1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* Copyright (c) 1980, 1986, 1991, 1993
|
|
|
|
* The Regents of the University of California. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by the University of
|
|
|
|
* California, Berkeley and its contributors.
|
|
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* @(#)route.c 8.2 (Berkeley) 11/15/93
|
1999-08-28 01:08:13 +00:00
|
|
|
* $FreeBSD$
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
1998-01-08 23:42:31 +00:00
|
|
|
#include "opt_inet.h"
|
1996-03-02 18:24:13 +00:00
|
|
|
#include "opt_mrouting.h"
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
1997-09-02 01:19:47 +00:00
|
|
|
#include <sys/malloc.h>
|
1994-05-24 10:09:53 +00:00
|
|
|
#include <sys/mbuf.h>
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/domain.h>
|
1999-04-29 03:22:19 +00:00
|
|
|
#include <sys/kernel.h>
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
#include <net/if.h>
|
|
|
|
#include <net/route.h>
|
|
|
|
|
|
|
|
#include <netinet/in.h>
|
1995-03-16 18:17:34 +00:00
|
|
|
#include <netinet/ip_mroute.h>
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
#define SA(p) ((struct sockaddr *)(p))
|
|
|
|
|
1995-07-29 11:44:31 +00:00
|
|
|
struct route_cb route_cb;
|
1995-12-14 09:55:16 +00:00
|
|
|
static struct rtstat rtstat;
|
1995-07-29 11:44:31 +00:00
|
|
|
struct radix_node_head *rt_tables[AF_MAX+1];
|
|
|
|
|
1995-12-14 09:55:16 +00:00
|
|
|
static int rttrash; /* routes not in table but not freed */
|
1994-05-24 10:09:53 +00:00
|
|
|
|
1995-12-14 09:55:16 +00:00
|
|
|
static void rt_maskedcopy __P((struct sockaddr *,
|
|
|
|
struct sockaddr *, struct sockaddr *));
|
|
|
|
static void rtable_init __P((void **));
|
|
|
|
|
|
|
|
static void
|
1994-05-24 10:09:53 +00:00
|
|
|
rtable_init(table)
|
|
|
|
void **table;
|
|
|
|
{
|
|
|
|
struct domain *dom;
|
|
|
|
for (dom = domains; dom; dom = dom->dom_next)
|
|
|
|
if (dom->dom_rtattach)
|
|
|
|
dom->dom_rtattach(&table[dom->dom_family],
|
|
|
|
dom->dom_rtoffset);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
route_init()
|
|
|
|
{
|
|
|
|
rn_init(); /* initialize all zeroes, all ones, mask table */
|
|
|
|
rtable_init((void **)rt_tables);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Packet routing routines.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
rtalloc(ro)
|
|
|
|
register struct route *ro;
|
|
|
|
{
|
1999-12-09 17:09:37 +00:00
|
|
|
rtalloc_ign(ro, 0UL);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
1994-12-13 23:07:03 +00:00
|
|
|
void
|
|
|
|
rtalloc_ign(ro, ignore)
|
|
|
|
register struct route *ro;
|
|
|
|
u_long ignore;
|
|
|
|
{
|
1999-12-09 17:09:37 +00:00
|
|
|
struct rtentry *rt;
|
|
|
|
int s;
|
|
|
|
|
|
|
|
if ((rt = ro->ro_rt) != NULL) {
|
|
|
|
if (rt->rt_ifp != NULL && rt->rt_flags & RTF_UP)
|
|
|
|
return;
|
|
|
|
/* XXX - We are probably always at splnet here already. */
|
|
|
|
s = splnet();
|
|
|
|
RTFREE(rt);
|
2000-01-15 07:27:12 +00:00
|
|
|
ro->ro_rt = NULL;
|
1999-12-09 17:09:37 +00:00
|
|
|
splx(s);
|
|
|
|
}
|
1994-12-13 23:07:03 +00:00
|
|
|
ro->ro_rt = rtalloc1(&ro->ro_dst, 1, ignore);
|
|
|
|
}
|
|
|
|
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* Look up the route that matches the address given
|
|
|
|
* Or, at least try.. Create a cloned route if needed.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
struct rtentry *
|
1994-12-13 22:31:49 +00:00
|
|
|
rtalloc1(dst, report, ignflags)
|
1994-05-24 10:09:53 +00:00
|
|
|
register struct sockaddr *dst;
|
|
|
|
int report;
|
1994-12-13 22:31:49 +00:00
|
|
|
u_long ignflags;
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
|
|
|
register struct radix_node_head *rnh = rt_tables[dst->sa_family];
|
|
|
|
register struct rtentry *rt;
|
|
|
|
register struct radix_node *rn;
|
|
|
|
struct rtentry *newrt = 0;
|
|
|
|
struct rt_addrinfo info;
|
1994-12-13 22:31:49 +00:00
|
|
|
u_long nflags;
|
1994-05-24 10:09:53 +00:00
|
|
|
int s = splnet(), err = 0, msgtype = RTM_MISS;
|
|
|
|
|
1999-11-22 02:45:11 +00:00
|
|
|
/*
|
1996-09-10 07:10:05 +00:00
|
|
|
* Look up the address in the table for that Address Family
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (rnh && (rn = rnh->rnh_matchaddr((caddr_t)dst, rnh)) &&
|
|
|
|
((rn->rn_flags & RNF_ROOT) == 0)) {
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* If we find it and it's not the root node, then
|
|
|
|
* get a refernce on the rtentry associated.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
newrt = rt = (struct rtentry *)rn;
|
1994-12-13 22:31:49 +00:00
|
|
|
nflags = rt->rt_flags & ~ignflags;
|
|
|
|
if (report && (nflags & (RTF_CLONING | RTF_PRCLONING))) {
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* We are apparently adding (report = 0 in delete).
|
|
|
|
* If it requires that it be cloned, do so.
|
|
|
|
* (This implies it wasn't a HOST route.)
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
err = rtrequest(RTM_RESOLVE, dst, SA(0),
|
|
|
|
SA(0), 0, &newrt);
|
|
|
|
if (err) {
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* If the cloning didn't succeed, maybe
|
|
|
|
* what we have will do. Return that.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
newrt = rt;
|
|
|
|
rt->rt_refcnt++;
|
|
|
|
goto miss;
|
|
|
|
}
|
|
|
|
if ((rt = newrt) && (rt->rt_flags & RTF_XRESOLVE)) {
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
1999-11-22 02:45:11 +00:00
|
|
|
* If the new route specifies it be
|
1996-09-10 07:10:05 +00:00
|
|
|
* externally resolved, then go do that.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
msgtype = RTM_RESOLVE;
|
|
|
|
goto miss;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
rt->rt_refcnt++;
|
|
|
|
} else {
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* Either we hit the root or couldn't find any match,
|
|
|
|
* Which basically means
|
|
|
|
* "caint get there frm here"
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
rtstat.rts_unreach++;
|
|
|
|
miss: if (report) {
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* If required, report the failure to the supervising
|
|
|
|
* Authorities.
