2647 lines
64 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <stdlib.h>
#include <strings.h>
#include <errno.h>
#include <unistd.h>
#include <limits.h>
#include <assert.h>
#include <ctype.h>
#if defined(sun)
#include <alloca.h>
#endif
#include <dt_impl.h>
#define DT_MASK_LO 0x00000000FFFFFFFFULL
/*
* We declare this here because (1) we need it and (2) we want to avoid a
* dependency on libm in libdtrace.
*/
static long double
dt_fabsl(long double x)
{
if (x < 0)
return (-x);
return (x);
}
/*
* 128-bit arithmetic functions needed to support the stddev() aggregating
* action.
*/
static int
dt_gt_128(uint64_t *a, uint64_t *b)
{
return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
}
static int
dt_ge_128(uint64_t *a, uint64_t *b)
{
return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
}
static int
dt_le_128(uint64_t *a, uint64_t *b)
{
return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
}
/*
* Shift the 128-bit value in a by b. If b is positive, shift left.
* If b is negative, shift right.
*/
static void
dt_shift_128(uint64_t *a, int b)
{
uint64_t mask;
if (b == 0)
return;
if (b < 0) {
b = -b;
if (b >= 64) {
a[0] = a[1] >> (b - 64);
a[1] = 0;
} else {
a[0] >>= b;
mask = 1LL << (64 - b);
mask -= 1;
a[0] |= ((a[1] & mask) << (64 - b));
a[1] >>= b;
}
} else {
if (b >= 64) {
a[1] = a[0] << (b - 64);
a[0] = 0;
} else {
a[1] <<= b;
mask = a[0] >> (64 - b);
a[1] |= mask;
a[0] <<= b;
}
}
}
static int
dt_nbits_128(uint64_t *a)
{
int nbits = 0;
uint64_t tmp[2];
uint64_t zero[2] = { 0, 0 };
tmp[0] = a[0];
tmp[1] = a[1];
dt_shift_128(tmp, -1);
while (dt_gt_128(tmp, zero)) {
dt_shift_128(tmp, -1);
nbits++;
}
return (nbits);
}
static void
dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
{
uint64_t result[2];
result[0] = minuend[0] - subtrahend[0];
result[1] = minuend[1] - subtrahend[1] -
(minuend[0] < subtrahend[0] ? 1 : 0);
difference[0] = result[0];
difference[1] = result[1];
}
static void
dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
{
uint64_t result[2];
result[0] = addend1[0] + addend2[0];
result[1] = addend1[1] + addend2[1] +
(result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
sum[0] = result[0];
sum[1] = result[1];
}
/*
* The basic idea is to break the 2 64-bit values into 4 32-bit values,
* use native multiplication on those, and then re-combine into the
* resulting 128-bit value.
*
* (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
* hi1 * hi2 << 64 +
* hi1 * lo2 << 32 +
* hi2 * lo1 << 32 +
* lo1 * lo2
*/
static void
dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
{
uint64_t hi1, hi2, lo1, lo2;
uint64_t tmp[2];
hi1 = factor1 >> 32;
hi2 = factor2 >> 32;
lo1 = factor1 & DT_MASK_LO;
lo2 = factor2 & DT_MASK_LO;
product[0] = lo1 * lo2;
product[1] = hi1 * hi2;
tmp[0] = hi1 * lo2;
tmp[1] = 0;
dt_shift_128(tmp, 32);
dt_add_128(product, tmp, product);
tmp[0] = hi2 * lo1;
tmp[1] = 0;
dt_shift_128(tmp, 32);
dt_add_128(product, tmp, product);
}
/*
* This is long-hand division.
*
* We initialize subtrahend by shifting divisor left as far as possible. We
* loop, comparing subtrahend to dividend: if subtrahend is smaller, we
* subtract and set the appropriate bit in the result. We then shift
* subtrahend right by one bit for the next comparison.
*/
static void
dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
{
uint64_t result[2] = { 0, 0 };
uint64_t remainder[2];
uint64_t subtrahend[2];
uint64_t divisor_128[2];
uint64_t mask[2] = { 1, 0 };
int log = 0;
assert(divisor != 0);
divisor_128[0] = divisor;
divisor_128[1] = 0;
remainder[0] = dividend[0];
remainder[1] = dividend[1];
subtrahend[0] = divisor;
subtrahend[1] = 0;
while (divisor > 0) {
log++;
divisor >>= 1;
}
dt_shift_128(subtrahend, 128 - log);
dt_shift_128(mask, 128 - log);
while (dt_ge_128(remainder, divisor_128)) {
if (dt_ge_128(remainder, subtrahend)) {
dt_subtract_128(remainder, subtrahend, remainder);
result[0] |= mask[0];
result[1] |= mask[1];
}
dt_shift_128(subtrahend, -1);
dt_shift_128(mask, -1);
}
quotient[0] = result[0];
quotient[1] = result[1];
}
/*
* This is the long-hand method of calculating a square root.
* The algorithm is as follows:
*
* 1. Group the digits by 2 from the right.
* 2. Over the leftmost group, find the largest single-digit number
* whose square is less than that group.
* 3. Subtract the result of the previous step (2 or 4, depending) and
* bring down the next two-digit group.
* 4. For the result R we have so far, find the largest single-digit number
* x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
* (Note that this is doubling R and performing a decimal left-shift by 1
* and searching for the appropriate decimal to fill the one's place.)
* The value x is the next digit in the square root.
* Repeat steps 3 and 4 until the desired precision is reached. (We're
* dealing with integers, so the above is sufficient.)
*
* In decimal, the square root of 582,734 would be calculated as so:
*
* __7__6__3
* | 58 27 34
* -49 (7^2 == 49 => 7 is the first digit in the square root)
* --
* 9 27 (Subtract and bring down the next group.)
* 146 8 76 (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
* ----- the square root)
* 51 34 (Subtract and bring down the next group.)
* 1523 45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
* ----- the square root)
* 5 65 (remainder)
*
* The above algorithm applies similarly in binary, but note that the
* only possible non-zero value for x in step 4 is 1, so step 4 becomes a
* simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
* preceding difference?
*
* In binary, the square root of 11011011 would be calculated as so:
*
* __1__1__1__0
* | 11 01 10 11
* 01 (0 << 2 + 1 == 1 < 11 => this bit is 1)
* --
* 10 01 10 11
* 101 1 01 (1 << 2 + 1 == 101 < 1001 => next bit is 1)
* -----
* 1 00 10 11
* 1101 11 01 (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
* -------
* 1 01 11
* 11101 1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
*
*/
static uint64_t
dt_sqrt_128(uint64_t *square)
{
uint64_t result[2] = { 0, 0 };
uint64_t diff[2] = { 0, 0 };
uint64_t one[2] = { 1, 0 };
uint64_t next_pair[2];
uint64_t next_try[2];
uint64_t bit_pairs, pair_shift;
int i;
bit_pairs = dt_nbits_128(square) / 2;
pair_shift = bit_pairs * 2;
for (i = 0; i <= bit_pairs; i++) {
/*
* Bring down the next pair of bits.
*/
next_pair[0] = square[0];
next_pair[1] = square[1];
dt_shift_128(next_pair, -pair_shift);
next_pair[0] &= 0x3;
next_pair[1] = 0;
dt_shift_128(diff, 2);
dt_add_128(diff, next_pair, diff);
/*
* next_try = R << 2 + 1
*/
next_try[0] = result[0];
next_try[1] = result[1];
dt_shift_128(next_try, 2);
dt_add_128(next_try, one, next_try);
if (dt_le_128(next_try, diff)) {
dt_subtract_128(diff, next_try, diff);
dt_shift_128(result, 1);
dt_add_128(result, one, result);
} else {
dt_shift_128(result, 1);
}
pair_shift -= 2;
}
assert(result[1] == 0);
return (result[0]);
}
uint64_t
dt_stddev(uint64_t *data, uint64_t normal)
{
uint64_t avg_of_squares[2];
uint64_t square_of_avg[2];
int64_t norm_avg;
uint64_t diff[2];
/*
* The standard approximation for standard deviation is
* sqrt(average(x**2) - average(x)**2), i.e. the square root
* of the average of the squares minus the square of the average.
