2036 lines
56 KiB
C
Raw Normal View History

/*
* ng_ppp.c
*
* Copyright (c) 1996-2000 Whistle Communications, Inc.
* All rights reserved.
*
* Subject to the following obligations and disclaimer of warranty, use and
* redistribution of this software, in source or object code forms, with or
* without modifications are expressly permitted by Whistle Communications;
* provided, however, that:
* 1. Any and all reproductions of the source or object code must include the
* copyright notice above and the following disclaimer of warranties; and
* 2. No rights are granted, in any manner or form, to use Whistle
* Communications, Inc. trademarks, including the mark "WHISTLE
* COMMUNICATIONS" on advertising, endorsements, or otherwise except as
* such appears in the above copyright notice or in the software.
*
* THIS SOFTWARE IS BEING PROVIDED BY WHISTLE COMMUNICATIONS "AS IS", AND
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, WHISTLE COMMUNICATIONS MAKES NO
* REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SOFTWARE,
* INCLUDING WITHOUT LIMITATION, ANY AND ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
* WHISTLE COMMUNICATIONS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
* REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THIS
* SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE.
* IN NO EVENT SHALL WHISTLE COMMUNICATIONS BE LIABLE FOR ANY DAMAGES
* RESULTING FROM OR ARISING OUT OF ANY USE OF THIS SOFTWARE, INCLUDING
* WITHOUT LIMITATION, ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* PUNITIVE, OR CONSEQUENTIAL DAMAGES, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES, LOSS OF USE, DATA OR PROFITS, HOWEVER CAUSED AND UNDER ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF WHISTLE COMMUNICATIONS IS ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* Author: Archie Cobbs <archie@freebsd.org>
*
* $FreeBSD$
* $Whistle: ng_ppp.c,v 1.24 1999/11/01 09:24:52 julian Exp $
*/
/*
* PPP node type.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/errno.h>
#include <sys/ctype.h>
#include <machine/limits.h>
#include <netgraph/ng_message.h>
#include <netgraph/netgraph.h>
#include <netgraph/ng_parse.h>
#include <netgraph/ng_ppp.h>
#include <netgraph/ng_vjc.h>
#define PROT_VALID(p) (((p) & 0x0101) == 0x0001)
#define PROT_COMPRESSABLE(p) (((p) & 0xff00) == 0x0000)
/* Some PPP protocol numbers we're interested in */
#define PROT_APPLETALK 0x0029
#define PROT_COMPD 0x00fd
#define PROT_CRYPTD 0x0053
#define PROT_IP 0x0021
#define PROT_IPV6 0x0057
#define PROT_IPX 0x002b
#define PROT_LCP 0xc021
#define PROT_MP 0x003d
#define PROT_VJCOMP 0x002d
#define PROT_VJUNCOMP 0x002f
/* Multilink PPP definitions */
#define MP_MIN_MRRU 1500 /* per RFC 1990 */
#define MP_INITIAL_SEQ 0 /* per RFC 1990 */
#define MP_MIN_LINK_MRU 32
#define MP_SHORT_SEQ_MASK 0x00000fff /* short seq # mask */
#define MP_SHORT_SEQ_HIBIT 0x00000800 /* short seq # high bit */
#define MP_SHORT_FIRST_FLAG 0x00008000 /* first fragment in frame */
#define MP_SHORT_LAST_FLAG 0x00004000 /* last fragment in frame */
