1994-05-24 10:09:53 +00:00
|
|
|
/*-
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* Copyright (c) 2008 Ed Schouten <ed@FreeBSD.org>
|
2002-05-28 06:53:41 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* Portions of this software were developed under sponsorship from Snow
|
|
|
|
* B.V., the Netherlands.
|
2002-05-28 06:53:41 +00:00
|
|
|
*
|
1994-05-24 10:09:53 +00:00
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
1994-05-24 10:09:53 +00:00
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
1994-05-24 10:09:53 +00:00
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
2003-06-11 00:56:59 +00:00
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
2011-08-11 12:30:23 +00:00
|
|
|
#include "opt_capsicum.h"
|
1997-12-16 17:40:42 +00:00
|
|
|
#include "opt_compat.h"
|
1995-02-14 21:21:26 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
#include <sys/param.h>
|
2014-03-16 10:55:57 +00:00
|
|
|
#include <sys/capsicum.h>
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
#include <sys/conf.h>
|
2008-05-23 16:06:35 +00:00
|
|
|
#include <sys/cons.h>
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
#include <sys/fcntl.h>
|
2008-09-22 19:25:14 +00:00
|
|
|
#include <sys/file.h>
|
2008-12-13 21:17:46 +00:00
|
|
|
#include <sys/filedesc.h>
|
1997-03-24 12:03:06 +00:00
|
|
|
#include <sys/filio.h>
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
#ifdef COMPAT_43TTY
|
1997-03-24 12:03:06 +00:00
|
|
|
#include <sys/ioctl_compat.h>
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
#endif /* COMPAT_43TTY */
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/limits.h>
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/mount.h>
|
|
|
|
#include <sys/poll.h>
|
2006-11-06 13:42:10 +00:00
|
|
|
#include <sys/priv.h>
|
1994-05-24 10:09:53 +00:00
|
|
|
#include <sys/proc.h>
|
2004-06-24 10:32:30 +00:00
|
|
|
#include <sys/serial.h>
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
#include <sys/signal.h>
|
|
|
|
#include <sys/stat.h>
|
|
|
|
#include <sys/sx.h>
|
1999-08-08 19:47:32 +00:00
|
|
|
#include <sys/sysctl.h>
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/tty.h>
|
|
|
|
#include <sys/ttycom.h>
|
|
|
|
#define TTYDEFCHARS
|
|
|
|
#include <sys/ttydefaults.h>
|
|
|
|
#undef TTYDEFCHARS
|
|
|
|
#include <sys/ucred.h>
|
2008-09-22 19:25:14 +00:00
|
|
|
#include <sys/vnode.h>
|
1995-02-14 21:21:26 +00:00
|
|
|
|
2004-09-28 19:33:49 +00:00
|
|
|
#include <machine/stdarg.h>
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static MALLOC_DEFINE(M_TTY, "tty", "tty device");
|
2004-09-28 19:33:49 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static void tty_rel_free(struct tty *tp);
|
2004-09-28 19:33:49 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static TAILQ_HEAD(, tty) tty_list = TAILQ_HEAD_INITIALIZER(tty_list);
|
|
|
|
static struct sx tty_list_sx;
|
|
|
|
SX_SYSINIT(tty_list, &tty_list_sx, "tty list");
|
|
|
|
static unsigned int tty_list_count = 0;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
2008-11-01 08:35:28 +00:00
|
|
|
/* Character device of /dev/console. */
|
|
|
|
static struct cdev *dev_console;
|
|
|
|
static const char *dev_console_filename;
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* Flags that are supported and stored by this implementation.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
#define TTYSUP_IFLAG (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK|ISTRIP|\
|
|
|
|
INLCR|IGNCR|ICRNL|IXON|IXOFF|IXANY|IMAXBEL)
|
|
|
|
#define TTYSUP_OFLAG (OPOST|ONLCR|TAB3|ONOEOT|OCRNL|ONOCR|ONLRET)
|
|
|
|
#define TTYSUP_LFLAG (ECHOKE|ECHOE|ECHOK|ECHO|ECHONL|ECHOPRT|\
|
|
|
|
ECHOCTL|ISIG|ICANON|ALTWERASE|IEXTEN|TOSTOP|\
|
|
|
|
FLUSHO|NOKERNINFO|NOFLSH)
|
|
|
|
#define TTYSUP_CFLAG (CIGNORE|CSIZE|CSTOPB|CREAD|PARENB|PARODD|\
|
|
|
|
HUPCL|CLOCAL|CCTS_OFLOW|CRTS_IFLOW|CDTR_IFLOW|\
|
|
|
|
CDSR_OFLOW|CCAR_OFLOW)
|
|
|
|
|
2011-07-02 13:54:20 +00:00
|
|
|
#define TTY_CALLOUT(tp,d) (dev2unit(d) & TTYUNIT_CALLOUT)
|
1995-07-21 14:41:43 +00:00
|
|
|
|
Rework tty_drain() to poll the hardware for completion, and restore
drain timeout handling to historical freebsd behavior.
The primary reason for these changes is the need to have tty_drain() call
ttydevsw_busy() at some reasonable sub-second rate, to poll hardware that
doesn't signal an interrupt when the transmit shift register becomes empty
(which includes virtually all USB serial hardware). Such hardware hangs
in a ttyout wait, because it never gets an opportunity to trigger a wakeup
from the sleep in tty_drain() by calling ttydisc_getc() again, after
handing the last of the buffered data to the hardware.
While researching the history of changes to tty_drain() I stumbled across
some email describing the historical BSD behavior of tcdrain() and close()
on serial ports, and the ability of comcontrol(1) to control timeout
behavior. Using that and some advice from Bruce Evans as a guide, I've
put together these changes to implement the hardware polling and restore
the historical timeout behaviors...
- tty_drain() now calls ttydevsw_busy() in a loop at 10 Hz to accomodate
hardware that requires polling for busy state.
- The "new historical" behavior for draining during close(2) is retained:
the drain timeout is "1 second without making any progress". When the
1-second timeout expires, if the count of bytes remaining in the tty
layer buffer is smaller than last time, the timeout is extended for
another second. Unfortunately, the same logic cannot be extended all
the way down to the hardware, because the interface to that layer is a
simple busy/not-busy indication.
- Due to the previous point, an application that needs a guarantee that
all data has been transmitted must use TIOCDRAIN/tcdrain(3) before
calling close(2).
- The historical behavior of honoring the drainwait setting for TIOCDRAIN
(used by tcdrain(3)) is restored.
- The historical kern.drainwait sysctl to control the global default
drainwait time is restored, but is now named kern.tty_drainwait.
- The historical default drainwait timeout of 300 seconds is restored.
- Handling of TIOCGDRAINWAIT and TIOCSDRAINWAIT ioctls is restored
(this also makes the comcontrol(1) drainwait verb work again).
- Manpages are updated to document these behaviors.
Reviewed by: bde (prior version)
2017-01-12 00:48:06 +00:00
|
|
|
static int tty_drainwait = 5 * 60;
|
|
|
|
SYSCTL_INT(_kern, OID_AUTO, tty_drainwait, CTLFLAG_RWTUN,
|
|
|
|
&tty_drainwait, 0, "Default output drain timeout in seconds");
|
|
|
|
|
1999-08-08 19:47:32 +00:00
|
|
|
/*
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* Set TTY buffer sizes.
|
1999-08-08 19:47:32 +00:00
|
|
|
*/
|
|
|
|
|
2008-10-15 16:58:35 +00:00
|
|
|
#define TTYBUF_MAX 65536
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static void
|
|
|
|
tty_watermarks(struct tty *tp)
|
|
|
|
{
|
2009-12-01 19:14:57 +00:00
|
|
|
size_t bs = 0;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
/* Provide an input buffer for 0.2 seconds of data. */
|
2009-12-01 19:14:57 +00:00
|
|
|
if (tp->t_termios.c_cflag & CREAD)
|
|
|
|
bs = MIN(tp->t_termios.c_ispeed / 5, TTYBUF_MAX);
|
2008-10-15 16:58:35 +00:00
|
|
|
ttyinq_setsize(&tp->t_inq, tp, bs);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
/* Set low watermark at 10% (when 90% is available). */
|
2009-10-19 07:17:37 +00:00
|
|
|
tp->t_inlow = (ttyinq_getallocatedsize(&tp->t_inq) * 9) / 10;
|
2004-09-30 10:38:48 +00:00
|
|
|
|
2012-11-07 07:00:59 +00:00
|
|
|
/* Provide an output buffer for 0.2 seconds of data. */
|
2008-10-15 16:58:35 +00:00
|
|
|
bs = MIN(tp->t_termios.c_ospeed / 5, TTYBUF_MAX);
|
|
|
|
ttyoutq_setsize(&tp->t_outq, tp, bs);
|
2000-04-30 16:00:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Set low watermark at 10% (when 90% is available). */
|
2009-10-19 07:17:37 +00:00
|
|
|
tp->t_outlow = (ttyoutq_getallocatedsize(&tp->t_outq) * 9) / 10;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2014-10-09 02:30:38 +00:00
|
|
|
tty_drain(struct tty *tp, int leaving)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
Rework tty_drain() to poll the hardware for completion, and restore
drain timeout handling to historical freebsd behavior.
The primary reason for these changes is the need to have tty_drain() call
ttydevsw_busy() at some reasonable sub-second rate, to poll hardware that
doesn't signal an interrupt when the transmit shift register becomes empty
(which includes virtually all USB serial hardware). Such hardware hangs
in a ttyout wait, because it never gets an opportunity to trigger a wakeup
from the sleep in tty_drain() by calling ttydisc_getc() again, after
handing the last of the buffered data to the hardware.
While researching the history of changes to tty_drain() I stumbled across
some email describing the historical BSD behavior of tcdrain() and close()
on serial ports, and the ability of comcontrol(1) to control timeout
behavior. Using that and some advice from Bruce Evans as a guide, I've
put together these changes to implement the hardware polling and restore
the historical timeout behaviors...
- tty_drain() now calls ttydevsw_busy() in a loop at 10 Hz to accomodate
hardware that requires polling for busy state.
- The "new historical" behavior for draining during close(2) is retained:
the drain timeout is "1 second without making any progress". When the
1-second timeout expires, if the count of bytes remaining in the tty
layer buffer is smaller than last time, the timeout is extended for
another second. Unfortunately, the same logic cannot be extended all
the way down to the hardware, because the interface to that layer is a
simple busy/not-busy indication.
- Due to the previous point, an application that needs a guarantee that
all data has been transmitted must use TIOCDRAIN/tcdrain(3) before
calling close(2).
- The historical behavior of honoring the drainwait setting for TIOCDRAIN
(used by tcdrain(3)) is restored.
- The historical kern.drainwait sysctl to control the global default
drainwait time is restored, but is now named kern.tty_drainwait.
- The historical default drainwait timeout of 300 seconds is restored.
- Handling of TIOCGDRAINWAIT and TIOCSDRAINWAIT ioctls is restored
(this also makes the comcontrol(1) drainwait verb work again).
- Manpages are updated to document these behaviors.
Reviewed by: bde (prior version)
2017-01-12 00:48:06 +00:00
|
|
|
sbintime_t timeout_at;
|
|
|
|
size_t bytes;
|
2016-01-26 07:57:44 +00:00
|
|
|
int error;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
2008-10-21 14:18:45 +00:00
|
|
|
if (ttyhook_hashook(tp, getc_inject))
|
2008-10-21 14:44:25 +00:00
|
|
|
/* buffer is inaccessible */
|
2008-10-21 14:18:45 +00:00
|
|
|
return (0);
|
|
|
|
|
Rework tty_drain() to poll the hardware for completion, and restore
drain timeout handling to historical freebsd behavior.
The primary reason for these changes is the need to have tty_drain() call
ttydevsw_busy() at some reasonable sub-second rate, to poll hardware that
doesn't signal an interrupt when the transmit shift register becomes empty
(which includes virtually all USB serial hardware). Such hardware hangs
in a ttyout wait, because it never gets an opportunity to trigger a wakeup
from the sleep in tty_drain() by calling ttydisc_getc() again, after
handing the last of the buffered data to the hardware.
While researching the history of changes to tty_drain() I stumbled across
some email describing the historical BSD behavior of tcdrain() and close()
on serial ports, and the ability of comcontrol(1) to control timeout
behavior. Using that and some advice from Bruce Evans as a guide, I've
put together these changes to implement the hardware polling and restore
the historical timeout behaviors...
- tty_drain() now calls ttydevsw_busy() in a loop at 10 Hz to accomodate
hardware that requires polling for busy state.
- The "new historical" behavior for draining during close(2) is retained:
the drain timeout is "1 second without making any progress". When the
1-second timeout expires, if the count of bytes remaining in the tty
layer buffer is smaller than last time, the timeout is extended for
another second. Unfortunately, the same logic cannot be extended all
the way down to the hardware, because the interface to that layer is a
simple busy/not-busy indication.
- Due to the previous point, an application that needs a guarantee that
all data has been transmitted must use TIOCDRAIN/tcdrain(3) before
calling close(2).
- The historical behavior of honoring the drainwait setting for TIOCDRAIN
(used by tcdrain(3)) is restored.
- The historical kern.drainwait sysctl to control the global default
drainwait time is restored, but is now named kern.tty_drainwait.
- The historical default drainwait timeout of 300 seconds is restored.
- Handling of TIOCGDRAINWAIT and TIOCSDRAINWAIT ioctls is restored
(this also makes the comcontrol(1) drainwait verb work again).
- Manpages are updated to document these behaviors.
Reviewed by: bde (prior version)
2017-01-12 00:48:06 +00:00
|
|
|
/*
|
|
|
|
* For close(), use the recent historic timeout of "1 second without
|
|
|
|
* making progress". For tcdrain(), use t_drainwait as the timeout,
|
|
|
|
* with zero meaning "no timeout" which gives POSIX behavior.
|
|
|
|
*/
|
|
|
|
if (leaving)
|
|
|
|
timeout_at = getsbinuptime() + SBT_1S;
|
|
|
|
else if (tp->t_drainwait != 0)
|
|
|
|
timeout_at = getsbinuptime() + SBT_1S * tp->t_drainwait;
|
|
|
|
else
|
|
|
|
timeout_at = 0;
|
2014-10-09 02:30:38 +00:00
|
|
|
|
Rework tty_drain() to poll the hardware for completion, and restore
drain timeout handling to historical freebsd behavior.
The primary reason for these changes is the need to have tty_drain() call
ttydevsw_busy() at some reasonable sub-second rate, to poll hardware that
doesn't signal an interrupt when the transmit shift register becomes empty
(which includes virtually all USB serial hardware). Such hardware hangs
in a ttyout wait, because it never gets an opportunity to trigger a wakeup
from the sleep in tty_drain() by calling ttydisc_getc() again, after
handing the last of the buffered data to the hardware.
While researching the history of changes to tty_drain() I stumbled across
some email describing the historical BSD behavior of tcdrain() and close()
on serial ports, and the ability of comcontrol(1) to control timeout
behavior. Using that and some advice from Bruce Evans as a guide, I've
put together these changes to implement the hardware polling and restore
the historical timeout behaviors...
- tty_drain() now calls ttydevsw_busy() in a loop at 10 Hz to accomodate
hardware that requires polling for busy state.
- The "new historical" behavior for draining during close(2) is retained:
the drain timeout is "1 second without making any progress". When the
1-second timeout expires, if the count of bytes remaining in the tty
layer buffer is smaller than last time, the timeout is extended for
another second. Unfortunately, the same logic cannot be extended all
the way down to the hardware, because the interface to that layer is a
simple busy/not-busy indication.
- Due to the previous point, an application that needs a guarantee that
all data has been transmitted must use TIOCDRAIN/tcdrain(3) before
calling close(2).
- The historical behavior of honoring the drainwait setting for TIOCDRAIN
(used by tcdrain(3)) is restored.
- The historical kern.drainwait sysctl to control the global default
drainwait time is restored, but is now named kern.tty_drainwait.
- The historical default drainwait timeout of 300 seconds is restored.
- Handling of TIOCGDRAINWAIT and TIOCSDRAINWAIT ioctls is restored
(this also makes the comcontrol(1) drainwait verb work again).
- Manpages are updated to document these behaviors.
Reviewed by: bde (prior version)
2017-01-12 00:48:06 +00:00
|
|
|
/*
|
|
|
|
* Poll the output buffer and the hardware for completion, at 10 Hz.
|
|
|
|
* Polling is required for devices which are not able to signal an
|
|
|
|
* interrupt when the transmitter becomes idle (most USB serial devs).
|
|
|
|
* The unusual structure of this loop ensures we check for busy one more
|
|
|
|
* time after tty_timedwait() returns EWOULDBLOCK, so that success has
|
|
|
|
* higher priority than timeout if the IO completed in the last 100mS.
|
|
|
|
*/
|
|
|
|
error = 0;
|
|
|
|
bytes = ttyoutq_bytesused(&tp->t_outq);
|
|
|
|
for (;;) {
|
|
|
|
if (ttyoutq_bytesused(&tp->t_outq) == 0 && !ttydevsw_busy(tp))
|
|
|
|
return (0);
|
|
|
|
if (error != 0)
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (error);
|
Rework tty_drain() to poll the hardware for completion, and restore
drain timeout handling to historical freebsd behavior.
The primary reason for these changes is the need to have tty_drain() call
ttydevsw_busy() at some reasonable sub-second rate, to poll hardware that
doesn't signal an interrupt when the transmit shift register becomes empty
(which includes virtually all USB serial hardware). Such hardware hangs
in a ttyout wait, because it never gets an opportunity to trigger a wakeup
from the sleep in tty_drain() by calling ttydisc_getc() again, after
handing the last of the buffered data to the hardware.
While researching the history of changes to tty_drain() I stumbled across
some email describing the historical BSD behavior of tcdrain() and close()
on serial ports, and the ability of comcontrol(1) to control timeout
behavior. Using that and some advice from Bruce Evans as a guide, I've
put together these changes to implement the hardware polling and restore
the historical timeout behaviors...
- tty_drain() now calls ttydevsw_busy() in a loop at 10 Hz to accomodate
hardware that requires polling for busy state.
- The "new historical" behavior for draining during close(2) is retained:
the drain timeout is "1 second without making any progress". When the
1-second timeout expires, if the count of bytes remaining in the tty
layer buffer is smaller than last time, the timeout is extended for
another second. Unfortunately, the same logic cannot be extended all
the way down to the hardware, because the interface to that layer is a
simple busy/not-busy indication.
- Due to the previous point, an application that needs a guarantee that
all data has been transmitted must use TIOCDRAIN/tcdrain(3) before
calling close(2).
- The historical behavior of honoring the drainwait setting for TIOCDRAIN
(used by tcdrain(3)) is restored.
- The historical kern.drainwait sysctl to control the global default
drainwait time is restored, but is now named kern.tty_drainwait.
- The historical default drainwait timeout of 300 seconds is restored.
- Handling of TIOCGDRAINWAIT and TIOCSDRAINWAIT ioctls is restored
(this also makes the comcontrol(1) drainwait verb work again).
- Manpages are updated to document these behaviors.