*/
dt_divide_128(data + 2, normal, avg_of_squares);
dt_divide_128(avg_of_squares, data[0], avg_of_squares);
norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
if (norm_avg < 0)
norm_avg = -norm_avg;
dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
dt_subtract_128(avg_of_squares, square_of_avg, diff);
return (dt_sqrt_128(diff));
}
static int
dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
dtrace_bufdesc_t *buf, size_t offs)
{
dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
dtrace_flowkind_t flow = DTRACEFLOW_NONE;
const char *str = NULL;
static const char *e_str[2] = { " -> ", " => " };
static const char *r_str[2] = { " <- ", " <= " };
static const char *ent = "entry", *ret = "return";
static int entlen = 0, retlen = 0;
dtrace_epid_t next, id = epd->dtepd_epid;
int rval;
if (entlen == 0) {
assert(retlen == 0);
entlen = strlen(ent);
retlen = strlen(ret);
}
/*
* If the name of the probe is "entry" or ends with "-entry", we
* treat it as an entry; if it is "return" or ends with "-return",
* we treat it as a return. (This allows application-provided probes
* like "method-entry" or "function-entry" to participate in flow
* indentation -- without accidentally misinterpreting popular probe
* names like "carpentry", "gentry" or "Coventry".)
*/
if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
(sub == n || sub[-1] == '-')) {
flow = DTRACEFLOW_ENTRY;
str = e_str[strcmp(p, "syscall") == 0];
} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
(sub == n || sub[-1] == '-')) {
flow = DTRACEFLOW_RETURN;
str = r_str[strcmp(p, "syscall") == 0];
}
/*
* If we're going to indent this, we need to check the ID of our last
* call. If we're looking at the same probe ID but a different EPID,
* we _don't_ want to indent. (Yes, there are some minor holes in
* this scheme -- it's a heuristic.)
*/
if (flow == DTRACEFLOW_ENTRY) {
if ((last != DTRACE_EPIDNONE && id != last &&
pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
flow = DTRACEFLOW_NONE;
}
/*
* If we're going to unindent this, it's more difficult to see if
* we don't actually want to unindent it -- we need to look at the
* _next_ EPID.
*/
if (flow == DTRACEFLOW_RETURN) {
offs += epd->dtepd_size;
do {
if (offs >= buf->dtbd_size) {
/*
* We're at the end -- maybe. If the oldest
* record is non-zero, we need to wrap.
*/
if (buf->dtbd_oldest != 0) {
offs = 0;
} else {
goto out;
}
}
next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
if (next == DTRACE_EPIDNONE)
offs += sizeof (id);
} while (next == DTRACE_EPIDNONE);
if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
return (rval);
if (next != id && npd->dtpd_id == pd->dtpd_id)
flow = DTRACEFLOW_NONE;
}
out:
if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
data->dtpda_prefix = str;
} else {
data->dtpda_prefix = "| ";
}
if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
data->dtpda_indent -= 2;
data->dtpda_flow = flow;
return (0);
}
static int
dt_nullprobe()
{
return (DTRACE_CONSUME_THIS);
}
static int
dt_nullrec()
{
return (DTRACE_CONSUME_NEXT);
}
int
dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
uint64_t normal, long double total, char positives, char negatives)
{
long double f;
uint_t depth, len = 40;
const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
const char *spaces = " ";
assert(strlen(ats) == len && strlen(spaces) == len);
assert(!(total == 0 && (positives || negatives)));
assert(!(val < 0 && !negatives));
assert(!(val > 0 && !positives));
assert(!(val != 0 && total == 0));
if (!negatives) {
if (positives) {
f = (dt_fabsl((long double)val) * len) / total;
depth = (uint_t)(f + 0.5);
} else {
depth = 0;
}
return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
spaces + depth, (long long)val / normal));
}
if (!positives) {
f = (dt_fabsl((long double)val) * len) / total;
depth = (uint_t)(f + 0.5);
return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
ats + len - depth, (long long)val / normal));
}
/*
* If we're here, we have both positive and negative bucket values.
* To express this graphically, we're going to generate both positive
* and negative bars separated by a centerline. These bars are half
* the size of normal quantize()/lquantize() bars, so we divide the
* length in half before calculating the bar length.
*/
len /= 2;
ats = &ats[len];
spaces = &spaces[len];
f = (dt_fabsl((long double)val) * len) / total;
depth = (uint_t)(f + 0.5);
if (val <= 0) {
return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
ats + len - depth, len, "", (long long)val / normal));
} else {
return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
ats + len - depth, spaces + depth,
(long long)val / normal));
}
}
int
dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
size_t size, uint64_t normal)
{
const int64_t *data = addr;
int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
long double total = 0;
char positives = 0, negatives = 0;
if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
return (dt_set_errno(dtp, EDT_DMISMATCH));
while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
first_bin++;
if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
/*
* There isn't any data. This is possible if (and only if)
* negative increment values have been used. In this case,
* we'll print the buckets around 0.
*/
first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
} else {
if (first_bin > 0)
first_bin--;
while (last_bin > 0 && data[last_bin] == 0)
last_bin--;
if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
last_bin++;
}
for (i = first_bin; i <= last_bin; i++) {
positives |= (data[i] > 0);
negatives |= (data[i] < 0);
total += dt_fabsl((long double)data[i]);
}
if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
"------------- Distribution -------------", "count") < 0)
return (-1);
for (i = first_bin; i <= last_bin; i++) {
if (dt_printf(dtp, fp, "%16lld ",
(long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
return (-1);
if (dt_print_quantline(dtp, fp, data[i], normal, total,
positives, negatives) < 0)
return (-1);
}
return (0);
}
int
dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
size_t size, uint64_t normal)
{
const int64_t *data = addr;
int i, first_bin, last_bin, base;
uint64_t arg;
long double total = 0;
uint16_t step, levels;
char positives = 0, negatives = 0;
if (size < sizeof (uint64_t))
return (dt_set_errno(dtp, EDT_DMISMATCH));
arg = *data++;
size -= sizeof (uint64_t);
base = DTRACE_LQUANTIZE_BASE(arg);
step = DTRACE_LQUANTIZE_STEP(arg);
levels = DTRACE_LQUANTIZE_LEVELS(arg);
first_bin = 0;
last_bin = levels + 1;
if (size != sizeof (uint64_t) * (levels + 2))
return (dt_set_errno(dtp, EDT_DMISMATCH));
while (first_bin <= levels + 1 && data[first_bin] == 0)
first_bin++;
if (first_bin > levels + 1) {
first_bin = 0;
last_bin = 2;
} else {
if (first_bin > 0)
first_bin--;
while (last_bin > 0 && data[last_bin] == 0)
last_bin--;
if (last_bin < levels + 1)
last_bin++;
}
for (i = first_bin; i <= last_bin; i++) {
positives |= (data[i] > 0);
negatives |= (data[i] < 0);
total += dt_fabsl((long double)data[i]);
}
if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
"------------- Distribution -------------", "count") < 0)
return (-1);
for (i = first_bin; i <= last_bin; i++) {
char c[32];
int err;
if (i == 0) {
(void) snprintf(c, sizeof (c), "< %d",
base / (uint32_t)normal);
err = dt_printf(dtp, fp, "%16s ", c);
} else if (i == levels + 1) {
(void) snprintf(c, sizeof (c), ">= %d",
base + (levels * step));
err = dt_printf(dtp, fp, "%16s ", c);
} else {
err = dt_printf(dtp, fp, "%16d ",
base + (i - 1) * step);
}
if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
total, positives, negatives) < 0)
return (-1);
}
return (0);
}
/*ARGSUSED*/
static int
dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
size_t size, uint64_t normal)
{
/* LINTED - alignment */
int64_t *data = (int64_t *)addr;
return (dt_printf(dtp, fp, " %16lld", data[0] ?
