freebsd-skq/sys/dev/ath/ath_hal/ar5416/ar5416_interrupts.c

307 lines
8.4 KiB
C
Raw Normal View History

2008-11-28 00:03:41 +00:00
/*
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
2008-11-28 00:03:41 +00:00
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
/*
* Checks to see if an interrupt is pending on our NIC
*
* Returns: TRUE if an interrupt is pending
* FALSE if not
*/
HAL_BOOL
ar5416IsInterruptPending(struct ath_hal *ah)
{
uint32_t isr;
Introduce AR9130 (HOWL) WMAC support to the FreeBSD HAL. The AR9130 is an AR9160/AR5416 family WMAC which is glued directly to the AR913x SoC peripheral bus (APB) rather than via a PCI/PCIe bridge. The specifics: * A new build option is required to use the AR9130 - AH_SUPPORT_AR9130. This is needed due to the different location the RTC registers live with this chip; hopefully this will be undone in the future. This does currently mean that enabling this option will break non-AR9130 builds, so don't enable it unless you're specifically building an image for the AR913x SoC. * Add the new probe, attach, EEPROM and PLL methods specific to Howl. * Add a work-around to ah_eeprom_v14.c which disables some of the checks for endian-ness and magic in the EEPROM image if an eepromdata block is provided. This'll be fixed at a later stage by porting the ath9k probe code and making sure it doesn't break in other setups (which my previous attempt at this did.) * Sprinkle Howl modifications throughput the interrupt path - it doesn't implement the SYNC interrupt registers, so ignore those. * Sprinkle Howl chip powerup/down throughout the reset path; the RTC methods were * Sprinkle some other Howl workarounds in the reset path. * Hard-code an alternative setup for the AR_CFG register for Howl, that sets up things suitable for Big-Endian MIPS (which is the only platform this chip is glued to.) This has been tested on the AR913x based TP-Link WR-1043nd mode, in legacy, HT/20 and HT/40 modes. Caveats: * 2ghz has only been tested. I've not seen any 5ghz radios glued to this chipset so I can't test it. * AR5416_INTERRUPT_MITIGATION is not supported on the AR9130. At least, it isn't implemented in ath9k. Please don't enable this. * This hasn't been tested in MBSS mode or in RX/TX block-aggregation mode.
2011-04-28 12:47:40 +00:00
if (AR_SREV_HOWL(ah))
return AH_TRUE;
2008-11-28 00:03:41 +00:00
/*
* Some platforms trigger our ISR before applying power to
* the card, so make sure the INTPEND is really 1, not 0xffffffff.
*/
isr = OS_REG_READ(ah, AR_INTR_ASYNC_CAUSE);
if (isr != AR_INTR_SPURIOUS && (isr & AR_INTR_MAC_IRQ) != 0)
return AH_TRUE;
isr = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
if (isr != AR_INTR_SPURIOUS && (isr & AR_INTR_SYNC_DEFAULT))
return AH_TRUE;
return AH_FALSE;
}
/*
* Reads the Interrupt Status Register value from the NIC, thus deasserting
* the interrupt line, and returns both the masked and unmasked mapped ISR
* values. The value returned is mapped to abstract the hw-specific bit
* locations in the Interrupt Status Register.
*
Fix a corner-case of interrupt handling which resulted in potentially spurious (and fatal) interrupt errors. One user reported seeing this: Apr 22 18:04:24 ceres kernel: ar5416GetPendingInterrupts: fatal error, ISR_RAC 0x0 SYNC_CAUSE 0x2000 SYNC_CAUSE of 0x2000 is AR_INTR_SYNC_LOCAL_TIMEOUT which is a bus timeout; this shouldn't cause HAL_INT_FATAL to be set. After checking out ath9k, ath9k_ar9002_hw_get_isr() clears (*masked) before continuing, regardless of whether any bits in the ISR registers are set. So if AR_INTR_SYNC_CAUSE is set to something that isn't treated as fatal, and AR_ISR isn't read or is read and is 0, then (*masked) wouldn't be cleared. Thus any of the existing bits set that were passed in would be preserved in the output. The caller in if_ath - ath_intr() - wasn't setting the masked value to 0 before calling ath_hal_getisr(), so anything that was present in that uninitialised variable would be preserved in the case above of AR_ISR=0, AR_INTR_SYNC_CAUSE != 0; and if the HAL_INT_FATAL bit was set, a fatal condition would be interpreted and the chip was reset. This patch does the following: * ath_intr() - set masked to 0 before calling ath_hal_getisr(); * ar5416GetPendingInterrupts() - clear (*masked) before processing continues; so if the interrupt source is AR_INTR_SYNC_CAUSE and it isn't fatal, the hardware isn't reset via returning HAL_INT_FATAL. This doesn't fix any underlying errors which trigger AR_INTR_SYNC_LOCAL_TIMEOUT - which is a bus timeout of some sort - so that likely should be further investigated.