Reviewed by: bde (prior version)
2017-01-12 00:48:06 +00:00
|
|
|
ttydevsw_outwakeup(tp);
|
|
|
|
error = tty_timedwait(tp, &tp->t_outwait, hz / 10);
|
|
|
|
if (timeout_at == 0 && error == EWOULDBLOCK)
|
|
|
|
error = 0;
|
|
|
|
if (error != EWOULDBLOCK)
|
|
|
|
continue;
|
|
|
|
if (getsbinuptime() < timeout_at)
|
|
|
|
error = 0;
|
|
|
|
else if (leaving && ttyoutq_bytesused(&tp->t_outq) < bytes) {
|
|
|
|
/* In close, making progress, grant an extra second. */
|
|
|
|
error = 0;
|
|
|
|
timeout_at += SBT_1S;
|
|
|
|
bytes = ttyoutq_bytesused(&tp->t_outq);
|
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2008-10-15 16:58:35 +00:00
|
|
|
* Though ttydev_enter() and ttydev_leave() seem to be related, they
|
|
|
|
* don't have to be used together. ttydev_enter() is used by the cdev
|
|
|
|
* operations to prevent an actual operation from being processed when
|
|
|
|
* the TTY has been abandoned. ttydev_leave() is used by ttydev_open()
|
|
|
|
* and ttydev_close() to determine whether per-TTY data should be
|
|
|
|
* deallocated.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
static __inline int
|
|
|
|
ttydev_enter(struct tty *tp)
|
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock(tp);
|
|
|
|
|
|
|
|
if (tty_gone(tp) || !tty_opened(tp)) {
|
|
|
|
/* Device is already gone. */
|
|
|
|
tty_unlock(tp);
|
|
|
|
return (ENXIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ttydev_leave(struct tty *tp)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock_assert(tp, MA_OWNED);
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (tty_opened(tp) || tp->t_flags & TF_OPENCLOSE) {
|
|
|
|
/* Device is still opened somewhere. */
|
|
|
|
tty_unlock(tp);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
tp->t_flags |= TF_OPENCLOSE;
|
|
|
|
|
|
|
|
/* Stop asynchronous I/O. */
|
2002-05-06 19:31:28 +00:00
|
|
|
funsetown(&tp->t_sigio);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
/* Remove console TTY. */
|
1994-05-24 10:09:53 +00:00
|
|
|
if (constty == tp)
|
2003-06-22 02:54:33 +00:00
|
|
|
constty_clear();
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Drain any output. */
|
2014-10-09 02:30:38 +00:00
|
|
|
if (!tty_gone(tp))
|
|
|
|
tty_drain(tp, 1);
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
ttydisc_close(tp);
|
|
|
|
|
2016-01-22 20:38:46 +00:00
|
|
|
/* Free i/o queues now since they might be large. */
|
2008-08-30 09:18:27 +00:00
|
|
|
ttyinq_free(&tp->t_inq);
|
|
|
|
tp->t_inlow = 0;
|
|
|
|
ttyoutq_free(&tp->t_outq);
|
|
|
|
tp->t_outlow = 0;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
knlist_clear(&tp->t_inpoll.si_note, 1);
|
|
|
|
knlist_clear(&tp->t_outpoll.si_note, 1);
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (!tty_gone(tp))
|
|
|
|
ttydevsw_close(tp);
|
|
|
|
|
|
|
|
tp->t_flags &= ~TF_OPENCLOSE;
|
2009-05-24 12:32:03 +00:00
|
|
|
cv_broadcast(&tp->t_dcdwait);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_rel_free(tp);
|
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
/*
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* Operations that are exposed through the character device in /dev.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static int
|
2016-01-25 22:58:06 +00:00
|
|
|
ttydev_open(struct cdev *dev, int oflags, int devtype __unused,
|
|
|
|
struct thread *td)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
2012-06-18 07:34:38 +00:00
|
|
|
struct tty *tp;
|
2016-01-07 20:15:09 +00:00
|
|
|
int error;
|
2012-06-18 07:34:38 +00:00
|
|
|
|
2016-01-07 20:15:09 +00:00
|
|
|
tp = dev->si_drv1;
|
|
|
|
error = 0;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock(tp);
|
|
|
|
if (tty_gone(tp)) {
|
|
|
|
/* Device is already gone. */
|
|
|
|
tty_unlock(tp);
|
|
|
|
return (ENXIO);
|
|
|
|
}
|
2009-05-24 12:32:03 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
2009-05-24 12:32:03 +00:00
|
|
|
* Block when other processes are currently opening or closing
|
|
|
|
* the TTY.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
2009-05-24 12:32:03 +00:00
|
|
|
while (tp->t_flags & TF_OPENCLOSE) {
|
|
|
|
error = tty_wait(tp, &tp->t_dcdwait);
|
|
|
|
if (error != 0) {
|
|
|
|
tty_unlock(tp);
|
|
|
|
return (error);
|
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_flags |= TF_OPENCLOSE;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
1995-07-31 18:29:51 +00:00
|
|
|
/*
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* Make sure the "tty" and "cua" device cannot be opened at the
|
2016-01-25 16:47:20 +00:00
|
|
|
* same time. The console is a "tty" device.
|
1995-07-31 18:29:51 +00:00
|
|
|
*/
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (TTY_CALLOUT(tp, dev)) {
|
2016-01-25 16:47:20 +00:00
|
|
|
if (tp->t_flags & (TF_OPENED_CONS | TF_OPENED_IN)) {
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
error = EBUSY;
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (tp->t_flags & TF_OPENED_OUT) {
|
|
|
|
error = EBUSY;
|
|
|
|
goto done;
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
}
|
1995-07-31 18:29:51 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (tp->t_flags & TF_EXCLUDE && priv_check(td, PRIV_TTY_EXCLUSIVE)) {
|
|
|
|
error = EBUSY;
|
|
|
|
goto done;
|
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (!tty_opened(tp)) {
|
|
|
|
/* Set proper termios flags. */
|
2010-09-19 16:35:42 +00:00
|
|
|
if (TTY_CALLOUT(tp, dev))
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_termios = tp->t_termios_init_out;
|
2010-09-19 16:35:42 +00:00
|
|
|
else
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_termios = tp->t_termios_init_in;
|
|
|
|
ttydevsw_param(tp, &tp->t_termios);
|
2010-09-19 16:35:42 +00:00
|
|
|
/* Prevent modem control on callout devices and /dev/console. */
|
|
|
|
if (TTY_CALLOUT(tp, dev) || dev == dev_console)
|
|
|
|
tp->t_termios.c_cflag |= CLOCAL;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
ttydevsw_modem(tp, SER_DTR|SER_RTS, 0);
|
|
|
|
|
|
|
|
error = ttydevsw_open(tp);
|
|
|
|
if (error != 0)
|
|
|
|
goto done;
|
|
|
|
|
|
|
|
ttydisc_open(tp);
|
2013-12-18 12:50:43 +00:00
|
|
|
tty_watermarks(tp); /* XXXGL: drops lock */
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Wait for Carrier Detect. */
|
2010-09-19 16:35:42 +00:00
|
|
|
if ((oflags & O_NONBLOCK) == 0 &&
|
|
|
|
(tp->t_termios.c_cflag & CLOCAL) == 0) {
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
while ((ttydevsw_modem(tp, 0, 0) & SER_DCD) == 0) {
|
|
|
|
error = tty_wait(tp, &tp->t_dcdwait);
|
|
|
|
if (error != 0)
|
|
|
|
goto done;
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
2009-02-05 14:21:09 +00:00
|
|
|
if (dev == dev_console)
|
|
|
|
tp->t_flags |= TF_OPENED_CONS;
|
|
|
|
else if (TTY_CALLOUT(tp, dev))
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_flags |= TF_OPENED_OUT;
|
2009-02-05 14:21:09 +00:00
|
|
|
else
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_flags |= TF_OPENED_IN;
|
2016-01-25 16:47:20 +00:00
|
|
|
MPASS((tp->t_flags & (TF_OPENED_CONS | TF_OPENED_IN)) == 0 ||
|
|
|
|
(tp->t_flags & TF_OPENED_OUT) == 0);
|
1995-03-29 18:55:20 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
done: tp->t_flags &= ~TF_OPENCLOSE;
|
2009-05-24 12:32:03 +00:00
|
|
|
cv_broadcast(&tp->t_dcdwait);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
ttydev_leave(tp);
|
2008-10-15 16:58:35 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2016-01-25 22:58:06 +00:00
|
|
|
ttydev_close(struct cdev *dev, int fflag, int devtype __unused,
|
|
|
|
struct thread *td __unused)
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
{
|
|
|
|
struct tty *tp = dev->si_drv1;
|
|
|
|
|
2009-02-05 14:21:09 +00:00
|
|
|
tty_lock(tp);
|
|
|
|
|
2009-01-02 23:32:43 +00:00
|
|
|
/*
|
|
|
|
* Don't actually close the device if it is being used as the
|
|
|
|
* console.
|
|
|
|
*/
|
2016-01-25 16:47:20 +00:00
|
|
|
MPASS((tp->t_flags & (TF_OPENED_CONS | TF_OPENED_IN)) == 0 ||
|
|
|
|
(tp->t_flags & TF_OPENED_OUT) == 0);
|
2009-06-12 21:21:17 +00:00
|
|
|
if (dev == dev_console)
|
2009-02-05 14:21:09 +00:00
|
|
|
tp->t_flags &= ~TF_OPENED_CONS;
|
2009-06-12 21:21:17 +00:00
|
|
|
else
|
|
|
|
tp->t_flags &= ~(TF_OPENED_IN|TF_OPENED_OUT);
|
|
|
|
|
|
|
|
if (tp->t_flags & TF_OPENED) {
|
|
|
|
tty_unlock(tp);
|
|
|
|
return (0);
|
2009-02-05 14:21:09 +00:00
|
|
|
}
|
1995-03-29 18:55:20 +00:00
|
|
|
|
2016-01-26 07:57:44 +00:00
|
|
|
/* If revoking, flush output now to avoid draining it later. */
|
|
|
|
if (fflag & FREVOKE)
|
|
|
|
tty_flush(tp, FWRITE);
|
|
|
|
|
Don't clear the software flow control flag before draining for last
close or assert the bug that it is clear when leaving.
Remove an unrelated rotted comment that was attached to the buggy
clearing.
Since draining is not done in more cases, flushing is needed in more
cases, so start fixing flushing:
- do a full flush in ttydisc_close(). State what POSIX requires more
clearly. This was missing ttydevsw_pktnotify() calls to tell the
devsw layer to flush. Hardware tty drivers don't actually flush
since they don't understand this API.
- fix 2 missing wakeups in tty_flush(). Most of the wakeups here are
unnecessary for last close. But ttydisc_close() did one of the
missing ones.
This flow control bug ameliorated the design bug of requiring
potentially unbounded waits in draining. Software flow control is the
easiest way to get an unbounded wait, and a long wait is sometimes
actually useful. Users can type the xoff character on the receiver
and (if ixon is set on the sender) expect the output to be held until
the user is ready for more.
Hardware flow control can also give the unbounded wait, and this bug
didn't affect hardware flow control. Unbounded waits from hardware
flow control take a more unusual configuration. E.g., a terminal
program that controls the modem status lines, or unplugging the cable
in a configuration where this doesn't break the connection.
The design bug is still ameliorated by a newer bug in draining for
last close -- the 1 second timeout. E.g., if the user types the
xoff character and the sender reaches last close, then output is
not resumed and the wait times out after just 1 second. This is
broken, but preferable to an unbounded wait. Before this change,
the output was resumed immediately and usually completed.
Submitted by: bde
MFC after: 2 weeks
2016-01-26 14:46:39 +00:00
|
|
|
tp->t_flags &= ~TF_EXCLUDE;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
/* Properly wake up threads that are stuck - revoke(). */
|
|
|
|
tp->t_revokecnt++;
|
|
|
|
tty_wakeup(tp, FREAD|FWRITE);
|
|
|
|
cv_broadcast(&tp->t_bgwait);
|
2009-06-23 21:33:26 +00:00
|
|
|
cv_broadcast(&tp->t_dcdwait);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
ttydev_leave(tp);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline int
|
|
|
|
tty_is_ctty(struct tty *tp, struct proc *p)
|
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock_assert(tp, MA_OWNED);
|
|
|
|
|
|
|
|
return (p->p_session == tp->t_session && p->p_flag & P_CONTROLT);
|
|
|
|
}
|
|
|
|
|
2012-10-25 09:05:21 +00:00
|
|
|
int
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_wait_background(struct tty *tp, struct thread *td, int sig)
|
|
|
|
{
|
|
|
|
struct proc *p = td->td_proc;
|
|
|
|
struct pgrp *pg;
|
Among signal generation syscalls, only sigqueue(2) is allowed by POSIX
to fail due to lack of resources to queue siginfo. Add KSI_SIGQ flag
that allows sigqueue_add() to fail while trying to allocate memory for
new siginfo. When the flag is not set, behaviour is the same as for
KSI_TRAP: if memory cannot be allocated, set bit in sq_kill. KSI_TRAP is
kept to preserve KBI.
Add SI_KERNEL si_code, to be used in siginfo.si_code when signal is
generated by kernel. Deliver siginfo when signal is generated by kill(2)
family of syscalls (SI_USER with properly filled si_uid and si_pid), or
by kernel (SI_KERNEL, mostly job control or SIGIO). Since KSI_SIGQ flag
is not set for the ksi, low memory condition cause old behaviour.
Keep psignal(9) KBI intact, but modify it to generate SI_KERNEL
si_code. Pgsignal(9) and gsignal(9) now take ksi explicitely. Add
pksignal(9) that behaves like psignal but takes ksi, and ddb kill
command implemented as pksignal(..., ksi = NULL) to not do allocation
while in debugger.
While there, remove some register specifiers and use ANSI C prototypes.
Reviewed by: davidxu
MFC after: 1 month
2009-11-17 11:39:15 +00:00
|
|
|
ksiginfo_t ksi;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
int error;
|
|
|
|
|
|
|
|
MPASS(sig == SIGTTIN || sig == SIGTTOU);
|
|
|
|
tty_lock_assert(tp, MA_OWNED);
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
PROC_LOCK(p);
|
|
|
|
/*
|
|
|
|
* The process should only sleep, when:
|
2016-04-29 22:15:33 +00:00
|
|
|
* - This terminal is the controlling terminal
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* - Its process group is not the foreground process
|
|
|
|
* group
|
|
|
|
* - The parent process isn't waiting for the child to
|
|
|
|
* exit
|
|
|
|
* - the signal to send to the process isn't masked
|
|
|
|
*/
|
2009-04-08 15:56:50 +00:00
|
|
|
if (!tty_is_ctty(tp, p) || p->p_pgrp == tp->t_pgrp) {
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Allow the action to happen. */
|
|
|
|
PROC_UNLOCK(p);
|
|
|
|
return (0);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
2009-04-08 15:56:50 +00:00
|
|
|
if (SIGISMEMBER(p->p_sigacts->ps_sigignore, sig) ||
|
|
|
|
SIGISMEMBER(td->td_sigmask, sig)) {
|
|
|
|
/* Only allow them in write()/ioctl(). */
|
|
|
|
PROC_UNLOCK(p);
|
|
|
|
return (sig == SIGTTOU ? 0 : EIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
pg = p->p_pgrp;
|
|
|
|
if (p->p_flag & P_PPWAIT || pg->pg_jobc == 0) {
|
|
|
|
/* Don't allow the action to happen. */
|
|
|
|
PROC_UNLOCK(p);
|
|
|
|
return (EIO);
|
|
|
|
}
|
|
|
|
PROC_UNLOCK(p);
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/*
|
|
|
|
* Send the signal and sleep until we're the new
|
|
|
|
* foreground process group.
|
|
|
|
*/
|
Among signal generation syscalls, only sigqueue(2) is allowed by POSIX
to fail due to lack of resources to queue siginfo. Add KSI_SIGQ flag
that allows sigqueue_add() to fail while trying to allocate memory for
new siginfo. When the flag is not set, behaviour is the same as for
KSI_TRAP: if memory cannot be allocated, set bit in sq_kill. KSI_TRAP is
kept to preserve KBI.
Add SI_KERNEL si_code, to be used in siginfo.si_code when signal is
generated by kernel. Deliver siginfo when signal is generated by kill(2)
family of syscalls (SI_USER with properly filled si_uid and si_pid), or
by kernel (SI_KERNEL, mostly job control or SIGIO). Since KSI_SIGQ flag
is not set for the ksi, low memory condition cause old behaviour.
Keep psignal(9) KBI intact, but modify it to generate SI_KERNEL
si_code. Pgsignal(9) and gsignal(9) now take ksi explicitely. Add
pksignal(9) that behaves like psignal but takes ksi, and ddb kill
command implemented as pksignal(..., ksi = NULL) to not do allocation
while in debugger.
While there, remove some register specifiers and use ANSI C prototypes.
Reviewed by: davidxu
MFC after: 1 month
2009-11-17 11:39:15 +00:00
|
|
|
if (sig != 0) {
|
|
|
|
ksiginfo_init(&ksi);
|
|
|
|
ksi.ksi_code = SI_KERNEL;
|
|
|
|
ksi.ksi_signo = sig;
|
|
|
|
sig = 0;
|
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
PGRP_LOCK(pg);
|
Among signal generation syscalls, only sigqueue(2) is allowed by POSIX
to fail due to lack of resources to queue siginfo. Add KSI_SIGQ flag
that allows sigqueue_add() to fail while trying to allocate memory for
new siginfo. When the flag is not set, behaviour is the same as for
KSI_TRAP: if memory cannot be allocated, set bit in sq_kill. KSI_TRAP is
kept to preserve KBI.
Add SI_KERNEL si_code, to be used in siginfo.si_code when signal is
generated by kernel. Deliver siginfo when signal is generated by kill(2)
family of syscalls (SI_USER with properly filled si_uid and si_pid), or
by kernel (SI_KERNEL, mostly job control or SIGIO). Since KSI_SIGQ flag
is not set for the ksi, low memory condition cause old behaviour.
Keep psignal(9) KBI intact, but modify it to generate SI_KERNEL
si_code. Pgsignal(9) and gsignal(9) now take ksi explicitely. Add
pksignal(9) that behaves like psignal but takes ksi, and ddb kill
command implemented as pksignal(..., ksi = NULL) to not do allocation
while in debugger.
While there, remove some register specifiers and use ANSI C prototypes.
Reviewed by: davidxu
MFC after: 1 month
2009-11-17 11:39:15 +00:00
|
|
|
pgsignal(pg, ksi.ksi_signo, 1, &ksi);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
PGRP_UNLOCK(pg);
|
|
|
|
|
|
|
|
error = tty_wait(tp, &tp->t_bgwait);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ttydev_read(struct cdev *dev, struct uio *uio, int ioflag)
|
|
|
|
{
|
|
|
|
struct tty *tp = dev->si_drv1;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
error = ttydev_enter(tp);
|
|
|
|
if (error)
|
2008-10-15 16:58:35 +00:00
|
|
|
goto done;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
error = ttydisc_read(tp, uio, ioflag);
|
2008-10-15 16:58:35 +00:00
|
|
|
tty_unlock(tp);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
2008-10-15 16:58:35 +00:00
|
|
|
* The read() call should not throw an error when the device is
|
|
|
|
* being destroyed. Silently convert it to an EOF.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
2008-10-15 16:58:35 +00:00
|
|
|
done: if (error == ENXIO)
|
|
|
|
error = 0;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (error);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
1995-07-31 19:17:19 +00:00
|
|
|
static int
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
ttydev_write(struct cdev *dev, struct uio *uio, int ioflag)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
struct tty *tp = dev->si_drv1;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
error = ttydev_enter(tp);
|
|
|
|
if (error)
|
2008-10-15 16:58:35 +00:00
|
|
|
return (error);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
if (tp->t_termios.c_lflag & TOSTOP) {
|
|
|
|
error = tty_wait_background(tp, curthread, SIGTTOU);
|
2009-02-11 16:28:49 +00:00
|
|
|
if (error)
|
|
|
|
goto done;
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
2009-02-11 16:28:49 +00:00
|
|
|
if (ioflag & IO_NDELAY && tp->t_flags & TF_BUSY_OUT) {
|
|
|
|
/* Allow non-blocking writes to bypass serialization. */
|
|
|
|
error = ttydisc_write(tp, uio, ioflag);
|
|
|
|
} else {
|
|
|
|
/* Serialize write() calls. */
|
|
|
|
while (tp->t_flags & TF_BUSY_OUT) {
|
2009-06-23 21:43:02 +00:00
|
|
|
error = tty_wait(tp, &tp->t_outserwait);
|
2009-02-11 16:28:49 +00:00
|
|
|
if (error)
|
|
|
|
goto done;
|
|
|
|
}
|
2011-06-26 18:26:20 +00:00
|
|
|
|
|
|
|
tp->t_flags |= TF_BUSY_OUT;
|
2009-02-11 16:28:49 +00:00
|
|
|
error = ttydisc_write(tp, uio, ioflag);
|
2011-06-26 18:26:20 +00:00
|
|
|
tp->t_flags &= ~TF_BUSY_OUT;
|
2009-06-23 21:43:02 +00:00
|
|
|
cv_signal(&tp->t_outserwait);
|
2009-02-11 16:28:49 +00:00
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
|
2009-02-11 16:28:49 +00:00
|
|
|
done: tty_unlock(tp);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (error);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static int
|
|
|
|
ttydev_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
|
|
|
|
struct thread *td)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
struct tty *tp = dev->si_drv1;
|
|
|
|
int error;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
error = ttydev_enter(tp);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
switch (cmd) {
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
case TIOCCBRK:
|
|
|
|
case TIOCCONS:
|
|
|
|
case TIOCDRAIN:
|
|
|
|
case TIOCEXCL:
|
|
|
|
case TIOCFLUSH:
|
|
|
|
case TIOCNXCL:
|
|
|
|
case TIOCSBRK:
|
|
|
|
case TIOCSCTTY:
|
|
|
|
case TIOCSETA:
|
|
|
|
case TIOCSETAF:
|
|
|
|
case TIOCSETAW:
|
|
|
|
case TIOCSPGRP:
|
|
|
|
case TIOCSTART:
|
|
|
|
case TIOCSTAT:
|
2010-01-04 20:59:52 +00:00
|
|
|
case TIOCSTI:
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
case TIOCSTOP:
|
|
|
|
case TIOCSWINSZ:
|
|
|
|
#if 0
|
|
|
|
case TIOCSDRAINWAIT:
|
|
|
|
case TIOCSETD:
|
Fixed some missing cases in the check for ioctls that involve modification.
