freebsd-skq/sys/dev/hwpmc/hwpmc_ppro.c

864 lines
24 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2003-2005,2008 Joseph Koshy
* Copyright (c) 2007 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by A. Joseph Koshy under
* sponsorship from the FreeBSD Foundation and Google, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/pmc.h>
#include <sys/pmckern.h>
#include <sys/smp.h>
#include <sys/systm.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/cputypes.h>
#include <machine/md_var.h>
#include <machine/pmc_mdep.h>
#include <machine/specialreg.h>
/*
* PENTIUM PRO SUPPORT
*
* Quirks:
*
* - Both PMCs are enabled by a single bit P6_EVSEL_EN in performance
* counter '0'. This bit needs to be '1' if any of the two
* performance counters are in use. Perf counters can also be
* switched off by writing zeros to their EVSEL register.
*
* - While the width of these counters is 40 bits, we do not appear to
* have a way of writing 40 bits to the counter MSRs. A WRMSR
* instruction will sign extend bit 31 of the value being written to
* the perf counter -- a value of 0x80000000 written to an perf
* counter register will be sign extended to 0xFF80000000.
*
* This quirk primarily affects thread-mode PMCs in counting mode, as
* these PMCs read and write PMC registers at every context switch.
*/
struct p6pmc_descr {
struct pmc_descr pm_descr; /* common information */
uint32_t pm_pmc_msr;
uint32_t pm_evsel_msr;
};
static struct p6pmc_descr p6_pmcdesc[P6_NPMCS] = {
#define P6_PMC_CAPS (PMC_CAP_INTERRUPT | PMC_CAP_USER | PMC_CAP_SYSTEM | \
PMC_CAP_EDGE | PMC_CAP_THRESHOLD | PMC_CAP_READ | PMC_CAP_WRITE | \
PMC_CAP_INVERT | PMC_CAP_QUALIFIER)
/* PMC 0 */
{
.pm_descr =
{
.pd_name ="P6-0",
.pd_class = PMC_CLASS_P6,
.pd_caps = P6_PMC_CAPS,
.pd_width = 40
},
.pm_pmc_msr = P6_MSR_PERFCTR0,
.pm_evsel_msr = P6_MSR_EVSEL0
},
/* PMC 1 */
{
.pm_descr =
{
.pd_name ="P6-1",
.pd_class = PMC_CLASS_P6,
.pd_caps = P6_PMC_CAPS,
.pd_width = 40
},
.pm_pmc_msr = P6_MSR_PERFCTR1,
.pm_evsel_msr = P6_MSR_EVSEL1
}
};
static enum pmc_cputype p6_cputype;
/*
* P6 Event descriptor
2008-10-09 06:19:42 +00:00
*
* The 'pm_flags' field has the following structure:
* - The upper 4 bits are used to track which counter an event is valid on.
* - The lower bits form a bitmask of flags indicating support for the event
* on a given CPU.
*/
struct p6_event_descr {
const enum pmc_event pm_event;
uint32_t pm_evsel;
uint32_t pm_flags;
uint32_t pm_unitmask;
};
2008-10-09 06:19:42 +00:00
#define P6F_CTR(C) (1 << (28 + (C)))
#define P6F_CTR0 P6F_CTR(0)
#define P6F_CTR1 P6F_CTR(1)
