2001-06-01 10:02:28 +00:00
|
|
|
|
2005-01-07 01:45:51 +00:00
|
|
|
/*-
|
2008-02-06 15:40:30 +00:00
|
|
|
* Copyright (c) 2008 Michael J. Silbersack.
|
2001-06-01 10:02:28 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
2008-02-06 15:40:30 +00:00
|
|
|
* notice unmodified, this list of conditions, and the following
|
|
|
|
* disclaimer.
|
2001-06-01 10:02:28 +00:00
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
2008-02-06 15:40:30 +00:00
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* IP ID generation is a fascinating topic.
|
|
|
|
*
|
|
|
|
* In order to avoid ID collisions during packet reassembly, common sense
|
|
|
|
* dictates that the period between reuse of IDs be as large as possible.
|
|
|
|
* This leads to the classic implementation of a system-wide counter, thereby
|
|
|
|
* ensuring that IDs repeat only once every 2^16 packets.
|
|
|
|
*
|
|
|
|
* Subsequent security researchers have pointed out that using a global
|
|
|
|
* counter makes ID values predictable. This predictability allows traffic
|
|
|
|
* analysis, idle scanning, and even packet injection in specific cases.
|
|
|
|
* These results suggest that IP IDs should be as random as possible.
|
|
|
|
*
|
|
|
|
* The "searchable queues" algorithm used in this IP ID implementation was
|
|
|
|
* proposed by Amit Klein. It is a compromise between the above two
|
|
|
|
* viewpoints that has provable behavior that can be tuned to the user's
|
|
|
|
* requirements.
|
|
|
|
*
|
|
|
|
* The basic concept is that we supplement a standard random number generator
|
|
|
|
* with a queue of the last L IDs that we have handed out to ensure that all
|
|
|
|
* IDs have a period of at least L.
|
|
|
|
*
|
|
|
|
* To efficiently implement this idea, we keep two data structures: a
|
|
|
|
* circular array of IDs of size L and a bitstring of 65536 bits.
|
2001-06-01 10:02:28 +00:00
|
|
|
*
|
2008-02-06 15:40:30 +00:00
|
|
|
* To start, we ask the RNG for a new ID. A quick index into the bitstring
|
|
|
|
* is used to determine if this is a recently used value. The process is
|
|
|
|
* repeated until a value is returned that is not in the bitstring.
|
2001-06-01 10:02:28 +00:00
|
|
|
*
|
2008-02-06 15:40:30 +00:00
|
|
|
* Having found a usable ID, we remove the ID stored at the current position
|
|
|
|
* in the queue from the bitstring and replace it with our new ID. Our new
|
|
|
|
* ID is then added to the bitstring and the queue pointer is incremented.
|
2001-06-01 10:02:28 +00:00
|
|
|
*
|
2008-02-06 15:40:30 +00:00
|
|
|
* The lower limit of 512 was chosen because there doesn't seem to be much
|
|
|
|
* point to having a smaller value. The upper limit of 32768 was chosen for
|
|
|
|
* two reasons. First, every step above 32768 decreases the entropy. Taken
|
|
|
|
* to an extreme, 65533 would offer 1 bit of entropy. Second, the number of
|
|
|
|
* attempts it takes the algorithm to find an unused ID drastically
|
|
|
|
* increases, killing performance. The default value of 8192 was chosen
|
|
|
|
* because it provides a good tradeoff between randomness and non-repetition.
|
|
|
|
*
|
|
|
|
* With L=8192, the queue will use 16K of memory. The bitstring always
|
|
|
|
* uses 8K of memory. No memory is allocated until the use of random ids is
|
|
|
|
* enabled.
|
2001-06-01 10:02:28 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
2015-04-01 22:26:39 +00:00
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/counter.h>
|
2015-04-02 00:30:53 +00:00
|
|
|
#include <sys/kernel.h>
|
2015-04-01 22:26:39 +00:00
|
|
|
#include <sys/malloc.h>
|
2008-02-06 15:40:30 +00:00
|
|
|
#include <sys/lock.h>
|
|
|
|
#include <sys/mutex.h>
|
2001-06-01 10:02:28 +00:00
|
|
|
#include <sys/random.h>
|
2015-04-01 22:26:39 +00:00
|
|
|
#include <sys/smp.h>
|
2008-02-06 15:40:30 +00:00
|
|
|
#include <sys/sysctl.h>
|
2015-03-28 16:59:57 +00:00
|
|
|
#include <sys/bitstring.h>
|
|
|
|
|
|
|
|
#include <net/vnet.h>
|
|
|
|
|
2008-02-06 15:40:30 +00:00
|
|
|
#include <netinet/in.h>
|
2015-04-01 22:26:39 +00:00
|
|
|
#include <netinet/ip.h>
|
2008-02-06 15:40:30 +00:00
|
|
|
#include <netinet/ip_var.h>
|
|
|
|
|
2015-04-01 22:26:39 +00:00
|
|
|
/*
|
|
|
|
* By default we generate IP ID only for non-atomic datagrams, as
|
|
|
|
* suggested by RFC6864. We use per-CPU counter for that, or if
|
|
|
|
* user wants to, we can turn on random ID generation.