(long long)(data[1] / (int64_t)normal / data[0]) : 0));
}
/*ARGSUSED*/
static int
dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
size_t size, uint64_t normal)
{
/* LINTED - alignment */
uint64_t *data = (uint64_t *)addr;
return (dt_printf(dtp, fp, " %16llu", data[0] ?
(unsigned long long) dt_stddev(data, normal) : 0));
}
/*ARGSUSED*/
int
dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
size_t nbytes, int width, int quiet, int raw)
{
/*
* If the byte stream is a series of printable characters, followed by
* a terminating byte, we print it out as a string. Otherwise, we
* assume that it's something else and just print the bytes.
*/
int i, j, margin = 5;
char *c = (char *)addr;
if (nbytes == 0)
return (0);
if (raw || dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
goto raw;
for (i = 0; i < nbytes; i++) {
/*
* We define a "printable character" to be one for which
* isprint(3C) returns non-zero, isspace(3C) returns non-zero,
* or a character which is either backspace or the bell.
* Backspace and the bell are regrettably special because
* they fail the first two tests -- and yet they are entirely
* printable. These are the only two control characters that
* have meaning for the terminal and for which isprint(3C) and
* isspace(3C) return 0.
*/
if (isprint(c[i]) || isspace(c[i]) ||
c[i] == '\b' || c[i] == '\a')
continue;
if (c[i] == '\0' && i > 0) {
/*
* This looks like it might be a string. Before we
* assume that it is indeed a string, check the
* remainder of the byte range; if it contains
* additional non-nul characters, we'll assume that
* it's a binary stream that just happens to look like
* a string, and we'll print out the individual bytes.
*/
for (j = i + 1; j < nbytes; j++) {
if (c[j] != '\0')
break;
}
if (j != nbytes)
break;
if (quiet)
return (dt_printf(dtp, fp, "%s", c));
else
return (dt_printf(dtp, fp, " %-*s", width, c));
}
break;
}
if (i == nbytes) {
/*
* The byte range is all printable characters, but there is
* no trailing nul byte. We'll assume that it's a string and
* print it as such.
*/
char *s = alloca(nbytes + 1);
bcopy(c, s, nbytes);
s[nbytes] = '\0';
return (dt_printf(dtp, fp, " %-*s", width, s));
}
raw:
if (dt_printf(dtp, fp, "\n%*s ", margin, "") < 0)
return (-1);
for (i = 0; i < 16; i++)
if (dt_printf(dtp, fp, " %c", "0123456789abcdef"[i]) < 0)
return (-1);
if (dt_printf(dtp, fp, " 0123456789abcdef\n") < 0)
return (-1);
for (i = 0; i < nbytes; i += 16) {
if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
return (-1);
for (j = i; j < i + 16 && j < nbytes; j++) {
if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
return (-1);
}
while (j++ % 16) {
if (dt_printf(dtp, fp, " ") < 0)
return (-1);
}
if (dt_printf(dtp, fp, " ") < 0)
return (-1);
for (j = i; j < i + 16 && j < nbytes; j++) {
if (dt_printf(dtp, fp, "%c",
c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
return (-1);
}
if (dt_printf(dtp, fp, "\n") < 0)
return (-1);
}
return (0);
}
int
dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
caddr_t addr, int depth, int size)
{
dtrace_syminfo_t dts;
GElf_Sym sym;
int i, indent;
char c[PATH_MAX * 2];
uint64_t pc;
if (dt_printf(dtp, fp, "\n") < 0)
return (-1);
if (format == NULL)
format = "%s";
if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
else
indent = _dtrace_stkindent;
for (i = 0; i < depth; i++) {
switch (size) {
case sizeof (uint32_t):
/* LINTED - alignment */
pc = *((uint32_t *)addr);
break;
case sizeof (uint64_t):
/* LINTED - alignment */
pc = *((uint64_t *)addr);
break;
default:
return (dt_set_errno(dtp, EDT_BADSTACKPC));
}
if (pc == 0)
break;
addr += size;
if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
return (-1);
if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
if (pc > sym.st_value) {
(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
dts.dts_object, dts.dts_name,
pc - sym.st_value);
} else {
(void) snprintf(c, sizeof (c), "%s`%s",
dts.dts_object, dts.dts_name);
}
} else {
/*
* We'll repeat the lookup, but this time we'll specify
* a NULL GElf_Sym -- indicating that we're only
* interested in the containing module.
*/
if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
(void) snprintf(c, sizeof (c), "%s`0x%llx",
dts.dts_object, pc);
} else {
(void) snprintf(c, sizeof (c), "0x%llx", pc);
}
}
if (dt_printf(dtp, fp, format, c) < 0)
return (-1);
if (dt_printf(dtp, fp, "\n") < 0)
return (-1);
}
return (0);
}
int
dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
caddr_t addr, uint64_t arg)
{
/* LINTED - alignment */
uint64_t *pc = (uint64_t *)addr;
uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
const char *str = strsize ? strbase : NULL;
int err = 0;
char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
struct ps_prochandle *P;
GElf_Sym sym;
int i, indent;
pid_t pid;
if (depth == 0)
return (0);
pid = (pid_t)*pc++;
if (dt_printf(dtp, fp, "\n") < 0)
return (-1);
if (format == NULL)
format = "%s";
if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
else
indent = _dtrace_stkindent;
/*
* Ultimately, we need to add an entry point in the library vector for
* determining <symbol, offset> from <pid, address>. For now, if
* this is a vector open, we just print the raw address or string.
*/
if (dtp->dt_vector == NULL)
P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
else
P = NULL;
if (P != NULL)
dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
for (i = 0; i < depth && pc[i] != 0; i++) {
const prmap_t *map;
if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
break;
#if defined(sun)
if (P != NULL && Plookup_by_addr(P, pc[i],
#else
if (P != NULL && proc_addr2sym(P, pc[i],
#endif
name, sizeof (name), &sym) == 0) {
#if defined(sun)
(void) Pobjname(P, pc[i], objname, sizeof (objname));
#else
(void) proc_objname(P, pc[i], objname, sizeof (objname));
#endif
if (pc[i] > sym.st_value) {
(void) snprintf(c, sizeof (c),
"%s`%s+0x%llx", dt_basename(objname), name,
(u_longlong_t)(pc[i] - sym.st_value));
} else {
(void) snprintf(c, sizeof (c),
"%s`%s", dt_basename(objname), name);
}
} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
#if defined(sun)
(P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
(map->pr_mflags & MA_WRITE)))) {
#else
(P != NULL && ((map = proc_addr2map(P, pc[i])) == NULL))) {
#endif
/*
* If the current string pointer in the string table
* does not point to an empty string _and_ the program
* counter falls in a writable region, we'll use the
* string from the string table instead of the raw
* address. This last condition is necessary because
* some (broken) ustack helpers will return a string
* even for a program counter that they can't
* identify. If we have a string for a program
* counter that falls in a segment that isn't
* writable, we assume that we have fallen into this
* case and we refuse to use the string.
