473 lines
14 KiB
C
Raw Normal View History

/*-
* Copyright (c) 1988, 1989, 1990, 1993
* The Regents of the University of California. All rights reserved.
* Copyright (c) 1988, 1989 by Adam de Boor
* Copyright (c) 1989 by Berkeley Softworks
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Adam de Boor.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/queue.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "parse.h"
#include "pathnames.h"
#include "shell.h"
#include "util.h"
/*
* Descriptions for various shells. What the list of builtins should contain
* is debatable: either all builtins or only those which may specified on
* a single line without use of meta-characters. For correct makefiles that
* contain only correct command lines there is no difference. But if a command
* line, for example, is: 'if -foo bar' and there is an executable named 'if'
* in the path, the first possibility would execute that 'if' while in the
* second case the shell would give an error. Histerically only a small
* subset of the builtins and no reserved words where given in the list which
* corresponds roughly to the first variant. So go with this but add missing
* words.
*/
#define CSH_BUILTINS \
"alias cd eval exec exit read set ulimit unalias " \
"umask unset wait"
#define SH_BUILTINS \
"alias cd eval exec exit read set ulimit unalias " \
"umask unset wait"
#define CSH_META "#=|^(){};&<>*?[]:$`\\@\n"
#define SH_META "#=|^(){};&<>*?[]:$`\\\n"
static const char *const shells_init[] = {
/*
* CSH description. The csh can do echo control by playing
* with the setting of the 'echo' shell variable. Sadly,
* however, it is unable to do error control nicely.
*/
"name=csh path='" PATH_DEFSHELLDIR "/csh' "
"quiet='unset verbose' echo='set verbose' filter='unset verbose' "
"hasErrCtl=N check='echo \"%s\"\n' ignore='csh -c \"%s || exit 0\"' "
"echoFlag=v errFlag=e "
"meta='" CSH_META "' builtins='" CSH_BUILTINS "'",
/*
* SH description. Echo control is also possible and, under
* sun UNIX anyway, one can even control error checking.
*/
"name=sh path='" PATH_DEFSHELLDIR "/sh' "
"quiet='set -' echo='set -v' filter='set -' "
"hasErrCtl=Y check='set -e' ignore='set +e' "
"echoFlag=v errFlag=e "
"meta='" SH_META "' builtins='" SH_BUILTINS "'",
/*
* KSH description. The Korn shell has a superset of
* the Bourne shell's functionality. There are probably builtins
* missing here.
*/
"name=ksh path='" PATH_DEFSHELLDIR "/ksh' "
"quiet='set -' echo='set -v' filter='set -' "
"hasErrCtl=Y check='set -e' ignore='set +e' "
"echoFlag=v errFlag=e "
"meta='" SH_META "' builtins='" SH_BUILTINS "' unsetenv=T",
NULL
};
/*
* This is the shell to which we pass all commands in the Makefile.
* It is set by the Job_ParseShell function.
*/
struct Shell *commandShell;
/*
* This is the list of all known shells.
*/
static struct Shells shells = TAILQ_HEAD_INITIALIZER(shells);
void ShellDump(const struct Shell *) __unused;
/**
* Helper function for sorting the builtin list alphabetically.
*/
static int
sort_builtins(const void *p1, const void *p2)
{
return (strcmp(*(const char* const*)p1, *(const char* const*)p2));
}
/**
* Free a shell structure and all associated strings.
*/
static void
ShellFree(struct Shell *sh)
{
if (sh != NULL) {
free(sh->name);
free(sh->path);
free(sh->echoOff);
free(sh->echoOn);
free(sh->noPrint);
free(sh->errCheck);
free(sh->ignErr);
free(sh->echo);
free(sh->exit);
ArgArray_Done(&sh->builtins);
free(sh->meta);
free(sh);
}
}
/**
* Dump a shell specification to stderr.
*/
void
ShellDump(const struct Shell *sh)
{
int i;
fprintf(stderr, "Shell %p:\n", sh);
fprintf(stderr, " name='%s' path='%s'\n", sh->name, sh->path);
fprintf(stderr, " hasEchoCtl=%d echoOff='%s' echoOn='%s'\n",
sh->hasEchoCtl, sh->echoOff, sh->echoOn);
fprintf(stderr, " noPrint='%s'\n", sh->noPrint);
fprintf(stderr, " hasErrCtl=%d errCheck='%s' ignErr='%s'\n",
sh->hasErrCtl, sh->errCheck, sh->ignErr);
fprintf(stderr, " echo='%s' exit='%s'\n", sh->echo, sh->exit);
fprintf(stderr, " builtins=%d\n", sh->builtins.argc - 1);
for (i = 1; i < sh->builtins.argc; i++)
fprintf(stderr, " '%s'", sh->builtins.argv[i]);
fprintf(stderr, "\n meta='%s'\n", sh->meta);
fprintf(stderr, " unsetenv=%d\n", sh->unsetenv);
}
/**
* Parse a shell specification line and return the new Shell structure.