#define MP_LONG_SEQ_MASK 0x00ffffff /* long seq # mask */
#define MP_LONG_SEQ_HIBIT 0x00800000 /* long seq # high bit */
#define MP_LONG_FIRST_FLAG 0x80000000 /* first fragment in frame */
#define MP_LONG_LAST_FLAG 0x40000000 /* last fragment in frame */
#define MP_NOSEQ 0x7fffffff /* impossible sequence number */
/* Sign extension of MP sequence numbers */
#define MP_SHORT_EXTEND(s) (((s) & MP_SHORT_SEQ_HIBIT) ? \
((s) | ~MP_SHORT_SEQ_MASK) \
: ((s) & MP_SHORT_SEQ_MASK))
#define MP_LONG_EXTEND(s) (((s) & MP_LONG_SEQ_HIBIT) ? \
((s) | ~MP_LONG_SEQ_MASK) \
: ((s) & MP_LONG_SEQ_MASK))
/* Comparision of MP sequence numbers. Note: all sequence numbers
except priv->xseq are stored with the sign bit extended. */
#define MP_SHORT_SEQ_DIFF(x,y) MP_SHORT_EXTEND((x) - (y))
#define MP_LONG_SEQ_DIFF(x,y) MP_LONG_EXTEND((x) - (y))
#define MP_RECV_SEQ_DIFF(priv,x,y) \
((priv)->conf.recvShortSeq ? \
MP_SHORT_SEQ_DIFF((x), (y)) : \
MP_LONG_SEQ_DIFF((x), (y)))
/* Increment receive sequence number */
#define MP_NEXT_RECV_SEQ(priv,seq) \
(((seq) + 1) & ((priv)->conf.recvShortSeq ? \
MP_SHORT_SEQ_MASK : MP_LONG_SEQ_MASK))
/* Don't fragment transmitted packets smaller than this */
#define MP_MIN_FRAG_LEN 6
/* Maximum fragment reasssembly queue length */
#define MP_MAX_QUEUE_LEN 128
/* Fragment queue scanner period */
#define MP_FRAGTIMER_INTERVAL (hz/2)
/* We store incoming fragments this way */
struct ng_ppp_frag {
int seq; /* fragment seq# */
u_char first; /* First in packet? */
u_char last; /* Last in packet? */
struct timeval timestamp; /* time of reception */
struct mbuf *data; /* Fragment data */
meta_p meta; /* Fragment meta */
TAILQ_ENTRY(ng_ppp_frag) f_qent; /* Fragment queue */
};
/* We use integer indicies to refer to the non-link hooks */
static const char *const ng_ppp_hook_names[] = {
NG_PPP_HOOK_ATALK,
#define HOOK_INDEX_ATALK 0
NG_PPP_HOOK_BYPASS,
#define HOOK_INDEX_BYPASS 1
NG_PPP_HOOK_COMPRESS,
#define HOOK_INDEX_COMPRESS 2
NG_PPP_HOOK_ENCRYPT,
#define HOOK_INDEX_ENCRYPT 3
NG_PPP_HOOK_DECOMPRESS,
#define HOOK_INDEX_DECOMPRESS 4
NG_PPP_HOOK_DECRYPT,
#define HOOK_INDEX_DECRYPT 5
NG_PPP_HOOK_INET,
#define HOOK_INDEX_INET 6
NG_PPP_HOOK_IPX,
#define HOOK_INDEX_IPX 7
NG_PPP_HOOK_VJC_COMP,
#define HOOK_INDEX_VJC_COMP 8
NG_PPP_HOOK_VJC_IP,
#define HOOK_INDEX_VJC_IP 9
NG_PPP_HOOK_VJC_UNCOMP,
#define HOOK_INDEX_VJC_UNCOMP 10
NG_PPP_HOOK_VJC_VJIP,
#define HOOK_INDEX_VJC_VJIP 11
NG_PPP_HOOK_IPV6,
#define HOOK_INDEX_IPV6 12
NULL
#define HOOK_INDEX_MAX 13
};
/* We store index numbers in the hook private pointer. The HOOK_INDEX()
for a hook is either the index (above) for normal hooks, or the ones
complement of the link number for link hooks. */
#define HOOK_INDEX(hook) (*((int16_t *) &(hook)->private))
/* Per-link private information */
struct ng_ppp_link {
struct ng_ppp_link_conf conf; /* link configuration */
hook_p hook; /* connection to link data */
int32_t seq; /* highest rec'd seq# - MSEQ */
struct timeval lastWrite; /* time of last write */
int bytesInQueue; /* bytes in the output queue */
struct ng_ppp_link_stat stats; /* Link stats */
};