2011-04-23 06:37:09 +00:00
* (*masked) is cleared on initial call.
*
2008-11-28 00:03:41 +00:00
* Returns: A hardware-abstracted bitmap of all non-masked-out
* interrupts pending, as well as an unmasked value
*/
HAL_BOOL
ar5416GetPendingInterrupts(struct ath_hal *ah, HAL_INT *masked)
{
Introduce AR9130 (HOWL) WMAC support to the FreeBSD HAL. The AR9130 is an AR9160/AR5416 family WMAC which is glued directly to the AR913x SoC peripheral bus (APB) rather than via a PCI/PCIe bridge. The specifics: * A new build option is required to use the AR9130 - AH_SUPPORT_AR9130. This is needed due to the different location the RTC registers live with this chip; hopefully this will be undone in the future. This does currently mean that enabling this option will break non-AR9130 builds, so don't enable it unless you're specifically building an image for the AR913x SoC. * Add the new probe, attach, EEPROM and PLL methods specific to Howl. * Add a work-around to ah_eeprom_v14.c which disables some of the checks for endian-ness and magic in the EEPROM image if an eepromdata block is provided. This'll be fixed at a later stage by porting the ath9k probe code and making sure it doesn't break in other setups (which my previous attempt at this did.) * Sprinkle Howl modifications throughput the interrupt path - it doesn't implement the SYNC interrupt registers, so ignore those. * Sprinkle Howl chip powerup/down throughout the reset path; the RTC methods were * Sprinkle some other Howl workarounds in the reset path. * Hard-code an alternative setup for the AR_CFG register for Howl, that sets up things suitable for Big-Endian MIPS (which is the only platform this chip is glued to.) This has been tested on the AR913x based TP-Link WR-1043nd mode, in legacy, HT/20 and HT/40 modes. Caveats: * 2ghz has only been tested. I've not seen any 5ghz radios glued to this chipset so I can't test it. * AR5416_INTERRUPT_MITIGATION is not supported on the AR9130. At least, it isn't implemented in ath9k. Please don't enable this. * This hasn't been tested in MBSS mode or in RX/TX block-aggregation mode.
2011-04-28 12:47:40 +00:00
uint32_t isr, isr0, isr1, sync_cause = 0;
2008-11-28 00:03:41 +00:00
/*
* Verify there's a mac interrupt and the RTC is on.
*/
Introduce AR9130 (HOWL) WMAC support to the FreeBSD HAL. The AR9130 is an AR9160/AR5416 family WMAC which is glued directly to the AR913x SoC peripheral bus (APB) rather than via a PCI/PCIe bridge. The specifics: * A new build option is required to use the AR9130 - AH_SUPPORT_AR9130. This is needed due to the different location the RTC registers live with this chip; hopefully this will be undone in the future. This does currently mean that enabling this option will break non-AR9130 builds, so don't enable it unless you're specifically building an image for the AR913x SoC. * Add the new probe, attach, EEPROM and PLL methods specific to Howl. * Add a work-around to ah_eeprom_v14.c which disables some of the checks for endian-ness and magic in the EEPROM image if an eepromdata block is provided. This'll be fixed at a later stage by porting the ath9k probe code and making sure it doesn't break in other setups (which my previous attempt at this did.) * Sprinkle Howl modifications throughput the interrupt path - it doesn't implement the SYNC interrupt registers, so ignore those. * Sprinkle Howl chip powerup/down throughout the reset path; the RTC methods were * Sprinkle some other Howl workarounds in the reset path. * Hard-code an alternative setup for the AR_CFG register for Howl, that sets up things suitable for Big-Endian MIPS (which is the only platform this chip is glued to.) This has been tested on the AR913x based TP-Link WR-1043nd mode, in legacy, HT/20 and HT/40 modes. Caveats: * 2ghz has only been tested. I've not seen any 5ghz radios glued to this chipset so I can't test it. * AR5416_INTERRUPT_MITIGATION is not supported on the AR9130. At least, it isn't implemented in ath9k. Please don't enable this. * This hasn't been tested in MBSS mode or in RX/TX block-aggregation mode.