#define P6F(CPU) (1 << ((CPU) - PMC_CPU_INTEL_P6))
#define _P6F(C) P6F(PMC_CPU_INTEL_##C)
#define P6F_P6 _P6F(P6)
#define P6F_CL _P6F(CL)
#define P6F_PII _P6F(PII)
#define P6F_PIII _P6F(PIII)
#define P6F_PM _P6F(PM)
#define P6F_ALL_CPUS (P6F_P6 | P6F_PII | P6F_CL | P6F_PIII | P6F_PM)
#define P6F_ALL_CTRS (P6F_CTR0 | P6F_CTR1)
#define P6F_ALL (P6F_ALL_CPUS | P6F_ALL_CTRS)
#define P6_EVENT_VALID_FOR_CPU(P,CPU) ((P)->pm_flags & P6F(CPU))
#define P6_EVENT_VALID_FOR_CTR(P,CTR) ((P)->pm_flags & P6F_CTR(CTR))
static const struct p6_event_descr p6_events[] = {
#define P6_EVDESCR(NAME, EVSEL, FLAGS, UMASK) \
{ \
.pm_event = PMC_EV_P6_##NAME, \
.pm_evsel = (EVSEL), \
.pm_flags = (FLAGS), \
.pm_unitmask = (UMASK) \
}
P6_EVDESCR(DATA_MEM_REFS, 0x43, P6F_ALL, 0x00),
P6_EVDESCR(DCU_LINES_IN, 0x45, P6F_ALL, 0x00),
P6_EVDESCR(DCU_M_LINES_IN, 0x46, P6F_ALL, 0x00),
P6_EVDESCR(DCU_M_LINES_OUT, 0x47, P6F_ALL, 0x00),
P6_EVDESCR(DCU_MISS_OUTSTANDING, 0x47, P6F_ALL, 0x00),
P6_EVDESCR(IFU_FETCH, 0x80, P6F_ALL, 0x00),
P6_EVDESCR(IFU_FETCH_MISS, 0x81, P6F_ALL, 0x00),
P6_EVDESCR(ITLB_MISS, 0x85, P6F_ALL, 0x00),
P6_EVDESCR(IFU_MEM_STALL, 0x86, P6F_ALL, 0x00),
P6_EVDESCR(ILD_STALL, 0x87, P6F_ALL, 0x00),
P6_EVDESCR(L2_IFETCH, 0x28, P6F_ALL, 0x0F),
P6_EVDESCR(L2_LD, 0x29, P6F_ALL, 0x0F),
P6_EVDESCR(L2_ST, 0x2A, P6F_ALL, 0x0F),
P6_EVDESCR(L2_LINES_IN, 0x24, P6F_ALL, 0x0F),
P6_EVDESCR(L2_LINES_OUT, 0x26, P6F_ALL, 0x0F),
P6_EVDESCR(L2_M_LINES_INM, 0x25, P6F_ALL, 0x00),
P6_EVDESCR(L2_M_LINES_OUTM, 0x27, P6F_ALL, 0x0F),
P6_EVDESCR(L2_RQSTS, 0x2E, P6F_ALL, 0x0F),
P6_EVDESCR(L2_ADS, 0x21, P6F_ALL, 0x00),
P6_EVDESCR(L2_DBUS_BUSY, 0x22, P6F_ALL, 0x00),
P6_EVDESCR(L2_DBUS_BUSY_RD, 0x23, P6F_ALL, 0x00),
P6_EVDESCR(BUS_DRDY_CLOCKS, 0x62, P6F_ALL, 0x20),
P6_EVDESCR(BUS_LOCK_CLOCKS, 0x63, P6F_ALL, 0x20),
P6_EVDESCR(BUS_REQ_OUTSTANDING, 0x60, P6F_ALL, 0x00),
P6_EVDESCR(BUS_TRAN_BRD, 0x65, P6F_ALL, 0x20),
P6_EVDESCR(BUS_TRAN_RFO, 0x66, P6F_ALL, 0x20),
P6_EVDESCR(BUS_TRANS_WB, 0x67, P6F_ALL, 0x20),
P6_EVDESCR(BUS_TRAN_IFETCH, 0x68, P6F_ALL, 0x20),
P6_EVDESCR(BUS_TRAN_INVAL, 0x69, P6F_ALL, 0x20),
P6_EVDESCR(BUS_TRAN_PWR, 0x6A, P6F_ALL, 0x20),
P6_EVDESCR(BUS_TRANS_P, 0x6B, P6F_ALL, 0x20),
P6_EVDESCR(BUS_TRANS_IO, 0x6C, P6F_ALL, 0x20),
P6_EVDESCR(BUS_TRAN_DEF, 0x6D, P6F_ALL, 0x20),
P6_EVDESCR(BUS_TRAN_BURST, 0x6E, P6F_ALL, 0x20),
P6_EVDESCR(BUS_TRAN_ANY, 0x70, P6F_ALL, 0x20),
P6_EVDESCR(BUS_TRAN_MEM, 0x6F, P6F_ALL, 0x20),
P6_EVDESCR(BUS_DATA_RCV, 0x64, P6F_ALL, 0x00),
P6_EVDESCR(BUS_BNR_DRV, 0x61, P6F_ALL, 0x00),
P6_EVDESCR(BUS_HIT_DRV, 0x7A, P6F_ALL, 0x00),
