freebsd-skq/sys/dev/random/yarrow.c

385 lines
10 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2000 Mark R V Murray
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/* NOTE NOTE NOTE - This is not finished! It will supply numbers, but
it is not yet cryptographically secure!! */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <sys/linker.h>
#include <sys/libkern.h>
#include <sys/mbuf.h>
#include <sys/random.h>
#include <sys/time.h>
#include <sys/types.h>
#include <crypto/blowfish/blowfish.h>
#include <dev/randomdev/yarrow.h>
/* #define DEBUG */
static void generator_gate(void);
static void reseed(int);
static void random_harvest_internal(struct timespec *nanotime, u_int64_t entropy, u_int bits, u_int frac, enum esource source);
/* Structure holding the entropy state */
struct random_state random_state;
/* When enough entropy has been harvested, asynchronously "stir" it in */
/* The regate task is run at splsofttq() */
static struct task regate_task[2];
struct context {
u_int pool;
} context[2] = {
{ 0 },
{ 1 }
};
static void
regate(void *context, int pending)
{
#ifdef DEBUG
printf("Regate task\n");
#endif
reseed(((struct context *)context)->pool);
}
void
random_init(void)
{
#ifdef DEBUG
printf("Random init\n");
#endif
random_state.gengateinterval = 10;
random_state.bins = 10;
random_state.pool[0].thresh = 100;
random_state.pool[1].thresh = 160;
random_state.slowoverthresh = 2;
random_state.which = FAST;
TASK_INIT(&regate_task[FAST], FAST, &regate, (void *)&context[FAST]);
TASK_INIT(&regate_task[SLOW], SLOW, &regate, (void *)&context[SLOW]);
random_init_harvester(random_harvest_internal);
}
void
random_deinit(void)
{
#ifdef DEBUG
printf("Random deinit\n");
#endif
random_deinit_harvester();
}
static void
reseed(int fastslow)
{
/* Interrupt-context stack is a limited resource; make static */
/* large structures; XXX Revisit - needs to move to the large */
/* random_state structure. */
static unsigned char v[TIMEBIN][KEYSIZE]; /* v[i] */
unsigned char hash[KEYSIZE]; /* h' */
static BF_KEY hashkey;
unsigned char ivec[8];
unsigned char temp[KEYSIZE];
struct entropy *bucket;
int i, j;
#ifdef DEBUG
printf("Reseed type %d\n", fastslow);
#endif
/* 1. Hash the accumulated entropy into v[0] */
bzero((void *)&v[0], KEYSIZE);
if (fastslow == SLOW) {
/* Feed a hash of the slow pool into the fast pool */
for (i = 0; i < ENTROPYSOURCE; i++) {
for (j = 0; j < ENTROPYBIN; j++) {
bucket = &random_state.pool[SLOW].source[i].entropy[j];
if(bucket->nanotime.tv_sec || bucket->nanotime.tv_nsec) {
BF_set_key(&hashkey, sizeof(struct entropy),
(void *)bucket);
BF_cbc_encrypt(v[0], temp, KEYSIZE, &hashkey, ivec,
BF_ENCRYPT);
memcpy(&v[0], temp, KEYSIZE);
bucket->nanotime.tv_sec = 0;
bucket->nanotime.tv_nsec = 0;
}
}
}
}
for (i = 0; i < ENTROPYSOURCE; i++) {
for (j = 0; j < ENTROPYBIN; j++) {
bucket = &random_state.pool[FAST].source[i].entropy[j];
if(bucket->nanotime.tv_sec || bucket->nanotime.tv_nsec) {
BF_set_key(&hashkey, sizeof(struct entropy), (void *)bucket);
BF_cbc_encrypt(v[0], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT);
memcpy(&v[0], temp, KEYSIZE);
bucket->nanotime.tv_sec = 0;
bucket->nanotime.tv_nsec = 0;
}
}
}
/* 2. Compute hash values for all v. _Supposed_ to be computationally */
/* intensive. */
if (random_state.bins > TIMEBIN)
random_state.bins = TIMEBIN;
for (i = 1; i < random_state.bins; i++) {
bzero((void *)&v[i], KEYSIZE);
/* v[i] #= h(v[i-1]) */
BF_set_key(&hashkey, KEYSIZE, v[i - 1]);
BF_cbc_encrypt(v[i], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT);
memcpy(&v[i], temp, KEYSIZE);
/* v[i] #= h(v[0]) */
BF_set_key(&hashkey, KEYSIZE, v[0]);
BF_cbc_encrypt(v[i], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT);
memcpy(&v[i], temp, KEYSIZE);
/* v[i] #= h(i) */
BF_set_key(&hashkey, sizeof(int), (unsigned char *)&i);
BF_cbc_encrypt(v[i], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT);
memcpy(&v[i], temp, KEYSIZE);
}
/* 3. Compute a new Key. */
bzero((void *)hash, KEYSIZE);
BF_set_key(&hashkey, KEYSIZE, (unsigned char *)&random_state.key);
BF_cbc_encrypt(hash, temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT);
memcpy(hash, temp, KEYSIZE);
for (i = 1; i < random_state.bins; i++) {
BF_set_key(&hashkey, KEYSIZE, v[i]);
BF_cbc_encrypt(hash, temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT);
memcpy(hash, temp, KEYSIZE);
}
