freebsd-skq/sys/contrib/octeon-sdk/cvmx-bootmem.c

1188 lines
41 KiB
C
Raw Normal View History

/***********************license start***************
* Copyright (c) 2003-2010 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* @file
* Simple allocate only memory allocator. Used to allocate memory at application
* start time.
*
* <hr>$Revision: 70030 $<hr>
*
*/
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
#include <linux/module.h>
#include <asm/octeon/cvmx.h>
#include <asm/octeon/cvmx-bootmem.h>
#else
#if !defined(__FreeBSD__) || !defined(_KERNEL)
#include "executive-config.h"
#endif
#include "cvmx.h"
#include "cvmx-bootmem.h"
#endif
typedef uint32_t cvmx_spinlock_t;
//#define DEBUG
#define ULL unsigned long long
#undef MAX
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#undef MIN
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define ALIGN_ADDR_UP(addr, align) (((addr) + (~(align))) & (align))
/**
* This is the physical location of a cvmx_bootmem_desc_t
* structure in Octeon's memory. Note that dues to addressing
* limits or runtime environment it might not be possible to
* create a C pointer to this structure.
*/
static CVMX_SHARED uint64_t cvmx_bootmem_desc_addr = 0;
/**
* This macro returns the size of a member of a structure.
* Logically it is the same as "sizeof(s::field)" in C++, but
* C lacks the "::" operator.
*/
#define SIZEOF_FIELD(s, field) sizeof(((s*)NULL)->field)
/**
* This macro returns a member of the cvmx_bootmem_desc_t
* structure. These members can't be directly addressed as
* they might be in memory not directly reachable. In the case
* where bootmem is compiled with LINUX_HOST, the structure
* itself might be located on a remote Octeon. The argument
* "field" is the member name of the cvmx_bootmem_desc_t to read.
* Regardless of the type of the field, the return type is always
* a uint64_t.
*/
#define CVMX_BOOTMEM_DESC_GET_FIELD(field) \
__cvmx_bootmem_desc_get(cvmx_bootmem_desc_addr, \
offsetof(cvmx_bootmem_desc_t, field), \
SIZEOF_FIELD(cvmx_bootmem_desc_t, field))
/**
* This macro writes a member of the cvmx_bootmem_desc_t
* structure. These members can't be directly addressed as
* they might be in memory not directly reachable. In the case
* where bootmem is compiled with LINUX_HOST, the structure
* itself might be located on a remote Octeon. The argument
* "field" is the member name of the cvmx_bootmem_desc_t to write.
*/
#define CVMX_BOOTMEM_DESC_SET_FIELD(field, value) \
__cvmx_bootmem_desc_set(cvmx_bootmem_desc_addr, \
offsetof(cvmx_bootmem_desc_t, field), \
SIZEOF_FIELD(cvmx_bootmem_desc_t, field), value)
/**
* This macro returns a member of the
* cvmx_bootmem_named_block_desc_t structure. These members can't
* be directly addressed as they might be in memory not directly
* reachable. In the case where bootmem is compiled with
* LINUX_HOST, the structure itself might be located on a remote
* Octeon. The argument "field" is the member name of the
* cvmx_bootmem_named_block_desc_t to read. Regardless of the type
* of the field, the return type is always a uint64_t. The "addr"
* parameter is the physical address of the structure.
*/
#define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field) \
__cvmx_bootmem_desc_get(addr, \
offsetof(cvmx_bootmem_named_block_desc_t, field), \
SIZEOF_FIELD(cvmx_bootmem_named_block_desc_t, field))
/**
* This macro writes a member of the cvmx_bootmem_named_block_desc_t
* structure. These members can't be directly addressed as
* they might be in memory not directly reachable. In the case
* where bootmem is compiled with LINUX_HOST, the structure
* itself might be located on a remote Octeon. The argument
* "field" is the member name of the
* cvmx_bootmem_named_block_desc_t to write. The "addr" parameter
* is the physical address of the structure.
*/
#define CVMX_BOOTMEM_NAMED_SET_FIELD(addr, field, value) \
__cvmx_bootmem_desc_set(addr, \
offsetof(cvmx_bootmem_named_block_desc_t, field), \
SIZEOF_FIELD(cvmx_bootmem_named_block_desc_t, field), value)
/**
* This function is the implementation of the get macros defined
* for individual structure members. The argument are generated
* by the macros inorder to read only the needed memory.