* In case of an error a message is printed and NULL is returned.
*/
static struct Shell *
ShellParseSpec(const char *spec, Boolean *fullSpec)
{
ArgArray aa;
struct Shell *sh;
char *eq;
char *keyw;
int arg;
*fullSpec = FALSE;
sh = emalloc(sizeof(*sh));
memset(sh, 0, sizeof(*sh));
ArgArray_Init(&sh->builtins);
/*
* Parse the specification by keyword but skip the first word
*/
brk_string(&aa, spec, TRUE);
for (arg = 1; arg < aa.argc; arg++) {
/*
* Split keyword and value
*/
keyw = aa.argv[arg];
if ((eq = strchr(keyw, '=')) == NULL) {
Parse_Error(PARSE_FATAL, "missing '=' in shell "
"specification keyword '%s'", keyw);
ArgArray_Done(&aa);
ShellFree(sh);
return (NULL);
}
*eq++ = '\0';
if (strcmp(keyw, "path") == 0) {
free(sh->path);
sh->path = estrdup(eq);
} else if (strcmp(keyw, "name") == 0) {
free(sh->name);
sh->name = estrdup(eq);
} else if (strcmp(keyw, "quiet") == 0) {
free(sh->echoOff);
sh->echoOff = estrdup(eq);
*fullSpec = TRUE;
} else if (strcmp(keyw, "echo") == 0) {
free(sh->echoOn);
sh->echoOn = estrdup(eq);
*fullSpec = TRUE;
} else if (strcmp(keyw, "filter") == 0) {
free(sh->noPrint);
sh->noPrint = estrdup(eq);
*fullSpec = TRUE;
} else if (strcmp(keyw, "echoFlag") == 0) {
free(sh->echo);
sh->echo = estrdup(eq);
*fullSpec = TRUE;
} else if (strcmp(keyw, "errFlag") == 0) {
free(sh->exit);
sh->exit = estrdup(eq);
*fullSpec = TRUE;
} else if (strcmp(keyw, "hasErrCtl") == 0) {
sh->hasErrCtl = (*eq == 'Y' || *eq == 'y' ||
*eq == 'T' || *eq == 't');
*fullSpec = TRUE;
} else if (strcmp(keyw, "check") == 0) {
free(sh->errCheck);
sh->errCheck = estrdup(eq);
*fullSpec = TRUE;
} else if (strcmp(keyw, "ignore") == 0) {
free(sh->ignErr);
sh->ignErr = estrdup(eq);
*fullSpec = TRUE;
} else if (strcmp(keyw, "builtins") == 0) {
ArgArray_Done(&sh->builtins);
brk_string(&sh->builtins, eq, TRUE);
qsort(sh->builtins.argv + 1, sh->builtins.argc - 1,
sizeof(char *), sort_builtins);
*fullSpec = TRUE;
} else if (strcmp(keyw, "meta") == 0) {
free(sh->meta);
sh->meta = estrdup(eq);
*fullSpec = TRUE;
} else if (strcmp(keyw, "unsetenv") == 0) {
sh->unsetenv = (*eq == 'Y' || *eq == 'y' ||
*eq == 'T' || *eq == 't');
*fullSpec = TRUE;
} else {
Parse_Error(PARSE_FATAL, "unknown keyword in shell "
"specification '%s'", keyw);
ArgArray_Done(&aa);
ShellFree(sh);
return (NULL);
}
}
ArgArray_Done(&aa);
/*
* Some checks (could be more)
*/
if (*fullSpec) {
if ((sh->echoOn != NULL) ^ (sh->echoOff != NULL)) {
Parse_Error(PARSE_FATAL, "Shell must have either both "
"echoOff and echoOn or none of them");
ShellFree(sh);
return (NULL);
}
if (sh->echoOn != NULL && sh->echoOff != NULL)
sh->hasEchoCtl = TRUE;
}
return (sh);
}
/**
* Parse the builtin shell specifications and put them into the shell
* list. Then select the default shell to be the current shell. This
* is called from main() before any parsing (including MAKEFLAGS and
* command line) is done.
