freebsd-skq/sys/cam/ata/ata_all.h

128 lines
4.3 KiB
C
Raw Normal View History

Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
/*-
* Copyright (c) 2009 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef CAM_ATA_ALL_H
#define CAM_ATA_ALL_H 1
#include <sys/ata.h>
struct ccb_ataio;
struct cam_periph;
union ccb;
struct ata_cmd {
u_int8_t flags; /* ATA command flags */
#define CAM_ATAIO_48BIT 0x01 /* Command has 48-bit format */
#define CAM_ATAIO_FPDMA 0x02 /* FPDMA command */
#define CAM_ATAIO_CONTROL 0x04 /* Control, not a command */
#define CAM_ATAIO_NEEDRESULT 0x08 /* Request requires result. */
#define CAM_ATAIO_DMA 0x10 /* DMA command */
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
u_int8_t command;
u_int8_t features;
u_int8_t lba_low;
u_int8_t lba_mid;
u_int8_t lba_high;
u_int8_t device;
u_int8_t lba_low_exp;
u_int8_t lba_mid_exp;
u_int8_t lba_high_exp;
u_int8_t features_exp;
u_int8_t sector_count;
u_int8_t sector_count_exp;
u_int8_t control;
};
struct ata_res {
u_int8_t flags; /* ATA command flags */
#define CAM_ATAIO_48BIT 0x01 /* Command has 48-bit format */
u_int8_t status;
u_int8_t error;
u_int8_t lba_low;
u_int8_t lba_mid;
u_int8_t lba_high;
u_int8_t device;
u_int8_t lba_low_exp;
u_int8_t lba_mid_exp;
u_int8_t lba_high_exp;
u_int8_t sector_count;
u_int8_t sector_count_exp;
};
int ata_version(int ver);
char * ata_op_string(struct ata_cmd *cmd);
char * ata_cmd_string(struct ata_cmd *cmd, char *cmd_string, size_t len);
char * ata_res_string(struct ata_res *res, char *res_string, size_t len);
int ata_command_sbuf(struct ccb_ataio *ataio, struct sbuf *sb);
int ata_status_sbuf(struct ccb_ataio *ataio, struct sbuf *sb);
int ata_res_sbuf(struct ccb_ataio *ataio, struct sbuf *sb);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
void ata_print_ident(struct ata_params *ident_data);
uint32_t ata_logical_sector_size(struct ata_params *ident_data);
uint64_t ata_physical_sector_size(struct ata_params *ident_data);
uint64_t ata_logical_sector_offset(struct ata_params *ident_data);
void ata_28bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint8_t features,
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
uint32_t lba, uint8_t sector_count);
void ata_48bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint16_t features,
uint64_t lba, uint16_t sector_count);
void ata_ncq_cmd(struct ccb_ataio *ataio, uint8_t cmd,
uint64_t lba, uint16_t sector_count);
void ata_reset_cmd(struct ccb_ataio *ataio);
void ata_pm_read_cmd(struct ccb_ataio *ataio, int reg, int port);
2009-11-04 16:37:13 +00:00
void ata_pm_write_cmd(struct ccb_ataio *ataio, int reg, int port, uint32_t val);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
void ata_bswap(int8_t *buf, int len);
void ata_btrim(int8_t *buf, int len);
void ata_bpack(int8_t *src, int8_t *dst, int len);
int ata_max_pmode(struct ata_params *ap);
int ata_max_wmode(struct ata_params *ap);
int ata_max_umode(struct ata_params *ap);
int ata_max_mode(struct ata_params *ap, int maxmode);
char * ata_mode2string(int mode);
int ata_string2mode(char *str);
u_int ata_mode2speed(int mode);
u_int ata_revision2speed(int revision);
int ata_speed2revision(u_int speed);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
int ata_identify_match(caddr_t identbuffer, caddr_t table_entry);
int ata_static_identify_match(caddr_t identbuffer, caddr_t table_entry);
Separate the parallel scsi knowledge out of the core of the XPT, and modularize it so that new transports can be created. Add a transport for SATA Add a periph+protocol layer for ATA Add a driver for AHCI-compliant hardware. Add a maxio field to CAM so that drivers can advertise their max I/O capability. Modify various drivers so that they are insulated from the value of MAXPHYS. The new ATA/SATA code supports AHCI-compliant hardware, and will override the classic ATA driver if it is loaded as a module at boot time or compiled into the kernel. The stack now support NCQ (tagged queueing) for increased performance on modern SATA drives. It also supports port multipliers. ATA drives are accessed via 'ada' device nodes. ATAPI drives are accessed via 'cd' device nodes. They can all be enumerated and manipulated via camcontrol, just like SCSI drives. SCSI commands are not translated to their ATA equivalents; ATA native commands are used throughout the entire stack, including camcontrol. See the camcontrol manpage for further details. Testing this code may require that you update your fstab, and possibly modify your BIOS to enable AHCI functionality, if available. This code is very experimental at the moment. The userland ABI/API has changed, so applications will need to be recompiled. It may change further in the near future. The 'ada' device name may also change as more infrastructure is completed in this project. The goal is to eventually put all CAM busses and devices until newbus, allowing for interesting topology and management options. Few functional changes will be seen with existing SCSI/SAS/FC drivers, though the userland ABI has still changed. In the future, transports specific modules for SAS and FC may appear in order to better support the topologies and capabilities of these technologies. The modularization of CAM and the addition of the ATA/SATA modules is meant to break CAM out of the mold of being specific to SCSI, letting it grow to be a framework for arbitrary transports and protocols. It also allows drivers to be written to support discrete hardware without jeopardizing the stability of non-related hardware. While only an AHCI driver is provided now, a Silicon Image driver is also in the works. Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware is possible and encouraged. Help with new transports is also encouraged. Submitted by: scottl, mav Approved by: re
2009-07-10 08:18:08 +00:00
#endif