P6_EVDESCR(BUS_HITM_DRV, 0x7B, P6F_ALL, 0x00),
P6_EVDESCR(BUS_SNOOP_STALL, 0x7E, P6F_ALL, 0x00),
P6_EVDESCR(FLOPS, 0xC1, P6F_ALL_CPUS | P6F_CTR0, 0x00),
P6_EVDESCR(FP_COMPS_OPS_EXE, 0x10, P6F_ALL_CPUS | P6F_CTR0, 0x00),
P6_EVDESCR(FP_ASSIST, 0x11, P6F_ALL_CPUS | P6F_CTR1, 0x00),
P6_EVDESCR(MUL, 0x12, P6F_ALL_CPUS | P6F_CTR1, 0x00),
P6_EVDESCR(DIV, 0x13, P6F_ALL_CPUS | P6F_CTR1, 0x00),
P6_EVDESCR(CYCLES_DIV_BUSY, 0x14, P6F_ALL_CPUS | P6F_CTR0, 0x00),
P6_EVDESCR(LD_BLOCKS, 0x03, P6F_ALL, 0x00),
P6_EVDESCR(SB_DRAINS, 0x04, P6F_ALL, 0x00),
P6_EVDESCR(MISALIGN_MEM_REF, 0x05, P6F_ALL, 0x00),
P6_EVDESCR(EMON_KNI_PREF_DISPATCHED, 0x07, P6F_PIII | P6F_ALL_CTRS, 0x03),
P6_EVDESCR(EMON_KNI_PREF_MISS, 0x4B, P6F_PIII | P6F_ALL_CTRS, 0x03),
P6_EVDESCR(INST_RETIRED, 0xC0, P6F_ALL, 0x00),
P6_EVDESCR(UOPS_RETIRED, 0xC2, P6F_ALL, 0x00),
P6_EVDESCR(INST_DECODED, 0xD0, P6F_ALL, 0x00),
P6_EVDESCR(EMON_KNI_INST_RETIRED, 0xD8, P6F_PIII | P6F_ALL_CTRS, 0x01),
P6_EVDESCR(EMON_KNI_COMP_INST_RET, 0xD9, P6F_PIII | P6F_ALL_CTRS, 0x01),
P6_EVDESCR(HW_INT_RX, 0xC8, P6F_ALL, 0x00),
P6_EVDESCR(CYCLES_INT_MASKED, 0xC6, P6F_ALL, 0x00),
P6_EVDESCR(CYCLES_INT_PENDING_AND_MASKED, 0xC7, P6F_ALL, 0x00),
P6_EVDESCR(BR_INST_RETIRED, 0xC4, P6F_ALL, 0x00),
P6_EVDESCR(BR_MISS_PRED_RETIRED, 0xC5, P6F_ALL, 0x00),
P6_EVDESCR(BR_TAKEN_RETIRED, 0xC9, P6F_ALL, 0x00),
P6_EVDESCR(BR_MISS_PRED_TAKEN_RET, 0xCA, P6F_ALL, 0x00),
P6_EVDESCR(BR_INST_DECODED, 0xE0, P6F_ALL, 0x00),
P6_EVDESCR(BTB_MISSES, 0xE2, P6F_ALL, 0x00),
P6_EVDESCR(BR_BOGUS, 0xE4, P6F_ALL, 0x00),
P6_EVDESCR(BACLEARS, 0xE6, P6F_ALL, 0x00),
P6_EVDESCR(RESOURCE_STALLS, 0xA2, P6F_ALL, 0x00),
P6_EVDESCR(PARTIAL_RAT_STALLS, 0xD2, P6F_ALL, 0x00),
P6_EVDESCR(SEGMENT_REG_LOADS, 0x06, P6F_ALL, 0x00),
P6_EVDESCR(CPU_CLK_UNHALTED, 0x79, P6F_ALL, 0x00),
P6_EVDESCR(MMX_INSTR_EXEC, 0xB0,
P6F_ALL_CTRS | P6F_CL | P6F_PII, 0x00),
P6_EVDESCR(MMX_SAT_INSTR_EXEC, 0xB1,
P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x00),
P6_EVDESCR(MMX_UOPS_EXEC, 0xB2,
P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x0F),
P6_EVDESCR(MMX_INSTR_TYPE_EXEC, 0xB3,
P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x3F),
P6_EVDESCR(FP_MMX_TRANS, 0xCC,
P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x01),
P6_EVDESCR(MMX_ASSIST, 0xCD,
P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x00),
P6_EVDESCR(MMX_INSTR_RET, 0xCE, P6F_ALL_CTRS | P6F_PII, 0x00),
P6_EVDESCR(SEG_RENAME_STALLS, 0xD4,
P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x0F),
P6_EVDESCR(SEG_REG_RENAMES, 0xD5,
P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x0F),