/* Total per-node private information */
struct ng_ppp_private {
struct ng_ppp_bund_conf conf; /* bundle config */
struct ng_ppp_link_stat bundleStats; /* bundle stats */
struct ng_ppp_link links[NG_PPP_MAX_LINKS];/* per-link info */
int32_t xseq; /* next out MP seq # */
int32_t mseq; /* min links[i].seq */
u_char vjCompHooked; /* VJ comp hooked up? */
u_char allLinksEqual; /* all xmit the same? */
u_char timerActive; /* frag timer active? */
u_int numActiveLinks; /* how many links up */
int activeLinks[NG_PPP_MAX_LINKS]; /* indicies */
u_int lastLink; /* for round robin */
hook_p hooks[HOOK_INDEX_MAX]; /* non-link hooks */
TAILQ_HEAD(ng_ppp_fraglist, ng_ppp_frag) /* fragment queue */
frags;
int qlen; /* fraq queue length */
struct callout_handle fragTimer; /* fraq queue check */
};
typedef struct ng_ppp_private *priv_p;
/* Netgraph node methods */
static ng_constructor_t ng_ppp_constructor;
static ng_rcvmsg_t ng_ppp_rcvmsg;
static ng_shutdown_t ng_ppp_rmnode;
static ng_newhook_t ng_ppp_newhook;
static ng_rcvdata_t ng_ppp_rcvdata;
static ng_disconnect_t ng_ppp_disconnect;
/* Helper functions */
static int ng_ppp_input(node_p node, int bypass,
int linkNum, struct mbuf *m, meta_p meta);
static int ng_ppp_output(node_p node, int bypass, int proto,
int linkNum, struct mbuf *m, meta_p meta);
static int ng_ppp_mp_input(node_p node, int linkNum,
struct mbuf *m, meta_p meta);
static int ng_ppp_check_packet(node_p node);
static void ng_ppp_get_packet(node_p node, struct mbuf **mp, meta_p *metap);
static int ng_ppp_frag_process(node_p node);
static int ng_ppp_frag_trim(node_p node);
static void ng_ppp_frag_timeout(void *arg);
static void ng_ppp_frag_checkstale(node_p node);
static void ng_ppp_frag_reset(node_p node);
static int ng_ppp_mp_output(node_p node, struct mbuf *m, meta_p meta);
static void ng_ppp_mp_strategy(node_p node, int len, int *distrib);
static int ng_ppp_intcmp(const void *v1, const void *v2);
static struct mbuf *ng_ppp_addproto(struct mbuf *m, int proto, int compOK);
static struct mbuf *ng_ppp_prepend(struct mbuf *m, const void *buf, int len);
static int ng_ppp_config_valid(node_p node,
const struct ng_ppp_node_conf *newConf);
static void ng_ppp_update(node_p node, int newConf);
static void ng_ppp_start_frag_timer(node_p node);
static void ng_ppp_stop_frag_timer(node_p node);
/* Parse type for struct ng_ppp_mp_state_type */
static const struct ng_parse_fixedarray_info ng_ppp_rseq_array_info = {
&ng_parse_hint32_type,
NG_PPP_MAX_LINKS
};
static const struct ng_parse_type ng_ppp_rseq_array_type = {
&ng_parse_fixedarray_type,
&ng_ppp_rseq_array_info,
};
static const struct ng_parse_struct_info ng_ppp_mp_state_type_info
= NG_PPP_MP_STATE_TYPE_INFO(&ng_ppp_rseq_array_type);
static const struct ng_parse_type ng_ppp_mp_state_type = {
&ng_parse_struct_type,
&ng_ppp_mp_state_type_info,
};
/* Parse type for struct ng_ppp_link_conf */
static const struct ng_parse_struct_info
ng_ppp_link_type_info = NG_PPP_LINK_TYPE_INFO;
static const struct ng_parse_type ng_ppp_link_type = {
&ng_parse_struct_type,
&ng_ppp_link_type_info,
};