*/
void
Shell_Init(void)
{
int i;
struct Shell *sh;
Boolean fullSpec;
for (i = 0; shells_init[i] != NULL; i++) {
sh = ShellParseSpec(shells_init[i], &fullSpec);
TAILQ_INSERT_TAIL(&shells, sh, link);
if (strcmp(sh->name, DEFSHELLNAME) == 0)
commandShell = sh;
}
}
/**
* Find a matching shell in 'shells' given its final component.
*
* Results:
* A pointer to a freshly allocated Shell structure with the contents
* from static description or NULL if no shell with the given name
* is found.
*/
static struct Shell *
ShellMatch(const char *name)
{
struct Shell *sh;
TAILQ_FOREACH(sh, &shells, link)
if (strcmp(sh->name, name) == 0)
return (sh);
return (NULL);
}
/**
* Parse a shell specification and set up commandShell appropriately.
*
* Results:
* TRUE if the specification was correct. FALSE otherwise.
*
* Side Effects:
* commandShell points to a Shell structure.
* created from the shell spec).
*
* Notes:
* A shell specification consists of a .SHELL target, with dependency
* operator, followed by a series of blank-separated words. Double
* quotes can be used to use blanks in words. A backslash escapes
* anything (most notably a double-quote and a space) and
* provides the functionality it does in C. Each word consists of
* keyword and value separated by an equal sign. There should be no
* unnecessary spaces in the word. The keywords are as follows:
* name Name of shell.
* path Location of shell. Overrides "name" if given
* quiet Command to turn off echoing.
* echo Command to turn echoing on
* filter Result of turning off echoing that shouldn't be
* printed.
* echoFlag Flag to turn echoing on at the start
* errFlag Flag to turn error checking on at the start
* hasErrCtl True if shell has error checking control
* check Command to turn on error checking if hasErrCtl
* is TRUE or template of command to echo a command
* for which error checking is off if hasErrCtl is
* FALSE.
* ignore Command to turn off error checking if hasErrCtl
* is TRUE or template of command to execute a
* command so as to ignore any errors it returns if
* hasErrCtl is FALSE.
* builtins A space separated list of builtins. If one
* of these builtins is detected when make wants
* to execute a command line, the command line is
* handed to the shell. Otherwise make may try to
* execute the command directly. If this list is empty
* it is assumed, that the command must always be
* handed over to the shell.
* meta The shell meta characters. If this is not specified
* or empty, commands are alway passed to the shell.
* Otherwise they are not passed when they contain
* neither a meta character nor a builtin command.
* unsetenv Unsetenv("ENV") before executing anything.
*/
Boolean
Shell_Parse(const char line[])
{
Boolean fullSpec;
struct Shell *sh;
struct Shell *match;
/* parse the specification */
if ((sh = ShellParseSpec(line, &fullSpec)) == NULL)
return (FALSE);
if (sh->path == NULL) {
/*
* If no path was given, the user wants one of the pre-defined
* shells, yes? So we find the one s/he wants with the help of
* JobMatchShell and set things up the right way.
*/
if (sh->name == NULL) {
Parse_Error(PARSE_FATAL,
"Neither path nor name specified");
ShellFree(sh);
return (FALSE);
}
if (fullSpec) {
/*
* XXX May want to merge sh into match. But this
* require ShellParseSpec to return information
* which attributes actuall have been specified.
*/
Parse_Error(PARSE_FATAL, "No path specified");
ShellFree(sh);
return (FALSE);
}
if ((match = ShellMatch(sh->name)) == NULL) {
Parse_Error(PARSE_FATAL, "%s: no matching shell",
sh->name);
ShellFree(sh);
return (FALSE);
}
ShellFree(sh);
commandShell = match;
return (TRUE);
}
/*
* The user provided a path. If s/he gave nothing else
* (fullSpec is FALSE), try and find a matching shell in the
* ones we know of. Else we just take the specification at its
* word and copy it to a new location. In either case, we need
* to record the path the user gave for the shell.
*/
if (sh->name == NULL) {
/* get the base name as the name */
if ((sh->name = strrchr(sh->path, '/')) == NULL) {
sh->name = estrdup(sh->path);
} else {
sh->name = estrdup(sh->name + 1);
}
}
if (!fullSpec) {
if ((match = ShellMatch(sh->name)) == NULL) {
Parse_Error(PARSE_FATAL,
"%s: no matching shell", sh->name);
ShellFree(sh);
return (FALSE);
}
/* set the patch on the matching shell */
free(match->path);
match->path = sh->path;
sh->path = NULL;
ShellFree(sh);
commandShell = match;
return (TRUE);
}
TAILQ_INSERT_HEAD(&shells, sh, link);
/* set the new shell */
commandShell = sh;
return (TRUE);
}