*
* @param base 64bit physical address of the complete structure
* @param offset Offset from the beginning of the structure to the member being
* accessed.
* @param size Size of the structure member.
*
* @return Value of the structure member promoted into a uint64_t.
*/
static inline uint64_t __cvmx_bootmem_desc_get(uint64_t base, int offset, int size)
{
base = (1ull << 63) | (base + offset);
switch (size)
{
case 4:
return cvmx_read64_uint32(base);
case 8:
return cvmx_read64_uint64(base);
default:
return 0;
}
}
/**
* This function is the implementation of the set macros defined
* for individual structure members. The argument are generated
* by the macros in order to write only the needed memory.
*
* @param base 64bit physical address of the complete structure
* @param offset Offset from the beginning of the structure to the member being
* accessed.
* @param size Size of the structure member.
* @param value Value to write into the structure
*/
static inline void __cvmx_bootmem_desc_set(uint64_t base, int offset, int size, uint64_t value)
{
base = (1ull << 63) | (base + offset);
switch (size)
{
case 4:
cvmx_write64_uint32(base, value);
break;
case 8:
cvmx_write64_uint64(base, value);
break;
default:
break;
}
}
/**
* This function retrieves the string name of a named block. It is
* more complicated than a simple memcpy() since the named block
* descriptor may not be directly accessable.
*
* @param addr Physical address of the named block descriptor
* @param str String to receive the named block string name
* @param len Length of the string buffer, which must match the length
* stored in the bootmem descriptor.
*/
static void CVMX_BOOTMEM_NAMED_GET_NAME(uint64_t addr, char *str, int len)
{
#ifndef CVMX_BUILD_FOR_LINUX_HOST
int l = len;
char *ptr = str;
addr |= (1ull << 63);
addr += offsetof(cvmx_bootmem_named_block_desc_t, name);
while (l--)
*ptr++ = cvmx_read64_uint8(addr++);
str[len] = 0;
#else
extern void octeon_remote_read_mem(void *buffer, uint64_t physical_address, int length);
addr += offsetof(cvmx_bootmem_named_block_desc_t, name);
octeon_remote_read_mem(str, addr, len);
str[len] = 0;
#endif
}
/**
* This function stores the string name of a named block. It is
* more complicated than a simple memcpy() since the named block
* descriptor may not be directly accessable.
*
* @param addr Physical address of the named block descriptor
* @param str String to store into the named block string name
* @param len Length of the string buffer, which must match the length
* stored in the bootmem descriptor.
*/
static void CVMX_BOOTMEM_NAMED_SET_NAME(uint64_t addr, const char *str, int len)
{
#ifndef CVMX_BUILD_FOR_LINUX_HOST
int l = len;
addr |= (1ull << 63);
addr += offsetof(cvmx_bootmem_named_block_desc_t, name);
while (l--)
{
if (l)
cvmx_write64_uint8(addr++, *str++);
else
cvmx_write64_uint8(addr++, 0);
}
#else
extern void octeon_remote_write_mem(uint64_t physical_address, const void *buffer, int length);
char zero = 0;
addr += offsetof(cvmx_bootmem_named_block_desc_t, name);
octeon_remote_write_mem(addr, str, len-1);
octeon_remote_write_mem(addr+len-1, &zero, 1);
#endif
}
/* See header file for descriptions of functions */
/* Wrapper functions are provided for reading/writing the size and next block
** values as these may not be directly addressible (in 32 bit applications, for instance.)
*/
/* Offsets of data elements in bootmem list, must match cvmx_bootmem_block_header_t */
#define NEXT_OFFSET 0
#define SIZE_OFFSET 8
static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size)
{
cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
}
static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next)
{
cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
}
static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr)
{
return(cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63)));
}
static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr)
{
return(cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63)));
}
/**
* Check the version information on the bootmem descriptor
*
* @param exact_match
* Exact major version to check against. A zero means
* check that the version supports named blocks.
*
* @return Zero if the version is correct. Negative if the version is
* incorrect. Failures also cause a message to be displayed.
