freebsd-skq/sys/dev/ahb/ahb.c

1357 lines
34 KiB
C
Raw Normal View History

/*
* CAM SCSI device driver for the Adaptec 174X SCSI Host adapter
*
* Copyright (c) 1998 Justin T. Gibbs
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1999-08-28 01:08:13 +00:00
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_message.h>
#include <dev/eisa/eisaconf.h>
#include <dev/ahb/ahbreg.h>
#define ccb_ecb_ptr spriv_ptr0
#define ccb_ahb_ptr spriv_ptr1
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define ahb_inb(ahb, port) \
bus_space_read_1((ahb)->tag, (ahb)->bsh, port)
#define ahb_inl(ahb, port) \
bus_space_read_4((ahb)->tag, (ahb)->bsh, port)
#define ahb_outb(ahb, port, value) \
bus_space_write_1((ahb)->tag, (ahb)->bsh, port, value)
#define ahb_outl(ahb, port, value) \
bus_space_write_4((ahb)->tag, (ahb)->bsh, port, value)
static const char *ahbmatch(eisa_id_t type);
static struct ahb_softc *ahballoc(u_long unit, struct resource *res);
static void ahbfree(struct ahb_softc *ahb);
static int ahbreset(struct ahb_softc *ahb);
static void ahbmapecbs(void *arg, bus_dma_segment_t *segs,
int nseg, int error);
static int ahbxptattach(struct ahb_softc *ahb);
static void ahbhandleimmed(struct ahb_softc *ahb,
u_int32_t mbox, u_int intstat);
static void ahbcalcresid(struct ahb_softc *ahb,
struct ecb *ecb, union ccb *ccb);
static __inline void ahbdone(struct ahb_softc *ahb, u_int32_t mbox,
u_int intstat);
static void ahbintr(void *arg);
static bus_dmamap_callback_t ahbexecuteecb;
static void ahbaction(struct cam_sim *sim, union ccb *ccb);
static void ahbpoll(struct cam_sim *sim);
/* Our timeout handler */
static timeout_t ahbtimeout;
static __inline struct ecb* ahbecbget(struct ahb_softc *ahb);
static __inline void ahbecbfree(struct ahb_softc* ahb,
struct ecb* ecb);
static __inline u_int32_t ahbecbvtop(struct ahb_softc *ahb,
struct ecb *ecb);
static __inline struct ecb* ahbecbptov(struct ahb_softc *ahb,
u_int32_t ecb_addr);
static __inline u_int32_t ahbstatuspaddr(u_int32_t ecb_paddr);
static __inline u_int32_t ahbsensepaddr(u_int32_t ecb_paddr);
static __inline u_int32_t ahbsgpaddr(u_int32_t ecb_paddr);
static __inline void ahbqueuembox(struct ahb_softc *ahb,
u_int32_t mboxval,
u_int attn_code);
static __inline struct ecb*
ahbecbget(struct ahb_softc *ahb)
{
struct ecb* ecb;
int s;
s = splcam();
if ((ecb = SLIST_FIRST(&ahb->free_ecbs)) != NULL)
SLIST_REMOVE_HEAD(&ahb->free_ecbs, links);
splx(s);
return (ecb);
}
static __inline void
ahbecbfree(struct ahb_softc* ahb, struct ecb* ecb)
{
int s;
s = splcam();
ecb->state = ECB_FREE;
SLIST_INSERT_HEAD(&ahb->free_ecbs, ecb, links);
splx(s);
}
static __inline u_int32_t
ahbecbvtop(struct ahb_softc *ahb, struct ecb *ecb)
{
return (ahb->ecb_physbase
+ (u_int32_t)((caddr_t)ecb - (caddr_t)ahb->ecb_array));
}
static __inline struct ecb*
ahbecbptov(struct ahb_softc *ahb, u_int32_t ecb_addr)
{
return (ahb->ecb_array
+ ((struct ecb*)ecb_addr - (struct ecb*)ahb->ecb_physbase));
}
static __inline u_int32_t
ahbstatuspaddr(u_int32_t ecb_paddr)
{
return (ecb_paddr + offsetof(struct ecb, status));
}
static __inline u_int32_t
ahbsensepaddr(u_int32_t ecb_paddr)
{
return (ecb_paddr + offsetof(struct ecb, sense));
}
static __inline u_int32_t
ahbsgpaddr(u_int32_t ecb_paddr)
{
return (ecb_paddr + offsetof(struct ecb, sg_list));
}
static __inline void
ahbqueuembox(struct ahb_softc *ahb, u_int32_t mboxval, u_int attn_code)
{
u_int loopmax = 300;
while (--loopmax) {
u_int status;
status = ahb_inb(ahb, HOSTSTAT);
if ((status & (HOSTSTAT_MBOX_EMPTY|HOSTSTAT_BUSY))
== HOSTSTAT_MBOX_EMPTY)
break;
DELAY(20);
}
if (loopmax == 0)
1998-09-16 03:27:12 +00:00
panic("ahb%ld: adapter not taking commands\n", ahb->unit);
ahb_outl(ahb, MBOXOUT0, mboxval);
ahb_outb(ahb, ATTN, attn_code);
}
static const char *
ahbmatch(eisa_id_t type)
{
switch(type & 0xfffffe00) {
case EISA_DEVICE_ID_ADAPTEC_1740:
return ("Adaptec 174x SCSI host adapter");
break;
default:
break;
}
return (NULL);
}
static int
ahbprobe(device_t dev)
{
const char *desc;
u_int32_t iobase;
u_int32_t irq;
u_int8_t intdef;
int shared;
desc = ahbmatch(eisa_get_id(dev));
if (!desc)
return (ENXIO);
device_set_desc(dev, desc);
iobase = (eisa_get_slot(dev) * EISA_SLOT_SIZE) +
AHB_EISA_SLOT_OFFSET;
eisa_add_iospace(dev, iobase, AHB_EISA_IOSIZE, RESVADDR_NONE);
intdef = inb(INTDEF + iobase);
switch (intdef & 0x7) {
case INT9:
irq = 9;
break;
case INT10:
irq = 10;
break;
case INT11:
irq = 11;
break;
case INT12:
irq = 12;
break;
case INT14:
irq = 14;
break;
case INT15:
irq = 15;
break;
default:
printf("Adaptec 174X at slot %d: illegal "
"irq setting %d\n", eisa_get_slot(dev),
(intdef & 0x7));
irq = 0;
break;
}
if (irq == 0)
return ENXIO;
shared = (inb(INTDEF + iobase) & INTLEVEL) ?