Many (mostly machine-dependent ones) are still missing. NIST-PCTS found
this bug for all the ioctls used to implement the POSIX tc* functions
(TIOCCBRK, TIOCDRAIN, TIOCSPGRP, TIOCSBRK, TIOCSTART and TIOCSTOP), and
I found FIOASYNC, TIOCCONS, TIOCEXCL, TIOCHPCL, TIOCNXCL, TIOCSCTTY and
TIOCSDRAINWAIT by inspection. TIOCSPGRP was ifdefed out for some reason.
Handle tcsetattr()'s historical speed conversions correctly and more
centrally:
- don't store speeds of 0 in the final termios struct. Drivers can now
depend on tp->t_ispeed and tp->t_ospeed giving the actual speed.
Applications can now depend on tcgetattr() being POSIX.1 conformant.
- convert from a proposed input speed of 0 to the proposed output speed
(except if that is 0, convert to the current output speed). Drivers
can now depend on the proposed input speed being nonzero.
- don't reject negative speeds. Negative speeds can't happen now that
speed_t is unsigned, and rejecting invalid speeds is a bug - tcsetattr()
is supposed to succeed if it can "perform any of the requested actions",
so it shouldn't fail in practice.
1998-11-22 09:04:09 +00:00
|
|
|
#endif
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
#ifdef COMPAT_43TTY
|
1994-05-24 10:09:53 +00:00
|
|
|
case TIOCLBIC:
|
|
|
|
case TIOCLBIS:
|
|
|
|
case TIOCLSET:
|
|
|
|
case TIOCSETC:
|
|
|
|
case OTIOCSETD:
|
|
|
|
case TIOCSETN:
|
|
|
|
case TIOCSETP:
|
|
|
|
case TIOCSLTC:
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
#endif /* COMPAT_43TTY */
|
Installed the second patch attached to kern/7899 with some changes suggested
by bde, a few other tweaks to get the patch to apply cleanly again and
some improvements to the comments.
This change closes some fairly minor security holes associated with
F_SETOWN, fixes a few bugs, and removes some limitations that F_SETOWN
had on tty devices. For more details, see the description on the PR.
Because this patch increases the size of the proc and pgrp structures,
it is necessary to re-install the includes and recompile libkvm,
the vinum lkm, fstat, gcore, gdb, ipfilter, ps, top, and w.
PR: kern/7899
Reviewed by: bde, elvind
1998-11-11 10:04:13 +00:00
|
|
|
/*
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* If the ioctl() causes the TTY to be modified, let it
|
|
|
|
* wait in the background.
|
Installed the second patch attached to kern/7899 with some changes suggested
by bde, a few other tweaks to get the patch to apply cleanly again and
some improvements to the comments.
This change closes some fairly minor security holes associated with
F_SETOWN, fixes a few bugs, and removes some limitations that F_SETOWN
had on tty devices. For more details, see the description on the PR.
Because this patch increases the size of the proc and pgrp structures,
it is necessary to re-install the includes and recompile libkvm,
the vinum lkm, fstat, gcore, gdb, ipfilter, ps, top, and w.
PR: kern/7899
Reviewed by: bde, elvind
1998-11-11 10:04:13 +00:00
|
|
|
*/
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
error = tty_wait_background(tp, curthread, SIGTTOU);
|
Installed the second patch attached to kern/7899 with some changes suggested
by bde, a few other tweaks to get the patch to apply cleanly again and
some improvements to the comments.
This change closes some fairly minor security holes associated with
F_SETOWN, fixes a few bugs, and removes some limitations that F_SETOWN
had on tty devices. For more details, see the description on the PR.
Because this patch increases the size of the proc and pgrp structures,
it is necessary to re-install the includes and recompile libkvm,
the vinum lkm, fstat, gcore, gdb, ipfilter, ps, top, and w.
PR: kern/7899
Reviewed by: bde, elvind
1998-11-11 10:04:13 +00:00
|
|
|
if (error)
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
goto done;
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
2002-04-03 10:56:59 +00:00
|
|
|
|
2009-10-18 19:45:44 +00:00
|
|
|
if (cmd == TIOCSETA || cmd == TIOCSETAW || cmd == TIOCSETAF) {
|
|
|
|
struct termios *old = &tp->t_termios;
|
|
|
|
struct termios *new = (struct termios *)data;
|
|
|
|
struct termios *lock = TTY_CALLOUT(tp, dev) ?
|
|
|
|
&tp->t_termios_lock_out : &tp->t_termios_lock_in;
|
|
|
|
int cc;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Lock state devices. Just overwrite the values of the
|
|
|
|
* commands that are currently in use.
|
|
|
|
*/
|
|
|
|
new->c_iflag = (old->c_iflag & lock->c_iflag) |
|
|
|
|
(new->c_iflag & ~lock->c_iflag);
|
|
|
|
new->c_oflag = (old->c_oflag & lock->c_oflag) |
|
|
|
|
(new->c_oflag & ~lock->c_oflag);
|
|
|
|
new->c_cflag = (old->c_cflag & lock->c_cflag) |
|
|
|
|
(new->c_cflag & ~lock->c_cflag);
|
|
|
|
new->c_lflag = (old->c_lflag & lock->c_lflag) |
|
|
|
|
(new->c_lflag & ~lock->c_lflag);
|
|
|
|
for (cc = 0; cc < NCCS; ++cc)
|
|
|
|
if (lock->c_cc[cc])
|
|
|
|
new->c_cc[cc] = old->c_cc[cc];
|
|
|
|
if (lock->c_ispeed)
|
|
|
|
new->c_ispeed = old->c_ispeed;
|
|
|
|
if (lock->c_ospeed)
|
|
|
|
new->c_ospeed = old->c_ospeed;
|
|
|
|
}
|
|
|
|
|
2010-01-04 20:59:52 +00:00
|
|
|
error = tty_ioctl(tp, cmd, data, fflag, td);
|
2008-10-15 16:58:35 +00:00
|
|
|
done: tty_unlock(tp);
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (error);
|
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static int
|
|
|
|
ttydev_poll(struct cdev *dev, int events, struct thread *td)
|
|
|
|
{
|
|
|
|
struct tty *tp = dev->si_drv1;
|
|
|
|
int error, revents = 0;
|
|
|
|
|
|
|
|
error = ttydev_enter(tp);
|
2009-07-08 10:21:52 +00:00
|
|
|
if (error)
|
|
|
|
return ((events & (POLLIN|POLLRDNORM)) | POLLHUP);
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (events & (POLLIN|POLLRDNORM)) {
|
|
|
|
/* See if we can read something. */
|
|
|
|
if (ttydisc_read_poll(tp) > 0)
|
|
|
|
revents |= events & (POLLIN|POLLRDNORM);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
2009-07-08 10:21:52 +00:00
|
|
|
|
|
|
|
if (tp->t_flags & TF_ZOMBIE) {
|
|
|
|
/* Hangup flag on zombie state. */
|
|
|
|
revents |= POLLHUP;
|
|
|
|
} else if (events & (POLLOUT|POLLWRNORM)) {
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* See if we can write something. */
|
|
|
|
if (ttydisc_write_poll(tp) > 0)
|
|
|
|
revents |= events & (POLLOUT|POLLWRNORM);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
if (revents == 0) {
|
|
|
|
if (events & (POLLIN|POLLRDNORM))
|
|
|
|
selrecord(td, &tp->t_inpoll);
|
|
|
|
if (events & (POLLOUT|POLLWRNORM))
|
|
|
|
selrecord(td, &tp->t_outpoll);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
2008-10-15 16:58:35 +00:00
|
|
|
tty_unlock(tp);
|
2004-09-24 08:26:03 +00:00
|
|
|
|
1997-09-14 02:40:46 +00:00
|
|
|
return (revents);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static int
|
2009-12-29 21:51:28 +00:00
|
|
|
ttydev_mmap(struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr,
|
|
|
|
int nprot, vm_memattr_t *memattr)
|
2001-02-15 16:34:11 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
struct tty *tp = dev->si_drv1;
|
|
|
|
int error;
|
2001-02-15 16:34:11 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Handle mmap() through the driver. */
|
2001-02-15 16:34:11 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
error = ttydev_enter(tp);
|
|
|
|
if (error)
|
|
|
|
return (-1);
|
2009-12-29 21:51:28 +00:00
|
|
|
error = ttydevsw_mmap(tp, offset, paddr, nprot, memattr);
|
2008-10-15 16:58:35 +00:00
|
|
|
tty_unlock(tp);
|
2001-02-15 16:34:11 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (error);
|
2001-02-15 16:34:11 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/*
|
|
|
|
* kqueue support.
|
|
|
|
*/
|
|
|
|
|
2001-02-15 16:34:11 +00:00
|
|
|
static void
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_kqops_read_detach(struct knote *kn)
|
2001-02-15 16:34:11 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
struct tty *tp = kn->kn_hook;
|
2001-02-15 16:34:11 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
knlist_remove(&tp->t_inpoll.si_note, kn, 0);
|
2001-02-15 16:34:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2016-01-25 22:58:06 +00:00
|
|
|
tty_kqops_read_event(struct knote *kn, long hint __unused)
|
2001-02-15 16:34:11 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
struct tty *tp = kn->kn_hook;
|
2001-02-15 16:34:11 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock_assert(tp, MA_OWNED);
|
|
|
|
|
|
|
|
if (tty_gone(tp) || tp->t_flags & TF_ZOMBIE) {
|
2001-02-15 16:34:11 +00:00
|
|
|
kn->kn_flags |= EV_EOF;
|
|
|
|
return (1);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
} else {
|
|
|
|
kn->kn_data = ttydisc_read_poll(tp);
|
|
|
|
return (kn->kn_data > 0);
|
2001-02-15 16:34:11 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_kqops_write_detach(struct knote *kn)
|
2001-02-15 16:34:11 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
struct tty *tp = kn->kn_hook;
|
2001-02-15 16:34:11 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
knlist_remove(&tp->t_outpoll.si_note, kn, 0);
|
2001-02-15 16:34:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2016-01-25 22:58:06 +00:00
|
|
|
tty_kqops_write_event(struct knote *kn, long hint __unused)
|
2001-02-15 16:34:11 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
struct tty *tp = kn->kn_hook;
|
2001-02-15 16:34:11 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock_assert(tp, MA_OWNED);
|
2001-02-15 16:34:11 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (tty_gone(tp)) {
|
|
|
|
kn->kn_flags |= EV_EOF;
|
|
|
|
return (1);
|
|
|
|
} else {
|
|
|
|
kn->kn_data = ttydisc_write_poll(tp);
|
|
|
|
return (kn->kn_data > 0);
|
1994-10-03 01:12:18 +00:00
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
2009-09-12 20:03:45 +00:00
|
|
|
static struct filterops tty_kqops_read = {
|
|
|
|
.f_isfd = 1,
|
|
|
|
.f_detach = tty_kqops_read_detach,
|
|
|
|
.f_event = tty_kqops_read_event,
|
|
|
|
};
|
2016-01-25 22:58:06 +00:00
|
|
|
|
2009-09-12 20:03:45 +00:00
|
|
|
static struct filterops tty_kqops_write = {
|
|
|
|
.f_isfd = 1,
|
|
|
|
.f_detach = tty_kqops_write_detach,
|
|
|
|
.f_event = tty_kqops_write_event,
|
|
|
|
};
|
1994-05-24 10:09:53 +00:00
|
|
|
|
1995-12-14 08:32:45 +00:00
|
|
|
static int
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
ttydev_kqfilter(struct cdev *dev, struct knote *kn)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
struct tty *tp = dev->si_drv1;
|
1994-05-24 10:09:53 +00:00
|
|
|
int error;
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
error = ttydev_enter(tp);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
switch (kn->kn_filter) {
|
|
|
|
case EVFILT_READ:
|
|
|
|
kn->kn_hook = tp;
|
|
|
|
kn->kn_fop = &tty_kqops_read;
|
|
|
|
knlist_add(&tp->t_inpoll.si_note, kn, 1);
|
|
|
|
break;
|
|
|
|
case EVFILT_WRITE:
|
|
|
|
kn->kn_hook = tp;
|
|
|
|
kn->kn_fop = &tty_kqops_write;
|
|
|
|
knlist_add(&tp->t_outpoll.si_note, kn, 1);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
error = EINVAL;
|
|
|
|
break;
|
1996-11-29 16:16:47 +00:00
|
|
|
}
|
1995-12-15 01:01:00 +00:00
|
|
|
|
2008-10-15 16:58:35 +00:00
|
|
|
tty_unlock(tp);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (error);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static struct cdevsw ttydev_cdevsw = {
|
|
|
|
.d_version = D_VERSION,
|
|
|
|
.d_open = ttydev_open,
|
|
|
|
.d_close = ttydev_close,
|
|
|
|
.d_read = ttydev_read,
|
|
|
|
.d_write = ttydev_write,
|
|
|
|
.d_ioctl = ttydev_ioctl,
|
|
|
|
.d_kqfilter = ttydev_kqfilter,
|
|
|
|
.d_poll = ttydev_poll,
|
|
|
|
.d_mmap = ttydev_mmap,
|
|
|
|
.d_name = "ttydev",
|
|
|
|
.d_flags = D_TTY,
|
|
|
|
};
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* Init/lock-state devices
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
static int
|
2016-01-25 22:58:06 +00:00
|
|
|
ttyil_open(struct cdev *dev, int oflags __unused, int devtype __unused,
|
|
|
|
struct thread *td)
|
1995-07-21 22:52:01 +00:00
|
|
|
{
|
2012-06-18 07:34:38 +00:00
|
|
|
struct tty *tp;
|
2016-01-07 20:15:09 +00:00
|
|
|
int error;
|
1995-07-21 22:52:01 +00:00
|
|
|
|
2016-01-07 20:15:09 +00:00
|
|
|
tp = dev->si_drv1;
|
|
|
|
error = 0;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock(tp);
|
|
|
|
if (tty_gone(tp))
|
|
|
|
error = ENODEV;
|
|
|
|
tty_unlock(tp);
|
|
|
|
|
|
|
|
return (error);
|
1995-07-21 22:52:01 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static int
|
2016-01-25 22:58:06 +00:00
|
|
|
ttyil_close(struct cdev *dev __unused, int flag __unused, int mode __unused,
|
|
|
|
struct thread *td __unused)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (0);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static int
|
2016-01-25 22:58:06 +00:00
|
|
|
ttyil_rdwr(struct cdev *dev __unused, struct uio *uio __unused,
|
|
|
|
int ioflag __unused)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (ENODEV);
|
1995-07-31 18:29:51 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static int
|
|
|
|
ttyil_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
|
|
|
|
struct thread *td)
|
1995-07-31 18:29:51 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
struct tty *tp = dev->si_drv1;
|
2011-09-12 10:07:21 +00:00
|
|
|
int error;
|
1995-07-31 18:29:51 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock(tp);
|
|
|
|
if (tty_gone(tp)) {
|
|
|
|
error = ENODEV;
|
|
|
|
goto done;
|
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
|
2011-07-02 13:54:20 +00:00
|
|
|
error = ttydevsw_cioctl(tp, dev2unit(dev), cmd, data, td);
|
|
|
|
if (error != ENOIOCTL)
|
|
|
|
goto done;
|
2011-09-12 10:07:21 +00:00
|
|
|
error = 0;
|
2011-07-02 13:54:20 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
switch (cmd) {
|
|
|
|
case TIOCGETA:
|
|
|
|
/* Obtain terminal flags through tcgetattr(). */
|
2009-03-01 09:50:13 +00:00
|
|
|
*(struct termios*)data = *(struct termios*)dev->si_drv2;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
break;
|
|
|
|
case TIOCSETA:
|
|
|
|
/* Set terminal flags through tcsetattr(). */
|
|
|
|
error = priv_check(td, PRIV_TTY_SETA);
|
|
|
|
if (error)
|
|
|
|
break;
|
2009-03-01 09:50:13 +00:00
|
|
|
*(struct termios*)dev->si_drv2 = *(struct termios*)data;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
break;
|
|
|
|
case TIOCGETD:
|
|
|
|
*(int *)data = TTYDISC;
|
|
|
|
break;
|
|
|
|
case TIOCGWINSZ:
|
|
|
|
bzero(data, sizeof(struct winsize));
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
error = ENOTTY;
|
|
|
|
}
|
|
|
|
|
|
|
|
done: tty_unlock(tp);
|
|
|
|
return (error);
|
|
|
|
}
|
1995-12-14 22:32:52 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static struct cdevsw ttyil_cdevsw = {
|
|
|
|
.d_version = D_VERSION,
|
|
|
|
.d_open = ttyil_open,
|
|
|
|
.d_close = ttyil_close,
|
|
|
|
.d_read = ttyil_rdwr,
|
|
|
|
.d_write = ttyil_rdwr,
|
|
|
|
.d_ioctl = ttyil_ioctl,
|
|
|
|
.d_name = "ttyil",
|
|
|
|
.d_flags = D_TTY,
|
|
|
|
};
|
1999-01-08 17:31:30 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static void
|
|
|
|
tty_init_termios(struct tty *tp)
|
|
|
|
{
|
|
|
|
struct termios *t = &tp->t_termios_init_in;
|
1995-12-14 22:32:52 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
t->c_cflag = TTYDEF_CFLAG;
|
|
|
|
t->c_iflag = TTYDEF_IFLAG;
|
|
|
|
t->c_lflag = TTYDEF_LFLAG;
|
|
|
|
t->c_oflag = TTYDEF_OFLAG;
|
|
|
|
t->c_ispeed = TTYDEF_SPEED;
|
|
|
|
t->c_ospeed = TTYDEF_SPEED;
|
2009-02-28 14:20:26 +00:00
|
|
|
memcpy(&t->c_cc, ttydefchars, sizeof ttydefchars);
|
1995-12-14 22:32:52 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_termios_init_out = *t;
|
1995-12-14 22:32:52 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
void
|
|
|
|
tty_init_console(struct tty *tp, speed_t s)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
struct termios *ti = &tp->t_termios_init_in;
|
|
|
|
struct termios *to = &tp->t_termios_init_out;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (s != 0) {
|
|
|
|
ti->c_ispeed = ti->c_ospeed = s;
|
|
|
|
to->c_ispeed = to->c_ospeed = s;
|
|
|
|
}
|
|
|
|
|
|
|
|
ti->c_cflag |= CLOCAL;
|
|
|
|
to->c_cflag |= CLOCAL;
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* Standard device routine implementations, mostly meant for
|
|
|
|
* pseudo-terminal device drivers. When a driver creates a new terminal
|
|
|
|
* device class, missing routines are patched.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
static int
|
2016-01-25 22:58:06 +00:00
|
|
|
ttydevsw_defopen(struct tty *tp __unused)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static void
|
2016-01-25 22:58:06 +00:00
|
|
|
ttydevsw_defclose(struct tty *tp __unused)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
1995-07-31 19:17:19 +00:00
|
|
|
static void
|
2016-01-25 22:58:06 +00:00
|
|
|
ttydevsw_defoutwakeup(struct tty *tp __unused)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
panic("Terminal device has output, while not implemented");
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static void
|
2016-01-25 22:58:06 +00:00
|
|
|
ttydevsw_definwakeup(struct tty *tp __unused)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static int
|
2016-01-25 22:58:06 +00:00
|
|
|
ttydevsw_defioctl(struct tty *tp __unused, u_long cmd __unused,
|
|
|
|
caddr_t data __unused, struct thread *td __unused)
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
{
|
1994-10-03 01:12:18 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (ENOIOCTL);
|
|
|
|
}
|
2005-03-12 00:13:45 +00:00
|
|
|
|
2011-07-02 13:54:20 +00:00
|
|
|
static int
|
2016-01-25 22:58:06 +00:00
|
|
|
ttydevsw_defcioctl(struct tty *tp __unused, int unit __unused,
|
|
|
|
u_long cmd __unused, caddr_t data __unused, struct thread *td __unused)
|
2011-07-02 13:54:20 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
return (ENOIOCTL);
|
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static int
|
2016-01-25 22:58:06 +00:00
|
|
|
ttydevsw_defparam(struct tty *tp __unused, struct termios *t)
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
{
|
1995-07-31 18:29:51 +00:00
|
|
|
|
2009-10-18 19:48:53 +00:00
|
|
|
/*
|
|
|
|
* Allow the baud rate to be adjusted for pseudo-devices, but at
|
|
|
|
* least restrict it to 115200 to prevent excessive buffer
|
|
|
|
* usage. Also disallow 0, to prevent foot shooting.