*/
static int __cvmx_bootmem_check_version(int exact_match)
{
int major_version;
#ifdef CVMX_BUILD_FOR_LINUX_HOST
if (!cvmx_bootmem_desc_addr)
cvmx_bootmem_desc_addr = cvmx_read64_uint64(0x48100);
#endif
major_version = CVMX_BOOTMEM_DESC_GET_FIELD(major_version);
if ((major_version > 3) || (exact_match && major_version != exact_match))
{
cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: 0x%llx\n",
major_version, (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version),
(ULL)cvmx_bootmem_desc_addr);
return -1;
}
else
return 0;
}
/**
* Get the low level bootmem descriptor lock. If no locking
* is specified in the flags, then nothing is done.
*
* @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
* nothing. This is used to support nested bootmem calls.
*/
static inline void __cvmx_bootmem_lock(uint32_t flags)
{
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
{
#ifndef CVMX_BUILD_FOR_LINUX_HOST
/* Unfortunately we can't use the normal cvmx-spinlock code as the
memory for the bootmem descriptor may be not accessable by a C
pointer. We use a 64bit XKPHYS address to access the memory
directly */
uint64_t lock_addr = (1ull << 63) | (cvmx_bootmem_desc_addr + offsetof(cvmx_bootmem_desc_t, lock));
unsigned int tmp;
__asm__ __volatile__(
".set noreorder \n"
"1: ll %[tmp], 0(%[addr])\n"
" bnez %[tmp], 1b \n"
" li %[tmp], 1 \n"
" sc %[tmp], 0(%[addr])\n"
" beqz %[tmp], 1b \n"
" nop \n"
".set reorder \n"
: [tmp] "=&r" (tmp)
: [addr] "r" (lock_addr)
: "memory");
#endif
}
}
/**
* Release the low level bootmem descriptor lock. If no locking
* is specified in the flags, then nothing is done.
*
* @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
* nothing. This is used to support nested bootmem calls.
*/
static inline void __cvmx_bootmem_unlock(uint32_t flags)
{
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
{
#ifndef CVMX_BUILD_FOR_LINUX_HOST
/* Unfortunately we can't use the normal cvmx-spinlock code as the
memory for the bootmem descriptor may be not accessable by a C
pointer. We use a 64bit XKPHYS address to access the memory
directly */
uint64_t lock_addr = (1ull << 63) | (cvmx_bootmem_desc_addr + offsetof(cvmx_bootmem_desc_t, lock));
CVMX_SYNCW;
__asm__ __volatile__("sw $0, 0(%[addr])\n"
:: [addr] "r" (lock_addr)
: "memory");
CVMX_SYNCW;
#endif
}
}
/* Some of the cvmx-bootmem functions dealing with C pointers are not supported
when we are compiling for CVMX_BUILD_FOR_LINUX_HOST. This ifndef removes
these functions when they aren't needed */
#ifndef CVMX_BUILD_FOR_LINUX_HOST
/* This functions takes an address range and adjusts it as necessary to
** match the ABI that is currently being used. This is required to ensure
** that bootmem_alloc* functions only return valid pointers for 32 bit ABIs */
static int __cvmx_validate_mem_range(uint64_t *min_addr_ptr, uint64_t *max_addr_ptr)
{
#if defined(__linux__) && defined(CVMX_ABI_N32)
{
extern uint64_t linux_mem32_min;
extern uint64_t linux_mem32_max;
/* For 32 bit Linux apps, we need to restrict the allocations to the range
** of memory configured for access from userspace. Also, we need to add mappings
** for the data structures that we access.*/
/* Narrow range requests to be bounded by the 32 bit limits. octeon_phy_mem_block_alloc()
** will reject inconsistent req_size/range requests, so we don't repeat those checks here.
** If max unspecified, set to 32 bit maximum. */
*min_addr_ptr = MIN(MAX(*min_addr_ptr, linux_mem32_min), linux_mem32_max);
if (!*max_addr_ptr)
*max_addr_ptr = linux_mem32_max;
else
*max_addr_ptr = MAX(MIN(*max_addr_ptr, linux_mem32_max), linux_mem32_min);
}
#elif defined(CVMX_ABI_N32)
{
uint32_t max_phys = 0x0FFFFFFF; /* Max physical address when 1-1 mappings not used */
#if CVMX_USE_1_TO_1_TLB_MAPPINGS
max_phys = 0x7FFFFFFF;
#endif
/* We are are running standalone simple executive, so we need to limit the range
** that we allocate from */
/* Narrow range requests to be bounded by the 32 bit limits. octeon_phy_mem_block_alloc()