2011-04-28 12:47:40 +00:00
if (AR_SREV_HOWL(ah)) {
*masked = 0;
2008-11-28 00:03:41 +00:00
isr = OS_REG_READ(ah, AR_ISR);
Introduce AR9130 (HOWL) WMAC support to the FreeBSD HAL. The AR9130 is an AR9160/AR5416 family WMAC which is glued directly to the AR913x SoC peripheral bus (APB) rather than via a PCI/PCIe bridge. The specifics: * A new build option is required to use the AR9130 - AH_SUPPORT_AR9130. This is needed due to the different location the RTC registers live with this chip; hopefully this will be undone in the future. This does currently mean that enabling this option will break non-AR9130 builds, so don't enable it unless you're specifically building an image for the AR913x SoC. * Add the new probe, attach, EEPROM and PLL methods specific to Howl. * Add a work-around to ah_eeprom_v14.c which disables some of the checks for endian-ness and magic in the EEPROM image if an eepromdata block is provided. This'll be fixed at a later stage by porting the ath9k probe code and making sure it doesn't break in other setups (which my previous attempt at this did.) * Sprinkle Howl modifications throughput the interrupt path - it doesn't implement the SYNC interrupt registers, so ignore those. * Sprinkle Howl chip powerup/down throughout the reset path; the RTC methods were * Sprinkle some other Howl workarounds in the reset path. * Hard-code an alternative setup for the AR_CFG register for Howl, that sets up things suitable for Big-Endian MIPS (which is the only platform this chip is glued to.) This has been tested on the AR913x based TP-Link WR-1043nd mode, in legacy, HT/20 and HT/40 modes. Caveats: * 2ghz has only been tested. I've not seen any 5ghz radios glued to this chipset so I can't test it. * AR5416_INTERRUPT_MITIGATION is not supported on the AR9130. At least, it isn't implemented in ath9k. Please don't enable this. * This hasn't been tested in MBSS mode or in RX/TX block-aggregation mode.
2011-04-28 12:47:40 +00:00
} else {
if ((OS_REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
(OS_REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
isr = OS_REG_READ(ah, AR_ISR);
else
isr = 0;
sync_cause = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
sync_cause &= AR_INTR_SYNC_DEFAULT;
*masked = 0;
Fix a corner-case of interrupt handling which resulted in potentially spurious (and fatal) interrupt errors. One user reported seeing this: Apr 22 18:04:24 ceres kernel: ar5416GetPendingInterrupts: fatal error, ISR_RAC 0x0 SYNC_CAUSE 0x2000 SYNC_CAUSE of 0x2000 is AR_INTR_SYNC_LOCAL_TIMEOUT which is a bus timeout; this shouldn't cause HAL_INT_FATAL to be set. After checking out ath9k, ath9k_ar9002_hw_get_isr() clears (*masked) before continuing, regardless of whether any bits in the ISR registers are set. So if AR_INTR_SYNC_CAUSE is set to something that isn't treated as fatal, and AR_ISR isn't read or is read and is 0, then (*masked) wouldn't be cleared. Thus any of the existing bits set that were passed in would be preserved in the output. The caller in if_ath - ath_intr() - wasn't setting the masked value to 0 before calling ath_hal_getisr(), so anything that was present in that uninitialised variable would be preserved in the case above of AR_ISR=0, AR_INTR_SYNC_CAUSE != 0; and if the HAL_INT_FATAL bit was set, a fatal condition would be interpreted and the chip was reset. This patch does the following: * ath_intr() - set masked to 0 before calling ath_hal_getisr(); * ar5416GetPendingInterrupts() - clear (*masked) before processing continues; so if the interrupt source is AR_INTR_SYNC_CAUSE and it isn't fatal, the hardware isn't reset via returning HAL_INT_FATAL. This doesn't fix any underlying errors which trigger AR_INTR_SYNC_LOCAL_TIMEOUT - which is a bus timeout of some sort - so that likely should be further investigated.