P6_EVDESCR(RET_SEG_RENAMES, 0xD6,
P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x00),
P6_EVDESCR(EMON_EST_TRANS, 0x58, P6F_ALL_CTRS | P6F_PM, 0x02),
P6_EVDESCR(EMON_THERMAL_TRIP, 0x59, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(BR_INST_EXEC, 0x88, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(BR_MISSP_EXEC, 0x89, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(BR_BAC_MISSP_EXEC, 0x8A, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(BR_CND_EXEC, 0x8B, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(BR_CND_MISSP_EXEC, 0x8C, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(BR_IND_EXEC, 0x8D, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(BR_IND_MISSP_EXEC, 0x8E, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(BR_RET_EXEC, 0x8F, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(BR_RET_MISSP_EXEC, 0x90, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(BR_RET_BAC_MISSP_EXEC, 0x91, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(BR_CALL_EXEC, 0x92, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(BR_CALL_MISSP_EXEC, 0x93, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(BR_IND_CALL_EXEC, 0x94, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(EMON_SIMD_INSTR_RETIRED, 0xCE, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(EMON_SYNCH_UOPS, 0xD3, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(EMON_ESP_UOPS, 0xD7, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(EMON_FUSED_UOPS_RET, 0xDA, P6F_ALL_CTRS | P6F_PM, 0x03),
P6_EVDESCR(EMON_UNFUSION, 0xDB, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(EMON_PREF_RQSTS_UP, 0xF0, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(EMON_PREF_RQSTS_DN, 0xD8, P6F_ALL_CTRS | P6F_PM, 0x00),
P6_EVDESCR(EMON_SSE_SSE2_INST_RETIRED, 0xD8, P6F_ALL_CTRS | P6F_PM, 0x03),
P6_EVDESCR(EMON_SSE_SSE2_COMP_INST_RETIRED, 0xD9, P6F_ALL_CTRS | P6F_PM, 0x03)
#undef P6_EVDESCR
};
#define P6_NEVENTS (PMC_EV_P6_LAST - PMC_EV_P6_FIRST + 1)
static const struct p6_event_descr *
p6_find_event(enum pmc_event ev)
{
int n;
for (n = 0; n < P6_NEVENTS; n++)
if (p6_events[n].pm_event == ev)
break;
if (n == P6_NEVENTS)
return NULL;
return &p6_events[n];
}
/*
* Per-CPU data structure for P6 class CPUs
*
* [common stuff]
* [flags for maintaining PMC start/stop state]
* [3 struct pmc_hw pointers]
* [3 struct pmc_hw structures]
*/
struct p6_cpu {
struct pmc_hw pc_p6pmcs[P6_NPMCS];
uint32_t pc_state;
};
static struct p6_cpu **p6_pcpu;
/*
* If CTR1 is active, we need to keep the 'EN' bit if CTR0 set,
* with the rest of CTR0 being zero'ed out.