EISA_TRIGGER_LEVEL : EISA_TRIGGER_EDGE;
eisa_add_intr(dev, irq, shared);
return 0;
}
static int
ahbattach(device_t dev)
{
/*
* find unit and check we have that many defined
*/
struct ahb_softc *ahb;
struct ecb* next_ecb;
struct resource *io = 0;
struct resource *irq = 0;
int rid;
void *ih;
rid = 0;
io = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
0, ~0, 1, RF_ACTIVE);
if (!io) {
device_printf(dev, "No I/O space?!\n");
return ENOMEM;
}
if ((ahb = ahballoc(device_get_unit(dev), io)) == NULL) {
goto error_exit2;
}
if (ahbreset(ahb) != 0)
goto error_exit;
rid = 0;
irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
0, ~0, 1, RF_ACTIVE);
if (!irq) {
device_printf(dev, "Can't allocate interrupt\n");
goto error_exit;
}
/*
* Create our DMA tags. These tags define the kinds of device
* accessible memory allocations and memory mappings we will
* need to perform during normal operation.
*/
/* DMA tag for mapping buffers into device visible space. */
/* XXX Should be a child of the EISA bus dma tag */
if (bus_dma_tag_create(/*parent*/NULL, /*alignment*/1, /*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/MAXBSIZE, /*nsegments*/AHB_NSEG,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/BUS_DMA_ALLOCNOW,
&ahb->buffer_dmat) != 0)
goto error_exit;
ahb->init_level++;
/* DMA tag for our ccb structures and ha inquiry data */
if (bus_dma_tag_create(/*parent*/NULL, /*alignment*/1, /*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
(AHB_NECB * sizeof(struct ecb))
+ sizeof(*ahb->ha_inq_data),
/*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &ahb->ecb_dmat) != 0)
goto error_exit;
ahb->init_level++;
/* Allocation for our ccbs */
if (bus_dmamem_alloc(ahb->ecb_dmat, (void **)&ahb->ecb_array,
BUS_DMA_NOWAIT, &ahb->ecb_dmamap) != 0)
goto error_exit;
ahb->ha_inq_data = (struct ha_inquiry_data *)&ahb->ecb_array[AHB_NECB];
ahb->init_level++;
/* And permanently map them */
bus_dmamap_load(ahb->ecb_dmat, ahb->ecb_dmamap,
ahb->ecb_array, AHB_NSEG * sizeof(struct ecb),
ahbmapecbs, ahb, /*flags*/0);
ahb->init_level++;
/* Allocate the buffer dmamaps for each of our ECBs */
bzero(ahb->ecb_array, (AHB_NECB * sizeof(struct ecb))
+ sizeof(*ahb->ha_inq_data));
next_ecb = ahb->ecb_array;
while (ahb->num_ecbs < AHB_NECB) {
u_int32_t ecb_paddr;
if (bus_dmamap_create(ahb->buffer_dmat, /*flags*/0,
&next_ecb->dmamap))
break;
ecb_paddr = ahbecbvtop(ahb, next_ecb);
next_ecb->hecb.status_ptr = ahbstatuspaddr(ecb_paddr);
next_ecb->hecb.sense_ptr = ahbsensepaddr(ecb_paddr);
ahb->num_ecbs++;
ahbecbfree(ahb, next_ecb);
next_ecb++;
}
if (ahb->num_ecbs == 0)
goto error_exit;
ahb->init_level++;
/*
* Now that we know we own the resources we need, register
* our bus with the XPT.
*/
if (ahbxptattach(ahb))
goto error_exit;
/* Enable our interrupt */
bus_setup_intr(dev, irq, INTR_TYPE_CAM|INTR_ENTROPY, ahbintr, ahb, &ih);
return (0);
error_exit:
/*
* The board's IRQ line will not be left enabled
* if we can't intialize correctly, so its safe
* to release the irq.