** will reject inconsistent req_size/range requests, so we don't repeat those checks here.
** If max unspecified, set to 32 bit maximum. */
*min_addr_ptr = MIN(MAX(*min_addr_ptr, 0x0), max_phys);
if (!*max_addr_ptr)
*max_addr_ptr = max_phys;
else
*max_addr_ptr = MAX(MIN(*max_addr_ptr, max_phys), 0x0);
}
#endif
return 0;
}
void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment, uint64_t min_addr, uint64_t max_addr)
{
int64_t address;
__cvmx_validate_mem_range(&min_addr, &max_addr);
address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0);
if (address > 0)
return cvmx_phys_to_ptr(address);
else
return NULL;
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_bootmem_alloc_range);
#endif
void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address, uint64_t alignment)
{
return cvmx_bootmem_alloc_range(size, alignment, address, address + size);
}
void *cvmx_bootmem_alloc(uint64_t size, uint64_t alignment)
{
return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_bootmem_alloc);
#endif
void *cvmx_bootmem_alloc_named_range_once(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t align, const char *name, void (*init)(void*))
{
int64_t addr;
void *ptr;
uint64_t named_block_desc_addr;
__cvmx_bootmem_lock(0);
__cvmx_validate_mem_range(&min_addr, &max_addr);
named_block_desc_addr = cvmx_bootmem_phy_named_block_find(name, CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (named_block_desc_addr)
{
addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_desc_addr, base_addr);
__cvmx_bootmem_unlock(0);
return cvmx_phys_to_ptr(addr);
}
addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, align, name, CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (addr < 0)
{
__cvmx_bootmem_unlock(0);
return NULL;
}
ptr = cvmx_phys_to_ptr(addr);
init(ptr);
__cvmx_bootmem_unlock(0);
return ptr;
}
static void *cvmx_bootmem_alloc_named_range_flags(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t align, const char *name, uint32_t flags)
{
int64_t addr;
__cvmx_validate_mem_range(&min_addr, &max_addr);
addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, align, name, flags);
if (addr >= 0)
return cvmx_phys_to_ptr(addr);
else
return NULL;
}
void *cvmx_bootmem_alloc_named_range(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t align, const char *name)
{
return cvmx_bootmem_alloc_named_range_flags(size, min_addr, max_addr, align, name, 0);
}
void *cvmx_bootmem_alloc_named_address(uint64_t size, uint64_t address, const char *name)
{
return(cvmx_bootmem_alloc_named_range(size, address, address + size, 0, name));
}
void *cvmx_bootmem_alloc_named(uint64_t size, uint64_t alignment, const char *name)
{
return(cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name));
}
void *cvmx_bootmem_alloc_named_flags(uint64_t size, uint64_t alignment, const char *name, uint32_t flags)
{
return cvmx_bootmem_alloc_named_range_flags(size, 0, 0, alignment, name, flags);
}
int cvmx_bootmem_free_named(const char *name)
{
return(cvmx_bootmem_phy_named_block_free(name, 0));
}
#endif
const cvmx_bootmem_named_block_desc_t *cvmx_bootmem_find_named_block(const char *name)
{
/* FIXME: Returning a single static object is probably a bad thing */
static cvmx_bootmem_named_block_desc_t desc;
uint64_t named_addr = cvmx_bootmem_phy_named_block_find(name, 0);
if (named_addr)
{
desc.base_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, base_addr);
desc.size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
strncpy(desc.name, name, sizeof(desc.name));
desc.name[sizeof(desc.name)-1] = 0;
return &desc;
}
else
return NULL;
}
void cvmx_bootmem_print_named(void)
{
cvmx_bootmem_phy_named_block_print();
}
int cvmx_bootmem_init(uint64_t mem_desc_addr)
{
/* Verify that the size of cvmx_spinlock_t meets our assumptions */
if (sizeof(cvmx_spinlock_t) != 4)
{
cvmx_dprintf("ERROR: Unexpected size of cvmx_spinlock_t\n");
return(-1);
}
if (!cvmx_bootmem_desc_addr)
cvmx_bootmem_desc_addr = mem_desc_addr;
return(0);
}
uint64_t cvmx_bootmem_available_mem(uint64_t min_block_size)
{
return(cvmx_bootmem_phy_available_mem(min_block_size));