|
|
|
|
*/
|
|
|
|
if (t->c_ispeed < B50)
|
|
|
|
t->c_ispeed = B50;
|
|
|
|
else if (t->c_ispeed > B115200)
|
|
|
|
t->c_ispeed = B115200;
|
|
|
|
if (t->c_ospeed < B50)
|
|
|
|
t->c_ospeed = B50;
|
|
|
|
else if (t->c_ospeed > B115200)
|
|
|
|
t->c_ospeed = B115200;
|
2009-12-01 19:14:57 +00:00
|
|
|
t->c_cflag |= CREAD;
|
1995-07-31 18:29:51 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (0);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static int
|
2016-01-25 22:58:06 +00:00
|
|
|
ttydevsw_defmodem(struct tty *tp __unused, int sigon __unused,
|
|
|
|
int sigoff __unused)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Simulate a carrier to make the TTY layer happy. */
|
|
|
|
return (SER_DCD);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static int
|
2016-01-25 22:58:06 +00:00
|
|
|
ttydevsw_defmmap(struct tty *tp __unused, vm_ooffset_t offset __unused,
|
|
|
|
vm_paddr_t *paddr __unused, int nprot __unused,
|
|
|
|
vm_memattr_t *memattr __unused)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (-1);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
2008-09-04 16:39:02 +00:00
|
|
|
static void
|
2016-01-25 22:58:06 +00:00
|
|
|
ttydevsw_defpktnotify(struct tty *tp __unused, char event __unused)
|
2008-09-04 16:39:02 +00:00
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
2008-09-04 16:39:02 +00:00
|
|
|
}
|
|
|
|
|
1995-07-31 19:17:19 +00:00
|
|
|
static void
|
2016-01-25 22:58:06 +00:00
|
|
|
ttydevsw_deffree(void *softc __unused)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
panic("Terminal device freed without a free-handler");
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
2016-01-19 23:34:27 +00:00
|
|
|
static bool
|
|
|
|
ttydevsw_defbusy(struct tty *tp __unused)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (FALSE);
|
|
|
|
}
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* TTY allocation and deallocation. TTY devices can be deallocated when
|
|
|
|
* the driver doesn't use it anymore, when the TTY isn't a session's
|
|
|
|
* controlling TTY and when the device node isn't opened through devfs.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
struct tty *
|
2009-05-29 06:41:23 +00:00
|
|
|
tty_alloc(struct ttydevsw *tsw, void *sc)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (tty_alloc_mutex(tsw, sc, NULL));
|
|
|
|
}
|
|
|
|
|
|
|
|
struct tty *
|
|
|
|
tty_alloc_mutex(struct ttydevsw *tsw, void *sc, struct mtx *mutex)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
struct tty *tp;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Make sure the driver defines all routines. */
|
|
|
|
#define PATCH_FUNC(x) do { \
|
|
|
|
if (tsw->tsw_ ## x == NULL) \
|
|
|
|
tsw->tsw_ ## x = ttydevsw_def ## x; \
|
|
|
|
} while (0)
|
|
|
|
PATCH_FUNC(open);
|
|
|
|
PATCH_FUNC(close);
|
|
|
|
PATCH_FUNC(outwakeup);
|
|
|
|
PATCH_FUNC(inwakeup);
|
|
|
|
PATCH_FUNC(ioctl);
|
2011-07-02 13:54:20 +00:00
|
|
|
PATCH_FUNC(cioctl);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
PATCH_FUNC(param);
|
|
|
|
PATCH_FUNC(modem);
|
|
|
|
PATCH_FUNC(mmap);
|
2008-09-04 16:39:02 +00:00
|
|
|
PATCH_FUNC(pktnotify);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
PATCH_FUNC(free);
|
2016-01-19 23:34:27 +00:00
|
|
|
PATCH_FUNC(busy);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
#undef PATCH_FUNC
|
|
|
|
|
|
|
|
tp = malloc(sizeof(struct tty), M_TTY, M_WAITOK|M_ZERO);
|
|
|
|
tp->t_devsw = tsw;
|
2008-09-22 19:25:14 +00:00
|
|
|
tp->t_devswsoftc = sc;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_flags = tsw->tsw_flags;
|
Rework tty_drain() to poll the hardware for completion, and restore
drain timeout handling to historical freebsd behavior.
The primary reason for these changes is the need to have tty_drain() call
ttydevsw_busy() at some reasonable sub-second rate, to poll hardware that
doesn't signal an interrupt when the transmit shift register becomes empty
(which includes virtually all USB serial hardware). Such hardware hangs
in a ttyout wait, because it never gets an opportunity to trigger a wakeup
from the sleep in tty_drain() by calling ttydisc_getc() again, after
handing the last of the buffered data to the hardware.
While researching the history of changes to tty_drain() I stumbled across
some email describing the historical BSD behavior of tcdrain() and close()
on serial ports, and the ability of comcontrol(1) to control timeout
behavior. Using that and some advice from Bruce Evans as a guide, I've
put together these changes to implement the hardware polling and restore
the historical timeout behaviors...
- tty_drain() now calls ttydevsw_busy() in a loop at 10 Hz to accomodate
hardware that requires polling for busy state.
- The "new historical" behavior for draining during close(2) is retained:
the drain timeout is "1 second without making any progress". When the
1-second timeout expires, if the count of bytes remaining in the tty
layer buffer is smaller than last time, the timeout is extended for
another second. Unfortunately, the same logic cannot be extended all
the way down to the hardware, because the interface to that layer is a
simple busy/not-busy indication.
- Due to the previous point, an application that needs a guarantee that
all data has been transmitted must use TIOCDRAIN/tcdrain(3) before
calling close(2).
- The historical behavior of honoring the drainwait setting for TIOCDRAIN
(used by tcdrain(3)) is restored.
- The historical kern.drainwait sysctl to control the global default
drainwait time is restored, but is now named kern.tty_drainwait.
- The historical default drainwait timeout of 300 seconds is restored.
- Handling of TIOCGDRAINWAIT and TIOCSDRAINWAIT ioctls is restored
(this also makes the comcontrol(1) drainwait verb work again).
- Manpages are updated to document these behaviors.
Reviewed by: bde (prior version)
2017-01-12 00:48:06 +00:00
|
|
|
tp->t_drainwait = tty_drainwait;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
tty_init_termios(tp);
|
|
|
|
|
2008-12-20 09:36:40 +00:00
|
|
|
cv_init(&tp->t_inwait, "ttyin");
|
2008-12-19 14:49:14 +00:00
|
|
|
cv_init(&tp->t_outwait, "ttyout");
|
2009-06-23 21:43:02 +00:00
|
|
|
cv_init(&tp->t_outserwait, "ttyosr");
|
2008-12-20 09:36:40 +00:00
|
|
|
cv_init(&tp->t_bgwait, "ttybg");
|
2008-12-18 15:25:33 +00:00
|
|
|
cv_init(&tp->t_dcdwait, "ttydcd");
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
/* Allow drivers to use a custom mutex to lock the TTY. */
|
|
|
|
if (mutex != NULL) {
|
|
|
|
tp->t_mtx = mutex;
|
|
|
|
} else {
|
|
|
|
tp->t_mtx = &tp->t_mtxobj;
|
2008-12-20 09:36:40 +00:00
|
|
|
mtx_init(&tp->t_mtxobj, "ttymtx", NULL, MTX_DEF);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
2009-06-10 20:59:32 +00:00
|
|
|
knlist_init_mtx(&tp->t_inpoll.si_note, tp->t_mtx);
|
|
|
|
knlist_init_mtx(&tp->t_outpoll.si_note, tp->t_mtx);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
return (tp);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
1995-07-31 19:17:19 +00:00
|
|
|
static void
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_dealloc(void *arg)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
struct tty *tp = arg;
|
|
|
|
|
2016-01-22 20:38:46 +00:00
|
|
|
/*
|
|
|
|
* ttyydev_leave() usually frees the i/o queues earlier, but it is
|
|
|
|
* not always called between queue allocation and here. The queues
|
|
|
|
* may be allocated by ioctls on a pty control device without the
|
|
|
|
* corresponding pty slave device ever being open, or after it is
|
|
|
|
* closed.
|
|
|
|
*/
|
|
|
|
ttyinq_free(&tp->t_inq);
|
|
|
|
ttyoutq_free(&tp->t_outq);
|
Fix a deficiency in the selinfo interface:
If a selinfo object is recorded (via selrecord()) and then it is
quickly destroyed, with the waiters missing the opportunity to awake,
at the next iteration they will find the selinfo object destroyed,
causing a PF#.
That happens because the selinfo interface has no way to drain the
waiters before to destroy the registered selinfo object. Also this
race is quite rare to get in practice, because it would require a
selrecord(), a poll request by another thread and a quick destruction
of the selrecord()'ed selinfo object.
Fix this by adding the seldrain() routine which should be called
before to destroy the selinfo objects (in order to avoid such case),
and fix the present cases where it might have already been called.
Sometimes, the context is safe enough to prevent this type of race,
like it happens in device drivers which installs selinfo objects on
poll callbacks. There, the destruction of the selinfo object happens
at driver detach time, when all the filedescriptors should be already
closed, thus there cannot be a race.
For this case, mfi(4) device driver can be set as an example, as it
implements a full correct logic for preventing this from happening.
Sponsored by: Sandvine Incorporated
Reported by: rstone
Tested by: pluknet
Reviewed by: jhb, kib
Approved by: re (bz)
MFC after: 3 weeks
2011-08-25 15:51:54 +00:00
|
|
|
seldrain(&tp->t_inpoll);
|
|
|
|
seldrain(&tp->t_outpoll);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
knlist_destroy(&tp->t_inpoll.si_note);
|
|
|
|
knlist_destroy(&tp->t_outpoll.si_note);
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
cv_destroy(&tp->t_inwait);
|
|
|
|
cv_destroy(&tp->t_outwait);
|
|
|
|
cv_destroy(&tp->t_bgwait);
|
|
|
|
cv_destroy(&tp->t_dcdwait);
|
2009-06-23 21:43:02 +00:00
|
|
|
cv_destroy(&tp->t_outserwait);
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (tp->t_mtx == &tp->t_mtxobj)
|
|
|
|
mtx_destroy(&tp->t_mtxobj);
|
|
|
|
ttydevsw_free(tp);
|
|
|
|
free(tp, M_TTY);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_rel_free(struct tty *tp)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
struct cdev *dev;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock_assert(tp, MA_OWNED);
|
|
|
|
|
2008-09-24 11:16:09 +00:00
|
|
|
#define TF_ACTIVITY (TF_GONE|TF_OPENED|TF_HOOK|TF_OPENCLOSE)
|
|
|
|
if (tp->t_sessioncnt != 0 || (tp->t_flags & TF_ACTIVITY) != TF_GONE) {
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* TTY is still in use. */
|
|
|
|
tty_unlock(tp);
|
1994-05-24 10:09:53 +00:00
|
|
|
return;
|
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
/* TTY can be deallocated. */
|
|
|
|
dev = tp->t_dev;
|
|
|
|
tp->t_dev = NULL;
|
|
|
|
tty_unlock(tp);
|
|
|
|
|
2014-09-28 21:12:23 +00:00
|
|
|
if (dev != NULL) {
|
|
|
|
sx_xlock(&tty_list_sx);
|
|
|
|
TAILQ_REMOVE(&tty_list, tp, t_list);
|
|
|
|
tty_list_count--;
|
|
|
|
sx_xunlock(&tty_list_sx);
|
2010-07-06 08:56:34 +00:00
|
|
|
destroy_dev_sched_cb(dev, tty_dealloc, tp);
|
2014-09-28 21:12:23 +00:00
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_rel_pgrp(struct tty *tp, struct pgrp *pg)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
2008-09-16 14:57:23 +00:00
|
|
|
MPASS(tp->t_sessioncnt > 0);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock_assert(tp, MA_OWNED);
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (tp->t_pgrp == pg)
|
|
|
|
tp->t_pgrp = NULL;
|
2011-06-26 18:26:20 +00:00
|
|
|
|
2008-09-16 14:57:23 +00:00
|
|
|
tty_unlock(tp);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
1995-07-22 01:30:45 +00:00
|
|
|
void
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_rel_sess(struct tty *tp, struct session *sess)
|
1995-07-22 01:30:45 +00:00
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
MPASS(tp->t_sessioncnt > 0);
|
1995-07-22 01:30:45 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Current session has left. */
|
|
|
|
if (tp->t_session == sess) {
|
|
|
|
tp->t_session = NULL;
|
|
|
|
MPASS(tp->t_pgrp == NULL);
|
1995-07-22 01:30:45 +00:00
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_sessioncnt--;
|
|
|
|
tty_rel_free(tp);
|
1995-07-22 01:30:45 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
void
|
|
|
|
tty_rel_gone(struct tty *tp)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
MPASS(!tty_gone(tp));
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Simulate carrier removal. */
|
|
|
|
ttydisc_modem(tp, 0);
|
|
|
|
|
2008-10-15 16:58:35 +00:00
|
|
|
/* Wake up all blocked threads. */
|
|
|
|
tty_wakeup(tp, FREAD|FWRITE);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
cv_broadcast(&tp->t_bgwait);
|
|
|
|
cv_broadcast(&tp->t_dcdwait);
|
|
|
|
|
|
|
|
tp->t_flags |= TF_GONE;
|
|
|
|
tty_rel_free(tp);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* Exposing information about current TTY's through sysctl
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
static void
|
|
|
|
tty_to_xtty(struct tty *tp, struct xtty *xt)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock_assert(tp, MA_OWNED);
|
|
|
|
|
|
|
|
xt->xt_size = sizeof(struct xtty);
|
|
|
|
xt->xt_insize = ttyinq_getsize(&tp->t_inq);
|
|
|
|
xt->xt_incc = ttyinq_bytescanonicalized(&tp->t_inq);
|
|
|
|
xt->xt_inlc = ttyinq_bytesline(&tp->t_inq);
|
|
|
|
xt->xt_inlow = tp->t_inlow;
|
|
|
|
xt->xt_outsize = ttyoutq_getsize(&tp->t_outq);
|
|
|
|
xt->xt_outcc = ttyoutq_bytesused(&tp->t_outq);
|
|
|
|
xt->xt_outlow = tp->t_outlow;
|
|
|
|
xt->xt_column = tp->t_column;
|
|
|
|
xt->xt_pgid = tp->t_pgrp ? tp->t_pgrp->pg_id : 0;
|
|
|
|
xt->xt_sid = tp->t_session ? tp->t_session->s_sid : 0;
|
|
|
|
xt->xt_flags = tp->t_flags;
|
|
|
|
xt->xt_dev = tp->t_dev ? dev2udev(tp->t_dev) : NODEV;
|
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
static int
|
|
|
|
sysctl_kern_ttys(SYSCTL_HANDLER_ARGS)
|
|
|
|
{
|
|
|
|
unsigned long lsize;
|
|
|
|
struct xtty *xtlist, *xt;
|
|
|
|
struct tty *tp;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
sx_slock(&tty_list_sx);
|
|
|
|
lsize = tty_list_count * sizeof(struct xtty);
|
|
|
|
if (lsize == 0) {
|
|
|
|
sx_sunlock(&tty_list_sx);
|
|
|
|
return (0);
|
1998-03-07 15:36:29 +00:00
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
2009-05-26 18:33:36 +00:00
|
|
|
xtlist = xt = malloc(lsize, M_TTY, M_WAITOK);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
TAILQ_FOREACH(tp, &tty_list, t_list) {
|
|
|
|
tty_lock(tp);
|
|
|
|
tty_to_xtty(tp, xt);
|
|
|
|
tty_unlock(tp);
|
|
|
|
xt++;
|
1998-03-07 15:36:29 +00:00
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
sx_sunlock(&tty_list_sx);
|
|
|
|
|
|
|
|
error = SYSCTL_OUT(req, xtlist, lsize);
|
2009-05-26 18:33:36 +00:00
|
|
|
free(xtlist, M_TTY);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (error);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
2009-01-26 16:43:18 +00:00
|
|
|
SYSCTL_PROC(_kern, OID_AUTO, ttys, CTLTYPE_OPAQUE|CTLFLAG_RD|CTLFLAG_MPSAFE,
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
0, 0, sysctl_kern_ttys, "S,xtty", "List of TTYs");
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* Device node creation. Device has been set up, now we can expose it to
|
|
|
|
* the user.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
2013-12-18 12:50:43 +00:00
|
|
|
int
|
|
|
|
tty_makedevf(struct tty *tp, struct ucred *cred, int flags,
|
|
|
|
const char *fmt, ...)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
va_list ap;
|
2016-01-07 20:15:09 +00:00
|
|
|
struct make_dev_args args;
|
2013-12-18 12:50:43 +00:00
|
|
|
struct cdev *dev, *init, *lock, *cua, *cinit, *clock;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
const char *prefix = "tty";
|
|
|
|
char name[SPECNAMELEN - 3]; /* for "tty" and "cua". */
|
|
|
|
uid_t uid;
|
|
|
|
gid_t gid;
|
|
|
|
mode_t mode;
|
2013-12-18 12:50:43 +00:00
|
|
|
int error;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Remove "tty" prefix from devices like PTY's. */
|
|
|
|
if (tp->t_flags & TF_NOPREFIX)
|
|
|
|
prefix = "";
|
|
|
|
|
|
|
|
va_start(ap, fmt);
|
|
|
|
vsnrprintf(name, sizeof name, 32, fmt, ap);
|
|
|
|
va_end(ap);
|
|
|
|
|
|
|
|
if (cred == NULL) {
|
|
|
|
/* System device. */
|
|
|
|
uid = UID_ROOT;
|
|
|
|
gid = GID_WHEEL;
|
|
|
|
mode = S_IRUSR|S_IWUSR;
|
|
|
|
} else {
|
|
|
|
/* User device. */
|
|
|
|
uid = cred->cr_ruid;
|
|
|
|
gid = GID_TTY;
|
|
|
|
mode = S_IRUSR|S_IWUSR|S_IWGRP;
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
2013-12-18 12:50:43 +00:00
|
|
|
flags = flags & TTYMK_CLONING ? MAKEDEV_REF : 0;
|
|
|
|
flags |= MAKEDEV_CHECKNAME;
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Master call-in device. */
|
2016-01-07 20:15:09 +00:00
|
|
|
make_dev_args_init(&args);
|
|
|
|
args.mda_flags = flags;
|
|
|
|
args.mda_devsw = &ttydev_cdevsw;
|
|
|
|
args.mda_cr = cred;
|
|
|
|
args.mda_uid = uid;
|
|
|
|
args.mda_gid = gid;
|
|
|
|
args.mda_mode = mode;
|
|
|
|
args.mda_si_drv1 = tp;
|
|
|
|
error = make_dev_s(&args, &dev, "%s%s", prefix, name);
|
|
|
|
if (error != 0)
|
2013-12-18 12:50:43 +00:00
|
|
|
return (error);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_dev = dev;
|
|
|
|
|
2013-12-18 12:50:43 +00:00
|
|
|
init = lock = cua = cinit = clock = NULL;
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Slave call-in devices. */
|
|
|
|
if (tp->t_flags & TF_INITLOCK) {
|
2016-01-07 20:15:09 +00:00
|
|
|
args.mda_devsw = &ttyil_cdevsw;
|
|
|
|
args.mda_unit = TTYUNIT_INIT;
|
|
|
|
args.mda_si_drv1 = tp;
|
|
|
|
args.mda_si_drv2 = &tp->t_termios_init_in;
|
|
|
|
error = make_dev_s(&args, &init, "%s%s.init", prefix, name);
|
|
|
|
if (error != 0)
|
2013-12-18 12:50:43 +00:00
|
|
|
goto fail;
|
|
|
|
dev_depends(dev, init);
|
|
|
|
|
2016-01-07 20:15:09 +00:00
|
|
|
args.mda_unit = TTYUNIT_LOCK;
|
|
|
|
args.mda_si_drv2 = &tp->t_termios_lock_in;
|
|
|
|
error = make_dev_s(&args, &lock, "%s%s.lock", prefix, name);
|
|
|
|
if (error != 0)
|
2013-12-18 12:50:43 +00:00
|
|
|
goto fail;
|
|
|
|
dev_depends(dev, lock);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Call-out devices. */
|
|
|
|
if (tp->t_flags & TF_CALLOUT) {
|
2016-01-07 20:15:09 +00:00
|
|
|
make_dev_args_init(&args);
|
|
|
|
args.mda_flags = flags;
|
|
|
|
args.mda_devsw = &ttydev_cdevsw;
|
|
|
|
args.mda_cr = cred;
|
|
|
|
args.mda_uid = UID_UUCP;
|
|
|
|
args.mda_gid = GID_DIALER;
|
|
|
|
args.mda_mode = 0660;
|
|
|
|
args.mda_unit = TTYUNIT_CALLOUT;
|
|
|
|
args.mda_si_drv1 = tp;
|
|
|
|
error = make_dev_s(&args, &cua, "cua%s", name);
|
|
|
|
if (error != 0)
|
2013-12-18 12:50:43 +00:00
|
|
|
goto fail;
|
|
|
|
dev_depends(dev, cua);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
/* Slave call-out devices. */
|
|
|
|
if (tp->t_flags & TF_INITLOCK) {
|
2016-01-07 20:15:09 +00:00
|
|
|
args.mda_devsw = &ttyil_cdevsw;
|
|
|
|
args.mda_unit = TTYUNIT_CALLOUT | TTYUNIT_INIT;
|
|
|
|
args.mda_si_drv2 = &tp->t_termios_init_out;
|
|
|
|
error = make_dev_s(&args, &cinit, "cua%s.init", name);
|
|
|
|
if (error != 0)
|
2013-12-18 12:50:43 +00:00
|
|
|
goto fail;
|
|
|
|
dev_depends(dev, cinit);
|
|
|
|
|
2016-01-07 20:15:09 +00:00
|
|
|
args.mda_unit = TTYUNIT_CALLOUT | TTYUNIT_LOCK;
|
|
|
|
args.mda_si_drv2 = &tp->t_termios_lock_out;
|
|
|
|
error = make_dev_s(&args, &clock, "cua%s.lock", name);
|
|
|
|
if (error != 0)
|
2013-12-18 12:50:43 +00:00
|
|
|
goto fail;
|
|
|
|
dev_depends(dev, clock);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
}
|
|
|
|
}
|
2013-12-18 12:50:43 +00:00
|
|
|
|
2013-12-20 19:45:51 +00:00
|
|
|
sx_xlock(&tty_list_sx);
|
|
|
|
TAILQ_INSERT_TAIL(&tty_list, tp, t_list);
|
|
|
|
tty_list_count++;
|
|
|
|
sx_xunlock(&tty_list_sx);
|
|
|
|
|
2013-12-18 12:50:43 +00:00
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail:
|
|
|
|
destroy_dev(dev);
|
|
|
|
if (init)
|
|
|
|
destroy_dev(init);
|
|
|
|
if (lock)
|
|
|
|
destroy_dev(lock);
|
|
|
|
if (cinit)
|
|
|
|
destroy_dev(cinit);
|
|
|
|
if (clock)
|
|
|
|
destroy_dev(clock);
|
|
|
|
|
|
|
|
return (error);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
1995-02-09 11:13:30 +00:00
|
|
|
|
2004-06-09 09:41:30 +00:00
|
|
|
/*
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* Signalling processes.