|
|
|
|
* For a delete, this is not an error. (report == 0)
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
bzero((caddr_t)&info, sizeof(info));
|
|
|
|
info.rti_info[RTAX_DST] = dst;
|
|
|
|
rt_missmsg(msgtype, &info, 0, err);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
splx(s);
|
|
|
|
return (newrt);
|
|
|
|
}
|
|
|
|
|
1997-03-05 08:01:28 +00:00
|
|
|
/*
|
|
|
|
* Remove a reference count from an rtentry.
|
|
|
|
* If the count gets low enough, take it out of the routing table
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
void
|
|
|
|
rtfree(rt)
|
|
|
|
register struct rtentry *rt;
|
|
|
|
{
|
1997-03-05 08:01:28 +00:00
|
|
|
/*
|
|
|
|
* find the tree for that address family
|
|
|
|
*/
|
1995-05-30 08:16:23 +00:00
|
|
|
register struct radix_node_head *rnh =
|
1994-11-02 04:41:39 +00:00
|
|
|
rt_tables[rt_key(rt)->sa_family];
|
1994-05-24 10:09:53 +00:00
|
|
|
register struct ifaddr *ifa;
|
|
|
|
|
1995-03-23 18:07:29 +00:00
|
|
|
if (rt == 0 || rnh == 0)
|
1994-05-24 10:09:53 +00:00
|
|
|
panic("rtfree");
|
1997-03-05 08:01:28 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* decrement the reference count by one and if it reaches 0,
|
|
|
|
* and there is a close function defined, call the close function
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
rt->rt_refcnt--;
|
1994-11-02 04:41:39 +00:00
|
|
|
if(rnh->rnh_close && rt->rt_refcnt == 0) {
|
|
|
|
rnh->rnh_close((struct radix_node *)rt, rnh);
|
|
|
|
}
|
1997-03-05 08:01:28 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If we are no longer "up" (and ref == 0)
|
|
|
|
* then we can free the resources associated
|
|
|
|
* with the route.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (rt->rt_refcnt <= 0 && (rt->rt_flags & RTF_UP) == 0) {
|
|
|
|
if (rt->rt_nodes->rn_flags & (RNF_ACTIVE | RNF_ROOT))
|
|
|
|
panic ("rtfree 2");
|
1999-11-22 02:45:11 +00:00
|
|
|
/*
|
1997-03-05 08:01:28 +00:00
|
|
|
* the rtentry must have been removed from the routing table
|
|
|
|
* so it is represented in rttrash.. remove that now.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
rttrash--;
|
1997-03-05 08:01:28 +00:00
|
|
|
|
|
|
|
#ifdef DIAGNOSTIC
|
1994-05-24 10:09:53 +00:00
|
|
|
if (rt->rt_refcnt < 0) {
|
1994-10-02 17:48:58 +00:00
|
|
|
printf("rtfree: %p not freed (neg refs)\n", rt);
|
1994-05-24 10:09:53 +00:00
|
|
|
return;
|
|
|
|
}
|
1997-03-05 08:01:28 +00:00
|
|
|
#endif
|
|
|
|
|
1999-11-22 02:45:11 +00:00
|
|
|
/*
|
1997-03-05 08:01:28 +00:00
|
|
|
* release references on items we hold them on..
|
|
|
|
* e.g other routes and ifaddrs.
|
|
|
|
*/
|
|
|
|
if((ifa = rt->rt_ifa))
|
|
|
|
IFAFREE(ifa);
|
1995-03-21 19:50:34 +00:00
|
|
|
if (rt->rt_parent) {
|
|
|
|
RTFREE(rt->rt_parent);
|
|
|
|
}
|
1997-03-05 08:01:28 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The key is separatly alloc'd so free it (see rt_setgate()).
|
|
|
|
* This also frees the gateway, as they are always malloc'd
|
|
|
|
* together.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
Free(rt_key(rt));
|
1997-03-05 08:01:28 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* and the rtentry itself of course
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
Free(rt);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
ifafree(ifa)
|
|
|
|
register struct ifaddr *ifa;
|
|
|
|
{
|
|
|
|
if (ifa == NULL)
|
|
|
|
panic("ifafree");
|
|
|
|
if (ifa->ifa_refcnt == 0)
|
|
|
|
free(ifa, M_IFADDR);
|
|
|
|
else
|
|
|
|
ifa->ifa_refcnt--;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Force a routing table entry to the specified
|
|
|
|
* destination to go through the given gateway.
|
|
|
|
* Normally called as a result of a routing redirect
|
|
|
|
* message from the network layer.
|
|
|
|
*
|
|
|
|
* N.B.: must be called at splnet
|
|
|
|
*
|
|
|
|
*/
|
1994-05-25 09:21:21 +00:00
|
|
|
void
|
1994-05-24 10:09:53 +00:00
|
|
|
rtredirect(dst, gateway, netmask, flags, src, rtp)
|
|
|
|
struct sockaddr *dst, *gateway, *netmask, *src;
|
|
|
|
int flags;
|
|
|
|
struct rtentry **rtp;
|
|
|
|
{
|
|
|
|
register struct rtentry *rt;
|
|
|
|
int error = 0;
|
|
|
|
short *stat = 0;
|
|
|
|
struct rt_addrinfo info;
|
|
|
|
struct ifaddr *ifa;
|
|
|
|
|
|
|
|
/* verify the gateway is directly reachable */
|
|
|
|
if ((ifa = ifa_ifwithnet(gateway)) == 0) {
|
|
|
|
error = ENETUNREACH;
|
|
|
|
goto out;
|
|
|
|
}
|
1994-12-13 22:31:49 +00:00
|
|
|
rt = rtalloc1(dst, 0, 0UL);
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* If the redirect isn't from our current router for this dst,
|
|
|
|
* it's either old or wrong. If it redirects us to ourselves,
|
|
|
|
* we have a routing loop, perhaps as a result of an interface
|
|
|
|
* going down recently.
|
|
|
|
*/
|
|
|
|
#define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
|
|
|
|
if (!(flags & RTF_DONE) && rt &&
|
|
|
|
(!equal(src, rt->rt_gateway) || rt->rt_ifa != ifa))
|
|
|
|
error = EINVAL;
|
|
|
|
else if (ifa_ifwithaddr(gateway))
|
|
|
|
error = EHOSTUNREACH;
|
|
|
|
if (error)
|
|
|
|
goto done;
|
|
|
|
/*
|
|
|
|
* Create a new entry if we just got back a wildcard entry
|
|
|
|
* or the the lookup failed. This is necessary for hosts
|
|
|
|
* which use routing redirects generated by smart gateways
|
|
|
|
* to dynamically build the routing tables.
|
|
|
|
*/
|
|
|
|
if ((rt == 0) || (rt_mask(rt) && rt_mask(rt)->sa_len < 2))
|
|
|
|
goto create;
|
|
|
|
/*
|
|
|
|
* Don't listen to the redirect if it's
|
1995-05-30 08:16:23 +00:00
|
|
|
* for a route to an interface.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
if (rt->rt_flags & RTF_GATEWAY) {
|
|
|
|
if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) {
|
|
|
|
/*
|
|
|
|
* Changing from route to net => route to host.