*/
#define P6_SYNC_CTR_STATE(PC) do { \
uint32_t _config, _enable; \
_enable = 0; \
if ((PC)->pc_state & 0x02) \
_enable |= P6_EVSEL_EN; \
if ((PC)->pc_state & 0x01) \
_config = rdmsr(P6_MSR_EVSEL0) | \
P6_EVSEL_EN; \
else \
_config = 0; \
wrmsr(P6_MSR_EVSEL0, _config | _enable); \
} while (0)
#define P6_MARK_STARTED(PC,RI) do { \
(PC)->pc_state |= (1 << ((RI)-1)); \
} while (0)
#define P6_MARK_STOPPED(PC,RI) do { \
(PC)->pc_state &= ~(1<< ((RI)-1)); \
} while (0)
static int
p6_pcpu_init(struct pmc_mdep *md, int cpu)
{
int first_ri, n;
struct p6_cpu *p6c;
struct pmc_cpu *pc;
struct pmc_hw *phw;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p6,%d] bad cpu %d", __LINE__, cpu));
PMCDBG(MDP,INI,0,"p6-init cpu=%d", cpu);
p6c = malloc(sizeof (struct p6_cpu), M_PMC, M_WAITOK|M_ZERO);
pc = pmc_pcpu[cpu];
KASSERT(pc != NULL, ("[p6,%d] cpu %d null per-cpu", __LINE__, cpu));
phw = p6c->pc_p6pmcs;
p6_pcpu[cpu] = p6c;
first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P6].pcd_ri;
for (n = 0; n < P6_NPMCS; n++, phw++) {
phw->phw_state = PMC_PHW_FLAG_IS_ENABLED |
PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(n);
phw->phw_pmc = NULL;
pc->pc_hwpmcs[n + first_ri] = phw;
}
return (0);
}
static int
p6_pcpu_fini(struct pmc_mdep *md, int cpu)
{
int first_ri, n;
struct p6_cpu *p6c;
struct pmc_cpu *pc;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p6,%d] bad cpu %d", __LINE__, cpu));
PMCDBG(MDP,INI,0,"p6-cleanup cpu=%d", cpu);
p6c = p6_pcpu[cpu];
p6_pcpu[cpu] = NULL;
KASSERT(p6c != NULL, ("[p6,%d] null pcpu", __LINE__));
free(p6c, M_PMC);
first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P6].pcd_ri;
pc = pmc_pcpu[cpu];
for (n = 0; n < P6_NPMCS; n++)
pc->pc_hwpmcs[n + first_ri] = NULL;
return (0);
}
static int
p6_read_pmc(int cpu, int ri, pmc_value_t *v)
{
struct pmc *pm;
struct p6pmc_descr *pd;
pmc_value_t tmp;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p6,%d] illegal cpu value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P6_NPMCS,
("[p6,%d] illegal row-index %d", __LINE__, ri));
pm = p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc;
pd = &p6_pmcdesc[ri];
KASSERT(pm,
("[p6,%d] cpu %d ri %d pmc not configured", __LINE__, cpu, ri));
tmp = rdmsr(pd->pm_pmc_msr) & P6_PERFCTR_READ_MASK;
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
*v = P6_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp);
else
*v = tmp;
PMCDBG(MDP,REA,1, "p6-read cpu=%d ri=%d msr=0x%x -> v=%jx", cpu, ri,
pd->pm_pmc_msr, *v);
return (0);
}
static int
p6_write_pmc(int cpu, int ri, pmc_value_t v)
{
struct pmc *pm;
struct p6pmc_descr *pd;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p6,%d] illegal cpu value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P6_NPMCS,
("[p6,%d] illegal row-index %d", __LINE__, ri));
pm = p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc;
pd = &p6_pmcdesc[ri];
KASSERT(pm,
("[p6,%d] cpu %d ri %d pmc not configured", __LINE__, cpu, ri));
PMCDBG(MDP,WRI,1, "p6-write cpu=%d ri=%d msr=0x%x v=%jx", cpu, ri,
pd->pm_pmc_msr, v);
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
v = P6_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
wrmsr(pd->pm_pmc_msr, v & P6_PERFCTR_WRITE_MASK);
return (0);
}
static int
p6_config_pmc(int cpu, int ri, struct pmc *pm)
{
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p6,%d] illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P6_NPMCS,
("[p6,%d] illegal row-index %d", __LINE__, ri));
PMCDBG(MDP,CFG,1, "p6-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
KASSERT(p6_pcpu[cpu] != NULL, ("[p6,%d] null per-cpu %d", __LINE__,
cpu));
p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc = pm;
return (0);
}
/*
* Retrieve a configured PMC pointer from hardware state.