|
2004-06-09 09:41:30 +00:00
|
|
|
*/
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
void
|
|
|
|
tty_signal_sessleader(struct tty *tp, int sig)
|
2004-06-09 09:41:30 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
struct proc *p;
|
|
|
|
|
|
|
|
tty_lock_assert(tp, MA_OWNED);
|
|
|
|
MPASS(sig >= 1 && sig < NSIG);
|
|
|
|
|
|
|
|
/* Make signals start output again. */
|
|
|
|
tp->t_flags &= ~TF_STOPPED;
|
2011-06-26 18:26:20 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (tp->t_session != NULL && tp->t_session->s_leader != NULL) {
|
|
|
|
p = tp->t_session->s_leader;
|
|
|
|
PROC_LOCK(p);
|
2011-09-16 13:58:51 +00:00
|
|
|
kern_psignal(p, sig);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
PROC_UNLOCK(p);
|
2004-06-09 09:41:30 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
void
|
|
|
|
tty_signal_pgrp(struct tty *tp, int sig)
|
1995-02-09 11:13:30 +00:00
|
|
|
{
|
Among signal generation syscalls, only sigqueue(2) is allowed by POSIX
to fail due to lack of resources to queue siginfo. Add KSI_SIGQ flag
that allows sigqueue_add() to fail while trying to allocate memory for
new siginfo. When the flag is not set, behaviour is the same as for
KSI_TRAP: if memory cannot be allocated, set bit in sq_kill. KSI_TRAP is
kept to preserve KBI.
Add SI_KERNEL si_code, to be used in siginfo.si_code when signal is
generated by kernel. Deliver siginfo when signal is generated by kill(2)
family of syscalls (SI_USER with properly filled si_uid and si_pid), or
by kernel (SI_KERNEL, mostly job control or SIGIO). Since KSI_SIGQ flag
is not set for the ksi, low memory condition cause old behaviour.
Keep psignal(9) KBI intact, but modify it to generate SI_KERNEL
si_code. Pgsignal(9) and gsignal(9) now take ksi explicitely. Add
pksignal(9) that behaves like psignal but takes ksi, and ddb kill
command implemented as pksignal(..., ksi = NULL) to not do allocation
while in debugger.
While there, remove some register specifiers and use ANSI C prototypes.
Reviewed by: davidxu
MFC after: 1 month
2009-11-17 11:39:15 +00:00
|
|
|
ksiginfo_t ksi;
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock_assert(tp, MA_OWNED);
|
|
|
|
MPASS(sig >= 1 && sig < NSIG);
|
|
|
|
|
|
|
|
/* Make signals start output again. */
|
|
|
|
tp->t_flags &= ~TF_STOPPED;
|
|
|
|
|
|
|
|
if (sig == SIGINFO && !(tp->t_termios.c_lflag & NOKERNINFO))
|
|
|
|
tty_info(tp);
|
|
|
|
if (tp->t_pgrp != NULL) {
|
Among signal generation syscalls, only sigqueue(2) is allowed by POSIX
to fail due to lack of resources to queue siginfo. Add KSI_SIGQ flag
that allows sigqueue_add() to fail while trying to allocate memory for
new siginfo. When the flag is not set, behaviour is the same as for
KSI_TRAP: if memory cannot be allocated, set bit in sq_kill. KSI_TRAP is
kept to preserve KBI.
Add SI_KERNEL si_code, to be used in siginfo.si_code when signal is
generated by kernel. Deliver siginfo when signal is generated by kill(2)
family of syscalls (SI_USER with properly filled si_uid and si_pid), or
by kernel (SI_KERNEL, mostly job control or SIGIO). Since KSI_SIGQ flag
is not set for the ksi, low memory condition cause old behaviour.
Keep psignal(9) KBI intact, but modify it to generate SI_KERNEL
si_code. Pgsignal(9) and gsignal(9) now take ksi explicitely. Add
pksignal(9) that behaves like psignal but takes ksi, and ddb kill
command implemented as pksignal(..., ksi = NULL) to not do allocation
while in debugger.
While there, remove some register specifiers and use ANSI C prototypes.
Reviewed by: davidxu
MFC after: 1 month
2009-11-17 11:39:15 +00:00
|
|
|
ksiginfo_init(&ksi);
|
|
|
|
ksi.ksi_signo = sig;
|
|
|
|
ksi.ksi_code = SI_KERNEL;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
PGRP_LOCK(tp->t_pgrp);
|
Among signal generation syscalls, only sigqueue(2) is allowed by POSIX
to fail due to lack of resources to queue siginfo. Add KSI_SIGQ flag
that allows sigqueue_add() to fail while trying to allocate memory for
new siginfo. When the flag is not set, behaviour is the same as for
KSI_TRAP: if memory cannot be allocated, set bit in sq_kill. KSI_TRAP is
kept to preserve KBI.
Add SI_KERNEL si_code, to be used in siginfo.si_code when signal is
generated by kernel. Deliver siginfo when signal is generated by kill(2)
family of syscalls (SI_USER with properly filled si_uid and si_pid), or
by kernel (SI_KERNEL, mostly job control or SIGIO). Since KSI_SIGQ flag
is not set for the ksi, low memory condition cause old behaviour.
Keep psignal(9) KBI intact, but modify it to generate SI_KERNEL
si_code. Pgsignal(9) and gsignal(9) now take ksi explicitely. Add
pksignal(9) that behaves like psignal but takes ksi, and ddb kill
command implemented as pksignal(..., ksi = NULL) to not do allocation
while in debugger.
While there, remove some register specifiers and use ANSI C prototypes.
Reviewed by: davidxu
MFC after: 1 month
2009-11-17 11:39:15 +00:00
|
|
|
pgsignal(tp->t_pgrp, sig, 1, &ksi);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
PGRP_UNLOCK(tp->t_pgrp);
|
|
|
|
}
|
1995-02-09 11:13:30 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
void
|
|
|
|
tty_wakeup(struct tty *tp, int flags)
|
2004-09-28 19:33:49 +00:00
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (tp->t_flags & TF_ASYNC && tp->t_sigio != NULL)
|
|
|
|
pgsigio(&tp->t_sigio, SIGIO, (tp->t_session != NULL));
|
2004-09-28 19:33:49 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (flags & FWRITE) {
|
|
|
|
cv_broadcast(&tp->t_outwait);
|
|
|
|
selwakeup(&tp->t_outpoll);
|
|
|
|
KNOTE_LOCKED(&tp->t_outpoll.si_note, 0);
|
|
|
|
}
|
|
|
|
if (flags & FREAD) {
|
|
|
|
cv_broadcast(&tp->t_inwait);
|
|
|
|
selwakeup(&tp->t_inpoll);
|
|
|
|
KNOTE_LOCKED(&tp->t_inpoll.si_note, 0);
|
|
|
|
}
|
2004-09-28 19:33:49 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
int
|
|
|
|
tty_wait(struct tty *tp, struct cv *cv)
|
2004-09-28 19:33:49 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
int error;
|
|
|
|
int revokecnt = tp->t_revokecnt;
|
2004-09-30 10:38:48 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock_assert(tp, MA_OWNED|MA_NOTRECURSED);
|
2008-10-15 16:58:35 +00:00
|
|
|
MPASS(!tty_gone(tp));
|
2004-09-30 10:38:48 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
error = cv_wait_sig(cv, tp->t_mtx);
|
2004-09-28 19:33:49 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Bail out when the device slipped away. */
|
|
|
|
if (tty_gone(tp))
|
|
|
|
return (ENXIO);
|
2004-09-30 10:38:48 +00:00
|
|
|
|
2014-07-26 15:46:41 +00:00
|
|
|
/* Restart the system call when we may have been revoked. */
|
|
|
|
if (tp->t_revokecnt != revokecnt)
|
|
|
|
return (ERESTART);
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (error);
|
|
|
|
}
|
2004-09-28 19:33:49 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
int
|
|
|
|
tty_timedwait(struct tty *tp, struct cv *cv, int hz)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
int revokecnt = tp->t_revokecnt;
|
2004-09-28 19:33:49 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock_assert(tp, MA_OWNED|MA_NOTRECURSED);
|
2008-10-15 16:58:35 +00:00
|
|
|
MPASS(!tty_gone(tp));
|
2004-09-28 19:33:49 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
error = cv_timedwait_sig(cv, tp->t_mtx, hz);
|
2004-09-28 19:33:49 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Bail out when the device slipped away. */
|
|
|
|
if (tty_gone(tp))
|
|
|
|
return (ENXIO);
|
2004-09-28 19:33:49 +00:00
|
|
|
|
2014-10-09 01:59:25 +00:00
|
|
|
/* Restart the system call when we may have been revoked. */
|
|
|
|
if (tp->t_revokecnt != revokecnt)
|
|
|
|
return (ERESTART);
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (error);
|
2004-09-28 19:33:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_flush(struct tty *tp, int flags)
|
2004-09-28 19:33:49 +00:00
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (flags & FWRITE) {
|
|
|
|
tp->t_flags &= ~TF_HIWAT_OUT;
|
|
|
|
ttyoutq_flush(&tp->t_outq);
|
|
|
|
tty_wakeup(tp, FWRITE);
|
Don't clear the software flow control flag before draining for last
close or assert the bug that it is clear when leaving.
Remove an unrelated rotted comment that was attached to the buggy
clearing.
Since draining is not done in more cases, flushing is needed in more
cases, so start fixing flushing:
- do a full flush in ttydisc_close(). State what POSIX requires more
clearly. This was missing ttydevsw_pktnotify() calls to tell the
devsw layer to flush. Hardware tty drivers don't actually flush
since they don't understand this API.
- fix 2 missing wakeups in tty_flush(). Most of the wakeups here are
unnecessary for last close. But ttydisc_close() did one of the
missing ones.
This flow control bug ameliorated the design bug of requiring
potentially unbounded waits in draining. Software flow control is the
easiest way to get an unbounded wait, and a long wait is sometimes
actually useful. Users can type the xoff character on the receiver
and (if ixon is set on the sender) expect the output to be held until
the user is ready for more.
Hardware flow control can also give the unbounded wait, and this bug
didn't affect hardware flow control. Unbounded waits from hardware
flow control take a more unusual configuration. E.g., a terminal
program that controls the modem status lines, or unplugging the cable
in a configuration where this doesn't break the connection.
The design bug is still ameliorated by a newer bug in draining for
last close -- the 1 second timeout. E.g., if the user types the
xoff character and the sender reaches last close, then output is
not resumed and the wait times out after just 1 second. This is
broken, but preferable to an unbounded wait. Before this change,
the output was resumed immediately and usually completed.
Submitted by: bde
MFC after: 2 weeks
2016-01-26 14:46:39 +00:00
|
|
|
if (!tty_gone(tp)) {
|
|
|
|
ttydevsw_outwakeup(tp);
|
2016-01-26 07:57:44 +00:00
|
|
|
ttydevsw_pktnotify(tp, TIOCPKT_FLUSHWRITE);
|
Don't clear the software flow control flag before draining for last
close or assert the bug that it is clear when leaving.
Remove an unrelated rotted comment that was attached to the buggy
clearing.
Since draining is not done in more cases, flushing is needed in more
cases, so start fixing flushing:
- do a full flush in ttydisc_close(). State what POSIX requires more
clearly. This was missing ttydevsw_pktnotify() calls to tell the
devsw layer to flush. Hardware tty drivers don't actually flush
since they don't understand this API.
- fix 2 missing wakeups in tty_flush(). Most of the wakeups here are
unnecessary for last close. But ttydisc_close() did one of the
missing ones.
This flow control bug ameliorated the design bug of requiring
potentially unbounded waits in draining. Software flow control is the
easiest way to get an unbounded wait, and a long wait is sometimes
actually useful. Users can type the xoff character on the receiver
and (if ixon is set on the sender) expect the output to be held until
the user is ready for more.
Hardware flow control can also give the unbounded wait, and this bug
didn't affect hardware flow control. Unbounded waits from hardware
flow control take a more unusual configuration. E.g., a terminal
program that controls the modem status lines, or unplugging the cable
in a configuration where this doesn't break the connection.
The design bug is still ameliorated by a newer bug in draining for
last close -- the 1 second timeout. E.g., if the user types the
xoff character and the sender reaches last close, then output is
not resumed and the wait times out after just 1 second. This is
broken, but preferable to an unbounded wait. Before this change,
the output was resumed immediately and usually completed.
Submitted by: bde
MFC after: 2 weeks
2016-01-26 14:46:39 +00:00
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
}
|
|
|
|
if (flags & FREAD) {
|
|
|
|
tty_hiwat_in_unblock(tp);
|
|
|
|
ttyinq_flush(&tp->t_inq);
|
Don't clear the software flow control flag before draining for last
close or assert the bug that it is clear when leaving.
Remove an unrelated rotted comment that was attached to the buggy
clearing.
Since draining is not done in more cases, flushing is needed in more
cases, so start fixing flushing:
- do a full flush in ttydisc_close(). State what POSIX requires more
clearly. This was missing ttydevsw_pktnotify() calls to tell the
devsw layer to flush. Hardware tty drivers don't actually flush
since they don't understand this API.
- fix 2 missing wakeups in tty_flush(). Most of the wakeups here are
unnecessary for last close. But ttydisc_close() did one of the
missing ones.
This flow control bug ameliorated the design bug of requiring
potentially unbounded waits in draining. Software flow control is the
easiest way to get an unbounded wait, and a long wait is sometimes
actually useful. Users can type the xoff character on the receiver
and (if ixon is set on the sender) expect the output to be held until
the user is ready for more.
Hardware flow control can also give the unbounded wait, and this bug
didn't affect hardware flow control. Unbounded waits from hardware
flow control take a more unusual configuration. E.g., a terminal
program that controls the modem status lines, or unplugging the cable
in a configuration where this doesn't break the connection.
The design bug is still ameliorated by a newer bug in draining for
last close -- the 1 second timeout. E.g., if the user types the
xoff character and the sender reaches last close, then output is
not resumed and the wait times out after just 1 second. This is
broken, but preferable to an unbounded wait. Before this change,
the output was resumed immediately and usually completed.
Submitted by: bde
MFC after: 2 weeks
2016-01-26 14:46:39 +00:00
|
|
|
tty_wakeup(tp, FREAD);
|
2016-01-26 07:57:44 +00:00
|
|
|
if (!tty_gone(tp)) {
|
|
|
|
ttydevsw_inwakeup(tp);
|
|
|
|
ttydevsw_pktnotify(tp, TIOCPKT_FLUSHREAD);
|
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
}
|
2004-09-28 19:33:49 +00:00
|
|
|
}
|
|
|
|
|
2012-11-03 22:21:37 +00:00
|
|
|
void
|
|
|
|
tty_set_winsize(struct tty *tp, const struct winsize *wsz)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (memcmp(&tp->t_winsize, wsz, sizeof(*wsz)) == 0)
|
|
|
|
return;
|
|
|
|
tp->t_winsize = *wsz;
|
|
|
|
tty_signal_pgrp(tp, SIGWINCH);
|
|
|
|
}
|
|
|
|
|
1999-08-08 19:47:32 +00:00
|
|
|
static int
|
2010-01-04 20:59:52 +00:00
|
|
|
tty_generic_ioctl(struct tty *tp, u_long cmd, void *data, int fflag,
|
|
|
|
struct thread *td)
|
1999-08-08 19:47:32 +00:00
|
|
|
{
|
|
|
|
int error;
|
2002-05-28 05:40:53 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
switch (cmd) {
|
|
|
|
/*
|
|
|
|
* Modem commands.
|
|
|
|
* The SER_* and TIOCM_* flags are the same, but one bit
|
|
|
|
* shifted. I don't know why.
|
|
|
|
*/
|
|
|
|
case TIOCSDTR:
|
|
|
|
ttydevsw_modem(tp, SER_DTR, 0);
|
|
|
|
return (0);
|
|
|
|
case TIOCCDTR:
|
|
|
|
ttydevsw_modem(tp, 0, SER_DTR);
|
|
|
|
return (0);
|
|
|
|
case TIOCMSET: {
|
|
|
|
int bits = *(int *)data;
|
|
|
|
ttydevsw_modem(tp,
|
|
|
|
(bits & (TIOCM_DTR | TIOCM_RTS)) >> 1,
|
|
|
|
((~bits) & (TIOCM_DTR | TIOCM_RTS)) >> 1);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
case TIOCMBIS: {
|
|
|
|
int bits = *(int *)data;
|
|
|
|
ttydevsw_modem(tp, (bits & (TIOCM_DTR | TIOCM_RTS)) >> 1, 0);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
case TIOCMBIC: {
|
|
|
|
int bits = *(int *)data;
|
|
|
|
ttydevsw_modem(tp, 0, (bits & (TIOCM_DTR | TIOCM_RTS)) >> 1);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
case TIOCMGET:
|
|
|
|
*(int *)data = TIOCM_LE + (ttydevsw_modem(tp, 0, 0) << 1);
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
case FIOASYNC:
|
|
|
|
if (*(int *)data)
|
|
|
|
tp->t_flags |= TF_ASYNC;
|
|
|
|
else
|
|
|
|
tp->t_flags &= ~TF_ASYNC;
|
|
|
|
return (0);
|
|
|
|
case FIONBIO:
|
|
|
|
/* This device supports non-blocking operation. */
|
|
|
|
return (0);
|
|
|
|
case FIONREAD:
|
|
|
|
*(int *)data = ttyinq_bytescanonicalized(&tp->t_inq);
|
|
|
|
return (0);
|
2009-06-28 12:02:15 +00:00
|
|
|
case FIONWRITE:
|
|
|
|
case TIOCOUTQ:
|
|
|
|
*(int *)data = ttyoutq_bytesused(&tp->t_outq);
|
|
|
|
return (0);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
case FIOSETOWN:
|
|
|
|
if (tp->t_session != NULL && !tty_is_ctty(tp, td->td_proc))
|
|
|
|
/* Not allowed to set ownership. */
|
|
|
|
return (ENOTTY);
|
|
|
|
|
|
|
|
/* Temporarily unlock the TTY to set ownership. */
|
|
|
|
tty_unlock(tp);
|
|
|
|
error = fsetown(*(int *)data, &tp->t_sigio);
|
|
|
|
tty_lock(tp);
|
|
|
|
return (error);
|
|
|
|
case FIOGETOWN:
|
|
|
|
if (tp->t_session != NULL && !tty_is_ctty(tp, td->td_proc))
|
|
|
|
/* Not allowed to set ownership. */
|
|
|
|
return (ENOTTY);
|
|
|
|
|
|
|
|
/* Get ownership. */
|
|
|
|
*(int *)data = fgetown(&tp->t_sigio);
|
|
|
|
return (0);
|
|
|
|
case TIOCGETA:
|
|
|
|
/* Obtain terminal flags through tcgetattr(). */
|
2009-03-01 09:50:13 +00:00
|
|
|
*(struct termios*)data = tp->t_termios;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (0);
|
|
|
|
case TIOCSETA:
|
|
|
|
case TIOCSETAW:
|
|
|
|
case TIOCSETAF: {
|
|
|
|
struct termios *t = data;
|
2008-01-08 04:53:28 +00:00
|
|
|
|
|
|
|
/*
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
* Who makes up these funny rules? According to POSIX,
|
|
|
|
* input baud rate is set equal to the output baud rate
|
|
|
|
* when zero.
