSERT(rtree->rt_height <= VM_RADIX_LIMIT,
("vm_radix_insert: Tree %p height %d too tall", rtree,
rtree->rt_height));
}
/* Now that the tree is tall enough, fill in the path to the index. */
rnode = rtree->rt_root;
for (level = rtree->rt_height - 1; level > 0; level--) {
slot = vm_radix_slot(index, level);
/* Add the required intermidiate nodes. */
if (rnode->rn_child[slot] == NULL) {
rnode->rn_child[slot] = vm_radix_node_get();
if (rnode->rn_child[slot] == NULL)
return (ENOMEM);
rnode->rn_count++;
}
CTR5(KTR_VM,
"insert: tree %p, index %p, level %d, slot %d, child %p",
rtree, (void *)index, level, slot, rnode->rn_child[slot]);
rnode = rnode->rn_child[slot];
}
slot = vm_radix_slot(index, level);
CTR5(KTR_VM, "insert: tree %p, index %p, level %d, slot %d, child %p",
rtree, (void *)index, level, slot, rnode->rn_child[slot]);
KASSERT(rnode->rn_child[slot] == NULL,
("vm_radix_insert: Duplicate value %p at index: %lu\n",
rnode->rn_child[slot], (u_long)index));
rnode->rn_child[slot] = val;
rnode->rn_count++;
return 0;
}
/*
* Returns the value stored at the index. If the index is not present
* NULL is returned.
*/
void *
vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
{
struct vm_radix_node *rnode;
int slot;
int level;
if (index > VM_RADIX_MAX(rtree->rt_height))
return NULL;
level = rtree->rt_height - 1;
rnode = rtree->rt_root;
while (rnode) {
slot = vm_radix_slot(index, level);
CTR5(KTR_VM,
"lookup: tree %p, index %p, level %d, slot %d, child %p",
rtree, (void *)index, level, slot, rnode->rn_child[slot]);
if (level == 0)
return rnode->rn_child[slot];
rnode = rnode->rn_child[slot];
level--;
}
CTR2(KTR_VM, "lookup: tree %p, index %p failed", rtree, (void *)index);
return NULL;
}
/*
* Looks up as many as cnt values between start and end inclusive, and stores
* them in the caller allocated array out. The next index can be used to
* restart the scan. This optimizes forward scans in the tree.
*/
int
vm_radix_lookupn(struct vm_radix *rtree, vm_pindex_t start,
vm_pindex_t end, void **out, int cnt, vm_pindex_t *next)
{
struct vm_radix_node *rnode;
struct vm_radix_node *child;
vm_pindex_t max;
vm_pindex_t inc;
int slot;
int level;
void *val;
int outidx;
int loops = 0;
CTR3(KTR_VM, "lookupn: tree %p, start %p, end %p",
rtree, (void *)start, (void *)end);
outidx = 0;
max = VM_RADIX_MAX(rtree->rt_height);
if (start > max)
return 0;
if (end > max || end == 0)
end = max;
restart:
loops++;
if (loops > 1000)
panic("vm_radix_lookupn: looping %d\n", loops);
/*
* Search the tree from the top for any leaf node holding an index
* between start and end.
*/
level = rtree->rt_height - 1;
rnode = rtree->rt_root;
while (rnode) {
slot = vm_radix_slot(start, level);
CTR5(KTR_VM,
"lookupn: tree %p, index %p, level %d, slot %d, child %p",
rtree, (void *)start, level, slot, rnode->rn_child[slot]);
if (level == 0)
break;
/*
* If we don't have an exact match we must start our search
* from the next leaf and adjust our index appropriately.
*/
if ((child = rnode->rn_child[slot]) == NULL) {
/*
* Calculate how much to increment our index by
* based on the tree level. We must truncate the
* lower bits to start from the begnning of the next
* leaf.
*/
inc = 1LL << (level * VM_RADIX_WIDTH);
start &= ~VM_RADIX_MAX(level);
start += inc;
slot++;
CTR5(KTR_VM,
"lookupn: start %p end %p inc %d mask 0x%lX slot %d",
(void *)start, (void *)end, inc, ~VM_RADIX_MAX(level), slot);
for (; slot < VM_RADIX_COUNT && start <= end;
slot++, start += inc) {
child = rnode->rn_child[slot];
if (child)
break;
}
}
rnode = child;
level--;
}
if (rnode == NULL) {
/*
* If we still have another range to search, start looking
* from the next node. Otherwise, return what we've already
* found. The loop above has already adjusted start to the
* beginning of the next node.
*
* Detect start wrapping back to 0 and return in this case.