2011-04-23 06:37:09 +00:00
Introduce AR9130 (HOWL) WMAC support to the FreeBSD HAL. The AR9130 is an AR9160/AR5416 family WMAC which is glued directly to the AR913x SoC peripheral bus (APB) rather than via a PCI/PCIe bridge. The specifics: * A new build option is required to use the AR9130 - AH_SUPPORT_AR9130. This is needed due to the different location the RTC registers live with this chip; hopefully this will be undone in the future. This does currently mean that enabling this option will break non-AR9130 builds, so don't enable it unless you're specifically building an image for the AR913x SoC. * Add the new probe, attach, EEPROM and PLL methods specific to Howl. * Add a work-around to ah_eeprom_v14.c which disables some of the checks for endian-ness and magic in the EEPROM image if an eepromdata block is provided. This'll be fixed at a later stage by porting the ath9k probe code and making sure it doesn't break in other setups (which my previous attempt at this did.) * Sprinkle Howl modifications throughput the interrupt path - it doesn't implement the SYNC interrupt registers, so ignore those. * Sprinkle Howl chip powerup/down throughout the reset path; the RTC methods were * Sprinkle some other Howl workarounds in the reset path. * Hard-code an alternative setup for the AR_CFG register for Howl, that sets up things suitable for Big-Endian MIPS (which is the only platform this chip is glued to.) This has been tested on the AR913x based TP-Link WR-1043nd mode, in legacy, HT/20 and HT/40 modes. Caveats: * 2ghz has only been tested. I've not seen any 5ghz radios glued to this chipset so I can't test it. * AR5416_INTERRUPT_MITIGATION is not supported on the AR9130. At least, it isn't implemented in ath9k. Please don't enable this. * This hasn't been tested in MBSS mode or in RX/TX block-aggregation mode.
2011-04-28 12:47:40 +00:00
if (isr == 0 && sync_cause == 0)
return AH_FALSE;
}
2008-11-28 00:03:41 +00:00
if (isr != 0) {
struct ath_hal_5212 *ahp = AH5212(ah);
uint32_t mask2;
mask2 = 0;
if (isr & AR_ISR_BCNMISC) {
uint32_t isr2 = OS_REG_READ(ah, AR_ISR_S2);
if (isr2 & AR_ISR_S2_TIM)
mask2 |= HAL_INT_TIM;
if (isr2 & AR_ISR_S2_DTIM)
mask2 |= HAL_INT_DTIM;
if (isr2 & AR_ISR_S2_DTIMSYNC)
mask2 |= HAL_INT_DTIMSYNC;
if (isr2 & (AR_ISR_S2_CABEND ))
mask2 |= HAL_INT_CABEND;
if (isr2 & AR_ISR_S2_GTT)
mask2 |= HAL_INT_GTT;
if (isr2 & AR_ISR_S2_CST)
mask2 |= HAL_INT_CST;
if (isr2 & AR_ISR_S2_TSFOOR)
mask2 |= HAL_INT_TSFOOR;
}
isr = OS_REG_READ(ah, AR_ISR_RAC);
if (isr == 0xffffffff) {
*masked = 0;
return AH_FALSE;
2008-11-28 00:03:41 +00:00
}
*masked = isr & HAL_INT_COMMON;
if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
*masked |= HAL_INT_RX;
if (isr & (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR | AR_ISR_TXEOL)) {
*masked |= HAL_INT_TX;
isr0 = OS_REG_READ(ah, AR_ISR_S0_S);
ahp->ah_intrTxqs |= MS(isr0, AR_ISR_S0_QCU_TXOK);
ahp->ah_intrTxqs |= MS(isr0, AR_ISR_S0_QCU_TXDESC);
isr1 = OS_REG_READ(ah, AR_ISR_S1_S);
ahp->ah_intrTxqs |= MS(isr1, AR_ISR_S1_QCU_TXERR);
ahp->ah_intrTxqs |= MS(isr1, AR_ISR_S1_QCU_TXEOL);
}
if (AR_SREV_MERLIN(ah) || AR_SREV_KITE(ah)) {
uint32_t isr5;
isr5 = OS_REG_READ(ah, AR_ISR_S5_S);
if (isr5 & AR_ISR_S5_TIM_TIMER)
*masked |= HAL_INT_TIM_TIMER;
}
2008-11-28 00:03:41 +00:00
/* Interrupt Mitigation on AR5416 */
#ifdef AH_AR5416_INTERRUPT_MITIGATION
2008-11-28 00:03:41 +00:00
if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
*masked |= HAL_INT_RX;
if (isr & (AR_ISR_TXMINTR | AR_ISR_TXINTM))
*masked |= HAL_INT_TX;
#endif
*masked |= mask2;
}
Introduce AR9130 (HOWL) WMAC support to the FreeBSD HAL. The AR9130 is an AR9160/AR5416 family WMAC which is glued directly to the AR913x SoC peripheral bus (APB) rather than via a PCI/PCIe bridge. The specifics: * A new build option is required to use the AR9130 - AH_SUPPORT_AR9130. This is needed due to the different location the RTC registers live with this chip; hopefully this will be undone in the future. This does currently mean that enabling this option will break non-AR9130 builds, so don't enable it unless you're specifically building an image for the AR913x SoC. * Add the new probe, attach, EEPROM and PLL methods specific to Howl. * Add a work-around to ah_eeprom_v14.c which disables some of the checks for endian-ness and magic in the EEPROM image if an