*/
(void) snprintf(c, sizeof (c), "%s", str);
} else {
#if defined(sun)
if (P != NULL && Pobjname(P, pc[i], objname,
#else
if (P != NULL && proc_objname(P, pc[i], objname,
#endif
sizeof (objname)) != 0) {
(void) snprintf(c, sizeof (c), "%s`0x%llx",
dt_basename(objname), (u_longlong_t)pc[i]);
} else {
(void) snprintf(c, sizeof (c), "0x%llx",
(u_longlong_t)pc[i]);
}
}
if ((err = dt_printf(dtp, fp, format, c)) < 0)
break;
if ((err = dt_printf(dtp, fp, "\n")) < 0)
break;
if (str != NULL && str[0] == '@') {
/*
* If the first character of the string is an "at" sign,
* then the string is inferred to be an annotation --
* and it is printed out beneath the frame and offset
* with brackets.
*/
if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
break;
(void) snprintf(c, sizeof (c), " [ %s ]", &str[1]);
if ((err = dt_printf(dtp, fp, format, c)) < 0)
break;
if ((err = dt_printf(dtp, fp, "\n")) < 0)
break;
}
if (str != NULL) {
str += strlen(str) + 1;
if (str - strbase >= strsize)
str = NULL;
}
}
if (P != NULL) {
dt_proc_unlock(dtp, P);
dt_proc_release(dtp, P);
}
return (err);
}
static int
dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
{
/* LINTED - alignment */
uint64_t pid = ((uint64_t *)addr)[0];
/* LINTED - alignment */
uint64_t pc = ((uint64_t *)addr)[1];
const char *format = " %-50s";
char *s;
int n, len = 256;
if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
struct ps_prochandle *P;
if ((P = dt_proc_grab(dtp, pid,
PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
GElf_Sym sym;
dt_proc_lock(dtp, P);
#if defined(sun)
if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
#else
if (proc_addr2sym(P, pc, NULL, 0, &sym) == 0)
#endif
pc = sym.st_value;
dt_proc_unlock(dtp, P);
dt_proc_release(dtp, P);
}
}
do {
n = len;
s = alloca(n);
} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) >= n);
return (dt_printf(dtp, fp, format, s));
}
int
dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
{
/* LINTED - alignment */
uint64_t pid = ((uint64_t *)addr)[0];
/* LINTED - alignment */
uint64_t pc = ((uint64_t *)addr)[1];
int err = 0;
char objname[PATH_MAX], c[PATH_MAX * 2];
struct ps_prochandle *P;
if (format == NULL)
format = " %-50s";
/*
* See the comment in dt_print_ustack() for the rationale for
* printing raw addresses in the vectored case.
*/
if (dtp->dt_vector == NULL)
P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
else
P = NULL;
if (P != NULL)
dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
#if defined(sun)
if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
#else
if (P != NULL && proc_objname(P, pc, objname, sizeof (objname)) != 0) {
#endif
(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
} else {
(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
}
err = dt_printf(dtp, fp, format, c);
if (P != NULL) {
dt_proc_unlock(dtp, P);
dt_proc_release(dtp, P);
}
return (err);
}
int
dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
{
int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
size_t nbytes = *((uintptr_t *) addr);
return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
nbytes, 50, quiet, 1));
}
typedef struct dt_type_cbdata {
dtrace_hdl_t *dtp;
dtrace_typeinfo_t dtt;
caddr_t addr;
caddr_t addrend;
const char *name;
int f_type;
int indent;
int type_width;
int name_width;
FILE *fp;
} dt_type_cbdata_t;
static int dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
static int
dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
{
dt_type_cbdata_t cbdata;
dt_type_cbdata_t *cbdatap = arg;
ssize_t ssz;
if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
return (0);
off /= 8;
cbdata = *cbdatap;
cbdata.name = name;
cbdata.addr += off;
cbdata.addrend = cbdata.addr + ssz;
return (dt_print_type_data(&cbdata, type));
}
static int
dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
{
char buf[DT_TYPE_NAMELEN];
char *p;
dt_type_cbdata_t *cbdatap = arg;
size_t sz = strlen(name);
ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
if ((p = strchr(buf, '[')) != NULL)
p[-1] = '\0';
else
p = "";
sz += strlen(p);
if (sz > cbdatap->name_width)
cbdatap->name_width = sz;
sz = strlen(buf);
if (sz > cbdatap->type_width)
cbdatap->type_width = sz;
return (0);
}
static int
dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
{
caddr_t addr = cbdatap->addr;
caddr_t addrend = cbdatap->addrend;
char buf[DT_TYPE_NAMELEN];
char *p;
int cnt = 0;
uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
if ((p = strchr(buf, '[')) != NULL)
p[-1] = '\0';
else
p = "";
if (cbdatap->f_type) {
int type_width = roundup(cbdatap->type_width + 1, 4);
int name_width = roundup(cbdatap->name_width + 1, 4);
name_width -= strlen(cbdatap->name);
dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s = ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
}
while (addr < addrend) {
dt_type_cbdata_t cbdata;
ctf_arinfo_t arinfo;
ctf_encoding_t cte;
uintptr_t *up;
void *vp = addr;
cbdata = *cbdatap;
cbdata.name = "";
cbdata.addr = addr;
cbdata.addrend = addr + ssz;
cbdata.f_type = 0;
cbdata.indent++;
cbdata.type_width = 0;
cbdata.name_width = 0;
if (cnt > 0)
dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
switch (kind) {
case CTF_K_INTEGER:
if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
return (-1);
if ((cte.cte_format & CTF_INT_SIGNED) != 0)
switch (cte.cte_bits) {
case 8:
if (isprint(*((char *) vp)))
dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
break;
case 16:
dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
break;
case 32:
dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
break;
case 64:
dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
break;
default:
dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
break;
}
else
switch (cte.cte_bits) {
case 8:
dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
break;
case 16:
dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
break;
case 32:
dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
break;
case 64:
dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
break;
default:
dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
break;
}
break;
case CTF_K_FLOAT:
dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
break;
case CTF_K_POINTER:
dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
break;
case CTF_K_ARRAY:
if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
return (-1);
dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
dt_print_type_data(&cbdata, arinfo.ctr_contents);
dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
break;
case CTF_K_FUNCTION:
dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
break;
case CTF_K_STRUCT:
cbdata.f_type = 1;
if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
dt_print_type_width, &cbdata) != 0)
return (-1);
dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
dt_print_type_member, &cbdata) != 0)
return (-1);
dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
break;
case CTF_K_UNION:
cbdata.f_type = 1;
if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
dt_print_type_width, &cbdata) != 0)
return (-1);
dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
dt_print_type_member, &cbdata) != 0)
return (-1);
dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
break;
case CTF_K_ENUM:
dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
break;
case CTF_K_TYPEDEF:
dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
break;
case CTF_K_VOLATILE:
if (cbdatap->f_type)
dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
break;
case CTF_K_CONST:
if (cbdatap->f_type)
dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
break;
case CTF_K_RESTRICT:
if (cbdatap->f_type)
dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
break;
default:
break;
}
addr += ssz;
cnt++;
}
return (0);
}
static int
dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
{
caddr_t addrend;
char *p;
dtrace_typeinfo_t dtt;
dt_type_cbdata_t cbdata;
int num = 0;
int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
ssize_t ssz;
if (!quiet)
dt_printf(dtp, fp, "\n");
/* Get the total number of bytes of data buffered. */
size_t nbytes = *((uintptr_t *) addr);
addr += sizeof(uintptr_t);
/*
* Get the size of the type so that we can check that it matches
* the CTF data we look up and so that we can figure out how many
* type elements are buffered.