*/
static int
p6_get_config(int cpu, int ri, struct pmc **ppm)
{
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p6,%d] illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P6_NPMCS,
("[p6,%d] illegal row-index %d", __LINE__, ri));
*ppm = p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc;
return (0);
}
/*
* A pmc may be allocated to a given row index if:
* - the event is valid for this CPU
* - the event is valid for this counter index
*/
static int
p6_allocate_pmc(int cpu, int ri, struct pmc *pm,
const struct pmc_op_pmcallocate *a)
{
uint32_t allowed_unitmask, caps, config, unitmask;
const struct p6pmc_descr *pd;
const struct p6_event_descr *pevent;
enum pmc_event ev;
(void) cpu;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p6,%d] illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P6_NPMCS,
("[p6,%d] illegal row-index value %d", __LINE__, ri));
pd = &p6_pmcdesc[ri];
PMCDBG(MDP,ALL,1, "p6-allocate ri=%d class=%d pmccaps=0x%x "
"reqcaps=0x%x", ri, pd->pm_descr.pd_class, pd->pm_descr.pd_caps,
pm->pm_caps);
/* check class */
if (pd->pm_descr.pd_class != a->pm_class)
return (EINVAL);
/* check requested capabilities */
caps = a->pm_caps;
if ((pd->pm_descr.pd_caps & caps) != caps)
return (EPERM);
ev = pm->pm_event;
if (ev < PMC_EV_P6_FIRST || ev > PMC_EV_P6_LAST)
return (EINVAL);
if ((pevent = p6_find_event(ev)) == NULL)
return (ESRCH);
if (!P6_EVENT_VALID_FOR_CPU(pevent, p6_cputype) ||
!P6_EVENT_VALID_FOR_CTR(pevent, (ri-1)))
return (EINVAL);
/* For certain events, Pentium M differs from the stock P6 */
allowed_unitmask = 0;
if (p6_cputype == PMC_CPU_INTEL_PM) {
if (ev == PMC_EV_P6_L2_LD || ev == PMC_EV_P6_L2_LINES_IN ||
ev == PMC_EV_P6_L2_LINES_OUT)
allowed_unitmask = P6_EVSEL_TO_UMASK(0x3F);
else if (ev == PMC_EV_P6_L2_M_LINES_OUTM)
allowed_unitmask = P6_EVSEL_TO_UMASK(0x30);
} else
allowed_unitmask = P6_EVSEL_TO_UMASK(pevent->pm_unitmask);
unitmask = a->pm_md.pm_ppro.pm_ppro_config & P6_EVSEL_UMASK_MASK;
if (unitmask & ~allowed_unitmask) /* disallow reserved bits */
return (EINVAL);
if (ev == PMC_EV_P6_MMX_UOPS_EXEC) /* hardcoded mask */
unitmask = P6_EVSEL_TO_UMASK(0x0F);
config = 0;
config |= P6_EVSEL_EVENT_SELECT(pevent->pm_evsel);
if (unitmask & (caps & PMC_CAP_QUALIFIER))
config |= unitmask;
if (caps & PMC_CAP_THRESHOLD)
config |= a->pm_md.pm_ppro.pm_ppro_config &
P6_EVSEL_CMASK_MASK;
/* set at least one of the 'usr' or 'os' caps */
if (caps & PMC_CAP_USER)
config |= P6_EVSEL_USR;
if (caps & PMC_CAP_SYSTEM)
config |= P6_EVSEL_OS;
if ((caps & (PMC_CAP_USER|PMC_CAP_SYSTEM)) == 0)
config |= (P6_EVSEL_USR|P6_EVSEL_OS);
if (caps & PMC_CAP_EDGE)
config |= P6_EVSEL_E;
if (caps & PMC_CAP_INVERT)
config |= P6_EVSEL_INV;
if (caps & PMC_CAP_INTERRUPT)
config |= P6_EVSEL_INT;
pm->pm_md.pm_ppro.pm_ppro_evsel = config;
PMCDBG(MDP,ALL,2, "p6-allocate config=0x%x", config);
return (0);