}
/*********************************************************************
** The cvmx_bootmem_phy* functions below return 64 bit physical addresses,
** and expose more features that the cvmx_bootmem_functions above. These are
** required for full memory space access in 32 bit applications, as well as for
** using some advance features.
** Most applications should not need to use these.
**
**/
int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min, uint64_t address_max, uint64_t alignment, uint32_t flags)
{
uint64_t head_addr;
uint64_t ent_addr;
uint64_t prev_addr = 0; /* points to previous list entry, NULL current entry is head of list */
uint64_t new_ent_addr = 0;
uint64_t desired_min_addr;
uint64_t alignment_mask = ~(alignment - 1);
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
(ULL)req_size, (ULL)address_min, (ULL)address_max, (ULL)alignment);
#endif
if (__cvmx_bootmem_check_version(0))
goto error_out;
/* Do a variety of checks to validate the arguments. The allocator code will later assume
** that these checks have been made. We validate that the requested constraints are not
** self-contradictory before we look through the list of available memory
*/
/* 0 is not a valid req_size for this allocator */
if (!req_size)
goto error_out;
/* Round req_size up to mult of minimum alignment bytes */
req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
/* Enforce minimum alignment (this also keeps the minimum free block
** req_size the same as the alignment req_size */
if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE)
{
alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE;
}
alignment_mask = ~(alignment - 1);
/* Adjust address minimum based on requested alignment (round up to meet alignment). Do this here so we can
** reject impossible requests up front. (NOP for address_min == 0) */
if (alignment)
address_min = (address_min + (alignment - 1)) & ~(alignment - 1);
/* Convert !0 address_min and 0 address_max to special case of range that specifies an exact
** memory block to allocate. Do this before other checks and adjustments so that this tranformation will be validated */
if (address_min && !address_max)
address_max = address_min + req_size;
else if (!address_min && !address_max)
address_max = ~0ull; /* If no limits given, use max limits */
/* Reject inconsistent args. We have adjusted these, so this may fail due to our internal changes
** even if this check would pass for the values the user supplied. */
if (req_size > address_max - address_min)
goto error_out;
/* Walk through the list entries - first fit found is returned */
__cvmx_bootmem_lock(flags);
head_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
ent_addr = head_addr;
while (ent_addr)
{
uint64_t usable_base, usable_max;
uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr);
if (cvmx_bootmem_phy_get_next(ent_addr) && ent_addr > cvmx_bootmem_phy_get_next(ent_addr))
{
cvmx_dprintf("Internal bootmem_alloc() error: ent: 0x%llx, next: 0x%llx\n",
(ULL)ent_addr, (ULL)cvmx_bootmem_phy_get_next(ent_addr));
goto error_out;
}
/* Determine if this is an entry that can satisify the request */
/* Check to make sure entry is large enough to satisfy request */
usable_base = ALIGN_ADDR_UP(MAX(address_min, ent_addr), alignment_mask);
usable_max = MIN(address_max, ent_addr + ent_size);
/* We should be able to allocate block at address usable_base */
desired_min_addr = usable_base;
/* Determine if request can be satisfied from the current entry */
if ((((ent_addr + ent_size) > usable_base && ent_addr < address_max))
&& req_size <= usable_max - usable_base)
{
/* We have found an entry that has room to satisfy the request, so allocate it from this entry */
/* If end CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from the end of this block
** rather than the beginning */
if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC)
{
desired_min_addr = usable_max - req_size;
/* Align desired address down to required alignment */
desired_min_addr &= alignment_mask;
}
/* Match at start of entry */
if (desired_min_addr == ent_addr)
{
if (req_size < ent_size)
{
/* big enough to create a new block from top portion of block */
new_ent_addr = ent_addr + req_size;
cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr));
cvmx_bootmem_phy_set_size(new_ent_addr, ent_size - req_size);
/* Adjust next pointer as following code uses this */
cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
}
/* adjust prev ptr or head to remove this entry from list */
if (prev_addr)
{
cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(ent_addr));
}
else
{
/* head of list being returned, so update head ptr */
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, cvmx_bootmem_phy_get_next(ent_addr));
}
__cvmx_bootmem_unlock(flags);
return(desired_min_addr);