BF_set_key(&random_state.key, KEYSIZE, hash);
/* 4. Recompute the counter */
random_state.counter = 0;
BF_cbc_encrypt((unsigned char *)&random_state.counter, temp,
sizeof(random_state.counter), &random_state.key,
random_state.ivec, BF_ENCRYPT);
memcpy(&random_state.counter, temp, random_state.counter);
/* 5. Reset entropy estimate accumulators to zero */
for (i = 0; i <= fastslow; i++) {
for (j = 0; j < ENTROPYSOURCE; j++) {
random_state.pool[i].source[j].bits = 0;
random_state.pool[i].source[j].frac = 0;
}
}
/* 6. Wipe memory of intermediate values */
bzero((void *)v, sizeof(v));
bzero((void *)temp, sizeof(temp));
bzero((void *)hash, sizeof(hash));
/* 7. Dump to seed file (XXX done by external process?) */
}
u_int
read_random(char *buf, u_int count)
{
static int cur = 0;
static int gate = 1;
u_int i;
u_int retval;
u_int64_t genval;
intrmask_t mask;
/* The reseed task must not be jumped on */
mask = splsofttq();
if (gate) {
generator_gate();
random_state.outputblocks = 0;
gate = 0;
}
if (count >= sizeof(random_state.counter)) {
retval = 0;
for (i = 0; i < count; i += sizeof(random_state.counter)) {
random_state.counter++;
BF_cbc_encrypt((unsigned char *)&random_state.counter,
(unsigned char *)&genval,
sizeof(random_state.counter),
&random_state.key, random_state.ivec, BF_ENCRYPT);
memcpy(&buf[i], &genval, sizeof(random_state.counter));
if (++random_state.outputblocks >= random_state.gengateinterval) {
generator_gate();
random_state.outputblocks = 0;
}
retval += sizeof(random_state.counter);
}
}
else {
if (!cur) {
random_state.counter++;
BF_cbc_encrypt((unsigned char *)&random_state.counter,
(unsigned char *)&genval,
sizeof(random_state.counter),
&random_state.key, random_state.ivec,
BF_ENCRYPT);
memcpy(buf, &genval, count);
cur = sizeof(random_state.counter) - count;
if (++random_state.outputblocks >= random_state.gengateinterval) {
generator_gate();
random_state.outputblocks = 0;
}
retval = count;
}
else {
retval = cur < count ? cur : count;
memcpy(buf,
(char *)&random_state.counter +
(sizeof(random_state.counter) - retval),
retval);
cur -= retval;
}
}
splx(mask);
return retval;
}
void
write_random(char *buf, u_int count)
{
u_int i;
intrmask_t mask;
struct timespec nanotime;
/* The reseed task must not be jumped on */
mask = splsofttq();
for (i = 0; i < count/sizeof(u_int64_t); i++) {
getnanotime(&nanotime);
random_harvest_internal(&nanotime,
*(u_int64_t *)&buf[i*sizeof(u_int64_t)],
0, 0, RANDOM_WRITE);
}
reseed(FAST);
splx(mask);
}
static void
generator_gate(void)
{
int i;
unsigned char temp[KEYSIZE];
intrmask_t mask;
#ifdef DEBUG
printf("Generator gate\n");
#endif
/* The reseed task must not be jumped on */
mask = splsofttq();
for (i = 0; i < KEYSIZE; i += sizeof(random_state.counter)) {
random_state.counter++;
BF_cbc_encrypt((unsigned char *)&random_state.counter,
&(temp[i]), sizeof(random_state.counter),
&random_state.key, random_state.ivec, BF_ENCRYPT);
}
BF_set_key(&random_state.key, KEYSIZE, temp);
bzero((void *)temp, KEYSIZE);
splx(mask);
}
/* Entropy harvesting routine. This is supposed to be fast; do */
/* not do anything slow in here! */
static void
random_harvest_internal(struct timespec *nanotime, u_int64_t entropy,
u_int bits, u_int frac, enum esource origin)
{
u_int insert;
int which; /* fast or slow */
struct entropy *bucket;
struct source *source;
struct pool *pool;
intrmask_t mask;
#ifdef DEBUG
printf("Random harvest\n");
#endif
if (origin < ENTROPYSOURCE) {
/* Called inside irq handlers; protect from interference */
mask = splhigh();
which = random_state.which;
pool = &random_state.pool[which];
source = &pool->source[origin];
insert = source->current + 1;
if (insert >= ENTROPYBIN)
insert = 0;
bucket = &source->entropy[insert];
if (!bucket->nanotime.tv_sec && !bucket->nanotime.tv_nsec) {
/* nanotime provides clock jitter */
bucket->nanotime = *nanotime;
/* the harvested entropy */
bucket->data = entropy;
/* update the estimates - including "fractional bits" */
source->bits += bits;
source->frac += frac;
if (source->frac >= 1024) {
source->bits += source->frac / 1024;
source->frac %= 1024;
}
if (source->bits >= pool->thresh) {
/* XXX Slowoverthresh nees to be considered */
taskqueue_enqueue(taskqueue_swi, &regate_task[which]);
}
/* bump the insertion point */
source->current = insert;
/* toggle the pool for next insertion */
random_state.which = !random_state.which;
}
splx(mask);
}
}