/* Parse type for struct ng_ppp_bund_conf */
static const struct ng_parse_struct_info
ng_ppp_bund_type_info = NG_PPP_BUND_TYPE_INFO;
static const struct ng_parse_type ng_ppp_bund_type = {
&ng_parse_struct_type,
&ng_ppp_bund_type_info,
};
/* Parse type for struct ng_ppp_node_conf */
static const struct ng_parse_fixedarray_info ng_ppp_array_info = {
&ng_ppp_link_type,
NG_PPP_MAX_LINKS
};
static const struct ng_parse_type ng_ppp_link_array_type = {
&ng_parse_fixedarray_type,
&ng_ppp_array_info,
};
static const struct ng_parse_struct_info ng_ppp_conf_type_info
= NG_PPP_CONFIG_TYPE_INFO(&ng_ppp_bund_type, &ng_ppp_link_array_type);
static const struct ng_parse_type ng_ppp_conf_type = {
&ng_parse_struct_type,
&ng_ppp_conf_type_info
};
/* Parse type for struct ng_ppp_link_stat */
static const struct ng_parse_struct_info
ng_ppp_stats_type_info = NG_PPP_STATS_TYPE_INFO;
static const struct ng_parse_type ng_ppp_stats_type = {
&ng_parse_struct_type,
&ng_ppp_stats_type_info
};
/* List of commands and how to convert arguments to/from ASCII */
static const struct ng_cmdlist ng_ppp_cmds[] = {
{
NGM_PPP_COOKIE,
NGM_PPP_SET_CONFIG,
"setconfig",
&ng_ppp_conf_type,
NULL
},
{
NGM_PPP_COOKIE,
NGM_PPP_GET_CONFIG,
"getconfig",
NULL,
&ng_ppp_conf_type
},
{
NGM_PPP_COOKIE,
NGM_PPP_GET_MP_STATE,
"getmpstate",
NULL,
&ng_ppp_mp_state_type
},
{
NGM_PPP_COOKIE,
NGM_PPP_GET_LINK_STATS,
"getstats",
&ng_parse_int16_type,
&ng_ppp_stats_type
},
{
NGM_PPP_COOKIE,
NGM_PPP_CLR_LINK_STATS,
"clrstats",
&ng_parse_int16_type,
NULL
},
{
NGM_PPP_COOKIE,
NGM_PPP_GETCLR_LINK_STATS,
"getclrstats",
&ng_parse_int16_type,
&ng_ppp_stats_type
},
{ 0 }
};
/* Node type descriptor */
static struct ng_type ng_ppp_typestruct = {
NG_VERSION,
NG_PPP_NODE_TYPE,
NULL,
ng_ppp_constructor,
ng_ppp_rcvmsg,
ng_ppp_rmnode,
ng_ppp_newhook,
NULL,
NULL,
ng_ppp_rcvdata,
ng_ppp_rcvdata,
ng_ppp_disconnect,
ng_ppp_cmds
};
NETGRAPH_INIT(ppp, &ng_ppp_typestruct);
static int *compareLatencies; /* hack for ng_ppp_intcmp() */
/* Address and control field header */
static const u_char ng_ppp_acf[2] = { 0xff, 0x03 };
/* Maximum time we'll let a complete incoming packet sit in the queue */
static const struct timeval ng_ppp_max_staleness = { 2, 0 }; /* 2 seconds */
#define ERROUT(x) do { error = (x); goto done; } while (0)
/************************************************************************
NETGRAPH NODE STUFF
************************************************************************/
/*
* Node type constructor
*/
static int
ng_ppp_constructor(node_p *nodep)
{
priv_p priv;
int i, error;
/* Allocate private structure */
MALLOC(priv, priv_p, sizeof(*priv), M_NETGRAPH, M_NOWAIT | M_ZERO);
if (priv == NULL)
return (ENOMEM);
/* Call generic node constructor */
if ((error = ng_make_node_common(&ng_ppp_typestruct, nodep))) {
FREE(priv, M_NETGRAPH);
return (error);
}
(*nodep)->private = priv;
/* Initialize state */
TAILQ_INIT(&priv->frags);
for (i = 0; i < NG_PPP_MAX_LINKS; i++)
priv->links[i].seq = MP_NOSEQ;
callout_handle_init(&priv->fragTimer);
/* Done */
return (0);
}
/*
* Give our OK for a hook to be added
*/