}
/* block returned doesn't start at beginning of entry, so we know
** that we will be splitting a block off the front of this one. Create a new block
** from the beginning, add to list, and go to top of loop again.
**
** create new block from high portion of block, so that top block
** starts at desired addr
**/
new_ent_addr = desired_min_addr;
cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr));
cvmx_bootmem_phy_set_size(new_ent_addr, cvmx_bootmem_phy_get_size(ent_addr) - (desired_min_addr - ent_addr));
cvmx_bootmem_phy_set_size(ent_addr, desired_min_addr - ent_addr);
cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
/* Loop again to handle actual alloc from new block */
}
prev_addr = ent_addr;
ent_addr = cvmx_bootmem_phy_get_next(ent_addr);
}
error_out:
/* We didn't find anything, so return error */
__cvmx_bootmem_unlock(flags);
return(-1);
}
int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags)
{
uint64_t cur_addr;
uint64_t prev_addr = 0; /* zero is invalid */
int retval = 0;
#ifdef DEBUG
cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n", (ULL)phy_addr, (ULL)size);
#endif
if (__cvmx_bootmem_check_version(0))
return(0);
/* 0 is not a valid size for this allocator */
if (!size)
return(0);
__cvmx_bootmem_lock(flags);
cur_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
if (cur_addr == 0 || phy_addr < cur_addr)
{
/* add at front of list - special case with changing head ptr */
if (cur_addr && phy_addr + size > cur_addr)
goto bootmem_free_done; /* error, overlapping section */
else if (phy_addr + size == cur_addr)
{
/* Add to front of existing first block */
cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next(cur_addr));
cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size(cur_addr) + size);
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
}
else
{
/* New block before first block */
cvmx_bootmem_phy_set_next(phy_addr, cur_addr); /* OK if cur_addr is 0 */
cvmx_bootmem_phy_set_size(phy_addr, size);
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
}
retval = 1;
goto bootmem_free_done;
}
/* Find place in list to add block */
while (cur_addr && phy_addr > cur_addr)
{
prev_addr = cur_addr;
cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
}
if (!cur_addr)
{
/* We have reached the end of the list, add on to end, checking
** to see if we need to combine with last block
**/
if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr)
{
cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(prev_addr) + size);
}
else
{
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
cvmx_bootmem_phy_set_size(phy_addr, size);
cvmx_bootmem_phy_set_next(phy_addr, 0);
}
retval = 1;
goto bootmem_free_done;
}
else
{
/* insert between prev and cur nodes, checking for merge with either/both */
if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr)
{
/* Merge with previous */
cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(prev_addr) + size);
if (phy_addr + size == cur_addr)
{
/* Also merge with current */
cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(cur_addr) + cvmx_bootmem_phy_get_size(prev_addr));
cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(cur_addr));
}
retval = 1;
goto bootmem_free_done;
}
else if (phy_addr + size == cur_addr)
{
/* Merge with current */
cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size(cur_addr) + size);
cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next(cur_addr));
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
retval = 1;
goto bootmem_free_done;
}
/* It is a standalone block, add in between prev and cur */
cvmx_bootmem_phy_set_size(phy_addr, size);
cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
}
retval = 1;
bootmem_free_done:
__cvmx_bootmem_unlock(flags);
return(retval);
}
void cvmx_bootmem_phy_list_print(void)
{
uint64_t addr;
addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
cvmx_dprintf("\n\n\nPrinting bootmem block list, descriptor: 0x%llx, head is 0x%llx\n",
(ULL)cvmx_bootmem_desc_addr, (ULL)addr);
cvmx_dprintf("Descriptor version: %d.%d\n",
(int)CVMX_BOOTMEM_DESC_GET_FIELD(major_version),