eepromdata block is provided. This'll be fixed at a later stage by porting the ath9k probe code and making sure it doesn't break in other setups (which my previous attempt at this did.) * Sprinkle Howl modifications throughput the interrupt path - it doesn't implement the SYNC interrupt registers, so ignore those. * Sprinkle Howl chip powerup/down throughout the reset path; the RTC methods were * Sprinkle some other Howl workarounds in the reset path. * Hard-code an alternative setup for the AR_CFG register for Howl, that sets up things suitable for Big-Endian MIPS (which is the only platform this chip is glued to.) This has been tested on the AR913x based TP-Link WR-1043nd mode, in legacy, HT/20 and HT/40 modes. Caveats: * 2ghz has only been tested. I've not seen any 5ghz radios glued to this chipset so I can't test it. * AR5416_INTERRUPT_MITIGATION is not supported on the AR9130. At least, it isn't implemented in ath9k. Please don't enable this. * This hasn't been tested in MBSS mode or in RX/TX block-aggregation mode.
2011-04-28 12:47:40 +00:00
if (AR_SREV_HOWL(ah))
return AH_TRUE;
2008-11-28 00:03:41 +00:00
if (sync_cause != 0) {
if (sync_cause & (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) {
*masked |= HAL_INT_FATAL;
}
if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RADM CPL timeout\n",
__func__);
OS_REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
OS_REG_WRITE(ah, AR_RC, 0);
*masked |= HAL_INT_FATAL;
}
/*
* On fatal errors collect ISR state for debugging.
*/
if (*masked & HAL_INT_FATAL) {
AH_PRIVATE(ah)->ah_fatalState[0] = isr;
AH_PRIVATE(ah)->ah_fatalState[1] = sync_cause;
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: fatal error, ISR_RAC 0x%x SYNC_CAUSE 0x%x\n",
__func__, isr, sync_cause);
}
OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
/* NB: flush write */
(void) OS_REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
}
return AH_TRUE;
}
/*
* Atomically enables NIC interrupts. Interrupts are passed in
* via the enumerated bitmask in ints.
*/
HAL_INT
ar5416SetInterrupts(struct ath_hal *ah, HAL_INT ints)
{
struct ath_hal_5212 *ahp = AH5212(ah);
uint32_t omask = ahp->ah_maskReg;
uint32_t mask, mask2;
2008-11-28 00:03:41 +00:00
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: 0x%x => 0x%x\n",
__func__, omask, ints);
if (omask & HAL_INT_GLOBAL) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: disable IER\n", __func__);
OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
(void) OS_REG_READ(ah, AR_IER);
Introduce AR9130 (HOWL) WMAC support to the FreeBSD HAL. The AR9130 is an AR9160/AR5416 family WMAC which is glued directly to the AR913x SoC peripheral bus (APB) rather than via a PCI/PCIe bridge. The specifics: * A new build option is required to use the AR9130 - AH_SUPPORT_AR9130. This is needed due to the different location the RTC registers live with this chip; hopefully this will be undone in the future. This does currently mean that enabling this option will break non-AR9130 builds, so don't enable it unless you're specifically building an image for the AR913x SoC. * Add the new probe, attach, EEPROM and PLL methods specific to Howl. * Add a work-around to ah_eeprom_v14.c which disables some of the checks for endian-ness and magic in the EEPROM image if an eepromdata block is provided. This'll be fixed at a later stage by porting the ath9k probe code and making sure it doesn't break in other setups (which my previous attempt at this did.) * Sprinkle Howl modifications throughput the interrupt path - it doesn't implement the SYNC interrupt registers, so ignore those. * Sprinkle Howl chip powerup/down throughout the reset path; the RTC methods were * Sprinkle some other Howl workarounds in the reset path. * Hard-code an alternative setup for the AR_CFG register for Howl, that sets up things suitable for Big-Endian MIPS (which is the only platform this chip is glued to.) This has been tested on the AR913x based TP-Link WR-1043nd mode, in legacy, HT/20 and HT/40 modes. Caveats: * 2ghz has only been tested. I've not seen any 5ghz radios glued to this chipset so I can't test it. * AR5416_INTERRUPT_MITIGATION is not supported on the AR9130. At least, it isn't implemented in ath9k. Please don't enable this. * This hasn't been tested in MBSS mode or in RX/TX block-aggregation mode.