*/
size_t typs = *((uintptr_t *) addr);
addr += sizeof(uintptr_t);
/*
* Point to the type string in the buffer. Get it's string
* length and round it up to become the offset to the start
* of the buffered type data which we would like to be aligned
* for easy access.
*/
char *strp = (char *) addr;
int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
/*
* The type string might have a format such as 'int [20]'.
* Check if there is an array dimension present.
*/
if ((p = strchr(strp, '[')) != NULL) {
/* Strip off the array dimension. */
*p++ = '\0';
for (; *p != '\0' && *p != ']'; p++)
num = num * 10 + *p - '0';
} else
/* No array dimension, so default. */
num = 1;
/* Lookup the CTF type from the type string. */
if (dtrace_lookup_by_type(dtp, DTRACE_OBJ_EVERY, strp, &dtt) < 0)
return (-1);
/* Offset the buffer address to the start of the data... */
addr += offset;
ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
if (typs != ssz) {
printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
return (-1);
}
cbdata.dtp = dtp;
cbdata.dtt = dtt;
cbdata.name = "";
cbdata.addr = addr;
cbdata.addrend = addr + nbytes;
cbdata.indent = 1;
cbdata.f_type = 1;
cbdata.type_width = 0;
cbdata.name_width = 0;
cbdata.fp = fp;
return (dt_print_type_data(&cbdata, dtt.dtt_type));
}
static int
dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
{
/* LINTED - alignment */
uint64_t pc = *((uint64_t *)addr);
dtrace_syminfo_t dts;
GElf_Sym sym;
char c[PATH_MAX * 2];
if (format == NULL)
format = " %-50s";
if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
(void) snprintf(c, sizeof (c), "%s`%s",
dts.dts_object, dts.dts_name);
} else {
/*
* We'll repeat the lookup, but this time we'll specify a
* NULL GElf_Sym -- indicating that we're only interested in
* the containing module.
*/
if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
(void) snprintf(c, sizeof (c), "%s`0x%llx",
dts.dts_object, (u_longlong_t)pc);
} else {
(void) snprintf(c, sizeof (c), "0x%llx",
(u_longlong_t)pc);
}
}
if (dt_printf(dtp, fp, format, c) < 0)
return (-1);
return (0);
}
int
dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
{
/* LINTED - alignment */
uint64_t pc = *((uint64_t *)addr);
dtrace_syminfo_t dts;
char c[PATH_MAX * 2];
if (format == NULL)
format = " %-50s";
if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
} else {
(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
}
if (dt_printf(dtp, fp, format, c) < 0)
return (-1);
return (0);
}
typedef struct dt_normal {
dtrace_aggvarid_t dtnd_id;
uint64_t dtnd_normal;
} dt_normal_t;
static int
dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
{
dt_normal_t *normal = arg;
dtrace_aggdesc_t *agg = aggdata->dtada_desc;
dtrace_aggvarid_t id = normal->dtnd_id;
if (agg->dtagd_nrecs == 0)
return (DTRACE_AGGWALK_NEXT);
if (agg->dtagd_varid != id)
return (DTRACE_AGGWALK_NEXT);
((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
return (DTRACE_AGGWALK_NORMALIZE);
}
static int
dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
{
dt_normal_t normal;
caddr_t addr;
/*
* We (should) have two records: the aggregation ID followed by the
* normalization value.
*/
addr = base + rec->dtrd_offset;
if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
return (dt_set_errno(dtp, EDT_BADNORMAL));
/* LINTED - alignment */
normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
rec++;
if (rec->dtrd_action != DTRACEACT_LIBACT)
return (dt_set_errno(dtp, EDT_BADNORMAL));
if (rec->dtrd_arg != DT_ACT_NORMALIZE)
return (dt_set_errno(dtp, EDT_BADNORMAL));
addr = base + rec->dtrd_offset;
switch (rec->dtrd_size) {
case sizeof (uint64_t):
/* LINTED - alignment */
normal.dtnd_normal = *((uint64_t *)addr);
break;
case sizeof (uint32_t):
/* LINTED - alignment */
normal.dtnd_normal = *((uint32_t *)addr);
break;
case sizeof (uint16_t):
/* LINTED - alignment */
normal.dtnd_normal = *((uint16_t *)addr);
break;
case sizeof (uint8_t):
normal.dtnd_normal = *((uint8_t *)addr);
break;
default:
return (dt_set_errno(dtp, EDT_BADNORMAL));
}
(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
return (0);
}
static int
dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
{
dtrace_aggdesc_t *agg = aggdata->dtada_desc;
dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
if (agg->dtagd_nrecs == 0)
return (DTRACE_AGGWALK_NEXT);
if (agg->dtagd_varid != id)
return (DTRACE_AGGWALK_NEXT);
return (DTRACE_AGGWALK_DENORMALIZE);
}
static int
dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
{
dtrace_aggdesc_t *agg = aggdata->dtada_desc;
dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
if (agg->dtagd_nrecs == 0)
return (DTRACE_AGGWALK_NEXT);
if (agg->dtagd_varid != id)
return (DTRACE_AGGWALK_NEXT);
return (DTRACE_AGGWALK_CLEAR);
}
typedef struct dt_trunc {
dtrace_aggvarid_t dttd_id;
uint64_t dttd_remaining;
} dt_trunc_t;
static int
dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
{
dt_trunc_t *trunc = arg;
dtrace_aggdesc_t *agg = aggdata->dtada_desc;
dtrace_aggvarid_t id = trunc->dttd_id;
if (agg->dtagd_nrecs == 0)
return (DTRACE_AGGWALK_NEXT);
if (agg->dtagd_varid != id)
return (DTRACE_AGGWALK_NEXT);
if (trunc->dttd_remaining == 0)
return (DTRACE_AGGWALK_REMOVE);
trunc->dttd_remaining--;
return (DTRACE_AGGWALK_NEXT);
}
static int
dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
{
dt_trunc_t trunc;
caddr_t addr;
int64_t remaining;
int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
/*
* We (should) have two records: the aggregation ID followed by the
* number of aggregation entries after which the aggregation is to be
* truncated.