|
|
|
|
*/
|
|
|
|
static VNET_DEFINE(int, ip_rfc6864) = 1;
|
|
|
|
static VNET_DEFINE(int, ip_do_randomid) = 0;
|
|
|
|
#define V_ip_rfc6864 VNET(ip_rfc6864)
|
|
|
|
#define V_ip_do_randomid VNET(ip_do_randomid)
|
2008-02-06 15:40:30 +00:00
|
|
|
|
2015-04-01 22:26:39 +00:00
|
|
|
/*
|
|
|
|
* Random ID state engine.
|
|
|
|
*/
|
|
|
|
static MALLOC_DEFINE(M_IPID, "ipid", "randomized ip id state");
|
2015-03-28 16:59:57 +00:00
|
|
|
static VNET_DEFINE(uint16_t *, id_array);
|
|
|
|
static VNET_DEFINE(bitstr_t *, id_bits);
|
|
|
|
static VNET_DEFINE(int, array_ptr);
|
|
|
|
static VNET_DEFINE(int, array_size);
|
|
|
|
static VNET_DEFINE(int, random_id_collisions);
|
|
|
|
static VNET_DEFINE(int, random_id_total);
|
|
|
|
static VNET_DEFINE(struct mtx, ip_id_mtx);
|
|
|
|
#define V_id_array VNET(id_array)
|
|
|
|
#define V_id_bits VNET(id_bits)
|
|
|
|
#define V_array_ptr VNET(array_ptr)
|
|
|
|
#define V_array_size VNET(array_size)
|
|
|
|
#define V_random_id_collisions VNET(random_id_collisions)
|
|
|
|
#define V_random_id_total VNET(random_id_total)
|
|
|
|
#define V_ip_id_mtx VNET(ip_id_mtx)
|
2008-02-06 15:40:30 +00:00
|
|
|
|
2015-04-01 22:26:39 +00:00
|
|
|
/*
|
|
|
|
* Non-random ID state engine is simply a per-cpu counter.
|
|
|
|
*/
|
|
|
|
static VNET_DEFINE(counter_u64_t, ip_id);
|
|
|
|
#define V_ip_id VNET(ip_id)
|
|
|
|
|
|
|
|
static int sysctl_ip_randomid(SYSCTL_HANDLER_ARGS);
|
2008-02-06 15:40:30 +00:00
|
|
|
static int sysctl_ip_id_change(SYSCTL_HANDLER_ARGS);
|
2015-04-01 22:26:39 +00:00
|
|
|
static void ip_initid(int);
|
|
|
|
static uint16_t ip_randomid(void);
|
2015-03-28 16:59:57 +00:00
|
|
|
static void ipid_sysinit(void);
|
|
|
|
static void ipid_sysuninit(void);
|
2008-02-06 15:40:30 +00:00
|
|
|
|
2008-12-02 21:37:28 +00:00
|
|
|
SYSCTL_DECL(_net_inet_ip);
|
2015-04-01 22:26:39 +00:00
|
|
|
SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id,
|
|
|
|
CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RW,
|
|
|
|
&VNET_NAME(ip_do_randomid), 0, sysctl_ip_randomid, "IU",
|
|
|
|
"Assign random ip_id values");
|
|
|
|
SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_VNET | CTLFLAG_RW,
|
|
|
|
&VNET_NAME(ip_rfc6864), 0,
|
|
|
|
"Use constant IP ID for atomic datagrams");
|
2015-03-28 16:59:57 +00:00
|
|
|
SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id_period,
|
|
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_VNET,
|
|
|
|
&VNET_NAME(array_size), 0, sysctl_ip_id_change, "IU", "IP ID Array size");
|
|
|
|
SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_collisions,
|
|
|
|
CTLFLAG_RD | CTLFLAG_VNET,
|
|
|
|
&VNET_NAME(random_id_collisions), 0, "Count of IP ID collisions");
|
|
|
|
SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_total, CTLFLAG_RD | CTLFLAG_VNET,
|
|
|
|