static int
ng_ppp_newhook(node_p node, hook_p hook, const char *name)
{
const priv_p priv = node->private;
int linkNum = -1;
hook_p *hookPtr = NULL;
int hookIndex = -1;
/* Figure out which hook it is */
if (strncmp(name, NG_PPP_HOOK_LINK_PREFIX, /* a link hook? */
strlen(NG_PPP_HOOK_LINK_PREFIX)) == 0) {
const char *cp;
char *eptr;
cp = name + strlen(NG_PPP_HOOK_LINK_PREFIX);
if (!isdigit(*cp) || (cp[0] == '0' && cp[1] != '\0'))
return (EINVAL);
linkNum = (int)strtoul(cp, &eptr, 10);
if (*eptr != '\0' || linkNum < 0 || linkNum >= NG_PPP_MAX_LINKS)
return (EINVAL);
hookPtr = &priv->links[linkNum].hook;
hookIndex = ~linkNum;
} else { /* must be a non-link hook */
int i;
for (i = 0; ng_ppp_hook_names[i] != NULL; i++) {
if (strcmp(name, ng_ppp_hook_names[i]) == 0) {
hookPtr = &priv->hooks[i];
hookIndex = i;
break;
}
}
if (ng_ppp_hook_names[i] == NULL)
return (EINVAL); /* no such hook */
}
/* See if hook is already connected */
if (*hookPtr != NULL)
return (EISCONN);
/* Disallow more than one link unless multilink is enabled */
if (linkNum != -1 && priv->links[linkNum].conf.enableLink
&& !priv->conf.enableMultilink && priv->numActiveLinks >= 1)
return (ENODEV);
/* OK */
*hookPtr = hook;
HOOK_INDEX(hook) = hookIndex;
ng_ppp_update(node, 0);
return (0);
}
/*
* Receive a control message
*/
static int
ng_ppp_rcvmsg(node_p node, struct ng_mesg *msg,
const char *raddr, struct ng_mesg **rptr, hook_p lasthook)
{
const priv_p priv = node->private;
struct ng_mesg *resp = NULL;
int error = 0;
switch (msg->header.typecookie) {
case NGM_PPP_COOKIE:
switch (msg->header.cmd) {
case NGM_PPP_SET_CONFIG:
{
struct ng_ppp_node_conf *const conf =
(struct ng_ppp_node_conf *)msg->data;
int i;
/* Check for invalid or illegal config */
if (msg->header.arglen != sizeof(*conf))
ERROUT(EINVAL);
if (!ng_ppp_config_valid(node, conf))
ERROUT(EINVAL);
/* Copy config */
priv->conf = conf->bund;
for (i = 0; i < NG_PPP_MAX_LINKS; i++)
priv->links[i].conf = conf->links[i];
ng_ppp_update(node, 1);
break;
}
case NGM_PPP_GET_CONFIG:
{
struct ng_ppp_node_conf *conf;
int i;
NG_MKRESPONSE(resp, msg, sizeof(*conf), M_NOWAIT);
if (resp == NULL)
ERROUT(ENOMEM);
conf = (struct ng_ppp_node_conf *)resp->data;
conf->bund = priv->conf;
for (i = 0; i < NG_PPP_MAX_LINKS; i++)
conf->links[i] = priv->links[i].conf;
break;
}
case NGM_PPP_GET_MP_STATE:
{
struct ng_ppp_mp_state *info;
int i;
NG_MKRESPONSE(resp, msg, sizeof(*info), M_NOWAIT);
if (resp == NULL)
ERROUT(ENOMEM);
info = (struct ng_ppp_mp_state *)resp->data;
bzero(info, sizeof(*info));
for (i = 0; i < NG_PPP_MAX_LINKS; i++) {
if (priv->links[i].seq != MP_NOSEQ)
info->rseq[i] = priv->links[i].seq;
}
info->mseq = priv->mseq;
info->xseq = priv->xseq;
break;
}
case NGM_PPP_GET_LINK_STATS:
case NGM_PPP_CLR_LINK_STATS:
case NGM_PPP_GETCLR_LINK_STATS:
{
struct ng_ppp_link_stat *stats;
u_int16_t linkNum;
if (msg->header.arglen != sizeof(u_int16_t))
ERROUT(EINVAL);
linkNum = *((u_int16_t *) msg->data);
if (linkNum >= NG_PPP_MAX_LINKS
&& linkNum != NG_PPP_BUNDLE_LINKNUM)
ERROUT(EINVAL);
stats = (linkNum == NG_PPP_BUNDLE_LINKNUM) ?