*/
addr = base + rec->dtrd_offset;
if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
return (dt_set_errno(dtp, EDT_BADTRUNC));
/* LINTED - alignment */
trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
rec++;
if (rec->dtrd_action != DTRACEACT_LIBACT)
return (dt_set_errno(dtp, EDT_BADTRUNC));
if (rec->dtrd_arg != DT_ACT_TRUNC)
return (dt_set_errno(dtp, EDT_BADTRUNC));
addr = base + rec->dtrd_offset;
switch (rec->dtrd_size) {
case sizeof (uint64_t):
/* LINTED - alignment */
remaining = *((int64_t *)addr);
break;
case sizeof (uint32_t):
/* LINTED - alignment */
remaining = *((int32_t *)addr);
break;
case sizeof (uint16_t):
/* LINTED - alignment */
remaining = *((int16_t *)addr);
break;
case sizeof (uint8_t):
remaining = *((int8_t *)addr);
break;
default:
return (dt_set_errno(dtp, EDT_BADNORMAL));
}
if (remaining < 0) {
func = dtrace_aggregate_walk_valsorted;
remaining = -remaining;
} else {
func = dtrace_aggregate_walk_valrevsorted;
}
assert(remaining >= 0);
trunc.dttd_remaining = remaining;
(void) func(dtp, dt_trunc_agg, &trunc);
return (0);
}
static int
dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
caddr_t addr, size_t size, uint64_t normal)
{
int err;
dtrace_actkind_t act = rec->dtrd_action;
switch (act) {
case DTRACEACT_STACK:
return (dt_print_stack(dtp, fp, NULL, addr,
rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
case DTRACEACT_USTACK:
case DTRACEACT_JSTACK:
return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
case DTRACEACT_USYM:
case DTRACEACT_UADDR:
return (dt_print_usym(dtp, fp, addr, act));
case DTRACEACT_UMOD:
return (dt_print_umod(dtp, fp, NULL, addr));
case DTRACEACT_SYM:
return (dt_print_sym(dtp, fp, NULL, addr));
case DTRACEACT_MOD:
return (dt_print_mod(dtp, fp, NULL, addr));
case DTRACEAGG_QUANTIZE:
return (dt_print_quantize(dtp, fp, addr, size, normal));
case DTRACEAGG_LQUANTIZE:
return (dt_print_lquantize(dtp, fp, addr, size, normal));
case DTRACEAGG_AVG:
return (dt_print_average(dtp, fp, addr, size, normal));
case DTRACEAGG_STDDEV:
return (dt_print_stddev(dtp, fp, addr, size, normal));
default:
break;
}
switch (size) {
case sizeof (uint64_t):
err = dt_printf(dtp, fp, " %16lld",
/* LINTED - alignment */
(long long)*((uint64_t *)addr) / normal);
break;
case sizeof (uint32_t):
/* LINTED - alignment */
err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
(uint32_t)normal);
break;
case sizeof (uint16_t):
/* LINTED - alignment */
err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
(uint32_t)normal);
break;
case sizeof (uint8_t):
err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
(uint32_t)normal);
break;
default:
err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
break;
}
return (err);
}
int
dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
{
int i, aggact = 0;
dt_print_aggdata_t *pd = arg;
const dtrace_aggdata_t *aggdata = aggsdata[0];
dtrace_aggdesc_t *agg = aggdata->dtada_desc;
FILE *fp = pd->dtpa_fp;
dtrace_hdl_t *dtp = pd->dtpa_dtp;
dtrace_recdesc_t *rec;
dtrace_actkind_t act;
caddr_t addr;
size_t size;
/*
* Iterate over each record description in the key, printing the traced
* data, skipping the first datum (the tuple member created by the
* compiler).
*/
for (i = 1; i < agg->dtagd_nrecs; i++) {
rec = &agg->dtagd_rec[i];
act = rec->dtrd_action;
addr = aggdata->dtada_data + rec->dtrd_offset;
size = rec->dtrd_size;
if (DTRACEACT_ISAGG(act)) {
aggact = i;
break;
}
if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
return (-1);
if (dt_buffered_flush(dtp, NULL, rec, aggdata,
DTRACE_BUFDATA_AGGKEY) < 0)
return (-1);
}
assert(aggact != 0);
for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
uint64_t normal;
aggdata = aggsdata[i];
agg = aggdata->dtada_desc;
rec = &agg->dtagd_rec[aggact];
act = rec->dtrd_action;
addr = aggdata->dtada_data + rec->dtrd_offset;
size = rec->dtrd_size;
assert(DTRACEACT_ISAGG(act));
normal = aggdata->dtada_normal;
if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
return (-1);
if (dt_buffered_flush(dtp, NULL, rec, aggdata,
DTRACE_BUFDATA_AGGVAL) < 0)
return (-1);
if (!pd->dtpa_allunprint)
agg->dtagd_flags |= DTRACE_AGD_PRINTED;
}
if (dt_printf(dtp, fp, "\n") < 0)
return (-1);
if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
return (-1);
return (0);
}
int
dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
{
dt_print_aggdata_t *pd = arg;
dtrace_aggdesc_t *agg = aggdata->dtada_desc;
dtrace_aggvarid_t aggvarid = pd->dtpa_id;
if (pd->dtpa_allunprint) {
if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
return (0);
} else {
/*
* If we're not printing all unprinted aggregations, then the
* aggregation variable ID denotes a specific aggregation
* variable that we should print -- skip any other aggregations
* that we encounter.
*/
if (agg->dtagd_nrecs == 0)
return (0);
if (aggvarid != agg->dtagd_varid)
return (0);
}
return (dt_print_aggs(&aggdata, 1, arg));
}
int
dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
const char *option, const char *value)
{
int len, rval;
char *msg;
const char *errstr;
dtrace_setoptdata_t optdata;
bzero(&optdata, sizeof (optdata));
(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
if (dtrace_setopt(dtp, option, value) == 0) {
(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
optdata.dtsda_probe = data;
optdata.dtsda_option = option;
optdata.dtsda_handle = dtp;
if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
return (rval);
return (0);
}
errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
len = strlen(option) + strlen(value) + strlen(errstr) + 80;
msg = alloca(len);
(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
option, value, errstr);
if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
return (0);
return (rval);
}
static int
dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf,
dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
{
dtrace_epid_t id;
size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size;
int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
int rval, i, n;
dtrace_epid_t last = DTRACE_EPIDNONE;
dtrace_probedata_t data;
uint64_t drops;
caddr_t addr;
bzero(&data, sizeof (data));
data.dtpda_handle = dtp;
data.dtpda_cpu = cpu;
again:
for (offs = start; offs < end; ) {
dtrace_eprobedesc_t *epd;
/*
* We're guaranteed to have an ID.
*/
id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
if (id == DTRACE_EPIDNONE) {
/*
* This is filler to assure proper alignment of the
* next record; we simply ignore it.
*/
offs += sizeof (id);
continue;
}
if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
&data.dtpda_pdesc)) != 0)
return (rval);
epd = data.dtpda_edesc;
data.dtpda_data = buf->dtbd_data + offs;
if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
rval = dt_handle(dtp, &data);
if (rval == DTRACE_CONSUME_NEXT)
goto nextepid;
if (rval == DTRACE_CONSUME_ERROR)
return (-1);
}
if (flow)
(void) dt_flowindent(dtp, &data, last, buf, offs);
rval = (*efunc)(&data, arg);
if (flow) {
if (data.dtpda_flow == DTRACEFLOW_ENTRY)
data.dtpda_indent += 2;
}
if (rval == DTRACE_CONSUME_NEXT)