&VNET_NAME(random_id_total), 0, "Count of IP IDs created");
|
2008-02-06 15:40:30 +00:00
|
|
|
|
2015-04-01 22:26:39 +00:00
|
|
|
static int
|
|
|
|
sysctl_ip_randomid(SYSCTL_HANDLER_ARGS)
|
|
|
|
{
|
|
|
|
int error, new;
|
|
|
|
|
|
|
|
new = V_ip_do_randomid;
|
|
|
|
error = sysctl_handle_int(oidp, &new, 0, req);
|
|
|
|
if (error || req->newptr == NULL)
|
|
|
|
return (error);
|
|
|
|
if (new != 0 && new != 1)
|
|
|
|
return (EINVAL);
|
|
|
|
if (new == V_ip_do_randomid)
|
|
|
|
return (0);
|
|
|
|
if (new == 1 && V_ip_do_randomid == 0)
|
|
|
|
ip_initid(8192);
|
|
|
|
/* We don't free memory when turning random ID off, due to race. */
|
|
|
|
V_ip_do_randomid = new;
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2008-02-06 15:40:30 +00:00
|
|
|
static int
|
|
|
|
sysctl_ip_id_change(SYSCTL_HANDLER_ARGS)
|
2001-06-01 10:02:28 +00:00
|
|
|
{
|
2008-02-06 15:40:30 +00:00
|
|
|
int error, new;
|
|
|
|
|
2015-03-28 16:59:57 +00:00
|
|
|
new = V_array_size;
|
2008-02-06 15:40:30 +00:00
|
|
|
error = sysctl_handle_int(oidp, &new, 0, req);
|
|
|
|
if (error == 0 && req->newptr) {
|
2015-03-28 16:06:46 +00:00
|
|
|
if (new >= 512 && new <= 32768)
|
|
|
|
ip_initid(new);
|
|
|
|
else
|
2008-02-06 15:40:30 +00:00
|
|
|
error = EINVAL;
|
2001-06-01 10:02:28 +00:00
|
|
|
}
|
2008-02-06 15:40:30 +00:00
|
|
|
return (error);
|
2001-06-01 10:02:28 +00:00
|
|
|
}
|
|
|
|
|
2004-08-16 18:32:07 +00:00
|
|
|
static void
|
2015-03-28 16:06:46 +00:00
|
|
|
ip_initid(int new_size)
|
2001-06-01 10:02:28 +00:00
|
|
|
{
|
2015-03-28 16:06:46 +00:00
|
|
|
uint16_t *new_array;
|
|
|
|
bitstr_t *new_bits;
|
2001-06-01 10:02:28 +00:00
|
|
|
|
2015-03-28 16:06:46 +00:00
|
|
|
new_array = malloc(new_size * sizeof(uint16_t), M_IPID,
|
|
|
|
M_WAITOK | M_ZERO);
|
|
|
|
new_bits = malloc(bitstr_size(65536), M_IPID, M_WAITOK | M_ZERO);
|
2004-08-16 18:32:07 +00:00
|
|
|
|
2015-03-28 16:59:57 +00:00
|
|
|
mtx_lock(&V_ip_id_mtx);
|
|
|
|
if (V_id_array != NULL) {
|
|
|
|
free(V_id_array, M_IPID);
|
|
|
|
free(V_id_bits, M_IPID);
|
2008-02-06 15:40:30 +00:00
|
|
|
}
|
2015-03-28 16:59:57 +00:00
|
|
|
V_id_array = new_array;
|
|
|
|
V_id_bits = new_bits;
|
|
|
|
V_array_size = new_size;
|
|
|
|
V_array_ptr = 0;
|
|
|
|
V_random_id_collisions = 0;
|
|
|
|
V_random_id_total = 0;
|
|
|
|
mtx_unlock(&V_ip_id_mtx);
|
2001-06-01 10:02:28 +00:00
|
|
|
}
|
|
|
|
|
2015-04-01 22:26:39 +00:00
|
|
|
static uint16_t
|
2001-06-01 10:02:28 +00:00
|
|
|
ip_randomid(void)
|
|
|
|
{
|
2015-03-28 16:06:46 +00:00
|
|
|
uint16_t new_id;
|
2001-06-01 10:02:28 +00:00
|
|
|
|
2015-03-28 16:59:57 +00:00
|
|
|
mtx_lock(&V_ip_id_mtx);
|
2008-02-06 15:40:30 +00:00
|
|
|
/*
|
|
|
|
* To avoid a conflict with the zeros that the array is initially
|
|
|
|
* filled with, we never hand out an id of zero.