|
|
|
|
* Create new route, rather than smashing route to net.
|
|
|
|
*/
|
|
|
|
create:
|
|
|
|
flags |= RTF_GATEWAY | RTF_DYNAMIC;
|
|
|
|
error = rtrequest((int)RTM_ADD, dst, gateway,
|
|
|
|
netmask, flags,
|
|
|
|
(struct rtentry **)0);
|
|
|
|
stat = &rtstat.rts_dynamic;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Smash the current notion of the gateway to
|
|
|
|
* this destination. Should check about netmask!!!
|
|
|
|
*/
|
|
|
|
rt->rt_flags |= RTF_MODIFIED;
|
|
|
|
flags |= RTF_MODIFIED;
|
|
|
|
stat = &rtstat.rts_newgateway;
|
1997-03-05 08:01:28 +00:00
|
|
|
/*
|
|
|
|
* add the key and gateway (in one malloc'd chunk).
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
rt_setgate(rt, rt_key(rt), gateway);
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
error = EHOSTUNREACH;
|
|
|
|
done:
|
|
|
|
if (rt) {
|
|
|
|
if (rtp && !error)
|
|
|
|
*rtp = rt;
|
|
|
|
else
|
|
|
|
rtfree(rt);
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
if (error)
|
|
|
|
rtstat.rts_badredirect++;
|
|
|
|
else if (stat != NULL)
|
|
|
|
(*stat)++;
|
|
|
|
bzero((caddr_t)&info, sizeof(info));
|
|
|
|
info.rti_info[RTAX_DST] = dst;
|
|
|
|
info.rti_info[RTAX_GATEWAY] = gateway;
|
|
|
|
info.rti_info[RTAX_NETMASK] = netmask;
|
|
|
|
info.rti_info[RTAX_AUTHOR] = src;
|
|
|
|
rt_missmsg(RTM_REDIRECT, &info, flags, error);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Routing table ioctl interface.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
rtioctl(req, data, p)
|
|
|
|
int req;
|
|
|
|
caddr_t data;
|
|
|
|
struct proc *p;
|
|
|
|
{
|
1994-10-02 17:48:58 +00:00
|
|
|
#ifdef INET
|
1994-09-06 22:42:31 +00:00
|
|
|
/* Multicast goop, grrr... */
|
1995-12-02 19:28:24 +00:00
|
|
|
#ifdef MROUTING
|
|
|
|
return mrt_ioctl(req, data);
|
|
|
|
#else
|
1994-09-07 19:50:42 +00:00
|
|
|
return mrt_ioctl(req, data, p);
|
1995-12-02 19:28:24 +00:00
|
|
|
#endif
|
1994-10-02 17:48:58 +00:00
|
|
|
#else /* INET */
|
|
|
|
return ENXIO;
|
|
|
|
#endif /* INET */
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
struct ifaddr *
|
|
|
|
ifa_ifwithroute(flags, dst, gateway)
|
|
|
|
int flags;
|
|
|
|
struct sockaddr *dst, *gateway;
|
|
|
|
{
|
|
|
|
register struct ifaddr *ifa;
|
|
|
|
if ((flags & RTF_GATEWAY) == 0) {
|
|
|
|
/*
|
|
|
|
* If we are adding a route to an interface,
|
|
|
|
* and the interface is a pt to pt link
|
|
|
|
* we should search for the destination
|
|
|
|
* as our clue to the interface. Otherwise
|
|
|
|
* we can use the local address.
|
|
|
|
*/
|
|
|
|
ifa = 0;
|
1994-10-11 23:16:38 +00:00
|
|
|
if (flags & RTF_HOST) {
|
1994-05-24 10:09:53 +00:00
|
|
|
ifa = ifa_ifwithdstaddr(dst);
|
1994-10-11 23:16:38 +00:00
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
if (ifa == 0)
|
|
|
|
ifa = ifa_ifwithaddr(gateway);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* If we are adding a route to a remote net
|
|
|
|
* or host, the gateway may still be on the
|
|
|
|
* other end of a pt to pt link.
|
|
|
|
*/
|
|
|
|
ifa = ifa_ifwithdstaddr(gateway);
|
|
|
|
}
|
|
|
|
if (ifa == 0)
|
|
|
|
ifa = ifa_ifwithnet(gateway);
|
|
|
|
if (ifa == 0) {
|
1994-12-13 22:31:49 +00:00
|
|
|
struct rtentry *rt = rtalloc1(dst, 0, 0UL);
|
1994-05-24 10:09:53 +00:00
|
|
|
if (rt == 0)
|
|
|
|
return (0);
|
|
|
|
rt->rt_refcnt--;
|
|
|
|
if ((ifa = rt->rt_ifa) == 0)
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
if (ifa->ifa_addr->sa_family != dst->sa_family) {
|
|
|
|
struct ifaddr *oifa = ifa;
|
|
|
|
ifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp);
|
|
|
|
if (ifa == 0)
|
|
|
|
ifa = oifa;
|
|
|
|
}
|
|
|
|
return (ifa);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define ROUNDUP(a) (a>0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
|
|
|
|
|
1997-09-16 11:44:05 +00:00
|
|
|
static int rt_fixdelete __P((struct radix_node *, void *));
|
|
|
|
static int rt_fixchange __P((struct radix_node *, void *));
|
1995-04-25 19:12:07 +00:00
|
|
|
|
|
|
|
struct rtfc_arg {
|
|
|
|
struct rtentry *rt0;
|
|
|
|
struct radix_node_head *rnh;
|
|
|
|
};
|
1995-01-23 02:00:35 +00:00
|
|
|
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* Do appropriate manipulations of a routing tree given
|
|
|
|
* all the bits of info needed
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
int
|
|
|
|
rtrequest(req, dst, gateway, netmask, flags, ret_nrt)
|
|
|
|
int req, flags;
|
|
|
|
struct sockaddr *dst, *gateway, *netmask;
|
|
|
|
struct rtentry **ret_nrt;
|
|
|
|
{
|
|
|
|
int s = splnet(); int error = 0;
|
|
|
|
register struct rtentry *rt;
|
|
|
|
register struct radix_node *rn;
|
|
|
|
register struct radix_node_head *rnh;
|
|
|
|
struct ifaddr *ifa;
|
|
|
|
struct sockaddr *ndst;
|
|
|
|
#define senderr(x) { error = x ; goto bad; }
|
|
|
|
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* Find the correct routing tree to use for this Address Family
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if ((rnh = rt_tables[dst->sa_family]) == 0)
|
|
|
|
senderr(ESRCH);
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* If we are adding a host route then we don't want to put
|
|
|
|
* a netmask in the tree
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (flags & RTF_HOST)
|
|
|
|
netmask = 0;
|
|
|
|
switch (req) {
|
|
|
|
case RTM_DELETE:
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* Remove the item from the tree and return it.
|
|
|
|
* Complain if it is not there and do no more processing.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if ((rn = rnh->rnh_deladdr(dst, netmask, rnh)) == 0)
|
|
|
|
senderr(ESRCH);
|
|
|
|
if (rn->rn_flags & (RNF_ACTIVE | RNF_ROOT))
|
|
|
|
panic ("rtrequest delete");
|
|
|
|
rt = (struct rtentry *)rn;
|
1995-03-20 21:30:21 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Now search what's left of the subtree for any cloned
|
|
|
|
* routes which might have been formed from this node.
|
|
|
|
*/
|
net/route.c:
A route generated from an RTF_CLONING route had the RTF_WASCLONED flag
set but did not have a reference to the parent route, as documented in
the rtentry(9) manpage. This prevented such routes from being deleted
when their parent route is deleted.