(int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version));
if (CVMX_BOOTMEM_DESC_GET_FIELD(major_version) > 3)
{
cvmx_dprintf("Warning: Bootmem descriptor version is newer than expected\n");
}
if (!addr)
{
cvmx_dprintf("mem list is empty!\n");
}
while (addr)
{
cvmx_dprintf("Block address: 0x%08llx, size: 0x%08llx, next: 0x%08llx\n",
(ULL)addr,
(ULL)cvmx_bootmem_phy_get_size(addr),
(ULL)cvmx_bootmem_phy_get_next(addr));
addr = cvmx_bootmem_phy_get_next(addr);
}
cvmx_dprintf("\n\n");
}
uint64_t cvmx_bootmem_phy_available_mem(uint64_t min_block_size)
{
uint64_t addr;
uint64_t available_mem = 0;
__cvmx_bootmem_lock(0);
addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
while (addr)
{
if (cvmx_bootmem_phy_get_size(addr) >= min_block_size)
available_mem += cvmx_bootmem_phy_get_size(addr);
addr = cvmx_bootmem_phy_get_next(addr);
}
__cvmx_bootmem_unlock(0);
return(available_mem);
}
uint64_t cvmx_bootmem_phy_named_block_find(const char *name, uint32_t flags)
{
uint64_t result = 0;
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name);
#endif
__cvmx_bootmem_lock(flags);
if (!__cvmx_bootmem_check_version(3))
{
int i;
uint64_t named_block_array_addr = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
uint64_t named_addr = named_block_array_addr;
for (i = 0; i < num_blocks; i++)
{
uint64_t named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
if (name && named_size)
{
char name_tmp[name_length];
CVMX_BOOTMEM_NAMED_GET_NAME(named_addr, name_tmp, name_length);
if (!strncmp(name, name_tmp, name_length - 1))
{
result = named_addr;
break;
}
}
else if (!name && !named_size)
{
result = named_addr;
break;
}
named_addr += sizeof(cvmx_bootmem_named_block_desc_t);
}
}
__cvmx_bootmem_unlock(flags);
return result;
}
int cvmx_bootmem_phy_named_block_free(const char *name, uint32_t flags)
{
uint64_t named_block_addr;
if (__cvmx_bootmem_check_version(3))
return(0);
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name);
#endif
/* Take lock here, as name lookup/block free/name free need to be atomic */
__cvmx_bootmem_lock(flags);
named_block_addr = cvmx_bootmem_phy_named_block_find(name, CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (named_block_addr)
{
uint64_t named_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, base_addr);
uint64_t named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s, base: 0x%llx, size: 0x%llx\n",
name, (ULL)named_addr, (ULL)named_size);
#endif
__cvmx_bootmem_phy_free(named_addr, named_size, CVMX_BOOTMEM_FLAG_NO_LOCKING);
/* Set size to zero to indicate block not used. */
CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_addr, size, 0);
}
__cvmx_bootmem_unlock(flags);
return(!!named_block_addr); /* 0 on failure, 1 on success */
}
int64_t cvmx_bootmem_phy_named_block_alloc(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t alignment, const char *name, uint32_t flags)
{
int64_t addr_allocated;
uint64_t named_block_desc_addr;
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_alloc: size: 0x%llx, min: 0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
(ULL)size,
(ULL)min_addr,
(ULL)max_addr,
(ULL)alignment,
name);
#endif
if (__cvmx_bootmem_check_version(3))
return(-1);
/* Take lock here, as name lookup/block alloc/name add need to be atomic */
__cvmx_bootmem_lock(flags);
named_block_desc_addr = cvmx_bootmem_phy_named_block_find(name, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (named_block_desc_addr)
{
__cvmx_bootmem_unlock(flags);
return(-1);
}
/* Get pointer to first available named block descriptor */
named_block_desc_addr = cvmx_bootmem_phy_named_block_find(NULL, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (!named_block_desc_addr)
{
__cvmx_bootmem_unlock(flags);
return(-1);
}
/* Round size up to mult of minimum alignment bytes
** We need the actual size allocated to allow for blocks to be coallesced
** when they are freed. The alloc routine does the same rounding up
** on all allocations. */
size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (addr_allocated >= 0)
{
CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, base_addr, addr_allocated);
CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, size, size);
CVMX_BOOTMEM_NAMED_SET_NAME(named_block_desc_addr, name, CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len));
}
__cvmx_bootmem_unlock(flags);
return(addr_allocated);
}
void cvmx_bootmem_phy_named_block_print(void)
{
int i;
int printed = 0;
uint64_t named_block_array_addr = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
uint64_t named_block_addr = named_block_array_addr;
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_print, desc addr: 0x%llx\n",
(ULL)cvmx_bootmem_desc_addr);
#endif
if (__cvmx_bootmem_check_version(3))
return;
cvmx_dprintf("List of currently allocated named bootmem blocks:\n");
for (i = 0; i < num_blocks; i++)
{
uint64_t named_size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
if (named_size)
{
char name_tmp[name_length];
uint64_t named_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, base_addr);
CVMX_BOOTMEM_NAMED_GET_NAME(named_block_addr, name_tmp, name_length);
printed++;
cvmx_dprintf("Name: %s, address: 0x%08llx, size: 0x%08llx, index: %d\n",
name_tmp, (ULL)named_addr, (ULL)named_size, i);
}
named_block_addr += sizeof(cvmx_bootmem_named_block_desc_t);
}
if (!printed)
{
cvmx_dprintf("No named bootmem blocks exist.\n");
}
}
int64_t cvmx_bootmem_phy_mem_list_init(uint64_t mem_size, uint32_t low_reserved_bytes, cvmx_bootmem_desc_t *desc_buffer)
{
uint64_t cur_block_addr;
int64_t addr;
int i;
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_mem_list_init (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
desc_buffer, (ULL)cvmx_bootmem_desc_addr);
#endif
/* Descriptor buffer needs to be in 32 bit addressable space to be compatible with
** 32 bit applications */
if (!desc_buffer)
{
cvmx_dprintf("ERROR: no memory for cvmx_bootmem descriptor provided\n");
return 0;
}
if (mem_size > OCTEON_MAX_PHY_MEM_SIZE)
{
mem_size = OCTEON_MAX_PHY_MEM_SIZE;
cvmx_dprintf("ERROR: requested memory size too large, truncating to maximum size\n");
}
if (cvmx_bootmem_desc_addr)
return 1;
/* Initialize cvmx pointer to descriptor */
#ifndef CVMX_BUILD_FOR_LINUX_HOST
cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
#else
cvmx_bootmem_init((unsigned long)desc_buffer);
#endif
/* Fill the bootmem descriptor */
CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
/* Set up global pointer to start of list, exclude low 64k for exception vectors, space for global descriptor */
cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes);
if (mem_size <= OCTEON_DDR0_SIZE)
{
__cvmx_bootmem_phy_free(cur_block_addr, mem_size - low_reserved_bytes, 0);
goto frees_done;
}
__cvmx_bootmem_phy_free(cur_block_addr, OCTEON_DDR0_SIZE - low_reserved_bytes, 0);
mem_size -= OCTEON_DDR0_SIZE;
/* Add DDR2 block next if present */
if (mem_size > OCTEON_DDR1_SIZE)
{
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE, mem_size - OCTEON_DDR1_SIZE, 0);
}
else
{
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
}
frees_done:
/* Initialize the named block structure */
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks, CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
/* Allocate this near the top of the low 256 MBytes of memory */
addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS * sizeof(cvmx_bootmem_named_block_desc_t),0, 0x10000000, 0 ,CVMX_BOOTMEM_FLAG_END_ALLOC);
if (addr >= 0)
CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_mem_list_init: named_block_array_addr: 0x%llx)\n",
(ULL)addr);
#endif
if (!addr)
{
cvmx_dprintf("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
return(0);
}
for (i=0; i<CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++)
{
CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
addr += sizeof(cvmx_bootmem_named_block_desc_t);
}
return(1);
}
void cvmx_bootmem_lock(void)
{
__cvmx_bootmem_lock(0);
}
void cvmx_bootmem_unlock(void)
{
__cvmx_bootmem_unlock(0);
}
#ifndef CVMX_BUILD_FOR_LINUX_HOST
void *__cvmx_bootmem_internal_get_desc_ptr(void)
{
return cvmx_phys_to_ptr(cvmx_bootmem_desc_addr);
}
#endif