}
static int
p6_release_pmc(int cpu, int ri, struct pmc *pm)
{
(void) pm;
PMCDBG(MDP,REL,1, "p6-release cpu=%d ri=%d pm=%p", cpu, ri, pm);
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p6,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P6_NPMCS,
("[p6,%d] illegal row-index %d", __LINE__, ri));
KASSERT(p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc == NULL,
("[p6,%d] PHW pmc non-NULL", __LINE__));
return (0);
}
static int
p6_start_pmc(int cpu, int ri)
{
uint32_t config;
struct pmc *pm;
struct p6_cpu *pc;
const struct p6pmc_descr *pd;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p6,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P6_NPMCS,
("[p6,%d] illegal row-index %d", __LINE__, ri));
pc = p6_pcpu[cpu];
pm = pc->pc_p6pmcs[ri].phw_pmc;
pd = &p6_pmcdesc[ri];
KASSERT(pm,
("[p6,%d] starting cpu%d,ri%d with no pmc configured",
__LINE__, cpu, ri));
PMCDBG(MDP,STA,1, "p6-start cpu=%d ri=%d", cpu, ri);
config = pm->pm_md.pm_ppro.pm_ppro_evsel;
PMCDBG(MDP,STA,2, "p6-start/2 cpu=%d ri=%d evselmsr=0x%x config=0x%x",
cpu, ri, pd->pm_evsel_msr, config);
P6_MARK_STARTED(pc, ri);
wrmsr(pd->pm_evsel_msr, config);
P6_SYNC_CTR_STATE(pc);
return (0);
}
static int
p6_stop_pmc(int cpu, int ri)
{
struct pmc *pm;
struct p6_cpu *pc;
struct p6pmc_descr *pd;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p6,%d] illegal cpu value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P6_NPMCS,
("[p6,%d] illegal row index %d", __LINE__, ri));
pc = p6_pcpu[cpu];
pm = pc->pc_p6pmcs[ri].phw_pmc;
pd = &p6_pmcdesc[ri];
KASSERT(pm,
("[p6,%d] cpu%d ri%d no configured PMC to stop", __LINE__,
cpu, ri));
PMCDBG(MDP,STO,1, "p6-stop cpu=%d ri=%d", cpu, ri);
wrmsr(pd->pm_evsel_msr, 0); /* stop hw */
P6_MARK_STOPPED(pc, ri); /* update software state */
P6_SYNC_CTR_STATE(pc); /* restart CTR1 if need be */
PMCDBG(MDP,STO,2, "p6-stop/2 cpu=%d ri=%d", cpu, ri);
return (0);
}
static int
p6_intr(int cpu, struct trapframe *tf)
{
int error, retval, ri;
uint32_t perf0cfg;
struct pmc *pm;
struct p6_cpu *pc;
pmc_value_t v;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p6,%d] CPU %d out of range", __LINE__, cpu));
retval = 0;
pc = p6_pcpu[cpu];
/* stop both PMCs */
perf0cfg = rdmsr(P6_MSR_EVSEL0);
wrmsr(P6_MSR_EVSEL0, perf0cfg & ~P6_EVSEL_EN);
for (ri = 0; ri < P6_NPMCS; ri++) {
if ((pm = pc->pc_p6pmcs[ri].phw_pmc) == NULL ||
!PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
continue;
}
if (!P6_PMC_HAS_OVERFLOWED(ri))
continue;
retval = 1;
if (pm->pm_state != PMC_STATE_RUNNING)
continue;
error = pmc_process_interrupt(cpu, pm, tf,
TRAPF_USERMODE(tf));
if (error)
P6_MARK_STOPPED(pc,ri);
/* reload sampling count */
v = pm->pm_sc.pm_reloadcount;
wrmsr(P6_MSR_PERFCTR0 + ri,
P6_RELOAD_COUNT_TO_PERFCTR_VALUE(v));
}
/*
* On P6 processors, the LAPIC needs to have its PMC interrupt
* unmasked after a PMC interrupt.