Now, for example, if you delete an IP address from a network interface,
all ARP entries that were cloned from this interface route are flushed.
This also has an impact on netstat(1) output. Previously, dynamically
created ARP cache entries (RTF_STATIC flag is unset) were displayed as
part of the routing table display (-r). Now, they are only printed if
the -a option is given.
netinet/in.c, netinet/in_rmx.c:
When address is removed from an interface, also delete all routes that
point to this interface and address. Previously, for example, if you
changed the address on an interface, outgoing IP datagrams might still
use the old address. The only solution was to delete and re-add some
routes. (The problem is easily observed with the route(8) command.)
Note, that if the socket was already bound to the local address before
this address is removed, new datagrams generated from this socket will
still be sent from the old address.
PR: kern/20785, kern/21914
Reviewed by: wollman (the idea)
2001-03-15 14:52:12 +00:00
|
|
|
if ((rt->rt_flags & (RTF_CLONING | RTF_PRCLONING)) &&
|
|
|
|
rt_mask(rt)) {
|
|
|
|
rnh->rnh_walktree_from(rnh, dst, rt_mask(rt),
|
1995-03-20 21:30:21 +00:00
|
|
|
rt_fixdelete, rt);
|
|
|
|
}
|
1995-03-23 18:07:29 +00:00
|
|
|
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* Remove any external references we may have.
|
|
|
|
* This might result in another rtentry being freed if
|
1998-04-17 22:37:19 +00:00
|
|
|
* we held its last reference.
|
1996-09-10 07:10:05 +00:00
|
|
|
*/
|
1996-03-29 08:02:30 +00:00
|
|
|
if (rt->rt_gwroute) {
|
1996-09-10 07:10:05 +00:00
|
|
|
rt = rt->rt_gwroute;
|
|
|
|
RTFREE(rt);
|
1996-03-29 08:02:30 +00:00
|
|
|
(rt = (struct rtentry *)rn)->rt_gwroute = 0;
|
|
|
|
}
|
|
|
|
|
1995-03-23 18:07:29 +00:00
|
|
|
/*
|
|
|
|
* NB: RTF_UP must be set during the search above,
|
|
|
|
* because we might delete the last ref, causing
|
|
|
|
* rt to get freed prematurely.
|
1997-03-05 08:01:28 +00:00
|
|
|
* eh? then why not just add a reference?
|
|
|
|
* I'm not sure how RTF_UP helps matters. (JRE)
|
1995-03-23 18:07:29 +00:00
|
|
|
*/
|
|
|
|
rt->rt_flags &= ~RTF_UP;
|
|
|
|
|
1999-11-22 02:45:11 +00:00
|
|
|
/*
|
1997-03-05 08:01:28 +00:00
|
|
|
* give the protocol a chance to keep things in sync.
|
1996-09-10 07:10:05 +00:00
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if ((ifa = rt->rt_ifa) && ifa->ifa_rtrequest)
|
|
|
|
ifa->ifa_rtrequest(RTM_DELETE, rt, SA(0));
|
1997-03-05 08:01:28 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* one more rtentry floating around that is not
|
|
|
|
* linked to the routing table.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
rttrash++;
|
1997-03-05 08:01:28 +00:00
|
|
|
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
1997-03-05 08:01:28 +00:00
|
|
|
* If the caller wants it, then it can have it,
|
|
|
|
* but it's up to it to free the rtentry as we won't be
|
|
|
|
* doing it.
|
1996-09-10 07:10:05 +00:00
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (ret_nrt)
|
|
|
|
*ret_nrt = rt;
|
|
|
|
else if (rt->rt_refcnt <= 0) {
|
1996-09-10 07:10:05 +00:00
|
|
|
rt->rt_refcnt++; /* make a 1->0 transition */
|
1994-05-24 10:09:53 +00:00
|
|
|
rtfree(rt);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RTM_RESOLVE:
|
|
|
|
if (ret_nrt == 0 || (rt = *ret_nrt) == 0)
|
|
|
|
senderr(EINVAL);
|
|
|
|
ifa = rt->rt_ifa;
|
1995-03-20 23:00:57 +00:00
|
|
|
flags = rt->rt_flags &
|
|
|
|
~(RTF_CLONING | RTF_PRCLONING | RTF_STATIC);
|
1994-12-13 22:31:49 +00:00
|
|
|
flags |= RTF_WASCLONED;
|
1994-05-24 10:09:53 +00:00
|
|
|
gateway = rt->rt_gateway;
|
|
|
|
if ((netmask = rt->rt_genmask) == 0)
|
|
|
|
flags |= RTF_HOST;
|
|
|
|
goto makeroute;
|
|
|
|
|
|
|
|
case RTM_ADD:
|
1994-10-11 23:16:38 +00:00
|
|
|
if ((flags & RTF_GATEWAY) && !gateway)
|
|
|
|
panic("rtrequest: GATEWAY but no gateway");
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
if ((ifa = ifa_ifwithroute(flags, dst, gateway)) == 0)
|
|
|
|
senderr(ENETUNREACH);
|
1994-10-11 23:16:38 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
makeroute:
|
|
|
|
R_Malloc(rt, struct rtentry *, sizeof(*rt));
|
|
|
|
if (rt == 0)
|
|
|
|
senderr(ENOBUFS);
|
|
|
|
Bzero(rt, sizeof(*rt));
|
|
|
|
rt->rt_flags = RTF_UP | flags;
|
1997-03-05 08:01:28 +00:00
|
|
|
/*
|
|
|
|
* Add the gateway. Possibly re-malloc-ing the storage for it
|
|
|
|
* also add the rt_gwroute if possible.
|
|
|
|
*/
|
1999-01-27 22:42:27 +00:00
|
|
|
if ((error = rt_setgate(rt, dst, gateway)) != 0) {
|
1994-05-24 10:09:53 +00:00
|
|
|
Free(rt);
|
1996-09-02 02:49:40 +00:00
|
|
|
senderr(error);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
1997-03-05 08:01:28 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* point to the (possibly newly malloc'd) dest address.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
ndst = rt_key(rt);
|
1997-03-05 08:01:28 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* make sure it contains the value we want (masked if needed).