*/
ahbfree(ahb);
error_exit2:
if (io)
bus_release_resource(dev, SYS_RES_IOPORT, 0, io);
if (irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, irq);
return (-1);
}
static struct ahb_softc *
ahballoc(u_long unit, struct resource *res)
{
struct ahb_softc *ahb;
/*
* Allocate a storage area for us
*/
ahb = malloc(sizeof(struct ahb_softc), M_DEVBUF, M_NOWAIT | M_ZERO);
if (!ahb) {
1998-09-16 03:27:12 +00:00
printf("ahb%ld: cannot malloc!\n", unit);
return (NULL);
}
SLIST_INIT(&ahb->free_ecbs);
LIST_INIT(&ahb->pending_ccbs);
ahb->unit = unit;
ahb->tag = rman_get_bustag(res);
ahb->bsh = rman_get_bushandle(res);
ahb->disc_permitted = ~0;
ahb->tags_permitted = ~0;
return (ahb);
}
static void
ahbfree(struct ahb_softc *ahb)
{
switch (ahb->init_level) {
default:
case 4:
bus_dmamap_unload(ahb->ecb_dmat, ahb->ecb_dmamap);
case 3:
bus_dmamem_free(ahb->ecb_dmat, ahb->ecb_array,
ahb->ecb_dmamap);
bus_dmamap_destroy(ahb->ecb_dmat, ahb->ecb_dmamap);
case 2:
bus_dma_tag_destroy(ahb->ecb_dmat);
case 1:
bus_dma_tag_destroy(ahb->buffer_dmat);
case 0:
}
free(ahb, M_DEVBUF);
}
/*
* reset board, If it doesn't respond, return failure
*/
static int
ahbreset(struct ahb_softc *ahb)
{
int wait = 1000; /* 1 sec enough? */
int test;
if ((ahb_inb(ahb, PORTADDR) & PORTADDR_ENHANCED) == 0) {
printf("ahb_reset: Controller not in enhanced mode\n");
return (-1);
}
ahb_outb(ahb, CONTROL, CNTRL_HARD_RST);
DELAY(1000);
ahb_outb(ahb, CONTROL, 0);
while (--wait) {
DELAY(1000);
if ((ahb_inb(ahb, HOSTSTAT) & HOSTSTAT_BUSY) == 0)
break;
}
if (wait == 0) {
printf("ahbreset: No answer from aha1742 board\n");
return (-1);
}
if ((test = ahb_inb(ahb, MBOXIN0)) != 0) {
printf("ahb_reset: self test failed, val = 0x%x\n", test);
return (-1);
}
while (ahb_inb(ahb, HOSTSTAT) & HOSTSTAT_INTPEND) {
ahb_outb(ahb, CONTROL, CNTRL_CLRINT);
DELAY(10000);
}
return (0);
}
static void
ahbmapecbs(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct ahb_softc* ahb;
ahb = (struct ahb_softc*)arg;
ahb->ecb_physbase = segs->ds_addr;
/*
* Space for adapter inquiry information is on the
* tail of the ecb array.
*/
ahb->ha_inq_physbase = ahbecbvtop(ahb, &ahb->ecb_array[AHB_NECB]);
}
static int
ahbxptattach(struct ahb_softc *ahb)
{
struct cam_devq *devq;
struct ecb *ecb;
u_int i;
/* Remeber who are we on the scsi bus */
ahb->scsi_id = ahb_inb(ahb, SCSIDEF) & HSCSIID;
/* Use extended translation?? */
ahb->extended_trans = ahb_inb(ahb, RESV1) & EXTENDED_TRANS;
/* Fetch adapter inquiry data */
ecb = ahbecbget(ahb); /* Always succeeds - no outstanding commands */
ecb->hecb.opcode = ECBOP_READ_HA_INQDATA;
ecb->hecb.flag_word1 = FW1_SUPPRESS_URUN_ERR|FW1_ERR_STATUS_BLK_ONLY;
ecb->hecb.data_ptr = ahb->ha_inq_physbase;
ecb->hecb.data_len = sizeof(struct ha_inquiry_data);
ecb->hecb.sense_ptr = 0;
ecb->state = ECB_ACTIVE;
/* Tell the adapter about this command */
ahbqueuembox(ahb, ahbecbvtop(ahb, ecb),
ATTN_STARTECB|ahb->scsi_id);
/* Poll for interrupt completion */
for (i = 1000; ecb->state != ECB_FREE && i != 0; i--) {
ahbintr(ahb);
DELAY(1000);
}
ahb->num_ecbs = MIN(ahb->num_ecbs,
ahb->ha_inq_data->scsi_data.reserved[1]);
1998-09-16 03:27:12 +00:00
printf("ahb%ld: %.8s %s SCSI Adapter, FW Rev. %.4s, ID=%d, %d ECBs\n",
ahb->unit, ahb->ha_inq_data->scsi_data.product,
(ahb->ha_inq_data->scsi_data.flags & 0x4) ? "Differential"
: "Single Ended",
ahb->ha_inq_data->scsi_data.revision,
ahb->scsi_id, ahb->num_ecbs);
/* Restore sense paddr for future CCB clients */
ecb->hecb.sense_ptr = ahbsensepaddr(ahbecbvtop(ahb, ecb));
ahbecbfree(ahb, ecb);
/*
* Create the device queue for our SIM.
*/
devq = cam_simq_alloc(ahb->num_ecbs);
if (devq == NULL)
return (ENOMEM);
/*
* Construct our SIM entry
*/
ahb->sim = cam_sim_alloc(ahbaction, ahbpoll, "ahb", ahb, ahb->unit,
2, ahb->num_ecbs, devq);
if (ahb->sim == NULL) {
cam_simq_free(devq);
return (ENOMEM);
}
if (xpt_bus_register(ahb->sim, 0) != CAM_SUCCESS) {
cam_sim_free(ahb->sim, /*free_devq*/TRUE);
return (ENXIO);
}
if (xpt_create_path(&ahb->path, /*periph*/NULL,
cam_sim_path(ahb->sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(ahb->sim));
cam_sim_free(ahb->sim, /*free_devq*/TRUE);
return (ENXIO);
}
/*
* Allow the board to generate interrupts.