goto nextepid;
if (rval == DTRACE_CONSUME_ABORT)
return (dt_set_errno(dtp, EDT_DIRABORT));
if (rval != DTRACE_CONSUME_THIS)
return (dt_set_errno(dtp, EDT_BADRVAL));
for (i = 0; i < epd->dtepd_nrecs; i++) {
dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
dtrace_actkind_t act = rec->dtrd_action;
data.dtpda_data = buf->dtbd_data + offs +
rec->dtrd_offset;
addr = data.dtpda_data;
if (act == DTRACEACT_LIBACT) {
uint64_t arg = rec->dtrd_arg;
dtrace_aggvarid_t id;
switch (arg) {
case DT_ACT_CLEAR:
/* LINTED - alignment */
id = *((dtrace_aggvarid_t *)addr);
(void) dtrace_aggregate_walk(dtp,
dt_clear_agg, &id);
continue;
case DT_ACT_DENORMALIZE:
/* LINTED - alignment */
id = *((dtrace_aggvarid_t *)addr);
(void) dtrace_aggregate_walk(dtp,
dt_denormalize_agg, &id);
continue;
case DT_ACT_FTRUNCATE:
if (fp == NULL)
continue;
(void) fflush(fp);
(void) ftruncate(fileno(fp), 0);
(void) fseeko(fp, 0, SEEK_SET);
continue;
case DT_ACT_NORMALIZE:
if (i == epd->dtepd_nrecs - 1)
return (dt_set_errno(dtp,
EDT_BADNORMAL));
if (dt_normalize(dtp,
buf->dtbd_data + offs, rec) != 0)
return (-1);
i++;
continue;
case DT_ACT_SETOPT: {
uint64_t *opts = dtp->dt_options;
dtrace_recdesc_t *valrec;
uint32_t valsize;
caddr_t val;
int rv;
if (i == epd->dtepd_nrecs - 1) {
return (dt_set_errno(dtp,
EDT_BADSETOPT));
}
valrec = &epd->dtepd_rec[++i];
valsize = valrec->dtrd_size;
if (valrec->dtrd_action != act ||
valrec->dtrd_arg != arg) {
return (dt_set_errno(dtp,
EDT_BADSETOPT));
}
if (valsize > sizeof (uint64_t)) {
val = buf->dtbd_data + offs +
valrec->dtrd_offset;
} else {
val = "1";
}
rv = dt_setopt(dtp, &data, addr, val);
if (rv != 0)
return (-1);
flow = (opts[DTRACEOPT_FLOWINDENT] !=
DTRACEOPT_UNSET);
quiet = (opts[DTRACEOPT_QUIET] !=
DTRACEOPT_UNSET);
continue;
}
case DT_ACT_TRUNC:
if (i == epd->dtepd_nrecs - 1)
return (dt_set_errno(dtp,
EDT_BADTRUNC));
if (dt_trunc(dtp,
buf->dtbd_data + offs, rec) != 0)
return (-1);
i++;
continue;
default:
continue;
}
}
rval = (*rfunc)(&data, rec, arg);
if (rval == DTRACE_CONSUME_NEXT)
continue;
if (rval == DTRACE_CONSUME_ABORT)
return (dt_set_errno(dtp, EDT_DIRABORT));
if (rval != DTRACE_CONSUME_THIS)
return (dt_set_errno(dtp, EDT_BADRVAL));
if (act == DTRACEACT_STACK) {
int depth = rec->dtrd_arg;
if (dt_print_stack(dtp, fp, NULL, addr, depth,
rec->dtrd_size / depth) < 0)
return (-1);
goto nextrec;
}
if (act == DTRACEACT_USTACK ||
act == DTRACEACT_JSTACK) {
if (dt_print_ustack(dtp, fp, NULL,
addr, rec->dtrd_arg) < 0)
return (-1);
goto nextrec;
}
if (act == DTRACEACT_SYM) {
if (dt_print_sym(dtp, fp, NULL, addr) < 0)
return (-1);
goto nextrec;
}
if (act == DTRACEACT_MOD) {
if (dt_print_mod(dtp, fp, NULL, addr) < 0)
return (-1);
goto nextrec;
}
if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
if (dt_print_usym(dtp, fp, addr, act) < 0)
return (-1);
goto nextrec;
}
if (act == DTRACEACT_UMOD) {
if (dt_print_umod(dtp, fp, NULL, addr) < 0)
return (-1);
goto nextrec;
}
if (act == DTRACEACT_PRINTM) {
if (dt_print_memory(dtp, fp, addr) < 0)
return (-1);
goto nextrec;
}
if (act == DTRACEACT_PRINTT) {
if (dt_print_type(dtp, fp, addr) < 0)
return (-1);
goto nextrec;
}
if (DTRACEACT_ISPRINTFLIKE(act)) {
void *fmtdata;
int (*func)(dtrace_hdl_t *, FILE *, void *,
const dtrace_probedata_t *,
const dtrace_recdesc_t *, uint_t,
const void *buf, size_t);
if ((fmtdata = dt_format_lookup(dtp,
rec->dtrd_format)) == NULL)
goto nofmt;
switch (act) {
case DTRACEACT_PRINTF:
func = dtrace_fprintf;
break;
case DTRACEACT_PRINTA:
func = dtrace_fprinta;
break;
case DTRACEACT_SYSTEM:
func = dtrace_system;
break;
case DTRACEACT_FREOPEN:
func = dtrace_freopen;
break;
}
n = (*func)(dtp, fp, fmtdata, &data,
rec, epd->dtepd_nrecs - i,
(uchar_t *)buf->dtbd_data + offs,
buf->dtbd_size - offs);
if (n < 0)
return (-1); /* errno is set for us */
if (n > 0)
i += n - 1;
goto nextrec;
}
nofmt:
if (act == DTRACEACT_PRINTA) {
dt_print_aggdata_t pd;
dtrace_aggvarid_t *aggvars;
int j, naggvars = 0;
size_t size = ((epd->dtepd_nrecs - i) *
sizeof (dtrace_aggvarid_t));
if ((aggvars = dt_alloc(dtp, size)) == NULL)
return (-1);
/*
* This might be a printa() with multiple
* aggregation variables. We need to scan
* forward through the records until we find
* a record from a different statement.
*/
for (j = i; j < epd->dtepd_nrecs; j++) {
dtrace_recdesc_t *nrec;
caddr_t naddr;
nrec = &epd->dtepd_rec[j];
if (nrec->dtrd_uarg != rec->dtrd_uarg)
break;
if (nrec->dtrd_action != act) {
return (dt_set_errno(dtp,
EDT_BADAGG));
}
naddr = buf->dtbd_data + offs +
nrec->dtrd_offset;
aggvars[naggvars++] =
/* LINTED - alignment */
*((dtrace_aggvarid_t *)naddr);
}
i = j - 1;
bzero(&pd, sizeof (pd));
pd.dtpa_dtp = dtp;
pd.dtpa_fp = fp;
assert(naggvars >= 1);
if (naggvars == 1) {
pd.dtpa_id = aggvars[0];
dt_free(dtp, aggvars);
if (dt_printf(dtp, fp, "\n") < 0 ||
dtrace_aggregate_walk_sorted(dtp,
dt_print_agg, &pd) < 0)
return (-1);
goto nextrec;
}
if (dt_printf(dtp, fp, "\n") < 0 ||
dtrace_aggregate_walk_joined(dtp, aggvars,
naggvars, dt_print_aggs, &pd) < 0) {
dt_free(dtp, aggvars);
return (-1);
}
dt_free(dtp, aggvars);
goto nextrec;
}
switch (rec->dtrd_size) {
case sizeof (uint64_t):
n = dt_printf(dtp, fp,
quiet ? "%lld" : " %16lld",
/* LINTED - alignment */
*((unsigned long long *)addr));
break;
case sizeof (uint32_t):
n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
/* LINTED - alignment */
*((uint32_t *)addr));
break;
case sizeof (uint16_t):
n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
/* LINTED - alignment */
*((uint16_t *)addr));
break;
case sizeof (uint8_t):
n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
*((uint8_t *)addr));
break;
default:
n = dt_print_bytes(dtp, fp, addr,
rec->dtrd_size, 33, quiet, 0);
break;
}
if (n < 0)
return (-1); /* errno is set for us */
nextrec:
if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
return (-1); /* errno is set for us */
}
/*
* Call the record callback with a NULL record to indicate
* that we're done processing this EPID.
*/
rval = (*rfunc)(&data, NULL, arg);
nextepid:
offs += epd->dtepd_size;
last = id;
}
if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) {
end = buf->dtbd_oldest;
start = 0;
goto again;
}
if ((drops = buf->dtbd_drops) == 0)
return (0);
/*
* Explicitly zero the drops to prevent us from processing them again.
*/
buf->dtbd_drops = 0;
return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
}
typedef struct dt_begin {
dtrace_consume_probe_f *dtbgn_probefunc;
dtrace_consume_rec_f *dtbgn_recfunc;
void *dtbgn_arg;
dtrace_handle_err_f *dtbgn_errhdlr;
void *dtbgn_errarg;
int dtbgn_beginonly;
} dt_begin_t;
static int
dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
{
dt_begin_t *begin = (dt_begin_t *)arg;
dtrace_probedesc_t *pd = data->dtpda_pdesc;
int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
if (begin->dtbgn_beginonly) {
if (!(r1 && r2))
return (DTRACE_CONSUME_NEXT);
} else {
if (r1 && r2)
return (DTRACE_CONSUME_NEXT);
}
/*
* We have a record that we're interested in. Now call the underlying
* probe function...