|
2008-01-08 04:53:28 +00:00
|
|
|
*/
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (t->c_ispeed == 0)
|
|
|
|
t->c_ispeed = t->c_ospeed;
|
|
|
|
|
2008-08-22 21:27:37 +00:00
|
|
|
/* Discard any unsupported bits. */
|
|
|
|
t->c_iflag &= TTYSUP_IFLAG;
|
|
|
|
t->c_oflag &= TTYSUP_OFLAG;
|
|
|
|
t->c_lflag &= TTYSUP_LFLAG;
|
|
|
|
t->c_cflag &= TTYSUP_CFLAG;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
/* Set terminal flags through tcsetattr(). */
|
|
|
|
if (cmd == TIOCSETAW || cmd == TIOCSETAF) {
|
2014-10-09 02:30:38 +00:00
|
|
|
error = tty_drain(tp, 0);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
if (cmd == TIOCSETAF)
|
|
|
|
tty_flush(tp, FREAD);
|
2004-06-09 09:41:30 +00:00
|
|
|
}
|
1999-08-08 19:47:32 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/*
|
|
|
|
* Only call param() when the flags really change.
|
|
|
|
*/
|
|
|
|
if ((t->c_cflag & CIGNORE) == 0 &&
|
|
|
|
(tp->t_termios.c_cflag != t->c_cflag ||
|
2012-02-26 20:56:49 +00:00
|
|
|
((tp->t_termios.c_iflag ^ t->c_iflag) &
|
|
|
|
(IXON|IXOFF|IXANY)) ||
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_termios.c_ispeed != t->c_ispeed ||
|
|
|
|
tp->t_termios.c_ospeed != t->c_ospeed)) {
|
|
|
|
error = ttydevsw_param(tp, t);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
1999-09-25 18:24:47 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* XXX: CLOCAL? */
|
2011-06-26 18:26:20 +00:00
|
|
|
|
2008-08-22 21:27:37 +00:00
|
|
|
tp->t_termios.c_cflag = t->c_cflag & ~CIGNORE;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_termios.c_ispeed = t->c_ispeed;
|
|
|
|
tp->t_termios.c_ospeed = t->c_ospeed;
|
1999-09-28 11:45:31 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Baud rate has changed - update watermarks. */
|
|
|
|
tty_watermarks(tp);
|
|
|
|
}
|
1999-09-28 11:45:31 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Copy new non-device driver parameters. */
|
|
|
|
tp->t_termios.c_iflag = t->c_iflag;
|
|
|
|
tp->t_termios.c_oflag = t->c_oflag;
|
|
|
|
tp->t_termios.c_lflag = t->c_lflag;
|
2009-02-28 14:20:26 +00:00
|
|
|
memcpy(&tp->t_termios.c_cc, t->c_cc, sizeof t->c_cc);
|
2004-09-17 11:43:35 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
ttydisc_optimize(tp);
|
2006-09-23 14:52:46 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if ((t->c_lflag & ICANON) == 0) {
|
|
|
|
/*
|
|
|
|
* When in non-canonical mode, wake up all
|
|
|
|
* readers. Canonicalize any partial input. VMIN
|
|
|
|
* and VTIME could also be adjusted.
|
|
|
|
*/
|
|
|
|
ttyinq_canonicalize(&tp->t_inq);
|
|
|
|
tty_wakeup(tp, FREAD);
|
2004-09-17 11:43:35 +00:00
|
|
|
}
|
2008-09-04 16:39:02 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* For packet mode: notify the PTY consumer that VSTOP
|
|
|
|
* and VSTART may have been changed.
|
|
|
|
*/
|
|
|
|
if (tp->t_termios.c_iflag & IXON &&
|
|
|
|
tp->t_termios.c_cc[VSTOP] == CTRL('S') &&
|
|
|
|
tp->t_termios.c_cc[VSTART] == CTRL('Q'))
|
|
|
|
ttydevsw_pktnotify(tp, TIOCPKT_DOSTOP);
|
|
|
|
else
|
|
|
|
ttydevsw_pktnotify(tp, TIOCPKT_NOSTOP);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (0);
|
2004-09-17 11:43:35 +00:00
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
case TIOCGETD:
|
|
|
|
/* For compatibility - we only support TTYDISC. */
|
|
|
|
*(int *)data = TTYDISC;
|
|
|
|
return (0);
|
|
|
|
case TIOCGPGRP:
|
|
|
|
if (!tty_is_ctty(tp, td->td_proc))
|
|
|
|
return (ENOTTY);
|
2004-09-17 11:43:35 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (tp->t_pgrp != NULL)
|
|
|
|
*(int *)data = tp->t_pgrp->pg_id;
|
|
|
|
else
|
|
|
|
*(int *)data = NO_PID;
|
|
|
|
return (0);
|
|
|
|
case TIOCGSID:
|
|
|
|
if (!tty_is_ctty(tp, td->td_proc))
|
|
|
|
return (ENOTTY);
|
2004-09-17 11:43:35 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
MPASS(tp->t_session);
|
|
|
|
*(int *)data = tp->t_session->s_sid;
|
|
|
|
return (0);
|
|
|
|
case TIOCSCTTY: {
|
|
|
|
struct proc *p = td->td_proc;
|
2004-09-17 11:43:35 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* XXX: This looks awful. */
|
|
|
|
tty_unlock(tp);
|
|
|
|
sx_xlock(&proctree_lock);
|
|
|
|
tty_lock(tp);
|
1999-09-28 11:45:31 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (!SESS_LEADER(p)) {
|
|
|
|
/* Only the session leader may do this. */
|
|
|
|
sx_xunlock(&proctree_lock);
|
|
|
|
return (EPERM);
|
|
|
|
}
|
2004-09-24 08:26:03 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (tp->t_session != NULL && tp->t_session == p->p_session) {
|
|
|
|
/* This is already our controlling TTY. */
|
|
|
|
sx_xunlock(&proctree_lock);
|
|
|
|
return (0);
|
|
|
|
}
|
1999-09-28 11:45:31 +00:00
|
|
|
|
2009-06-15 20:45:51 +00:00
|
|
|
if (p->p_session->s_ttyp != NULL ||
|
2009-06-15 19:17:52 +00:00
|
|
|
(tp->t_session != NULL && tp->t_session->s_ttyvp != NULL &&
|
|
|
|
tp->t_session->s_ttyvp->v_type != VBAD)) {
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/*
|
|
|
|
* There is already a relation between a TTY and
|
|
|
|
* a session, or the caller is not the session
|
|
|
|
* leader.
|
|
|
|
*
|
|
|
|
* Allow the TTY to be stolen when the vnode is
|
2009-06-15 19:17:52 +00:00
|
|
|
* invalid, but the reference to the TTY is
|
|
|
|
* still active. This allows immediate reuse of
|
|
|
|
* TTYs of which the session leader has been
|
|
|
|
* killed or the TTY revoked.
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
*/
|
|
|
|
sx_xunlock(&proctree_lock);
|
|
|
|
return (EPERM);
|
|
|
|
}
|
1999-09-28 11:45:31 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Connect the session to the TTY. */
|
|
|
|
tp->t_session = p->p_session;
|
|
|
|
tp->t_session->s_ttyp = tp;
|
|
|
|
tp->t_sessioncnt++;
|
|
|
|
sx_xunlock(&proctree_lock);
|
2004-09-24 08:26:03 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Assign foreground process group. */
|
|
|
|
tp->t_pgrp = p->p_pgrp;
|
|
|
|
PROC_LOCK(p);
|
|
|
|
p->p_flag |= P_CONTROLT;
|
|
|
|
PROC_UNLOCK(p);
|
2004-06-01 13:39:02 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (0);
|
2004-10-14 18:30:24 +00:00
|
|
|
}
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
case TIOCSPGRP: {
|
|
|
|
struct pgrp *pg;
|
2004-10-14 18:30:24 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/*
|
|
|
|
* XXX: Temporarily unlock the TTY to locate the process
|
|
|
|
* group. This code would be lot nicer if we would ever
|
|
|
|
* decompose proctree_lock.
|
|
|
|
*/
|
|
|
|
tty_unlock(tp);
|
|
|
|
sx_slock(&proctree_lock);
|
|
|
|
pg = pgfind(*(int *)data);
|
|
|
|
if (pg != NULL)
|
|
|
|
PGRP_UNLOCK(pg);
|
|
|
|
if (pg == NULL || pg->pg_session != td->td_proc->p_session) {
|
|
|
|
sx_sunlock(&proctree_lock);
|
|
|
|
tty_lock(tp);
|
|
|
|
return (EPERM);
|
|
|
|
}
|
|
|
|
tty_lock(tp);
|
2004-06-04 21:55:55 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/*
|
|
|
|
* Determine if this TTY is the controlling TTY after
|
|
|
|
* relocking the TTY.
|
|
|
|
*/
|
|
|
|
if (!tty_is_ctty(tp, td->td_proc)) {
|
|
|
|
sx_sunlock(&proctree_lock);
|
|
|
|
return (ENOTTY);
|
|
|
|
}
|
|
|
|
tp->t_pgrp = pg;
|
|
|
|
sx_sunlock(&proctree_lock);
|
2004-06-24 10:06:55 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* Wake up the background process groups. */
|
|
|
|
cv_broadcast(&tp->t_bgwait);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
case TIOCFLUSH: {
|
|
|
|
int flags = *(int *)data;
|
2004-07-11 15:18:39 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (flags == 0)
|
|
|
|
flags = (FREAD|FWRITE);
|
|
|
|
else
|
|
|
|
flags &= (FREAD|FWRITE);
|
|
|
|
tty_flush(tp, flags);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
case TIOCDRAIN:
|
|
|
|
/* Drain TTY output. */
|
2014-10-09 02:30:38 +00:00
|
|
|
return tty_drain(tp, 0);
|
Rework tty_drain() to poll the hardware for completion, and restore
drain timeout handling to historical freebsd behavior.
The primary reason for these changes is the need to have tty_drain() call
ttydevsw_busy() at some reasonable sub-second rate, to poll hardware that
doesn't signal an interrupt when the transmit shift register becomes empty
(which includes virtually all USB serial hardware). Such hardware hangs
in a ttyout wait, because it never gets an opportunity to trigger a wakeup
from the sleep in tty_drain() by calling ttydisc_getc() again, after
handing the last of the buffered data to the hardware.
While researching the history of changes to tty_drain() I stumbled across
some email describing the historical BSD behavior of tcdrain() and close()
on serial ports, and the ability of comcontrol(1) to control timeout
behavior. Using that and some advice from Bruce Evans as a guide, I've
put together these changes to implement the hardware polling and restore
the historical timeout behaviors...
- tty_drain() now calls ttydevsw_busy() in a loop at 10 Hz to accomodate
hardware that requires polling for busy state.
- The "new historical" behavior for draining during close(2) is retained:
the drain timeout is "1 second without making any progress". When the
1-second timeout expires, if the count of bytes remaining in the tty
layer buffer is smaller than last time, the timeout is extended for
another second. Unfortunately, the same logic cannot be extended all
the way down to the hardware, because the interface to that layer is a
simple busy/not-busy indication.
- Due to the previous point, an application that needs a guarantee that
all data has been transmitted must use TIOCDRAIN/tcdrain(3) before
calling close(2).
- The historical behavior of honoring the drainwait setting for TIOCDRAIN
(used by tcdrain(3)) is restored.
- The historical kern.drainwait sysctl to control the global default
drainwait time is restored, but is now named kern.tty_drainwait.
- The historical default drainwait timeout of 300 seconds is restored.
- Handling of TIOCGDRAINWAIT and TIOCSDRAINWAIT ioctls is restored
(this also makes the comcontrol(1) drainwait verb work again).
- Manpages are updated to document these behaviors.
Reviewed by: bde (prior version)
2017-01-12 00:48:06 +00:00
|
|
|
case TIOCGDRAINWAIT:
|
|
|
|
*(int *)data = tp->t_drainwait;
|
|
|
|
return (0);
|
|
|
|
case TIOCSDRAINWAIT:
|
|
|
|
error = priv_check(td, PRIV_TTY_DRAINWAIT);
|
|
|
|
if (error == 0)
|
|
|
|
tp->t_drainwait = *(int *)data;
|
|
|
|
return (error);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
case TIOCCONS:
|
|
|
|
/* Set terminal as console TTY. */
|
|
|
|
if (*(int *)data) {
|
2008-09-06 14:43:32 +00:00
|
|
|
error = priv_check(td, PRIV_TTY_CONSOLE);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
2004-07-11 15:18:39 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/*
|
2008-09-06 14:43:32 +00:00
|
|
|
* XXX: constty should really need to be locked!
|
|
|
|
* XXX: allow disconnected constty's to be stolen!
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
*/
|
2004-07-11 15:18:39 +00:00
|
|
|
|
2008-09-06 14:43:32 +00:00
|
|
|
if (constty == tp)
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (0);
|
2008-09-06 14:43:32 +00:00
|
|
|
if (constty != NULL)
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (EBUSY);
|
|
|
|
|
2008-09-06 14:43:32 +00:00
|
|
|
tty_unlock(tp);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
constty_set(tp);
|
|
|
|
tty_lock(tp);
|
|
|
|
} else if (constty == tp) {
|
|
|
|
constty_clear();
|
|
|
|
}
|
|
|
|
return (0);
|
|
|
|
case TIOCGWINSZ:
|
|
|
|
/* Obtain window size. */
|
2009-03-01 09:50:13 +00:00
|
|
|
*(struct winsize*)data = tp->t_winsize;
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (0);
|
|
|
|
case TIOCSWINSZ:
|
|
|
|
/* Set window size. */
|
2012-11-03 22:21:37 +00:00
|
|
|
tty_set_winsize(tp, data);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (0);
|
|
|
|
case TIOCEXCL:
|
|
|
|
tp->t_flags |= TF_EXCLUDE;
|
|
|
|
return (0);
|
|
|
|
case TIOCNXCL:
|
|
|
|
tp->t_flags &= ~TF_EXCLUDE;
|
|
|
|
return (0);
|
|
|
|
case TIOCSTOP:
|
|
|
|
tp->t_flags |= TF_STOPPED;
|
2008-09-04 16:39:02 +00:00
|
|
|
ttydevsw_pktnotify(tp, TIOCPKT_STOP);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (0);
|
|
|
|
case TIOCSTART:
|
|
|
|
tp->t_flags &= ~TF_STOPPED;
|
|
|
|
ttydevsw_outwakeup(tp);
|
2008-09-04 16:39:02 +00:00
|
|
|
ttydevsw_pktnotify(tp, TIOCPKT_START);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (0);
|
|
|
|
case TIOCSTAT:
|
|
|
|
tty_info(tp);
|
|
|
|
return (0);
|
2010-01-04 20:59:52 +00:00
|
|
|
case TIOCSTI:
|
|
|
|
if ((fflag & FREAD) == 0 && priv_check(td, PRIV_TTY_STI))
|
|
|
|
return (EPERM);
|
|
|
|
if (!tty_is_ctty(tp, td->td_proc) &&
|
|
|
|
priv_check(td, PRIV_TTY_STI))
|
|
|
|
return (EACCES);
|
|
|
|
ttydisc_rint(tp, *(char *)data, 0);
|
|
|
|
ttydisc_rint_done(tp);
|
|
|
|
return (0);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef COMPAT_43TTY
|
2010-01-04 20:59:52 +00:00
|
|
|
return tty_ioctl_compat(tp, cmd, data, fflag, td);
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
#else /* !COMPAT_43TTY */
|
|
|
|
return (ENOIOCTL);
|
|
|
|
#endif /* COMPAT_43TTY */
|
2004-07-11 15:18:39 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int
|
2010-01-04 20:59:52 +00:00
|
|
|
tty_ioctl(struct tty *tp, u_long cmd, void *data, int fflag, struct thread *td)
|
2004-07-11 15:18:39 +00:00
|
|
|
{
|
|
|
|
int error;
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_lock_assert(tp, MA_OWNED);
|
2004-07-11 15:18:39 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (tty_gone(tp))
|
|
|
|
return (ENXIO);
|
2011-06-26 18:26:20 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
error = ttydevsw_ioctl(tp, cmd, data, td);
|
|
|
|
if (error == ENOIOCTL)
|
2010-01-04 20:59:52 +00:00
|
|
|
error = tty_generic_ioctl(tp, cmd, data, fflag, td);
|
2004-09-28 19:33:49 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
return (error);
|
2004-09-28 19:33:49 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
dev_t
|
|
|
|
tty_udev(struct tty *tp)
|
2004-09-28 19:33:49 +00:00
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (tp->t_dev)
|
2016-01-25 22:58:06 +00:00
|
|
|
return (dev2udev(tp->t_dev));
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
else
|
2016-01-25 22:58:06 +00:00
|
|
|
return (NODEV);
|
2004-09-28 19:33:49 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
int
|
|
|
|
tty_checkoutq(struct tty *tp)
|
2004-09-28 19:33:49 +00:00
|
|
|
{
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* 256 bytes should be enough to print a log message. */
|
|
|
|
return (ttyoutq_bytesleft(&tp->t_outq) >= 256);
|
2004-09-28 19:33:49 +00:00
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
void
|
|
|
|
tty_hiwat_in_block(struct tty *tp)
|
2004-09-28 19:33:49 +00:00
|
|
|
{
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
if ((tp->t_flags & TF_HIWAT_IN) == 0 &&
|
|
|
|
tp->t_termios.c_iflag & IXOFF &&
|
|
|
|
tp->t_termios.c_cc[VSTOP] != _POSIX_VDISABLE) {
|
|
|
|
/*
|
|
|
|
* Input flow control. Only enter the high watermark when we
|
|
|
|
* can successfully store the VSTOP character.
|
|
|
|
*/
|
|
|
|
if (ttyoutq_write_nofrag(&tp->t_outq,
|
|
|
|
&tp->t_termios.c_cc[VSTOP], 1) == 0)
|
|
|
|
tp->t_flags |= TF_HIWAT_IN;
|
|
|
|
} else {
|
|
|
|
/* No input flow control. */
|
|
|
|
tp->t_flags |= TF_HIWAT_IN;
|
2004-09-28 19:33:49 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tty_hiwat_in_unblock(struct tty *tp)
|
2004-07-11 15:18:39 +00:00
|
|
|
{
|
|
|
|
|
2008-08-22 05:15:52 +00:00
|
|
|
if (tp->t_flags & TF_HIWAT_IN &&
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_termios.c_iflag & IXOFF &&
|
|
|
|
tp->t_termios.c_cc[VSTART] != _POSIX_VDISABLE) {
|
|
|
|
/*
|
|
|
|
* Input flow control. Only leave the high watermark when we
|
|
|
|
* can successfully store the VSTART character.
|
|
|
|
*/
|
|
|
|
if (ttyoutq_write_nofrag(&tp->t_outq,
|
|
|
|
&tp->t_termios.c_cc[VSTART], 1) == 0)
|
|
|
|
tp->t_flags &= ~TF_HIWAT_IN;
|
|
|
|
} else {
|
|
|
|
/* No input flow control. */
|
|
|
|
tp->t_flags &= ~TF_HIWAT_IN;
|
|
|
|
}
|
2004-10-18 21:51:27 +00:00
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
if (!tty_gone(tp))
|
|
|
|
ttydevsw_inwakeup(tp);
|
2004-10-18 21:51:27 +00:00
|
|
|
}
|
|
|
|
|
2008-11-01 08:35:28 +00:00
|
|
|
/*
|
|
|
|
* TTY hooks interface.
|
|
|
|
*/
|
|
|
|
|
2008-09-22 19:25:14 +00:00
|
|
|
static int
|
|
|
|
ttyhook_defrint(struct tty *tp, char c, int flags)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (ttyhook_rint_bypass(tp, &c, 1) != 1)
|
|
|
|
return (-1);
|
2011-06-26 18:26:20 +00:00
|
|
|
|
2008-09-22 19:25:14 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
2016-01-25 22:58:06 +00:00
|
|
|
ttyhook_register(struct tty **rtp, struct proc *p, int fd, struct ttyhook *th,
|
|
|
|
void *softc)
|
2008-09-22 19:25:14 +00:00
|
|
|
{
|
|
|
|
struct tty *tp;
|
|
|
|
struct file *fp;
|
|
|
|
struct cdev *dev;
|
|
|
|
struct cdevsw *cdp;
|
2008-12-13 21:17:46 +00:00
|
|
|
struct filedesc *fdp;
|
Change the cap_rights_t type from uint64_t to a structure that we can extend
in the future in a backward compatible (API and ABI) way.