*/
ahb_outb(ahb, INTDEF, ahb_inb(ahb, INTDEF) | INTEN);
return (0);
}
static void
ahbhandleimmed(struct ahb_softc *ahb, u_int32_t mbox, u_int intstat)
{
struct ccb_hdr *ccb_h;
u_int target_id;
if (ahb->immed_cmd == 0) {
1998-09-16 03:27:12 +00:00
printf("ahb%ld: Immediate Command complete with no "
" pending command\n", ahb->unit);
return;
}
target_id = intstat & INTSTAT_TARGET_MASK;
ccb_h = LIST_FIRST(&ahb->pending_ccbs);
while (ccb_h != NULL) {
struct ecb *pending_ecb;
union ccb *ccb;
pending_ecb = (struct ecb *)ccb_h->ccb_ecb_ptr;
ccb = pending_ecb->ccb;
ccb_h = LIST_NEXT(ccb_h, sim_links.le);
if (ccb->ccb_h.target_id == target_id
|| target_id == ahb->scsi_id) {
untimeout(ahbtimeout, pending_ecb,
ccb->ccb_h.timeout_ch);
LIST_REMOVE(&ccb->ccb_h, sim_links.le);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE)
bus_dmamap_unload(ahb->buffer_dmat,
pending_ecb->dmamap);
if (pending_ecb == ahb->immed_ecb)
ccb->ccb_h.status =
CAM_CMD_TIMEOUT|CAM_RELEASE_SIMQ;
else if (target_id == ahb->scsi_id)
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
else
ccb->ccb_h.status = CAM_BDR_SENT;
ahbecbfree(ahb, pending_ecb);
xpt_done(ccb);
} else if (ahb->immed_ecb != NULL) {
/* Re-instate timeout */
ccb->ccb_h.timeout_ch =
timeout(ahbtimeout, (caddr_t)pending_ecb,
(ccb->ccb_h.timeout * hz) / 1000);
}
}
if (ahb->immed_ecb != NULL) {
ahb->immed_ecb = NULL;
1998-09-16 03:27:12 +00:00
printf("ahb%ld: No longer in timeout\n", ahb->unit);
} else if (target_id == ahb->scsi_id)
1998-09-16 03:27:12 +00:00
printf("ahb%ld: SCSI Bus Reset Delivered\n", ahb->unit);
else
1998-09-16 03:27:12 +00:00
printf("ahb%ld: Bus Device Reset Delibered to target %d\n",
ahb->unit, target_id);
ahb->immed_cmd = 0;
}
static void
ahbcalcresid(struct ahb_softc *ahb, struct ecb *ecb, union ccb *ccb)
{
if (ecb->status.data_overrun != 0) {
/*
* Overrun Condition. The hardware doesn't
* provide a meaningful byte count in this case
* (the residual is always 0). Tell the XPT
* layer about the error.
*/
ccb->ccb_h.status = CAM_DATA_RUN_ERR;
} else {
ccb->csio.resid = ecb->status.resid_count;
if ((ecb->hecb.flag_word1 & FW1_SG_ECB) != 0) {
/*
* For S/G transfers, the adapter provides a pointer
* to the address in the last S/G element used and a
* residual for that element. So, we need to sum up
* the elements that follow it in order to get a real
* residual number. If we have an overrun, the residual
* reported will be 0 and we already know that all S/G
* segments have been exhausted, so we can skip this
* step.
*/
ahb_sg_t *sg;
int num_sg;
num_sg = ecb->hecb.data_len / sizeof(ahb_sg_t);
/* Find the S/G the adapter was working on */
for (sg = ecb->sg_list;
num_sg != 0 && sg->addr != ecb->status.resid_addr;
num_sg--, sg++)
;
/* Skip it */
num_sg--;
sg++;
/* Sum the rest */
for (; num_sg != 0; num_sg--, sg++)
ccb->csio.resid += sg->len;
}
/* Underruns are not errors */
ccb->ccb_h.status = CAM_REQ_CMP;
}
}
static void
ahbprocesserror(struct ahb_softc *ahb, struct ecb *ecb, union ccb *ccb)
{
struct hardware_ecb *hecb;
struct ecb_status *status;
hecb = &ecb->hecb;
status = &ecb->status;
switch (status->ha_status) {
case HS_OK:
ccb->csio.scsi_status = status->scsi_status;
if (status->scsi_status != 0) {
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
if (status->sense_stored) {
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
ccb->csio.sense_resid =
ccb->csio.sense_len - status->sense_len;
bcopy(&ecb->sense, &ccb->csio.sense_data,
status->sense_len);
}
}
break;
case HS_TARGET_NOT_ASSIGNED:
ccb->ccb_h.status = CAM_PATH_INVALID;
break;
case HS_SEL_TIMEOUT:
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
break;
case HS_DATA_RUN_ERR:
ahbcalcresid(ahb, ecb, ccb);
break;
case HS_UNEXPECTED_BUSFREE:
ccb->ccb_h.status = CAM_UNEXP_BUSFREE;
break;
case HS_INVALID_PHASE:
ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
break;
case HS_REQUEST_SENSE_FAILED:
ccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
break;
case HS_TAG_MSG_REJECTED:
{
struct ccb_trans_settings neg;
xpt_print_path(ccb->ccb_h.path);
printf("refuses tagged commands. Performing "
"non-tagged I/O\n");
neg.flags = 0;
neg.valid = CCB_TRANS_TQ_VALID;
xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1);
xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg);
ahb->tags_permitted &= ~(0x01 << ccb->ccb_h.target_id);
ccb->ccb_h.status = CAM_MSG_REJECT_REC;
break;
}
case HS_FIRMWARE_LOAD_REQ:
case HS_HARDWARE_ERR:
/*
* Tell the system that the Adapter
* is no longer functional.