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (netmask) {
|
|
|
|
rt_maskedcopy(dst, ndst, netmask);
|
|
|
|
} else
|
|
|
|
Bcopy(dst, ndst, dst->sa_len);
|
1995-07-10 15:22:37 +00:00
|
|
|
|
|
|
|
/*
|
1997-03-05 08:01:28 +00:00
|
|
|
* Note that we now have a reference to the ifa.
|
1995-07-10 15:22:37 +00:00
|
|
|
* This moved from below so that rnh->rnh_addaddr() can
|
1997-03-05 08:01:28 +00:00
|
|
|
* examine the ifa and ifa->ifa_ifp if it so desires.
|
1995-07-10 15:22:37 +00:00
|
|
|
*/
|
|
|
|
ifa->ifa_refcnt++;
|
|
|
|
rt->rt_ifa = ifa;
|
|
|
|
rt->rt_ifp = ifa->ifa_ifp;
|
1999-11-22 02:45:11 +00:00
|
|
|
/* XXX mtu manipulation will be done in rnh_addaddr -- itojun */
|
1995-07-10 15:22:37 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
rn = rnh->rnh_addaddr((caddr_t)ndst, (caddr_t)netmask,
|
|
|
|
rnh, rt->rt_nodes);
|
1995-10-16 19:09:40 +00:00
|
|
|
if (rn == 0) {
|
|
|
|
struct rtentry *rt2;
|
|
|
|
/*
|
|
|
|
* Uh-oh, we already have one of these in the tree.
|
|
|
|
* We do a special hack: if the route that's already
|
|
|
|
* there was generated by the protocol-cloning
|
|
|
|
* mechanism, then we just blow it away and retry
|
|
|
|
* the insertion of the new one.
|
|
|
|
*/
|
|
|
|
rt2 = rtalloc1(dst, 0, RTF_PRCLONING);
|
|
|
|
if (rt2 && rt2->rt_parent) {
|
1999-11-22 02:45:11 +00:00
|
|
|
rtrequest(RTM_DELETE,
|
1995-10-16 19:09:40 +00:00
|
|
|
(struct sockaddr *)rt_key(rt2),
|
|
|
|
rt2->rt_gateway,
|
|
|
|
rt_mask(rt2), rt2->rt_flags, 0);
|
|
|
|
RTFREE(rt2);
|
|
|
|
rn = rnh->rnh_addaddr((caddr_t)ndst,
|
|
|
|
(caddr_t)netmask,
|
|
|
|
rnh, rt->rt_nodes);
|
1996-01-24 20:27:19 +00:00
|
|
|
} else if (rt2) {
|
1997-03-05 08:01:28 +00:00
|
|
|
/* undo the extra ref we got */
|
1996-01-24 20:27:19 +00:00
|
|
|
RTFREE(rt2);
|
1995-10-16 19:09:40 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
1997-03-05 08:01:28 +00:00
|
|
|
/*
|
|
|
|
* If it still failed to go into the tree,
|
|
|
|
* then un-make it (this should be a function)
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (rn == 0) {
|
|
|
|
if (rt->rt_gwroute)
|
|
|
|
rtfree(rt->rt_gwroute);
|
1995-07-10 15:22:37 +00:00
|
|
|
if (rt->rt_ifa) {
|
|
|
|
IFAFREE(rt->rt_ifa);
|
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
Free(rt_key(rt));
|
|
|
|
Free(rt);
|
|
|
|
senderr(EEXIST);
|
|
|
|
}
|
1997-03-05 08:01:28 +00:00
|
|
|
|
1995-03-21 19:50:34 +00:00
|
|
|
rt->rt_parent = 0;
|
|
|
|
|
1999-11-22 02:45:11 +00:00
|
|
|
/*
|
1997-03-05 08:01:28 +00:00
|
|
|
* If we got here from RESOLVE, then we are cloning
|
1999-11-22 02:45:11 +00:00
|
|
|
* so clone the rest, and note that we
|
1997-03-05 08:01:28 +00:00
|
|
|
* are a clone (and increment the parent's references)
|
|
|
|
*/
|
1995-03-20 21:30:21 +00:00
|
|
|
if (req == RTM_RESOLVE) {
|
1994-05-24 10:09:53 +00:00
|
|
|
rt->rt_rmx = (*ret_nrt)->rt_rmx; /* copy metrics */
|
net/route.c:
A route generated from an RTF_CLONING route had the RTF_WASCLONED flag
set but did not have a reference to the parent route, as documented in
the rtentry(9) manpage. This prevented such routes from being deleted
when their parent route is deleted.
Now, for example, if you delete an IP address from a network interface,
all ARP entries that were cloned from this interface route are flushed.
This also has an impact on netstat(1) output. Previously, dynamically
created ARP cache entries (RTF_STATIC flag is unset) were displayed as
part of the routing table display (-r). Now, they are only printed if
the -a option is given.
netinet/in.c, netinet/in_rmx.c:
When address is removed from an interface, also delete all routes that
point to this interface and address. Previously, for example, if you
changed the address on an interface, outgoing IP datagrams might still
use the old address. The only solution was to delete and re-add some
routes. (The problem is easily observed with the route(8) command.)
Note, that if the socket was already bound to the local address before
this address is removed, new datagrams generated from this socket will
still be sent from the old address.
PR: kern/20785, kern/21914
Reviewed by: wollman (the idea)
2001-03-15 14:52:12 +00:00
|
|
|
if ((*ret_nrt)->rt_flags & (RTF_CLONING | RTF_PRCLONING)) {
|
1995-03-20 21:30:21 +00:00
|
|
|
rt->rt_parent = (*ret_nrt);
|
1995-03-21 19:50:34 +00:00
|
|
|
(*ret_nrt)->rt_refcnt++;
|
|
|
|
}
|
1995-01-23 02:00:35 +00:00
|
|
|
}
|
1997-03-05 08:01:28 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* if this protocol has something to add to this then
|
|
|
|
* allow it to do that as well.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (ifa->ifa_rtrequest)
|
|
|
|
ifa->ifa_rtrequest(req, rt, SA(ret_nrt ? *ret_nrt : 0));
|
1997-03-05 08:01:28 +00:00
|
|
|
|
1995-04-25 19:12:07 +00:00
|
|
|
/*
|
|
|
|
* We repeat the same procedure from rt_setgate() here because
|
|
|
|
* it doesn't fire when we call it there because the node
|
|
|
|
* hasn't been added to the tree yet.