The cap_rights_t represents capability rights. We used to use one bit to
represent one right, but we are running out of spare bits. Currently the new
structure provides place for 114 rights (so 50 more than the previous
cap_rights_t), but it is possible to grow the structure to hold at least 285
rights, although we can make it even larger if 285 rights won't be enough.
The structure definition looks like this:
struct cap_rights {
uint64_t cr_rights[CAP_RIGHTS_VERSION + 2];
};
The initial CAP_RIGHTS_VERSION is 0.
The top two bits in the first element of the cr_rights[] array contain total
number of elements in the array - 2. This means if those two bits are equal to
0, we have 2 array elements.
The top two bits in all remaining array elements should be 0.
The next five bits in all array elements contain array index. Only one bit is
used and bit position in this five-bits range defines array index. This means
there can be at most five array elements in the future.
To define new right the CAPRIGHT() macro must be used. The macro takes two
arguments - an array index and a bit to set, eg.
#define CAP_PDKILL CAPRIGHT(1, 0x0000000000000800ULL)
We still support aliases that combine few rights, but the rights have to belong
to the same array element, eg:
#define CAP_LOOKUP CAPRIGHT(0, 0x0000000000000400ULL)
#define CAP_FCHMOD CAPRIGHT(0, 0x0000000000002000ULL)
#define CAP_FCHMODAT (CAP_FCHMOD | CAP_LOOKUP)
There is new API to manage the new cap_rights_t structure:
cap_rights_t *cap_rights_init(cap_rights_t *rights, ...);
void cap_rights_set(cap_rights_t *rights, ...);
void cap_rights_clear(cap_rights_t *rights, ...);
bool cap_rights_is_set(const cap_rights_t *rights, ...);
bool cap_rights_is_valid(const cap_rights_t *rights);
void cap_rights_merge(cap_rights_t *dst, const cap_rights_t *src);
void cap_rights_remove(cap_rights_t *dst, const cap_rights_t *src);
bool cap_rights_contains(const cap_rights_t *big, const cap_rights_t *little);
Capability rights to the cap_rights_init(), cap_rights_set(),
cap_rights_clear() and cap_rights_is_set() functions are provided by
separating them with commas, eg:
cap_rights_t rights;
cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FSTAT);
There is no need to terminate the list of rights, as those functions are
actually macros that take care of the termination, eg:
#define cap_rights_set(rights, ...) \
__cap_rights_set((rights), __VA_ARGS__, 0ULL)
void __cap_rights_set(cap_rights_t *rights, ...);
Thanks to using one bit as an array index we can assert in those functions that
there are no two rights belonging to different array elements provided
together. For example this is illegal and will be detected, because CAP_LOOKUP
belongs to element 0 and CAP_PDKILL to element 1:
cap_rights_init(&rights, CAP_LOOKUP | CAP_PDKILL);
Providing several rights that belongs to the same array's element this way is
correct, but is not advised. It should only be used for aliases definition.
This commit also breaks compatibility with some existing Capsicum system calls,
but I see no other way to do that. This should be fine as Capsicum is still
experimental and this change is not going to 9.x.
Sponsored by: The FreeBSD Foundation
2013-09-05 00:09:56 +00:00
|
|
|
cap_rights_t rights;
|
2010-08-06 09:42:15 +00:00
|
|
|
int error, ref;
|
2008-09-22 19:25:14 +00:00
|
|
|
|
|
|
|
/* Validate the file descriptor. */
|
Merge Capsicum overhaul:
- Capability is no longer separate descriptor type. Now every descriptor
has set of its own capability rights.
- The cap_new(2) system call is left, but it is no longer documented and
should not be used in new code.
- The new syscall cap_rights_limit(2) should be used instead of
cap_new(2), which limits capability rights of the given descriptor
without creating a new one.
- The cap_getrights(2) syscall is renamed to cap_rights_get(2).
- If CAP_IOCTL capability right is present we can further reduce allowed
ioctls list with the new cap_ioctls_limit(2) syscall. List of allowed
ioctls can be retrived with cap_ioctls_get(2) syscall.
- If CAP_FCNTL capability right is present we can further reduce fcntls
that can be used with the new cap_fcntls_limit(2) syscall and retrive
them with cap_fcntls_get(2).
- To support ioctl and fcntl white-listing the filedesc structure was
heavly modified.
- The audit subsystem, kdump and procstat tools were updated to
recognize new syscalls.
- Capability rights were revised and eventhough I tried hard to provide
backward API and ABI compatibility there are some incompatible changes
that are described in detail below:
CAP_CREATE old behaviour:
- Allow for openat(2)+O_CREAT.
- Allow for linkat(2).
- Allow for symlinkat(2).
CAP_CREATE new behaviour:
- Allow for openat(2)+O_CREAT.
Added CAP_LINKAT:
- Allow for linkat(2). ABI: Reuses CAP_RMDIR bit.
- Allow to be target for renameat(2).
Added CAP_SYMLINKAT:
- Allow for symlinkat(2).
Removed CAP_DELETE. Old behaviour:
- Allow for unlinkat(2) when removing non-directory object.
- Allow to be source for renameat(2).
Removed CAP_RMDIR. Old behaviour:
- Allow for unlinkat(2) when removing directory.
Added CAP_RENAMEAT:
- Required for source directory for the renameat(2) syscall.
Added CAP_UNLINKAT (effectively it replaces CAP_DELETE and CAP_RMDIR):
- Allow for unlinkat(2) on any object.
- Required if target of renameat(2) exists and will be removed by this
call.
Removed CAP_MAPEXEC.
CAP_MMAP old behaviour:
- Allow for mmap(2) with any combination of PROT_NONE, PROT_READ and
PROT_WRITE.
CAP_MMAP new behaviour:
- Allow for mmap(2)+PROT_NONE.
Added CAP_MMAP_R:
- Allow for mmap(PROT_READ).
Added CAP_MMAP_W:
- Allow for mmap(PROT_WRITE).
Added CAP_MMAP_X:
- Allow for mmap(PROT_EXEC).
Added CAP_MMAP_RW:
- Allow for mmap(PROT_READ | PROT_WRITE).
Added CAP_MMAP_RX:
- Allow for mmap(PROT_READ | PROT_EXEC).
Added CAP_MMAP_WX:
- Allow for mmap(PROT_WRITE | PROT_EXEC).
Added CAP_MMAP_RWX:
- Allow for mmap(PROT_READ | PROT_WRITE | PROT_EXEC).
Renamed CAP_MKDIR to CAP_MKDIRAT.
Renamed CAP_MKFIFO to CAP_MKFIFOAT.
Renamed CAP_MKNODE to CAP_MKNODEAT.
CAP_READ old behaviour:
- Allow pread(2).
- Disallow read(2), readv(2) (if there is no CAP_SEEK).
CAP_READ new behaviour:
- Allow read(2), readv(2).
- Disallow pread(2) (CAP_SEEK was also required).
CAP_WRITE old behaviour:
- Allow pwrite(2).
- Disallow write(2), writev(2) (if there is no CAP_SEEK).
CAP_WRITE new behaviour:
- Allow write(2), writev(2).
- Disallow pwrite(2) (CAP_SEEK was also required).
Added convinient defines:
#define CAP_PREAD (CAP_SEEK | CAP_READ)
#define CAP_PWRITE (CAP_SEEK | CAP_WRITE)
#define CAP_MMAP_R (CAP_MMAP | CAP_SEEK | CAP_READ)
#define CAP_MMAP_W (CAP_MMAP | CAP_SEEK | CAP_WRITE)
#define CAP_MMAP_X (CAP_MMAP | CAP_SEEK | 0x0000000000000008ULL)
#define CAP_MMAP_RW (CAP_MMAP_R | CAP_MMAP_W)
#define CAP_MMAP_RX (CAP_MMAP_R | CAP_MMAP_X)
#define CAP_MMAP_WX (CAP_MMAP_W | CAP_MMAP_X)
#define CAP_MMAP_RWX (CAP_MMAP_R | CAP_MMAP_W | CAP_MMAP_X)
#define CAP_RECV CAP_READ
#define CAP_SEND CAP_WRITE
#define CAP_SOCK_CLIENT \
(CAP_CONNECT | CAP_GETPEERNAME | CAP_GETSOCKNAME | CAP_GETSOCKOPT | \
CAP_PEELOFF | CAP_RECV | CAP_SEND | CAP_SETSOCKOPT | CAP_SHUTDOWN)
#define CAP_SOCK_SERVER \
(CAP_ACCEPT | CAP_BIND | CAP_GETPEERNAME | CAP_GETSOCKNAME | \
CAP_GETSOCKOPT | CAP_LISTEN | CAP_PEELOFF | CAP_RECV | CAP_SEND | \
CAP_SETSOCKOPT | CAP_SHUTDOWN)
Added defines for backward API compatibility:
#define CAP_MAPEXEC CAP_MMAP_X
#define CAP_DELETE CAP_UNLINKAT
#define CAP_MKDIR CAP_MKDIRAT
#define CAP_RMDIR CAP_UNLINKAT
#define CAP_MKFIFO CAP_MKFIFOAT
#define CAP_MKNOD CAP_MKNODAT
#define CAP_SOCK_ALL (CAP_SOCK_CLIENT | CAP_SOCK_SERVER)
Sponsored by: The FreeBSD Foundation
Reviewed by: Christoph Mallon <christoph.mallon@gmx.de>
Many aspects discussed with: rwatson, benl, jonathan
ABI compatibility discussed with: kib
2013-03-02 00:53:12 +00:00
|
|
|
fdp = p->p_fd;
|
Change the cap_rights_t type from uint64_t to a structure that we can extend
in the future in a backward compatible (API and ABI) way.
The cap_rights_t represents capability rights. We used to use one bit to
represent one right, but we are running out of spare bits. Currently the new
structure provides place for 114 rights (so 50 more than the previous
cap_rights_t), but it is possible to grow the structure to hold at least 285
rights, although we can make it even larger if 285 rights won't be enough.
The structure definition looks like this:
struct cap_rights {
uint64_t cr_rights[CAP_RIGHTS_VERSION + 2];
};
The initial CAP_RIGHTS_VERSION is 0.
The top two bits in the first element of the cr_rights[] array contain total
number of elements in the array - 2. This means if those two bits are equal to
0, we have 2 array elements.
The top two bits in all remaining array elements should be 0.
The next five bits in all array elements contain array index. Only one bit is
used and bit position in this five-bits range defines array index. This means
there can be at most five array elements in the future.
To define new right the CAPRIGHT() macro must be used. The macro takes two
arguments - an array index and a bit to set, eg.
#define CAP_PDKILL CAPRIGHT(1, 0x0000000000000800ULL)
We still support aliases that combine few rights, but the rights have to belong
to the same array element, eg:
#define CAP_LOOKUP CAPRIGHT(0, 0x0000000000000400ULL)
#define CAP_FCHMOD CAPRIGHT(0, 0x0000000000002000ULL)
#define CAP_FCHMODAT (CAP_FCHMOD | CAP_LOOKUP)
There is new API to manage the new cap_rights_t structure:
cap_rights_t *cap_rights_init(cap_rights_t *rights, ...);
void cap_rights_set(cap_rights_t *rights, ...);
void cap_rights_clear(cap_rights_t *rights, ...);
bool cap_rights_is_set(const cap_rights_t *rights, ...);
bool cap_rights_is_valid(const cap_rights_t *rights);
void cap_rights_merge(cap_rights_t *dst, const cap_rights_t *src);
void cap_rights_remove(cap_rights_t *dst, const cap_rights_t *src);
bool cap_rights_contains(const cap_rights_t *big, const cap_rights_t *little);
Capability rights to the cap_rights_init(), cap_rights_set(),
cap_rights_clear() and cap_rights_is_set() functions are provided by
separating them with commas, eg:
cap_rights_t rights;
cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FSTAT);
There is no need to terminate the list of rights, as those functions are
actually macros that take care of the termination, eg:
#define cap_rights_set(rights, ...) \
__cap_rights_set((rights), __VA_ARGS__, 0ULL)
void __cap_rights_set(cap_rights_t *rights, ...);
Thanks to using one bit as an array index we can assert in those functions that
there are no two rights belonging to different array elements provided
together. For example this is illegal and will be detected, because CAP_LOOKUP
belongs to element 0 and CAP_PDKILL to element 1:
cap_rights_init(&rights, CAP_LOOKUP | CAP_PDKILL);
Providing several rights that belongs to the same array's element this way is
correct, but is not advised. It should only be used for aliases definition.
This commit also breaks compatibility with some existing Capsicum system calls,
but I see no other way to do that. This should be fine as Capsicum is still
experimental and this change is not going to 9.x.
Sponsored by: The FreeBSD Foundation
2013-09-05 00:09:56 +00:00
|
|
|
error = fget_unlocked(fdp, fd, cap_rights_init(&rights, CAP_TTYHOOK),
|
2015-02-17 23:54:06 +00:00
|
|
|
&fp, NULL);
|
Merge Capsicum overhaul:
- Capability is no longer separate descriptor type. Now every descriptor
has set of its own capability rights.
- The cap_new(2) system call is left, but it is no longer documented and
should not be used in new code.
- The new syscall cap_rights_limit(2) should be used instead of
cap_new(2), which limits capability rights of the given descriptor
without creating a new one.
- The cap_getrights(2) syscall is renamed to cap_rights_get(2).
- If CAP_IOCTL capability right is present we can further reduce allowed
ioctls list with the new cap_ioctls_limit(2) syscall. List of allowed
ioctls can be retrived with cap_ioctls_get(2) syscall.
- If CAP_FCNTL capability right is present we can further reduce fcntls
that can be used with the new cap_fcntls_limit(2) syscall and retrive
them with cap_fcntls_get(2).
- To support ioctl and fcntl white-listing the filedesc structure was
heavly modified.
- The audit subsystem, kdump and procstat tools were updated to
recognize new syscalls.
- Capability rights were revised and eventhough I tried hard to provide
backward API and ABI compatibility there are some incompatible changes
that are described in detail below:
CAP_CREATE old behaviour:
- Allow for openat(2)+O_CREAT.
- Allow for linkat(2).
- Allow for symlinkat(2).
CAP_CREATE new behaviour:
- Allow for openat(2)+O_CREAT.
Added CAP_LINKAT:
- Allow for linkat(2). ABI: Reuses CAP_RMDIR bit.
- Allow to be target for renameat(2).
Added CAP_SYMLINKAT:
- Allow for symlinkat(2).
Removed CAP_DELETE. Old behaviour:
- Allow for unlinkat(2) when removing non-directory object.
- Allow to be source for renameat(2).
Removed CAP_RMDIR. Old behaviour:
- Allow for unlinkat(2) when removing directory.
Added CAP_RENAMEAT:
- Required for source directory for the renameat(2) syscall.
Added CAP_UNLINKAT (effectively it replaces CAP_DELETE and CAP_RMDIR):
- Allow for unlinkat(2) on any object.
- Required if target of renameat(2) exists and will be removed by this
call.
Removed CAP_MAPEXEC.
CAP_MMAP old behaviour:
- Allow for mmap(2) with any combination of PROT_NONE, PROT_READ and
PROT_WRITE.
CAP_MMAP new behaviour:
- Allow for mmap(2)+PROT_NONE.
Added CAP_MMAP_R:
- Allow for mmap(PROT_READ).
Added CAP_MMAP_W:
- Allow for mmap(PROT_WRITE).
Added CAP_MMAP_X:
- Allow for mmap(PROT_EXEC).
Added CAP_MMAP_RW:
- Allow for mmap(PROT_READ | PROT_WRITE).
Added CAP_MMAP_RX:
- Allow for mmap(PROT_READ | PROT_EXEC).
Added CAP_MMAP_WX:
- Allow for mmap(PROT_WRITE | PROT_EXEC).
Added CAP_MMAP_RWX:
- Allow for mmap(PROT_READ | PROT_WRITE | PROT_EXEC).
Renamed CAP_MKDIR to CAP_MKDIRAT.
Renamed CAP_MKFIFO to CAP_MKFIFOAT.
Renamed CAP_MKNODE to CAP_MKNODEAT.
CAP_READ old behaviour:
- Allow pread(2).
- Disallow read(2), readv(2) (if there is no CAP_SEEK).
CAP_READ new behaviour:
- Allow read(2), readv(2).
- Disallow pread(2) (CAP_SEEK was also required).
CAP_WRITE old behaviour:
- Allow pwrite(2).
- Disallow write(2), writev(2) (if there is no CAP_SEEK).
CAP_WRITE new behaviour:
- Allow write(2), writev(2).
- Disallow pwrite(2) (CAP_SEEK was also required).