*/
ccb->ccb_h.status = CAM_NO_HBA;
break;
case HS_CMD_ABORTED_HOST:
case HS_CMD_ABORTED_ADAPTER:
case HS_ATN_TARGET_FAILED:
case HS_SCSI_RESET_ADAPTER:
case HS_SCSI_RESET_INCOMING:
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
break;
case HS_INVALID_ECB_PARAM:
printf("ahb%ld: opcode 0x%02x, flag_word1 0x%02x, flag_word2 0x%02x\n",
ahb->unit, hecb->opcode, hecb->flag_word1, hecb->flag_word2);
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
break;
case HS_DUP_TCB_RECEIVED:
case HS_INVALID_OPCODE:
case HS_INVALID_CMD_LINK:
case HS_PROGRAM_CKSUM_ERROR:
1998-09-16 03:27:12 +00:00
panic("ahb%ld: Can't happen host status %x occurred",
ahb->unit, status->ha_status);
break;
}
if (ccb->ccb_h.status != CAM_REQ_CMP) {
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status |= CAM_DEV_QFRZN;
}
}
static void
ahbdone(struct ahb_softc *ahb, u_int32_t mbox, u_int intstat)
{
struct ecb *ecb;
union ccb *ccb;
ecb = ahbecbptov(ahb, mbox);
if ((ecb->state & ECB_ACTIVE) == 0)
panic("ecb not active");
ccb = ecb->ccb;
if (ccb != NULL) {
untimeout(ahbtimeout, ecb, ccb->ccb_h.timeout_ch);
LIST_REMOVE(&ccb->ccb_h, sim_links.le);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(ahb->buffer_dmat, ecb->dmamap, op);
bus_dmamap_unload(ahb->buffer_dmat, ecb->dmamap);
}
if ((intstat & INTSTAT_MASK) == INTSTAT_ECB_OK) {
ccb->ccb_h.status = CAM_REQ_CMP;
ccb->csio.resid = 0;
} else {
ahbprocesserror(ahb, ecb, ccb);
}
ahbecbfree(ahb, ecb);
xpt_done(ccb);
} else {
/* Non CCB Command */
if ((intstat & INTSTAT_MASK) != INTSTAT_ECB_OK) {
1998-09-16 03:27:12 +00:00
printf("ahb%ld: Command 0%x Failed %x:%x:%x\n",
ahb->unit, ecb->hecb.opcode,
*((u_int16_t*)&ecb->status),
ecb->status.ha_status, ecb->status.resid_count);
}
/* Client owns this ECB and will release it. */
}
}
/*
* Catch an interrupt from the adaptor
*/
static void
ahbintr(void *arg)
{
struct ahb_softc *ahb;
u_int intstat;
u_int32_t mbox;
ahb = (struct ahb_softc *)arg;
while (ahb_inb(ahb, HOSTSTAT) & HOSTSTAT_INTPEND) {
/*
* Fetch information about this interrupt.
*/
intstat = ahb_inb(ahb, INTSTAT);
mbox = ahb_inl(ahb, MBOXIN0);
/*
* Reset interrupt latch.
*/
ahb_outb(ahb, CONTROL, CNTRL_CLRINT);
/*
* Process the completed operation
*/
switch (intstat & INTSTAT_MASK) {
case INTSTAT_ECB_OK:
case INTSTAT_ECB_CMPWRETRY:
case INTSTAT_ECB_CMPWERR:
ahbdone(ahb, mbox, intstat);
break;
case INTSTAT_AEN_OCCURED:
if ((intstat & INTSTAT_TARGET_MASK) == ahb->scsi_id) {
/* Bus Reset */
xpt_print_path(ahb->path);
switch (mbox) {
case HS_SCSI_RESET_ADAPTER:
printf("Host Adapter Initiated "
"Bus Reset occurred\n");
break;
case HS_SCSI_RESET_INCOMING:
printf("Bus Reset Initiated "
"by another device occurred\n");
break;
}
/* Notify the XPT */
xpt_async(AC_BUS_RESET, ahb->path, NULL);
break;
}
printf("Unsupported initiator selection AEN occured\n");
break;
case INTSTAT_IMMED_OK:
case INTSTAT_IMMED_ERR:
ahbhandleimmed(ahb, mbox, intstat);
break;
case INTSTAT_HW_ERR:
panic("Unrecoverable hardware Error Occurred\n");
}
}
}
static void
ahbexecuteecb(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
struct ecb *ecb;
union ccb *ccb;
struct ahb_softc *ahb;
u_int32_t ecb_paddr;
int s;
ecb = (struct ecb *)arg;
ccb = ecb->ccb;
ahb = (struct ahb_softc *)ccb->ccb_h.ccb_ahb_ptr;
if (error != 0) {
if (error != EFBIG)
1998-09-16 03:27:12 +00:00
printf("ahb%ld: Unexepected error 0x%x returned from "
"bus_dmamap_load\n", ahb->unit, error);
if (ccb->ccb_h.status == CAM_REQ_INPROG) {
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status = CAM_REQ_TOO_BIG|CAM_DEV_QFRZN;
}
ahbecbfree(ahb, ecb);
xpt_done(ccb);