|
|
|
|
*/
|
1996-08-24 03:11:13 +00:00
|
|
|
if (!(rt->rt_flags & RTF_HOST) && rt_mask(rt) != 0) {
|
1995-04-25 19:12:07 +00:00
|
|
|
struct rtfc_arg arg;
|
|
|
|
arg.rnh = rnh;
|
|
|
|
arg.rt0 = rt;
|
|
|
|
rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
|
|
|
|
rt_fixchange, &arg);
|
|
|
|
}
|
|
|
|
|
1997-03-05 08:01:28 +00:00
|
|
|
/*
|
|
|
|
* actually return a resultant rtentry and
|
|
|
|
* give the caller a single reference.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (ret_nrt) {
|
|
|
|
*ret_nrt = rt;
|
|
|
|
rt->rt_refcnt++;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
bad:
|
|
|
|
splx(s);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
1995-01-23 02:00:35 +00:00
|
|
|
/*
|
|
|
|
* Called from rtrequest(RTM_DELETE, ...) to fix up the route's ``family''
|
|
|
|
* (i.e., the routes related to it by the operation of cloning). This
|
1995-03-20 21:30:21 +00:00
|
|
|
* routine is iterated over all potential former-child-routes by way of
|
|
|
|
* rnh->rnh_walktree_from() above, and those that actually are children of
|
|
|
|
* the late parent (passed in as VP here) are themselves deleted.
|
1995-01-23 02:00:35 +00:00
|
|
|
*/
|
1995-03-20 21:30:21 +00:00
|
|
|
static int
|
1997-09-16 11:44:05 +00:00
|
|
|
rt_fixdelete(rn, vp)
|
|
|
|
struct radix_node *rn;
|
|
|
|
void *vp;
|
1995-01-23 02:00:35 +00:00
|
|
|
{
|
1995-03-20 21:30:21 +00:00
|
|
|
struct rtentry *rt = (struct rtentry *)rn;
|
|
|
|
struct rtentry *rt0 = vp;
|
|
|
|
|
1995-03-24 20:05:28 +00:00
|
|
|
if (rt->rt_parent == rt0 && !(rt->rt_flags & RTF_PINNED)) {
|
1995-05-30 08:16:23 +00:00
|
|
|
return rtrequest(RTM_DELETE, rt_key(rt),
|
1995-03-20 21:30:21 +00:00
|
|
|
(struct sockaddr *)0, rt_mask(rt),
|
|
|
|
rt->rt_flags, (struct rtentry **)0);
|
1995-01-23 02:00:35 +00:00
|
|
|
}
|
1995-03-20 21:30:21 +00:00
|
|
|
return 0;
|
1995-01-23 02:00:35 +00:00
|
|
|
}
|
|
|
|
|
1995-04-25 19:12:07 +00:00
|
|
|
/*
|
|
|
|
* This routine is called from rt_setgate() to do the analogous thing for
|
1995-05-30 08:16:23 +00:00
|
|
|
* adds and changes. There is the added complication in this case of a
|
1995-04-25 19:12:07 +00:00
|
|
|
* middle insert; i.e., insertion of a new network route between an older
|
|
|
|
* network route and (cloned) host routes. For this reason, a simple check
|
|
|
|
* of rt->rt_parent is insufficient; each candidate route must be tested
|
|
|
|
* against the (mask, value) of the new route (passed as before in vp)
|
|
|
|
* to see if the new route matches it. Unfortunately, this has the obnoxious
|
1995-05-30 08:16:23 +00:00
|
|
|
* property of also triggering for insertion /above/ a pre-existing network
|
1995-04-25 19:12:07 +00:00
|
|
|
* route and clones. Sigh. This may be fixed some day.
|
|
|
|
*
|
|
|
|
* XXX - it may be possible to do fixdelete() for changes and reserve this
|
|
|
|
* routine just for adds. I'm not sure why I thought it was necessary to do
|
|
|
|
* changes this way.
|
|
|
|
*/
|
|
|
|
#ifdef DEBUG
|
1998-02-09 06:11:36 +00:00
|
|
|
static int rtfcdebug = 0;
|
1995-04-25 19:12:07 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
static int
|
1997-09-16 11:44:05 +00:00
|
|
|
rt_fixchange(rn, vp)
|
|
|
|
struct radix_node *rn;
|
|
|
|
void *vp;
|
1995-04-25 19:12:07 +00:00
|
|
|
{
|
|
|
|
struct rtentry *rt = (struct rtentry *)rn;
|
|
|
|
struct rtfc_arg *ap = vp;
|
|
|
|
struct rtentry *rt0 = ap->rt0;
|
|
|
|
struct radix_node_head *rnh = ap->rnh;
|
|
|
|
u_char *xk1, *xm1, *xk2;
|
|
|
|
int i, len;
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
if (rtfcdebug)
|
|
|
|
printf("rt_fixchange: rt %p, rt0 %p\n", rt, rt0);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (!rt->rt_parent || (rt->rt_flags & RTF_PINNED)) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
if(rtfcdebug) printf("no parent or pinned\n");
|
|
|
|
#endif
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rt->rt_parent == rt0) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
if(rtfcdebug) printf("parent match\n");
|
|
|
|
#endif
|
1995-05-30 08:16:23 +00:00
|
|
|
return rtrequest(RTM_DELETE, rt_key(rt),
|
1995-04-25 19:12:07 +00:00
|
|
|
(struct sockaddr *)0, rt_mask(rt),
|
|
|
|
rt->rt_flags, (struct rtentry **)0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* There probably is a function somewhere which does this...
|
|
|
|
* if not, there should be.
|
1995-05-30 08:16:23 +00:00
|
|
|
*/
|
1995-04-25 19:12:07 +00:00
|
|
|
len = imin(((struct sockaddr *)rt_key(rt0))->sa_len,
|
|
|
|
((struct sockaddr *)rt_key(rt))->sa_len);
|
|
|
|
|
|
|
|
xk1 = (u_char *)rt_key(rt0);
|
|
|
|
xm1 = (u_char *)rt_mask(rt0);
|
|
|
|
xk2 = (u_char *)rt_key(rt);
|
|
|
|
|
2000-04-23 04:00:00 +00:00
|
|
|
for (i = rnh->rnh_treetop->rn_offset; i < len; i++) {
|
1995-04-25 19:12:07 +00:00
|
|
|
if ((xk2[i] & xm1[i]) != xk1[i]) {
|
|
|
|
#ifdef DEBUG
|
|
|
|
if(rtfcdebug) printf("no match\n");
|
|
|
|
#endif
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* OK, this node is a clone, and matches the node currently being
|
|
|
|
* changed/added under the node's mask. So, get rid of it.
|
|
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
|
|
if(rtfcdebug) printf("deleting\n");
|
|
|
|
#endif
|
|
|
|
return rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
|
|
|
|
rt_mask(rt), rt->rt_flags, (struct rtentry **)0);
|
|
|
|
}
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
int
|
|
|
|
rt_setgate(rt0, dst, gate)
|
|
|
|
struct rtentry *rt0;
|
|
|
|
struct sockaddr *dst, *gate;
|
|
|
|
{
|
|
|
|
caddr_t new, old;
|
|
|
|
int dlen = ROUNDUP(dst->sa_len), glen = ROUNDUP(gate->sa_len);
|
|
|
|
register struct rtentry *rt = rt0;
|
1995-04-25 19:12:07 +00:00
|
|
|
struct radix_node_head *rnh = rt_tables[dst->sa_family];
|
1994-05-24 10:09:53 +00:00
|
|
|
|
1996-07-10 01:34:36 +00:00
|
|
|
/*
|
|
|
|
* A host route with the destination equal to the gateway
|
|
|
|
* will interfere with keeping LLINFO in the routing
|
|
|
|
* table, so disallow it.