2011-04-28 12:47:40 +00:00
if (! AR_SREV_HOWL(ah)) {
OS_REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
(void) OS_REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2008-11-28 00:03:41 +00:00
Introduce AR9130 (HOWL) WMAC support to the FreeBSD HAL. The AR9130 is an AR9160/AR5416 family WMAC which is glued directly to the AR913x SoC peripheral bus (APB) rather than via a PCI/PCIe bridge. The specifics: * A new build option is required to use the AR9130 - AH_SUPPORT_AR9130. This is needed due to the different location the RTC registers live with this chip; hopefully this will be undone in the future. This does currently mean that enabling this option will break non-AR9130 builds, so don't enable it unless you're specifically building an image for the AR913x SoC. * Add the new probe, attach, EEPROM and PLL methods specific to Howl. * Add a work-around to ah_eeprom_v14.c which disables some of the checks for endian-ness and magic in the EEPROM image if an eepromdata block is provided. This'll be fixed at a later stage by porting the ath9k probe code and making sure it doesn't break in other setups (which my previous attempt at this did.) * Sprinkle Howl modifications throughput the interrupt path - it doesn't implement the SYNC interrupt registers, so ignore those. * Sprinkle Howl chip powerup/down throughout the reset path; the RTC methods were * Sprinkle some other Howl workarounds in the reset path. * Hard-code an alternative setup for the AR_CFG register for Howl, that sets up things suitable for Big-Endian MIPS (which is the only platform this chip is glued to.) This has been tested on the AR913x based TP-Link WR-1043nd mode, in legacy, HT/20 and HT/40 modes. Caveats: * 2ghz has only been tested. I've not seen any 5ghz radios glued to this chipset so I can't test it. * AR5416_INTERRUPT_MITIGATION is not supported on the AR9130. At least, it isn't implemented in ath9k. Please don't enable this. * This hasn't been tested in MBSS mode or in RX/TX block-aggregation mode.
2011-04-28 12:47:40 +00:00
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
(void) OS_REG_READ(ah, AR_INTR_SYNC_ENABLE);
}
2008-11-28 00:03:41 +00:00
}
mask = ints & HAL_INT_COMMON;
mask2 = 0;
#ifdef AH_AR5416_INTERRUPT_MITIGATION
/*
* Overwrite default mask if Interrupt mitigation
* is specified for AR5416
*/
mask = ints & HAL_INT_COMMON;
if (ints & HAL_INT_TX)
mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
if (ints & HAL_INT_RX)
mask |= AR_IMR_RXERR | AR_IMR_RXMINTR | AR_IMR_RXINTM;
if (ints & HAL_INT_TX) {
if (ahp->ah_txErrInterruptMask)
mask |= AR_IMR_TXERR;
if (ahp->ah_txEolInterruptMask)
mask |= AR_IMR_TXEOL;
}
#else
2008-11-28 00:03:41 +00:00
if (ints & HAL_INT_TX) {
if (ahp->ah_txOkInterruptMask)
mask |= AR_IMR_TXOK;
if (ahp->ah_txErrInterruptMask)
mask |= AR_IMR_TXERR;
if (ahp->ah_txDescInterruptMask)
mask |= AR_IMR_TXDESC;
if (ahp->ah_txEolInterruptMask)
mask |= AR_IMR_TXEOL;
}
if (ints & HAL_INT_RX)
mask |= AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXDESC;
#endif
if (ints & (HAL_INT_BMISC)) {
mask |= AR_IMR_BCNMISC;
if (ints & HAL_INT_TIM)
mask2 |= AR_IMR_S2_TIM;
if (ints & HAL_INT_DTIM)
mask2 |= AR_IMR_S2_DTIM;
if (ints & HAL_INT_DTIMSYNC)
mask2 |= AR_IMR_S2_DTIMSYNC;
if (ints & HAL_INT_CABEND)
mask2 |= (AR_IMR_S2_CABEND );
if (ints & HAL_INT_CST)