return;
}
ecb_paddr = ahbecbvtop(ahb, ecb);
if (nseg != 0) {
ahb_sg_t *sg;
bus_dma_segment_t *end_seg;
bus_dmasync_op_t op;
end_seg = dm_segs + nseg;
/* Copy the segments into our SG list */
sg = ecb->sg_list;
while (dm_segs < end_seg) {
sg->addr = dm_segs->ds_addr;
sg->len = dm_segs->ds_len;
sg++;
dm_segs++;
}
if (nseg > 1) {
ecb->hecb.flag_word1 |= FW1_SG_ECB;
ecb->hecb.data_ptr = ahbsgpaddr(ecb_paddr);
ecb->hecb.data_len = sizeof(ahb_sg_t) * nseg;
} else {
ecb->hecb.data_ptr = ecb->sg_list->addr;
ecb->hecb.data_len = ecb->sg_list->len;
}
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
/* ecb->hecb.flag_word2 |= FW2_DATA_DIR_IN; */
op = BUS_DMASYNC_PREREAD;
} else {
op = BUS_DMASYNC_PREWRITE;
}
/* ecb->hecb.flag_word2 |= FW2_CHECK_DATA_DIR; */
bus_dmamap_sync(ahb->buffer_dmat, ecb->dmamap, op);
} else {
ecb->hecb.data_ptr = 0;
ecb->hecb.data_len = 0;
}
s = splcam();
/*
* Last time we need to check if this CCB needs to
* be aborted.
*/
if (ccb->ccb_h.status != CAM_REQ_INPROG) {
if (nseg != 0)
bus_dmamap_unload(ahb->buffer_dmat, ecb->dmamap);
ahbecbfree(ahb, ecb);
xpt_done(ccb);
splx(s);
return;
}
ecb->state = ECB_ACTIVE;
ccb->ccb_h.status |= CAM_SIM_QUEUED;
LIST_INSERT_HEAD(&ahb->pending_ccbs, &ccb->ccb_h, sim_links.le);
/* Tell the adapter about this command */
ahbqueuembox(ahb, ecb_paddr, ATTN_STARTECB|ccb->ccb_h.target_id);
ccb->ccb_h.timeout_ch = timeout(ahbtimeout, (caddr_t)ecb,
(ccb->ccb_h.timeout * hz) / 1000);
splx(s);
}
static void
ahbaction(struct cam_sim *sim, union ccb *ccb)
{
struct ahb_softc *ahb;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ahbaction\n"));
ahb = (struct ahb_softc *)cam_sim_softc(sim);
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_SCSI_IO: /* Execute the requested I/O operation */
{
struct ecb *ecb;
struct hardware_ecb *hecb;
/*
* get an ecb to use.
*/
if ((ecb = ahbecbget(ahb)) == NULL) {
/* Should never occur */
panic("Failed to get an ecb");
}
/*
* So we can find the ECB when an abort is requested
*/
ecb->ccb = ccb;
ccb->ccb_h.ccb_ecb_ptr = ecb;
ccb->ccb_h.ccb_ahb_ptr = ahb;
/*
* Put all the arguments for the xfer in the ecb
*/
hecb = &ecb->hecb;
hecb->opcode = ECBOP_INITIATOR_SCSI_CMD;
hecb->flag_word1 = FW1_AUTO_REQUEST_SENSE
| FW1_ERR_STATUS_BLK_ONLY;
hecb->flag_word2 = ccb->ccb_h.target_lun
| FW2_NO_RETRY_ON_BUSY;
if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) {
hecb->flag_word2 |= FW2_TAG_ENB
| ((ccb->csio.tag_action & 0x3)
<< FW2_TAG_TYPE_SHIFT);
}
if ((ccb->ccb_h.flags & CAM_DIS_DISCONNECT) != 0)
hecb->flag_word2 |= FW2_DISABLE_DISC;
hecb->sense_len = ccb->csio.sense_len;
hecb->cdb_len = ccb->csio.cdb_len;
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
if ((ccb->ccb_h.flags & CAM_CDB_PHYS) == 0) {
bcopy(ccb->csio.cdb_io.cdb_ptr,
hecb->cdb, hecb->cdb_len);
} else {
/* I guess I could map it in... */
ccb->ccb_h.status = CAM_REQ_INVALID;
ahbecbfree(ahb, ecb);
xpt_done(ccb);
return;
}
} else {
bcopy(ccb->csio.cdb_io.cdb_bytes,
hecb->cdb, hecb->cdb_len);
}
/*
* If we have any data to send with this command,
* map it into bus space.
*/
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if ((ccb->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
/*
* We've been given a pointer
* to a single buffer.
*/
if ((ccb->ccb_h.flags & CAM_DATA_PHYS)==0) {
int s;
int error;
s = splsoftvm();
error = bus_dmamap_load(
ahb->buffer_dmat,
ecb->dmamap,
ccb->csio.data_ptr,
ccb->csio.dxfer_len,
ahbexecuteecb,
ecb, /*flags*/0);
if (error == EINPROGRESS) {
/*
* So as to maintain ordering,
* freeze the controller queue
* until our mapping is
* returned.