Added convinient defines:
#define CAP_PREAD (CAP_SEEK | CAP_READ)
#define CAP_PWRITE (CAP_SEEK | CAP_WRITE)
#define CAP_MMAP_R (CAP_MMAP | CAP_SEEK | CAP_READ)
#define CAP_MMAP_W (CAP_MMAP | CAP_SEEK | CAP_WRITE)
#define CAP_MMAP_X (CAP_MMAP | CAP_SEEK | 0x0000000000000008ULL)
#define CAP_MMAP_RW (CAP_MMAP_R | CAP_MMAP_W)
#define CAP_MMAP_RX (CAP_MMAP_R | CAP_MMAP_X)
#define CAP_MMAP_WX (CAP_MMAP_W | CAP_MMAP_X)
#define CAP_MMAP_RWX (CAP_MMAP_R | CAP_MMAP_W | CAP_MMAP_X)
#define CAP_RECV CAP_READ
#define CAP_SEND CAP_WRITE
#define CAP_SOCK_CLIENT \
(CAP_CONNECT | CAP_GETPEERNAME | CAP_GETSOCKNAME | CAP_GETSOCKOPT | \
CAP_PEELOFF | CAP_RECV | CAP_SEND | CAP_SETSOCKOPT | CAP_SHUTDOWN)
#define CAP_SOCK_SERVER \
(CAP_ACCEPT | CAP_BIND | CAP_GETPEERNAME | CAP_GETSOCKNAME | \
CAP_GETSOCKOPT | CAP_LISTEN | CAP_PEELOFF | CAP_RECV | CAP_SEND | \
CAP_SETSOCKOPT | CAP_SHUTDOWN)
Added defines for backward API compatibility:
#define CAP_MAPEXEC CAP_MMAP_X
#define CAP_DELETE CAP_UNLINKAT
#define CAP_MKDIR CAP_MKDIRAT
#define CAP_RMDIR CAP_UNLINKAT
#define CAP_MKFIFO CAP_MKFIFOAT
#define CAP_MKNOD CAP_MKNODAT
#define CAP_SOCK_ALL (CAP_SOCK_CLIENT | CAP_SOCK_SERVER)
Sponsored by: The FreeBSD Foundation
Reviewed by: Christoph Mallon <christoph.mallon@gmx.de>
Many aspects discussed with: rwatson, benl, jonathan
ABI compatibility discussed with: kib
2013-03-02 00:53:12 +00:00
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
2009-05-14 03:24:22 +00:00
|
|
|
if (fp->f_ops == &badfileops) {
|
|
|
|
error = EBADF;
|
|
|
|
goto done1;
|
2008-12-13 21:17:46 +00:00
|
|
|
}
|
2011-06-26 18:26:20 +00:00
|
|
|
|
2009-06-08 13:34:45 +00:00
|
|
|
/*
|
|
|
|
* Make sure the vnode is bound to a character device.
|
|
|
|
* Unlocked check for the vnode type is ok there, because we
|
|
|
|
* only shall prevent calling devvn_refthread on the file that
|
|
|
|
* never has been opened over a character device.
|
|
|
|
*/
|
|
|
|
if (fp->f_type != DTYPE_VNODE || fp->f_vnode->v_type != VCHR) {
|
|
|
|
error = EINVAL;
|
2008-09-22 19:25:14 +00:00
|
|
|
goto done1;
|
2009-06-08 13:34:45 +00:00
|
|
|
}
|
2008-09-22 19:25:14 +00:00
|
|
|
|
|
|
|
/* Make sure it is a TTY. */
|
2010-08-06 09:42:15 +00:00
|
|
|
cdp = devvn_refthread(fp->f_vnode, &dev, &ref);
|
2009-06-08 13:34:45 +00:00
|
|
|
if (cdp == NULL) {
|
|
|
|
error = ENXIO;
|
2008-09-22 19:25:14 +00:00
|
|
|
goto done1;
|
2009-06-08 13:34:45 +00:00
|
|
|
}
|
|
|
|
if (dev != fp->f_data) {
|
|
|
|
error = ENXIO;
|
2008-09-22 19:25:14 +00:00
|
|
|
goto done2;
|
2009-06-08 13:34:45 +00:00
|
|
|
}
|
|
|
|
if (cdp != &ttydev_cdevsw) {
|
|
|
|
error = ENOTTY;
|
|
|
|
goto done2;
|
|
|
|
}
|
2008-09-22 19:25:14 +00:00
|
|
|
tp = dev->si_drv1;
|
|
|
|
|
|
|
|
/* Try to attach the hook to the TTY. */
|
|
|
|
error = EBUSY;
|
|
|
|
tty_lock(tp);
|
|
|
|
MPASS((tp->t_hook == NULL) == ((tp->t_flags & TF_HOOK) == 0));
|
|
|
|
if (tp->t_flags & TF_HOOK)
|
|
|
|
goto done3;
|
|
|
|
|
|
|
|
tp->t_flags |= TF_HOOK;
|
|
|
|
tp->t_hook = th;
|
|
|
|
tp->t_hooksoftc = softc;
|
|
|
|
*rtp = tp;
|
|
|
|
error = 0;
|
|
|
|
|
|
|
|
/* Maybe we can switch into bypass mode now. */
|
|
|
|
ttydisc_optimize(tp);
|
|
|
|
|
|
|
|
/* Silently convert rint() calls to rint_bypass() when possible. */
|
|
|
|
if (!ttyhook_hashook(tp, rint) && ttyhook_hashook(tp, rint_bypass))
|
|
|
|
th->th_rint = ttyhook_defrint;
|
|
|
|
|
|
|
|
done3: tty_unlock(tp);
|
2010-08-06 09:42:15 +00:00
|
|
|
done2: dev_relthread(dev, ref);
|
2009-05-14 03:24:22 +00:00
|
|
|
done1: fdrop(fp, curthread);
|
2008-09-22 19:25:14 +00:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
ttyhook_unregister(struct tty *tp)
|
|
|
|
{
|
|
|
|
|
|
|
|
tty_lock_assert(tp, MA_OWNED);
|
|
|
|
MPASS(tp->t_flags & TF_HOOK);
|
|
|
|
|
|
|
|
/* Disconnect the hook. */
|
|
|
|
tp->t_flags &= ~TF_HOOK;
|
|
|
|
tp->t_hook = NULL;
|
|
|
|
|
|
|
|
/* Maybe we need to leave bypass mode. */
|
|
|
|
ttydisc_optimize(tp);
|
|
|
|
|
|
|
|
/* Maybe deallocate the TTY as well. */
|
|
|
|
tty_rel_free(tp);
|
|
|
|
}
|
|
|
|
|
2008-11-01 08:35:28 +00:00
|
|
|
/*
|
|
|
|
* /dev/console handling.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int
|
|
|
|
ttyconsdev_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
|
|
|
|
{
|
|
|
|
struct tty *tp;
|
|
|
|
|
|
|
|
/* System has no console device. */
|
|
|
|
if (dev_console_filename == NULL)
|
|
|
|
return (ENXIO);
|
|
|
|
|
|
|
|
/* Look up corresponding TTY by device name. */
|
|
|
|
sx_slock(&tty_list_sx);
|
|
|
|
TAILQ_FOREACH(tp, &tty_list, t_list) {
|
|
|
|
if (strcmp(dev_console_filename, tty_devname(tp)) == 0) {
|
|
|
|
dev_console->si_drv1 = tp;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sx_sunlock(&tty_list_sx);
|
|
|
|
|
|
|
|
/* System console has no TTY associated. */
|
|
|
|
if (dev_console->si_drv1 == NULL)
|
|
|
|
return (ENXIO);
|
2011-06-26 18:26:20 +00:00
|
|
|
|
2008-11-01 08:35:28 +00:00
|
|
|
return (ttydev_open(dev, oflags, devtype, td));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ttyconsdev_write(struct cdev *dev, struct uio *uio, int ioflag)
|
|
|
|
{
|
|
|
|
|
|
|
|
log_console(uio);
|
|
|
|
|
|
|
|
return (ttydev_write(dev, uio, ioflag));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2009-02-05 14:21:09 +00:00
|
|
|
* /dev/console is a little different than normal TTY's. When opened,
|
|
|
|
* it determines which TTY to use. When data gets written to it, it
|
|
|
|
* will be logged in the kernel message buffer.
|
2008-11-01 08:35:28 +00:00
|
|
|
*/
|
|
|
|
static struct cdevsw ttyconsdev_cdevsw = {
|
|
|
|
.d_version = D_VERSION,
|
|
|
|
.d_open = ttyconsdev_open,
|
2009-02-05 14:21:09 +00:00
|
|
|
.d_close = ttydev_close,
|
2008-11-01 08:35:28 +00:00
|
|
|
.d_read = ttydev_read,
|
|
|
|
.d_write = ttyconsdev_write,
|
|
|
|
.d_ioctl = ttydev_ioctl,
|
|
|
|
.d_kqfilter = ttydev_kqfilter,
|
|
|
|
.d_poll = ttydev_poll,
|
|
|
|
.d_mmap = ttydev_mmap,
|
|
|
|
.d_name = "ttyconsdev",
|
|
|
|
.d_flags = D_TTY,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void
|
2016-01-25 22:58:06 +00:00
|
|
|
ttyconsdev_init(void *unused __unused)
|
2008-11-01 08:35:28 +00:00
|
|
|
{
|
|
|
|
|
2011-01-04 10:59:38 +00:00
|
|
|
dev_console = make_dev_credf(MAKEDEV_ETERNAL, &ttyconsdev_cdevsw, 0,
|
|
|
|
NULL, UID_ROOT, GID_WHEEL, 0600, "console");
|
2008-11-01 08:35:28 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
SYSINIT(tty, SI_SUB_DRIVERS, SI_ORDER_FIRST, ttyconsdev_init, NULL);
|
|
|
|
|
|
|
|
void
|
|
|
|
ttyconsdev_select(const char *name)
|
|
|
|
{
|
|
|
|
|
|
|
|
dev_console_filename = name;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Debugging routines.
|
|
|
|
*/
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
#include "opt_ddb.h"
|
|
|
|
#ifdef DDB
|
|
|
|
#include <ddb/ddb.h>
|
2008-10-15 16:58:35 +00:00
|
|
|
#include <ddb/db_sym.h>
|
2004-10-18 21:51:27 +00:00
|
|
|
|
2016-01-25 22:58:06 +00:00
|
|
|
static const struct {
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
int flag;
|
|
|
|
char val;
|
|
|
|
} ttystates[] = {
|
|
|
|
#if 0
|
2009-02-05 14:21:09 +00:00
|
|
|
{ TF_NOPREFIX, 'N' },
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
#endif
|
2009-02-05 14:21:09 +00:00
|
|
|
{ TF_INITLOCK, 'I' },
|
|
|
|
{ TF_CALLOUT, 'C' },
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
/* Keep these together -> 'Oi' and 'Oo'. */
|
2009-02-05 14:21:09 +00:00
|
|
|
{ TF_OPENED, 'O' },
|
|
|
|
{ TF_OPENED_IN, 'i' },
|
|
|
|
{ TF_OPENED_OUT, 'o' },
|
|
|
|
{ TF_OPENED_CONS, 'c' },
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
2009-02-05 14:21:09 +00:00
|
|
|
{ TF_GONE, 'G' },
|
|
|
|
{ TF_OPENCLOSE, 'B' },
|
|
|
|
{ TF_ASYNC, 'Y' },
|
|
|
|
{ TF_LITERAL, 'L' },
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
|
|
|
/* Keep these together -> 'Hi' and 'Ho'. */
|
2009-02-05 14:21:09 +00:00
|
|
|
{ TF_HIWAT, 'H' },
|
|
|
|
{ TF_HIWAT_IN, 'i' },
|
|
|
|
{ TF_HIWAT_OUT, 'o' },
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
2009-02-05 14:21:09 +00:00
|
|
|
{ TF_STOPPED, 'S' },
|
|
|
|
{ TF_EXCLUDE, 'X' },
|
|
|
|
{ TF_BYPASS, 'l' },
|
|
|
|
{ TF_ZOMBIE, 'Z' },
|
|
|
|
{ TF_HOOK, 's' },
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
|
2009-02-11 16:28:49 +00:00
|
|
|
/* Keep these together -> 'bi' and 'bo'. */
|
|
|
|
{ TF_BUSY, 'b' },
|
|
|
|
{ TF_BUSY_IN, 'i' },
|
|
|
|
{ TF_BUSY_OUT, 'o' },
|
|
|
|
|
2009-02-05 14:21:09 +00:00
|
|
|
{ 0, '\0'},
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
};
|
2004-06-24 10:06:55 +00:00
|
|
|
|
2008-10-15 16:58:35 +00:00
|
|
|
#define TTY_FLAG_BITS \
|
2016-01-25 15:37:01 +00:00
|
|
|
"\20\1NOPREFIX\2INITLOCK\3CALLOUT\4OPENED_IN" \
|
|
|
|
"\5OPENED_OUT\6OPENED_CONS\7GONE\10OPENCLOSE" \
|
|
|
|
"\11ASYNC\12LITERAL\13HIWAT_IN\14HIWAT_OUT" \
|
|
|
|
"\15STOPPED\16EXCLUDE\17BYPASS\20ZOMBIE" \
|
|
|
|
"\21HOOK\22BUSY_IN\23BUSY_OUT"
|
2008-10-15 16:58:35 +00:00
|
|
|
|
|
|
|
#define DB_PRINTSYM(name, addr) \
|
|
|
|
db_printf("%s " #name ": ", sep); \
|
|
|
|
db_printsym((db_addr_t) addr, DB_STGY_ANY); \
|
|
|
|
db_printf("\n");
|
|
|
|
|
|
|
|
static void
|
|
|
|
_db_show_devsw(const char *sep, const struct ttydevsw *tsw)
|
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
2008-10-15 16:58:35 +00:00
|
|
|
db_printf("%sdevsw: ", sep);
|
|
|
|
db_printsym((db_addr_t)tsw, DB_STGY_ANY);
|
|
|
|
db_printf(" (%p)\n", tsw);
|
|
|
|
DB_PRINTSYM(open, tsw->tsw_open);
|
|
|
|
DB_PRINTSYM(close, tsw->tsw_close);
|
|
|
|
DB_PRINTSYM(outwakeup, tsw->tsw_outwakeup);
|
|
|
|
DB_PRINTSYM(inwakeup, tsw->tsw_inwakeup);
|
|
|
|
DB_PRINTSYM(ioctl, tsw->tsw_ioctl);
|
|
|
|
DB_PRINTSYM(param, tsw->tsw_param);
|
|
|
|
DB_PRINTSYM(modem, tsw->tsw_modem);
|
|
|
|
DB_PRINTSYM(mmap, tsw->tsw_mmap);
|
|
|
|
DB_PRINTSYM(pktnotify, tsw->tsw_pktnotify);
|
|
|
|
DB_PRINTSYM(free, tsw->tsw_free);
|
|
|
|
}
|
2016-01-25 22:58:06 +00:00
|
|
|
|
2008-10-15 16:58:35 +00:00
|
|
|
static void
|
|
|
|
_db_show_hooks(const char *sep, const struct ttyhook *th)
|
|
|
|
{
|
2016-01-25 22:58:06 +00:00
|
|
|
|
2008-10-15 16:58:35 +00:00
|
|
|
db_printf("%shook: ", sep);
|
|
|
|
db_printsym((db_addr_t)th, DB_STGY_ANY);
|
|
|
|
db_printf(" (%p)\n", th);
|
|
|
|
if (th == NULL)
|
|
|
|
return;
|
|
|
|
DB_PRINTSYM(rint, th->th_rint);
|
|
|
|
DB_PRINTSYM(rint_bypass, th->th_rint_bypass);
|
|
|
|
DB_PRINTSYM(rint_done, th->th_rint_done);
|
|
|
|
DB_PRINTSYM(rint_poll, th->th_rint_poll);
|
|
|
|
DB_PRINTSYM(getc_inject, th->th_getc_inject);
|
|
|
|
DB_PRINTSYM(getc_capture, th->th_getc_capture);
|
|
|
|
DB_PRINTSYM(getc_poll, th->th_getc_poll);
|
|
|
|
DB_PRINTSYM(close, th->th_close);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
_db_show_termios(const char *name, const struct termios *t)
|
|
|
|
{
|
|
|
|
|
|
|
|
db_printf("%s: iflag 0x%x oflag 0x%x cflag 0x%x "
|
|
|
|
"lflag 0x%x ispeed %u ospeed %u\n", name,
|
|
|
|
t->c_iflag, t->c_oflag, t->c_cflag, t->c_lflag,
|
|
|
|
t->c_ispeed, t->c_ospeed);
|
|
|
|
}
|
|
|
|
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
/* DDB command to show TTY statistics. */
|
2008-10-15 16:58:35 +00:00
|
|
|
DB_SHOW_COMMAND(tty, db_show_tty)
|
|
|
|
{
|
|
|
|
struct tty *tp;
|
|
|
|
|
|
|
|
if (!have_addr) {
|
|
|
|
db_printf("usage: show tty <addr>\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
tp = (struct tty *)addr;
|
|
|
|
|
2016-01-25 15:37:01 +00:00
|
|
|
db_printf("%p: %s\n", tp, tty_devname(tp));
|
2008-10-15 16:58:35 +00:00
|
|
|
db_printf("\tmtx: %p\n", tp->t_mtx);
|
2016-01-25 15:37:01 +00:00
|
|
|
db_printf("\tflags: 0x%b\n", tp->t_flags, TTY_FLAG_BITS);
|
2008-10-15 16:58:35 +00:00
|
|
|
db_printf("\trevokecnt: %u\n", tp->t_revokecnt);
|
|
|
|
|
|
|
|
/* Buffering mechanisms. */
|
|
|
|
db_printf("\tinq: %p begin %u linestart %u reprint %u end %u "
|
|
|
|
"nblocks %u quota %u\n", &tp->t_inq, tp->t_inq.ti_begin,
|
|
|
|
tp->t_inq.ti_linestart, tp->t_inq.ti_reprint, tp->t_inq.ti_end,
|
|
|
|
tp->t_inq.ti_nblocks, tp->t_inq.ti_quota);
|
|
|
|
db_printf("\toutq: %p begin %u end %u nblocks %u quota %u\n",
|
|
|
|
&tp->t_outq, tp->t_outq.to_begin, tp->t_outq.to_end,
|
|
|
|
tp->t_outq.to_nblocks, tp->t_outq.to_quota);
|
|
|
|
db_printf("\tinlow: %zu\n", tp->t_inlow);
|
|
|
|
db_printf("\toutlow: %zu\n", tp->t_outlow);
|
|
|
|
_db_show_termios("\ttermios", &tp->t_termios);
|
|
|
|
db_printf("\twinsize: row %u col %u xpixel %u ypixel %u\n",
|
|
|
|
tp->t_winsize.ws_row, tp->t_winsize.ws_col,
|
|
|
|
tp->t_winsize.ws_xpixel, tp->t_winsize.ws_ypixel);
|
|
|
|
db_printf("\tcolumn: %u\n", tp->t_column);
|
|
|
|
db_printf("\twritepos: %u\n", tp->t_writepos);
|
|
|
|
db_printf("\tcompatflags: 0x%x\n", tp->t_compatflags);
|
|
|
|
|
|
|
|
/* Init/lock-state devices. */
|
|
|
|
_db_show_termios("\ttermios_init_in", &tp->t_termios_init_in);
|
|
|
|
_db_show_termios("\ttermios_init_out", &tp->t_termios_init_out);
|
|
|
|
_db_show_termios("\ttermios_lock_in", &tp->t_termios_lock_in);
|
|
|
|
_db_show_termios("\ttermios_lock_out", &tp->t_termios_lock_out);
|
|
|
|
|
|
|
|
/* Hooks */
|
|
|
|
_db_show_devsw("\t", tp->t_devsw);
|
|
|
|
_db_show_hooks("\t", tp->t_hook);
|
|
|
|
|
|
|
|
/* Process info. */
|
|
|
|
db_printf("\tpgrp: %p gid %d jobc %d\n", tp->t_pgrp,
|
|
|
|
tp->t_pgrp ? tp->t_pgrp->pg_id : 0,
|
|
|
|
tp->t_pgrp ? tp->t_pgrp->pg_jobc : 0);
|
|
|
|
db_printf("\tsession: %p", tp->t_session);
|
|
|
|
if (tp->t_session != NULL)
|
|
|
|
db_printf(" count %u leader %p tty %p sid %d login %s",
|
|
|
|
tp->t_session->s_count, tp->t_session->s_leader,
|
|
|
|
tp->t_session->s_ttyp, tp->t_session->s_sid,
|
|
|
|
tp->t_session->s_login);
|
|
|
|
db_printf("\n");
|
|
|
|
db_printf("\tsessioncnt: %u\n", tp->t_sessioncnt);
|
|
|
|
db_printf("\tdevswsoftc: %p\n", tp->t_devswsoftc);
|
|
|
|
db_printf("\thooksoftc: %p\n", tp->t_hooksoftc);
|
|
|
|
db_printf("\tdev: %p\n", tp->t_dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* DDB command to list TTYs. */
|
|
|
|
DB_SHOW_ALL_COMMAND(ttys, db_show_all_ttys)
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
{
|
|
|
|
struct tty *tp;
|
|
|
|
size_t isiz, osiz;
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
/* Make the output look like `pstat -t'. */
|
2008-10-15 16:58:35 +00:00
|
|
|
db_printf("PTR ");
|
|
|
|
#if defined(__LP64__)
|
|
|
|
db_printf(" ");
|
|
|
|
#endif
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
db_printf(" LINE INQ CAN LIN LOW OUTQ USE LOW "
|
|
|
|
"COL SESS PGID STATE\n");
|
|
|
|
|
|
|
|
TAILQ_FOREACH(tp, &tty_list, t_list) {
|
|
|
|
isiz = tp->t_inq.ti_nblocks * TTYINQ_DATASIZE;
|
|
|
|
osiz = tp->t_outq.to_nblocks * TTYOUTQ_DATASIZE;
|
|
|
|
|
2016-01-25 22:58:06 +00:00
|
|
|
db_printf("%p %10s %5zu %4u %4u %4zu %5zu %4u %4zu %5u %5d "
|
|
|
|
"%5d ", tp, tty_devname(tp), isiz,
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_inq.ti_linestart - tp->t_inq.ti_begin,
|
|
|
|
tp->t_inq.ti_end - tp->t_inq.ti_linestart,
|
2016-01-25 22:58:06 +00:00
|
|
|
isiz - tp->t_inlow, osiz,
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_outq.to_end - tp->t_outq.to_begin,
|
2016-01-25 22:58:06 +00:00
|
|
|
osiz - tp->t_outlow, MIN(tp->t_column, 99999),
|
Integrate the new MPSAFE TTY layer to the FreeBSD operating system.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
|
|
|
tp->t_session ? tp->t_session->s_sid : 0,
|
|
|
|
tp->t_pgrp ? tp->t_pgrp->pg_id : 0);
|
|
|
|
|
|
|
|
/* Flag bits. */
|
|
|
|
for (i = j = 0; ttystates[i].flag; i++)
|
|
|
|
if (tp->t_flags & ttystates[i].flag) {
|
|
|
|
db_printf("%c", ttystates[i].val);
|
|
|
|
j++;
|
|
|
|
}
|
|
|
|
if (j == 0)
|
|
|
|
db_printf("-");
|
|
|
|
db_printf("\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* DDB */
|