*/
if (start <= end && start != 0)
goto restart;
goto out;
}
for (; outidx < cnt && slot < VM_RADIX_COUNT && start <= end;
slot++, start++) {
val = rnode->rn_child[slot];
if (val == NULL)
continue;
out[outidx++] = val;
}
/*
* Go fetch the next page to fill the requested number of pages
* otherwise the caller will simply call us again to fulfill the
* same request after the structures are pushed out of cache.
*/
if (outidx < cnt && start <= end)
goto restart;
out:
*next = start;
return (outidx);
}
/*
* Look up any entry at a position less than or equal to index.
*/
void *
vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
{
struct vm_radix_node *rnode;
struct vm_radix_node *child;
vm_pindex_t max;
vm_pindex_t inc;
int slot;
int level;
int loops = 0;
CTR2(KTR_VM,
"lookup_le: tree %p, index %p", rtree, (void *)index);
if (rtree->rt_root == NULL)
return (NULL);
max = VM_RADIX_MAX(rtree->rt_height);
if (index > max || index == 0)
index = max;
restart:
loops++;
if (loops > 1000)
panic("vm_radix_looku_le: looping %d\n", loops);
/*
* Search the tree from the top for any leaf node holding an index
* lower than 'index'.
*/
level = rtree->rt_height - 1;
rnode = rtree->rt_root;
while (rnode) {
slot = vm_radix_slot(index, level);
CTR5(KTR_VM,
"lookup_le: tree %p, index %p, level %d, slot %d, child %p",
rtree, (void *)index, level, slot, rnode->rn_child[slot]);
if (level == 0)
break;
/*
* If we don't have an exact match we must start our search
* from the next leaf and adjust our index appropriately.
*/
if ((child = rnode->rn_child[slot]) == NULL) {
/*
* Calculate how much to decrement our index by
* based on the tree level. We must set the
* lower bits to start from the end of the next
* leaf.
*/
inc = 1LL << (level * VM_RADIX_WIDTH);
index |= VM_RADIX_MAX(level);
index -= inc;
slot--;
CTR4(KTR_VM,
"lookup_le: start %p inc %ld mask 0x%lX slot %d",
(void *)index, inc, VM_RADIX_MAX(level), slot);
for (; slot >= 0; slot--, index -= inc) {
child = rnode->rn_child[slot];
if (child)
break;
}
}
rnode = child;
level--;
}
if (rnode) {
for (; slot >= 0; slot--, index--) {
if (rnode->rn_child[slot])
return (rnode->rn_child[slot]);
}
}
if (index != -1)
goto restart;
return (NULL);
}
/*
* Remove the specified index from the tree. If possible the height of the
* tree is adjusted after deletion. The value stored at index is returned
* panics if the key is not present.
*/
void *
vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
{
struct vm_radix_node *stack[VM_RADIX_LIMIT];
struct vm_radix_node *rnode;
void *val;
int level;
int slot;
KASSERT(index <= VM_RADIX_MAX(rtree->rt_height),
("vm_radix_remove: %p index %jd out of range %jd.",
rtree, index, VM_RADIX_MAX(rtree->rt_height)));
val = NULL;
rnode = rtree->rt_root;
level = rtree->rt_height - 1;
/*
* Find the node and record the path in stack.
*/
while (level && rnode) {
stack[level] = rnode;
slot = vm_radix_slot(index, level);
rnode = rnode->rn_child[slot];
CTR5(KTR_VM,
"remove: tree %p, index %p, level %d, slot %d, child %p",
rtree, (void *)index, level, slot, rnode->rn_child[slot]);
level--;
}
slot = vm_radix_slot(index, 0);
KASSERT(rnode != NULL && rnode->rn_child[slot] != NULL,
("vm_radix_remove: index %jd not present in the tree.\n", index));
val = rnode->rn_child[slot];
for (;;) {
rnode->rn_child[slot] = NULL;
rnode->rn_count--;
if (rnode->rn_count > 0)
break;
vm_radix_node_put(rnode);
if (rnode == rtree->rt_root) {
rtree->rt_root = NULL;
rtree->rt_height = 0;
break;
}
rnode = stack[++level];
slot = vm_radix_slot(index, level);
}
return (val);
}
/*
* Attempts to reduce the height of the tree.
*/
void
vm_radix_shrink(struct vm_radix *rtree)
{
struct vm_radix_node *tmp;
if (rtree->rt_root == NULL)
return;
/* Adjust the height of the tree. */
while (rtree->rt_root->rn_count == 1 &&
rtree->rt_root->rn_child[0] != NULL) {
tmp = rtree->rt_root;
rtree->rt_root = tmp->rn_child[0];
rtree->rt_height--;
tmp->rn_count--;
vm_radix_node_put(tmp);
}
/* Finally see if we have an empty tree. */
if (rtree->rt_root->rn_count == 0) {
vm_radix_node_put(rtree->rt_root);
rtree->rt_root = NULL;
rtree->rt_height = 0;
}
}