mask2 |= AR_IMR_S2_CST;
if (ints & HAL_INT_TSFOOR)
mask2 |= AR_IMR_S2_TSFOOR;
}
if (ints & (HAL_INT_GTT | HAL_INT_CST)) {
mask |= AR_IMR_BCNMISC;
if (ints & HAL_INT_GTT)
mask2 |= AR_IMR_S2_GTT;
if (ints & HAL_INT_CST)
mask2 |= AR_IMR_S2_CST;
}
2008-11-28 00:03:41 +00:00
/* Write the new IMR and store off our SW copy. */
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: new IMR 0x%x\n", __func__, mask);
OS_REG_WRITE(ah, AR_IMR, mask);
mask = OS_REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
AR_IMR_S2_DTIM |
AR_IMR_S2_DTIMSYNC |
AR_IMR_S2_CABEND |
AR_IMR_S2_CABTO |
AR_IMR_S2_TSFOOR |
AR_IMR_S2_GTT |
AR_IMR_S2_CST);
OS_REG_WRITE(ah, AR_IMR_S2, mask | mask2);
ahp->ah_maskReg = ints;
/* Re-enable interrupts if they were enabled before. */
if (ints & HAL_INT_GLOBAL) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: enable IER\n", __func__);
OS_REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
Introduce AR9130 (HOWL) WMAC support to the FreeBSD HAL. The AR9130 is an AR9160/AR5416 family WMAC which is glued directly to the AR913x SoC peripheral bus (APB) rather than via a PCI/PCIe bridge. The specifics: * A new build option is required to use the AR9130 - AH_SUPPORT_AR9130. This is needed due to the different location the RTC registers live with this chip; hopefully this will be undone in the future. This does currently mean that enabling this option will break non-AR9130 builds, so don't enable it unless you're specifically building an image for the AR913x SoC. * Add the new probe, attach, EEPROM and PLL methods specific to Howl. * Add a work-around to ah_eeprom_v14.c which disables some of the checks for endian-ness and magic in the EEPROM image if an eepromdata block is provided. This'll be fixed at a later stage by porting the ath9k probe code and making sure it doesn't break in other setups (which my previous attempt at this did.) * Sprinkle Howl modifications throughput the interrupt path - it doesn't implement the SYNC interrupt registers, so ignore those. * Sprinkle Howl chip powerup/down throughout the reset path; the RTC methods were * Sprinkle some other Howl workarounds in the reset path. * Hard-code an alternative setup for the AR_CFG register for Howl, that sets up things suitable for Big-Endian MIPS (which is the only platform this chip is glued to.) This has been tested on the AR913x based TP-Link WR-1043nd mode, in legacy, HT/20 and HT/40 modes. Caveats: * 2ghz has only been tested. I've not seen any 5ghz radios glued to this chipset so I can't test it. * AR5416_INTERRUPT_MITIGATION is not supported on the AR9130. At least, it isn't implemented in ath9k. Please don't enable this. * This hasn't been tested in MBSS mode or in RX/TX block-aggregation mode.
2011-04-28 12:47:40 +00:00
if (! AR_SREV_HOWL(ah)) {
mask = AR_INTR_MAC_IRQ;
if (ints & HAL_INT_GPIO)
mask |= SM(AH5416(ah)->ah_gpioMask,
AR_INTR_ASYNC_MASK_GPIO);
OS_REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, mask);
OS_REG_WRITE(ah, AR_INTR_ASYNC_MASK, mask);
mask = AR_INTR_SYNC_DEFAULT;
if (ints & HAL_INT_GPIO)
mask |= SM(AH5416(ah)->ah_gpioMask,
AR_INTR_SYNC_MASK_GPIO);
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, mask);
OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, mask);
}
2008-11-28 00:03:41 +00:00
}
return omask;
}