|
|
|
|
*/
|
|
|
|
new_id = 0;
|
|
|
|
do {
|
|
|
|
if (new_id != 0)
|
2015-03-28 16:59:57 +00:00
|
|
|
V_random_id_collisions++;
|
2008-02-06 15:40:30 +00:00
|
|
|
arc4rand(&new_id, sizeof(new_id), 0);
|
2015-03-28 16:59:57 +00:00
|
|
|
} while (bit_test(V_id_bits, new_id) || new_id == 0);
|
|
|
|
bit_clear(V_id_bits, V_id_array[V_array_ptr]);
|
|
|
|
bit_set(V_id_bits, new_id);
|
|
|
|
V_id_array[V_array_ptr] = new_id;
|
|
|
|
V_array_ptr++;
|
|
|
|
if (V_array_ptr == V_array_size)
|
|
|
|
V_array_ptr = 0;
|
|
|
|
V_random_id_total++;
|
|
|
|
mtx_unlock(&V_ip_id_mtx);
|
2008-02-06 15:40:30 +00:00
|
|
|
return (new_id);
|
2001-06-01 10:02:28 +00:00
|
|
|
}
|
2015-03-28 16:06:46 +00:00
|
|
|
|
2015-04-01 22:26:39 +00:00
|
|
|
void
|
|
|
|
ip_fillid(struct ip *ip)
|
|
|
|
{
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Per RFC6864 Section 4
|
|
|
|
*
|
|
|
|
* o Atomic datagrams: (DF==1) && (MF==0) && (frag_offset==0)
|
|
|
|
* o Non-atomic datagrams: (DF==0) || (MF==1) || (frag_offset>0)
|
|
|
|
*/
|
|
|
|
if (V_ip_rfc6864 && (ip->ip_off & htons(IP_DF)) == htons(IP_DF))
|
|
|
|
ip->ip_id = 0;
|
|
|
|
else if (V_ip_do_randomid)
|
|
|
|
ip->ip_id = ip_randomid();
|
|
|
|
else {
|
|
|
|
counter_u64_add(V_ip_id, 1);
|
2015-04-02 14:22:59 +00:00
|
|
|
/*
|
|
|
|
* There are two issues about this trick, to be kept in mind.
|
|
|
|
* 1) We can migrate between counter_u64_add() and next
|
|
|
|
* line, and grab counter from other CPU, resulting in too
|
|
|
|
* quick ID reuse. This is tolerable in our particular case,
|
|
|
|
* since probability of such event is much lower then reuse
|
|
|
|
* of ID due to legitimate overflow, that at modern Internet
|
|
|
|
* speeds happens all the time.
|
|
|
|
* 2) We are relying on the fact that counter(9) is based on
|
|
|
|
* UMA_ZONE_PCPU uma(9) zone. We also take only last
|
|
|
|
* sixteen bits of a counter, so we don't care about the
|
|
|
|
* fact that machines with 32-bit word update their counters
|
|
|
|
* not atomically.
|
|
|
|
*/
|
2015-04-01 22:26:39 +00:00
|
|
|
ip->ip_id = htons((*(uint64_t *)zpcpu_get(V_ip_id)) & 0xffff);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-03-28 16:06:46 +00:00
|
|
|
static void
|
2015-03-28 16:59:57 +00:00
|
|
|
ipid_sysinit(void)
|
2015-03-28 16:06:46 +00:00
|
|
|
{
|
|
|
|
|
2015-03-28 16:59:57 +00:00
|
|
|
mtx_init(&V_ip_id_mtx, "ip_id_mtx", NULL, MTX_DEF);
|
2015-04-01 22:26:39 +00:00
|
|
|
V_ip_id = counter_u64_alloc(M_WAITOK);
|
|
|
|
for (int i = 0; i < mp_ncpus; i++)
|
|
|
|
arc4rand(zpcpu_get_cpu(V_ip_id, i), sizeof(uint64_t), 0);
|
2015-03-28 16:06:46 +00:00
|
|
|
}
|
2015-03-28 16:59:57 +00:00
|
|
|
VNET_SYSINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY, ipid_sysinit, NULL);
|
|
|
|
|
|
|
|
static void
|
|
|
|
ipid_sysuninit(void)
|
|
|
|
{
|
|
|
|
|
|
|
|
mtx_destroy(&V_ip_id_mtx);
|
2015-04-01 22:26:39 +00:00
|
|
|
if (V_id_array != NULL) {
|
|
|
|
free(V_id_array, M_IPID);
|
|
|
|
free(V_id_bits, M_IPID);
|
|
|
|
}
|
|
|
|
counter_u64_free(V_ip_id);
|
2015-03-28 16:59:57 +00:00
|
|
|
}
|
|
|
|
VNET_SYSUNINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY, ipid_sysuninit, NULL);
|