|
|
|
|
*/
|
|
|
|
if (((rt0->rt_flags & (RTF_HOST|RTF_GATEWAY|RTF_LLINFO)) ==
|
|
|
|
(RTF_HOST|RTF_GATEWAY)) &&
|
|
|
|
(dst->sa_len == gate->sa_len) &&
|
|
|
|
(bcmp(dst, gate, dst->sa_len) == 0)) {
|
|
|
|
/*
|
|
|
|
* The route might already exist if this is an RTM_CHANGE
|
|
|
|
* or a routing redirect, so try to delete it.
|
|
|
|
*/
|
1996-09-02 02:49:40 +00:00
|
|
|
if (rt_key(rt0))
|
|
|
|
rtrequest(RTM_DELETE, (struct sockaddr *)rt_key(rt0),
|
|
|
|
rt0->rt_gateway, rt_mask(rt0), rt0->rt_flags, 0);
|
1996-07-10 01:34:36 +00:00
|
|
|
return EADDRNOTAVAIL;
|
|
|
|
}
|
|
|
|
|
1997-03-05 08:01:28 +00:00
|
|
|
/*
|
|
|
|
* Both dst and gateway are stored in the same malloc'd chunk
|
|
|
|
* (If I ever get my hands on....)
|
|
|
|
* if we need to malloc a new chunk, then keep the old one around
|
|
|
|
* till we don't need it any more.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (rt->rt_gateway == 0 || glen > ROUNDUP(rt->rt_gateway->sa_len)) {
|
|
|
|
old = (caddr_t)rt_key(rt);
|
|
|
|
R_Malloc(new, caddr_t, dlen + glen);
|
|
|
|
if (new == 0)
|
1996-07-10 01:34:36 +00:00
|
|
|
return ENOBUFS;
|
1994-05-24 10:09:53 +00:00
|
|
|
rt->rt_nodes->rn_key = new;
|
|
|
|
} else {
|
1997-03-05 08:01:28 +00:00
|
|
|
/*
|
|
|
|
* otherwise just overwrite the old one
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
new = rt->rt_nodes->rn_key;
|
|
|
|
old = 0;
|
|
|
|
}
|
1997-03-05 08:01:28 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* copy the new gateway value into the memory chunk
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
Bcopy(gate, (rt->rt_gateway = (struct sockaddr *)(new + dlen)), glen);
|
1997-03-05 08:01:28 +00:00
|
|
|
|
1999-11-22 02:45:11 +00:00
|
|
|
/*
|
|
|
|
* if we are replacing the chunk (or it's new) we need to
|
1997-03-05 08:01:28 +00:00
|
|
|
* replace the dst as well
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (old) {
|
|
|
|
Bcopy(dst, new, dlen);
|
|
|
|
Free(old);
|
|
|
|
}
|
1997-03-05 08:01:28 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If there is already a gwroute, it's now almost definitly wrong
|
|
|
|
* so drop it.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (rt->rt_gwroute) {
|
|
|
|
rt = rt->rt_gwroute; RTFREE(rt);
|
|
|
|
rt = rt0; rt->rt_gwroute = 0;
|
|
|
|
}
|
1995-04-25 19:12:07 +00:00
|
|
|
/*
|
|
|
|
* Cloning loop avoidance:
|
|
|
|
* In the presence of protocol-cloning and bad configuration,
|
|
|
|
* it is possible to get stuck in bottomless mutual recursion
|
|
|
|
* (rtrequest rt_setgate rtalloc1). We avoid this by not allowing
|
|
|
|
* protocol-cloning to operate for gateways (which is probably the
|
|
|
|
* correct choice anyway), and avoid the resulting reference loops
|
|
|
|
* by disallowing any route to run through itself as a gateway.
|
1997-03-05 08:01:28 +00:00
|
|
|
* This is obviously mandatory when we get rt->rt_output().
|
1995-04-25 19:12:07 +00:00
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (rt->rt_flags & RTF_GATEWAY) {
|
1995-04-25 19:12:07 +00:00
|
|
|
rt->rt_gwroute = rtalloc1(gate, 1, RTF_PRCLONING);
|
|
|
|
if (rt->rt_gwroute == rt) {
|
|
|
|
RTFREE(rt->rt_gwroute);
|
|
|
|
rt->rt_gwroute = 0;
|
1996-07-10 01:34:36 +00:00
|
|
|
return EDQUOT; /* failure */
|
1995-04-25 19:12:07 +00:00
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
1995-04-25 19:12:07 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This isn't going to do anything useful for host routes, so
|
|
|
|
* don't bother. Also make sure we have a reasonable mask
|
|
|
|
* (we don't yet have one during adds).
|
|
|
|
*/
|
|
|
|
if (!(rt->rt_flags & RTF_HOST) && rt_mask(rt) != 0) {
|
|
|
|
struct rtfc_arg arg;
|
|
|
|
arg.rnh = rnh;
|
|
|
|
arg.rt0 = rt;
|
1995-05-30 08:16:23 +00:00
|
|
|
rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
|
1995-04-25 19:12:07 +00:00
|
|
|
rt_fixchange, &arg);
|
|
|
|
}
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
1995-12-14 09:55:16 +00:00
|
|
|
static void
|
1994-05-24 10:09:53 +00:00
|
|
|
rt_maskedcopy(src, dst, netmask)
|
|
|
|
struct sockaddr *src, *dst, *netmask;
|
|
|
|
{
|
|
|
|
register u_char *cp1 = (u_char *)src;
|
|
|
|
register u_char *cp2 = (u_char *)dst;
|
|
|
|
register u_char *cp3 = (u_char *)netmask;
|
|
|
|
u_char *cplim = cp2 + *cp3;
|
|
|
|
u_char *cplim2 = cp2 + *cp1;
|
|
|
|
|
|
|
|
*cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */
|
|
|
|
cp3 += 2;
|
|
|
|
if (cplim > cplim2)
|
|
|
|
cplim = cplim2;
|
|
|
|
while (cp2 < cplim)
|
|
|
|
*cp2++ = *cp1++ & *cp3++;
|
|
|
|
if (cp2 < cplim2)
|
|
|
|
bzero((caddr_t)cp2, (unsigned)(cplim2 - cp2));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set up a routing table entry, normally
|
|
|
|
* for an interface.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
rtinit(ifa, cmd, flags)
|
|
|
|
register struct ifaddr *ifa;
|
|
|
|
int cmd, flags;
|
|
|
|
{
|
|
|
|
register struct rtentry *rt;
|
|
|
|
register struct sockaddr *dst;
|
|
|
|
register struct sockaddr *deldst;
|
|
|
|
struct mbuf *m = 0;
|
|
|
|
struct rtentry *nrt = 0;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
dst = flags & RTF_HOST ? ifa->ifa_dstaddr : ifa->ifa_addr;
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* If it's a delete, check that if it exists, it's on the correct
|
|
|
|
* interface or we might scrub a route to another ifa which would
|
|
|
|
* be confusing at best and possibly worse.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (cmd == RTM_DELETE) {
|
1999-11-22 02:45:11 +00:00
|
|
|
/*
|
1996-09-10 07:10:05 +00:00
|
|
|
* It's a delete, so it should already exist..