*/
if (retval)
pmc_x86_lapic_enable_pmc_interrupt();
atomic_add_int(retval ? &pmc_stats.pm_intr_processed :
&pmc_stats.pm_intr_ignored, 1);
/* restart counters that can be restarted */
P6_SYNC_CTR_STATE(pc);
return (retval);
}
static int
p6_describe(int cpu, int ri, struct pmc_info *pi,
struct pmc **ppmc)
{
int error;
size_t copied;
struct pmc_hw *phw;
struct p6pmc_descr *pd;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[p6,%d] illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < P6_NPMCS,
("[p6,%d] row-index %d out of range", __LINE__, ri));
phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
pd = &p6_pmcdesc[ri];
KASSERT(phw == &p6_pcpu[cpu]->pc_p6pmcs[ri],
("[p6,%d] phw mismatch", __LINE__));
if ((error = copystr(pd->pm_descr.pd_name, pi->pm_name,
PMC_NAME_MAX, &copied)) != 0)
return (error);
pi->pm_class = pd->pm_descr.pd_class;
if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
pi->pm_enabled = TRUE;
*ppmc = phw->phw_pmc;
} else {
pi->pm_enabled = FALSE;
*ppmc = NULL;
}
return (0);
}
static int
p6_get_msr(int ri, uint32_t *msr)
{
KASSERT(ri >= 0 && ri < P6_NPMCS,
("[p6,%d ri %d out of range", __LINE__, ri));
*msr = p6_pmcdesc[ri].pm_pmc_msr - P6_MSR_PERFCTR0;
return (0);
}
int
pmc_p6_initialize(struct pmc_mdep *md, int ncpus)
{
struct pmc_classdep *pcd;
KASSERT(cpu_vendor_id == CPU_VENDOR_INTEL,
("[p6,%d] Initializing non-intel processor", __LINE__));
PMCDBG(MDP,INI,1, "%s", "p6-initialize");
/* Allocate space for pointers to per-cpu descriptors. */
p6_pcpu = malloc(sizeof(struct p6_cpu **) * ncpus, M_PMC,
M_ZERO|M_WAITOK);
/* Fill in the class dependent descriptor. */
pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P6];
switch (md->pmd_cputype) {
/*
* P6 Family Processors
*/
case PMC_CPU_INTEL_P6:
case PMC_CPU_INTEL_CL:
case PMC_CPU_INTEL_PII:
case PMC_CPU_INTEL_PIII:
case PMC_CPU_INTEL_PM:
p6_cputype = md->pmd_cputype;
pcd->pcd_caps = P6_PMC_CAPS;
pcd->pcd_class = PMC_CLASS_P6;
pcd->pcd_num = P6_NPMCS;
pcd->pcd_ri = md->pmd_npmc;
pcd->pcd_width = 40;
pcd->pcd_allocate_pmc = p6_allocate_pmc;
pcd->pcd_config_pmc = p6_config_pmc;
pcd->pcd_describe = p6_describe;
pcd->pcd_get_config = p6_get_config;
pcd->pcd_get_msr = p6_get_msr;
pcd->pcd_pcpu_fini = p6_pcpu_fini;
pcd->pcd_pcpu_init = p6_pcpu_init;
pcd->pcd_read_pmc = p6_read_pmc;
pcd->pcd_release_pmc = p6_release_pmc;
pcd->pcd_start_pmc = p6_start_pmc;
pcd->pcd_stop_pmc = p6_stop_pmc;
pcd->pcd_write_pmc = p6_write_pmc;
md->pmd_pcpu_fini = NULL;
md->pmd_pcpu_init = NULL;
md->pmd_intr = p6_intr;
md->pmd_npmc += P6_NPMCS;
break;
default:
KASSERT(0,("[p6,%d] Unknown CPU type", __LINE__));
return ENOSYS;
}
return (0);
}
void
pmc_p6_finalize(struct pmc_mdep *md)
{
#if defined(INVARIANTS)
int i, ncpus;
#endif
KASSERT(p6_pcpu != NULL, ("[p6,%d] NULL p6_pcpu", __LINE__));
#if defined(INVARIANTS)
ncpus = pmc_cpu_max();
for (i = 0; i < ncpus; i++)
KASSERT(p6_pcpu[i] == NULL, ("[p6,%d] non-null pcpu %d",
__LINE__, i));
#endif
free(p6_pcpu, M_PMC);
p6_pcpu = NULL;
}