*/
return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
}
static int
dt_consume_begin_record(const dtrace_probedata_t *data,
const dtrace_recdesc_t *rec, void *arg)
{
dt_begin_t *begin = (dt_begin_t *)arg;
return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
}
static int
dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
{
dt_begin_t *begin = (dt_begin_t *)arg;
dtrace_probedesc_t *pd = data->dteda_pdesc;
int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
if (begin->dtbgn_beginonly) {
if (!(r1 && r2))
return (DTRACE_HANDLE_OK);
} else {
if (r1 && r2)
return (DTRACE_HANDLE_OK);
}
return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
}
static int
dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf,
dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
{
/*
* There's this idea that the BEGIN probe should be processed before
* everything else, and that the END probe should be processed after
* anything else. In the common case, this is pretty easy to deal
* with. However, a situation may arise where the BEGIN enabling and
* END enabling are on the same CPU, and some enabling in the middle
* occurred on a different CPU. To deal with this (blech!) we need to
* consume the BEGIN buffer up until the end of the BEGIN probe, and
* then set it aside. We will then process every other CPU, and then
* we'll return to the BEGIN CPU and process the rest of the data
* (which will inevitably include the END probe, if any). Making this
* even more complicated (!) is the library's ERROR enabling. Because
* this enabling is processed before we even get into the consume call
* back, any ERROR firing would result in the library's ERROR enabling
* being processed twice -- once in our first pass (for BEGIN probes),
* and again in our second pass (for everything but BEGIN probes). To
* deal with this, we interpose on the ERROR handler to assure that we
* only process ERROR enablings induced by BEGIN enablings in the
* first pass, and that we only process ERROR enablings _not_ induced
* by BEGIN enablings in the second pass.
*/
dt_begin_t begin;
processorid_t cpu = dtp->dt_beganon;
dtrace_bufdesc_t nbuf;
#if !defined(sun)
dtrace_bufdesc_t *pbuf;
#endif
int rval, i;
static int max_ncpus;
dtrace_optval_t size;
dtp->dt_beganon = -1;
#if defined(sun)
if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
#else
if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
#endif
/*
* We really don't expect this to fail, but it is at least
* technically possible for this to fail with ENOENT. In this
* case, we just drive on...
*/
if (errno == ENOENT)
return (0);
return (dt_set_errno(dtp, errno));
}
if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
/*
* This is the simple case. We're either not stopped, or if
* we are, we actually processed any END probes on another
* CPU. We can simply consume this buffer and return.
*/
return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg));
}
begin.dtbgn_probefunc = pf;
begin.dtbgn_recfunc = rf;
begin.dtbgn_arg = arg;
begin.dtbgn_beginonly = 1;
/*
* We need to interpose on the ERROR handler to be sure that we
* only process ERRORs induced by BEGIN.
*/
begin.dtbgn_errhdlr = dtp->dt_errhdlr;
begin.dtbgn_errarg = dtp->dt_errarg;
dtp->dt_errhdlr = dt_consume_begin_error;
dtp->dt_errarg = &begin;
rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
dt_consume_begin_record, &begin);
dtp->dt_errhdlr = begin.dtbgn_errhdlr;
dtp->dt_errarg = begin.dtbgn_errarg;
if (rval != 0)
return (rval);
/*
* Now allocate a new buffer. We'll use this to deal with every other
* CPU.
*/
bzero(&nbuf, sizeof (dtrace_bufdesc_t));
(void) dtrace_getopt(dtp, "bufsize", &size);
if ((nbuf.dtbd_data = malloc(size)) == NULL)
return (dt_set_errno(dtp, EDT_NOMEM));
if (max_ncpus == 0)
max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
for (i = 0; i < max_ncpus; i++) {
nbuf.dtbd_cpu = i;
if (i == cpu)
continue;
#if defined(sun)
if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) {
#else
pbuf = &nbuf;
if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &pbuf) == -1) {
#endif
/*
* If we failed with ENOENT, it may be because the
* CPU was unconfigured -- this is okay. Any other
* error, however, is unexpected.
*/
if (errno == ENOENT)
continue;
free(nbuf.dtbd_data);
return (dt_set_errno(dtp, errno));
}
if ((rval = dt_consume_cpu(dtp, fp,
i, &nbuf, pf, rf, arg)) != 0) {
free(nbuf.dtbd_data);
return (rval);
}
}
free(nbuf.dtbd_data);
/*
* Okay -- we're done with the other buffers. Now we want to
* reconsume the first buffer -- but this time we're looking for
* everything _but_ BEGIN. And of course, in order to only consume
* those ERRORs _not_ associated with BEGIN, we need to reinstall our
* ERROR interposition function...
*/
begin.dtbgn_beginonly = 0;
assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
assert(begin.dtbgn_errarg == dtp->dt_errarg);
dtp->dt_errhdlr = dt_consume_begin_error;
dtp->dt_errarg = &begin;
rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
dt_consume_begin_record, &begin);
dtp->dt_errhdlr = begin.dtbgn_errhdlr;
dtp->dt_errarg = begin.dtbgn_errarg;
return (rval);
}
int
dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
{
dtrace_bufdesc_t *buf = &dtp->dt_buf;
dtrace_optval_t size;
static int max_ncpus;
int i, rval;
dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
hrtime_t now = gethrtime();
if (dtp->dt_lastswitch != 0) {
if (now - dtp->dt_lastswitch < interval)
return (0);
dtp->dt_lastswitch += interval;
} else {
dtp->dt_lastswitch = now;
}
if (!dtp->dt_active)
return (dt_set_errno(dtp, EINVAL));
if (max_ncpus == 0)
max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
if (pf == NULL)
pf = (dtrace_consume_probe_f *)dt_nullprobe;
if (rf == NULL)
rf = (dtrace_consume_rec_f *)dt_nullrec;
if (buf->dtbd_data == NULL) {
(void) dtrace_getopt(dtp, "bufsize", &size);
if ((buf->dtbd_data = malloc(size)) == NULL)
return (dt_set_errno(dtp, EDT_NOMEM));
buf->dtbd_size = size;
}
/*
* If we have just begun, we want to first process the CPU that
* executed the BEGIN probe (if any).
*/
if (dtp->dt_active && dtp->dt_beganon != -1) {
buf->dtbd_cpu = dtp->dt_beganon;
if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0)
return (rval);
}
for (i = 0; i < max_ncpus; i++) {
buf->dtbd_cpu = i;
/*
* If we have stopped, we want to process the CPU on which the
* END probe was processed only _after_ we have processed
* everything else.
*/
if (dtp->dt_stopped && (i == dtp->dt_endedon))
continue;
#if defined(sun)
if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
#else
if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
#endif
/*
* If we failed with ENOENT, it may be because the
* CPU was unconfigured -- this is okay. Any other
* error, however, is unexpected.
*/
if (errno == ENOENT)
continue;
return (dt_set_errno(dtp, errno));
}
if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0)
return (rval);
}
if (!dtp->dt_stopped)
return (0);
buf->dtbd_cpu = dtp->dt_endedon;
#if defined(sun)
if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
#else
if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
#endif
/*
* This _really_ shouldn't fail, but it is strictly speaking
* possible for this to return ENOENT if the CPU that called
* the END enabling somehow managed to become unconfigured.
* It's unclear how the user can possibly expect anything
* rational to happen in this case -- the state has been thrown
* out along with the unconfigured CPU -- so we'll just drive
* on...
*/
if (errno == ENOENT)
return (0);
return (dt_set_errno(dtp, errno));
}
return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg));
}