*/
xpt_freeze_simq(ahb->sim, 1);
ccb->ccb_h.status |=
CAM_RELEASE_SIMQ;
}
splx(s);
} else {
struct bus_dma_segment seg;
/* Pointer to physical buffer */
seg.ds_addr =
(bus_addr_t)ccb->csio.data_ptr;
seg.ds_len = ccb->csio.dxfer_len;
ahbexecuteecb(ecb, &seg, 1, 0);
}
} else {
struct bus_dma_segment *segs;
if ((ccb->ccb_h.flags & CAM_DATA_PHYS) != 0)
panic("ahbaction - Physical segment "
"pointers unsupported");
if ((ccb->ccb_h.flags & CAM_SG_LIST_PHYS) == 0)
panic("btaction - Virtual segment "
"addresses unsupported");
/* Just use the segments provided */
segs = (struct bus_dma_segment *)
ccb->csio.data_ptr;
ahbexecuteecb(ecb, segs, ccb->csio.sglist_cnt,
0);
}
} else {
ahbexecuteecb(ecb, NULL, 0, 0);
}
break;
}
case XPT_EN_LUN: /* Enable LUN as a target */
case XPT_TARGET_IO: /* Execute target I/O request */
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/
case XPT_ABORT: /* Abort the specified CCB */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_SET_TRAN_SETTINGS:
{
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
xpt_done(ccb);
break;
}
case XPT_GET_TRAN_SETTINGS:
/* Get default/user set transfer settings for the target */
{
struct ccb_trans_settings *cts;
u_int target_mask;
cts = &ccb->cts;
target_mask = 0x01 << ccb->ccb_h.target_id;
if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) {
cts->flags = 0;
if ((ahb->disc_permitted & target_mask) != 0)
cts->flags |= CCB_TRANS_DISC_ENB;
if ((ahb->tags_permitted & target_mask) != 0)
cts->flags |= CCB_TRANS_TAG_ENB;
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
cts->sync_period = 25; /* 10MHz */
if (cts->sync_period != 0)
cts->sync_offset = 15;
cts->valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID
| CCB_TRANS_BUS_WIDTH_VALID
| CCB_TRANS_DISC_VALID
| CCB_TRANS_TQ_VALID;
ccb->ccb_h.status = CAM_REQ_CMP;
} else {
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
}
xpt_done(ccb);
break;
}
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
{
int i;
int s;
s = splcam();
ahb->immed_cmd = IMMED_RESET;
ahbqueuembox(ahb, IMMED_RESET, ATTN_IMMED|ccb->ccb_h.target_id);
/* Poll for interrupt completion */
for (i = 1000; ahb->immed_cmd != 0 && i != 0; i--) {
DELAY(1000);
ahbintr(cam_sim_softc(sim));
}
splx(s);
break;
}
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
u_int32_t size_mb;
u_int32_t secs_per_cylinder;
ccg = &ccb->ccg;
size_mb = ccg->volume_size
/ ((1024L * 1024L) / ccg->block_size);
if (size_mb > 1024 && (ahb->extended_trans != 0)) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
{
int i;
ahb->immed_cmd = IMMED_RESET;
ahbqueuembox(ahb, IMMED_RESET, ATTN_IMMED|ahb->scsi_id);
/* Poll for interrupt completion */
for (i = 1000; ahb->immed_cmd != 0 && i != 0; i--)
DELAY(1000);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = 7;
cpi->max_lun = 7;
cpi->initiator_id = ahb->scsi_id;
cpi->bus_id = cam_sim_bus(sim);
Add a number of interrelated CAM feature enhancements and bug fixes. NOTE: These changes will require recompilation of any userland applications, like cdrecord, xmcd, etc., that use the CAM passthrough interface. A make world is recommended. camcontrol.[c8]: - We now support two new commands, "tags" and "negotiate". - The tags commands allows users to view the number of tagged openings for a device as well as a number of other related parameters, and it allows users to set tagged openings for a device. - The negotiate command allows users to enable and disable disconnection and tagged queueing, set sync rates, offsets and bus width. Note that not all of those features are available for all controllers. Only the adv, ahc, and ncr drivers fully support all of the features at this point. Some cards do not allow the setting of sync rates, offsets and the like, and some of the drivers don't have any facilities to do so. Some drivers, like the adw driver, only support enabling or disabling sync negotiation, but do not support setting sync rates. - new description in the camcontrol man page of how to format a disk - cleanup of the camcontrol inquiry command - add support in the 'devlist' command for skipping unconfigured devices if -v was not specified on the command line. - make use of the new base_transfer_speed in the path inquiry CCB. - fix CCB bzero cases cam_xpt.c, cam_sim.