|
|
|
|
* If it's a net, mask off the host bits
|
|
|
|
* (Assuming we have a mask)
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) {
|
1999-11-22 02:45:11 +00:00
|
|
|
m = m_get(M_DONTWAIT, MT_SONAME);
|
|
|
|
if (m == NULL)
|
|
|
|
return(ENOBUFS);
|
1994-05-24 10:09:53 +00:00
|
|
|
deldst = mtod(m, struct sockaddr *);
|
|
|
|
rt_maskedcopy(dst, deldst, ifa->ifa_netmask);
|
|
|
|
dst = deldst;
|
|
|
|
}
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* Get an rtentry that is in the routing tree and
|
1997-03-05 08:01:28 +00:00
|
|
|
* contains the correct info. (if this fails, can't get there).
|
1996-09-10 07:10:05 +00:00
|
|
|
* We set "report" to FALSE so that if it doesn't exist,
|
|
|
|
* it doesn't report an error or clone a route, etc. etc.
|
|
|
|
*/
|
1994-12-13 22:31:49 +00:00
|
|
|
rt = rtalloc1(dst, 0, 0UL);
|
1994-10-02 17:48:58 +00:00
|
|
|
if (rt) {
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* Ok so we found the rtentry. it has an extra reference
|
|
|
|
* for us at this stage. we won't need that so
|
|
|
|
* lop that off now.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
rt->rt_refcnt--;
|
|
|
|
if (rt->rt_ifa != ifa) {
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* If the interface in the rtentry doesn't match
|
|
|
|
* the interface we are using, then we don't
|
|
|
|
* want to delete it, so return an error.
|
1999-11-22 02:45:11 +00:00
|
|
|
* This seems to be the only point of
|
1996-09-10 07:10:05 +00:00
|
|
|
* this whole RTM_DELETE clause.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (m)
|
|
|
|
(void) m_free(m);
|
|
|
|
return (flags & RTF_HOST ? EHOSTUNREACH
|
|
|
|
: ENETUNREACH);
|
|
|
|
}
|
|
|
|
}
|
1996-09-10 07:10:05 +00:00
|
|
|
/* XXX */
|
|
|
|
#if 0
|
|
|
|
else {
|
1999-11-22 02:45:11 +00:00
|
|
|
/*
|
1996-09-10 07:10:05 +00:00
|
|
|
* One would think that as we are deleting, and we know
|
|
|
|
* it doesn't exist, we could just return at this point
|
|
|
|
* with an "ELSE" clause, but apparently not..
|
|
|
|
*/
|
|
|
|
return (flags & RTF_HOST ? EHOSTUNREACH
|
|
|
|
: ENETUNREACH);
|
|
|
|
}
|
|
|
|
#endif
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* Do the actual request
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
error = rtrequest(cmd, dst, ifa->ifa_addr, ifa->ifa_netmask,
|
|
|
|
flags | ifa->ifa_flags, &nrt);
|
|
|
|
if (m)
|
|
|
|
(void) m_free(m);
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* If we are deleting, and we found an entry, then
|
|
|
|
* it's been removed from the tree.. now throw it away.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (cmd == RTM_DELETE && error == 0 && (rt = nrt)) {
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* notify any listenning routing agents of the change
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
rt_newaddrmsg(cmd, ifa, error, nrt);
|
|
|
|
if (rt->rt_refcnt <= 0) {
|
1996-09-10 07:10:05 +00:00
|
|
|
rt->rt_refcnt++; /* need a 1->0 transition to free */
|
1994-05-24 10:09:53 +00:00
|
|
|
rtfree(rt);
|
|
|
|
}
|
|
|
|
}
|
1996-09-10 07:10:05 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We are adding, and we have a returned routing entry.
|
|
|
|
* We need to sanity check the result.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (cmd == RTM_ADD && error == 0 && (rt = nrt)) {
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* We just wanted to add it.. we don't actually need a reference
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
rt->rt_refcnt--;
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
1999-11-22 02:45:11 +00:00
|
|
|
* If it came back with an unexpected interface, then it must
|
1996-09-10 07:10:05 +00:00
|
|
|
* have already existed or something. (XXX)
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (rt->rt_ifa != ifa) {
|
1999-11-23 22:30:01 +00:00
|
|
|
if (!(rt->rt_ifa->ifa_ifp->if_flags &
|
|
|
|
(IFF_POINTOPOINT|IFF_LOOPBACK)))
|
|
|
|
printf("rtinit: wrong ifa (%p) was (%p)\n",
|
|
|
|
ifa, rt->rt_ifa);
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
1997-03-05 08:01:28 +00:00
|
|
|
* Ask that the protocol in question
|
|
|
|
* remove anything it has associated with
|
|
|
|
* this route and ifaddr.
|
1996-09-10 07:10:05 +00:00
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (rt->rt_ifa->ifa_rtrequest)
|
|
|
|
rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, SA(0));
|
1999-11-22 02:45:11 +00:00
|
|
|
/*
|
1999-11-23 22:30:01 +00:00
|
|
|
* Remove the reference to its ifaddr.
|
1996-09-10 07:10:05 +00:00
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
IFAFREE(rt->rt_ifa);
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* And substitute in references to the ifaddr
|
|
|
|
* we are adding.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
rt->rt_ifa = ifa;
|
|
|
|
rt->rt_ifp = ifa->ifa_ifp;
|
1999-11-22 02:45:11 +00:00
|
|
|
rt->rt_rmx.rmx_mtu = ifa->ifa_ifp->if_mtu; /*XXX*/
|
1994-05-24 10:09:53 +00:00
|
|
|
ifa->ifa_refcnt++;
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
1997-03-05 08:01:28 +00:00
|
|
|
* Now ask the protocol to check if it needs
|
1998-04-17 22:37:19 +00:00
|
|
|
* any special processing in its new form.
|
1996-09-10 07:10:05 +00:00
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
if (ifa->ifa_rtrequest)
|
|
|
|
ifa->ifa_rtrequest(RTM_ADD, rt, SA(0));
|
|
|
|
}
|
1996-09-10 07:10:05 +00:00
|
|
|
/*
|
|
|
|
* notify any listenning routing agents of the change
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
rt_newaddrmsg(cmd, ifa, error, nrt);
|
|
|
|
}
|
1995-01-23 17:53:21 +00:00
|
|
|
return (error);
|
|
|
|
}
|
1999-04-29 03:22:19 +00:00
|
|
|
|
1999-12-22 19:13:38 +00:00
|
|
|
/* This must be before ip6_init2(), which is now SI_ORDER_MIDDLE */
|
|
|
|
SYSINIT(route, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, route_init, 0);
|