[ch], cam_ccb.h: - new flags on many CCB function codes to designate whether they're non-immediate, use a user-supplied CCB, and can only be passed from userland programs via the xpt device. Use these flags in the transport layer and pass driver to categorize CCBs. - new flag in the transport layer device matching code for device nodes that indicates whether a device is unconfigured - bump the CAM version from 0x10 to 0x11 - Change the CAM ioctls to use the version as their group code, so we can force users to recompile code even when the CCB size doesn't change. - add + fill in a new value in the path inquiry CCB, base_transfer_speed. Remove a corresponding field from the cam_sim structure, and add code to every SIM to set this field to the proper value. - Fix the set transfer settings code in the transport layer. scsi_cd.c: - make some variables volatile instead of just casting them in various places - fix a race condition in the changer code - attach unless we get a "logical unit not supported" error. This should fix all of the cases where people have devices that return weird errors when they don't have media in the drive. scsi_da.c: - attach unless we get a "logical unit not supported" error scsi_pass.c: - for immediate CCBs, just malloc a CCB to send the user request in. This gets rid of the 'held' count problem in camcontrol tags. scsi_pass.h: - change the CAM ioctls to use the CAM version as their group code. adv driver: - Allow changing the sync rate and offset separately. adw driver - Allow changing the sync rate and offset separately. aha driver: - Don't return CAM_REQ_CMP for SET_TRAN_SETTINGS CCBs. ahc driver: - Allow setting offset and sync rate separately bt driver: - Don't return CAM_REQ_CMP for SET_TRAN_SETTINGS CCBs. NCR driver: - Fix the ultra/ultra 2 negotiation bug - allow setting both the sync rate and offset separately Other HBA drivers: - Put code in to set the base_transfer_speed field for XPT_GET_TRAN_SETTINGS CCBs. Reviewed by: gibbs, mjacob (isp), imp (aha)
1999-05-06 20:16:39 +00:00
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Adaptec", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
#if 0
/* Need these??? */
case XPT_IMMED_NOTIFY: /* Notify Host Target driver of event */
case XPT_NOTIFY_ACK: /* Acknowledgement of event */
#endif
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
static void
ahbpoll(struct cam_sim *sim)
{
ahbintr(cam_sim_softc(sim));
}
1999-04-11 03:06:07 +00:00
static void
ahbtimeout(void *arg)
{
struct ecb *ecb;
union ccb *ccb;
struct ahb_softc *ahb;
int s;
ecb = (struct ecb *)arg;
ccb = ecb->ccb;
ahb = (struct ahb_softc *)ccb->ccb_h.ccb_ahb_ptr;
xpt_print_path(ccb->ccb_h.path);
printf("ECB %p - timed out\n", (void *)ecb);
s = splcam();
if ((ecb->state & ECB_ACTIVE) == 0) {
xpt_print_path(ccb->ccb_h.path);
printf("ECB %p - timed out ECB already completed\n",
(void *)ecb);
splx(s);
return;
}
/*
* In order to simplify the recovery process, we ask the XPT
* layer to halt the queue of new transactions and we traverse
* the list of pending CCBs and remove their timeouts. This
* means that the driver attempts to clear only one error
* condition at a time. In general, timeouts that occur
* close together are related anyway, so there is no benefit
* in attempting to handle errors in parrallel. Timeouts will
* be reinstated when the recovery process ends.
*/
if ((ecb->state & ECB_DEVICE_RESET) == 0) {
struct ccb_hdr *ccb_h;
if ((ecb->state & ECB_RELEASE_SIMQ) == 0) {
xpt_freeze_simq(ahb->sim, /*count*/1);
ecb->state |= ECB_RELEASE_SIMQ;
}
ccb_h = LIST_FIRST(&ahb->pending_ccbs);
while (ccb_h != NULL) {
struct ecb *pending_ecb;
pending_ecb = (struct ecb *)ccb_h->ccb_ecb_ptr;
untimeout(ahbtimeout, pending_ecb, ccb_h->timeout_ch);
ccb_h = LIST_NEXT(ccb_h, sim_links.le);
}
/* Store for our interrupt handler */
ahb->immed_ecb = ecb;
/*
* Send a Bus Device Reset message:
* The target that is holding up the bus may not
* be the same as the one that triggered this timeout
* (different commands have different timeout lengths),
* but we have no way of determining this from our
* timeout handler. Our strategy here is to queue a
* BDR message to the target of the timed out command.
* If this fails, we'll get another timeout 2 seconds
* later which will attempt a bus reset.
*/
xpt_print_path(ccb->ccb_h.path);
1998-09-16 03:27:12 +00:00
printf("Queuing BDR\n");
ecb->state |= ECB_DEVICE_RESET;
ccb->ccb_h.timeout_ch =
timeout(ahbtimeout, (caddr_t)ecb, 2 * hz);
ahb->immed_cmd = IMMED_RESET;
ahbqueuembox(ahb, IMMED_RESET, ATTN_IMMED|ccb->ccb_h.target_id);
} else if ((ecb->state & ECB_SCSIBUS_RESET) != 0) {
/*
* Try a SCSI bus reset. We do this only if we
* have already attempted to clear the condition with a BDR.
*/
xpt_print_path(ccb->ccb_h.path);
1998-09-16 03:27:12 +00:00
printf("Attempting SCSI Bus reset\n");
ecb->state |= ECB_SCSIBUS_RESET;
ccb->ccb_h.timeout_ch =
timeout(ahbtimeout, (caddr_t)ecb, 2 * hz);
ahb->immed_cmd = IMMED_RESET;
ahbqueuembox(ahb, IMMED_RESET, ATTN_IMMED|ahb->scsi_id);
} else {
/* Bring out the hammer... */
ahbreset(ahb);
/* Simulate the reset complete interrupt */
ahbhandleimmed(ahb, 0, ahb->scsi_id|INTSTAT_IMMED_OK);
}
splx(s);
}
static device_method_t ahb_eisa_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ahbprobe),
DEVMETHOD(device_attach, ahbattach),
{ 0, 0 }
};
static driver_t ahb_eisa_driver = {
"ahb",
ahb_eisa_methods,
1, /* unused */
};
static devclass_t ahb_devclass;
DRIVER_MODULE(ahb, eisa, ahb_eisa_driver, ahb_devclass, 0, 0);