&priv->bundleStats : &priv->links[linkNum].stats;
if (msg->header.cmd != NGM_PPP_CLR_LINK_STATS) {
NG_MKRESPONSE(resp, msg,
sizeof(struct ng_ppp_link_stat), M_NOWAIT);
if (resp == NULL)
ERROUT(ENOMEM);
bcopy(stats, resp->data, sizeof(*stats));
}
if (msg->header.cmd != NGM_PPP_GET_LINK_STATS)
bzero(stats, sizeof(*stats));
break;
}
default:
error = EINVAL;
break;
}
break;
case NGM_VJC_COOKIE:
{
char path[NG_PATHLEN + 1];
node_p origNode;
if ((error = ng_path2node(node,
raddr, &origNode, NULL, NULL)) != 0)
ERROUT(error);
snprintf(path, sizeof(path), "[%lx]:%s",
(long)node, NG_PPP_HOOK_VJC_IP);
return ng_send_msg(origNode, msg, path, rptr);
}
default:
error = EINVAL;
break;
}
if (rptr)
*rptr = resp;
else if (resp)
FREE(resp, M_NETGRAPH);
done:
FREE(msg, M_NETGRAPH);
return (error);
}
/*
* Receive data on a hook
*/
static int
ng_ppp_rcvdata(hook_p hook, struct mbuf *m, meta_p meta,
struct mbuf **ret_m, meta_p *ret_meta)
{
const node_p node = hook->node;
const priv_p priv = node->private;
const int index = HOOK_INDEX(hook);
u_int16_t linkNum = NG_PPP_BUNDLE_LINKNUM;
hook_p outHook = NULL;
int proto = 0, error;
/* Did it come from a link hook? */
if (index < 0) {
struct ng_ppp_link *link;
/* Convert index into a link number */
linkNum = (u_int16_t)~index;
KASSERT(linkNum < NG_PPP_MAX_LINKS,
("%s: bogus index 0x%x", __FUNCTION__, index));
link = &priv->links[linkNum];
/* Stats */
link->stats.recvFrames++;
link->stats.recvOctets += m->m_pkthdr.len;
/* Strip address and control fields, if present */
if (m->m_pkthdr.len >= 2) {
if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) {
NG_FREE_DATA(m, meta);
return (ENOBUFS);
}
if (bcmp(mtod(m, u_char *), &ng_ppp_acf, 2) == 0)
m_adj(m, 2);
}
/* Dispatch incoming frame (if not enabled, to bypass) */
return ng_ppp_input(node,
!link->conf.enableLink, linkNum, m, meta);
}
/* Get protocol & check if data allowed from this hook */
switch (index) {
/* Outgoing data */
case HOOK_INDEX_ATALK:
if (!priv->conf.enableAtalk) {
NG_FREE_DATA(m, meta);
return (ENXIO);
}
proto = PROT_APPLETALK;
break;
case HOOK_INDEX_IPX:
if (!priv->conf.enableIPX) {
NG_FREE_DATA(m, meta);
return (ENXIO);
}
proto = PROT_IPX;
break;
case HOOK_INDEX_IPV6:
if (!priv->conf.enableIPv6) {
NG_FREE_DATA(m, meta);
return (ENXIO);
}
proto = PROT_IPV6;
break;
case HOOK_INDEX_INET:
case HOOK_INDEX_VJC_VJIP:
if (!priv->conf.enableIP) {
NG_FREE_DATA(m, meta);
return (ENXIO);
}
proto = PROT_IP;
break;
case HOOK_INDEX_VJC_COMP:
if (!priv->conf.enableVJCompression) {
NG_FREE_DATA(m, meta);
return (ENXIO);
}
proto = PROT_VJCOMP;
break;
case HOOK_INDEX_VJC_UNCOMP:
if (!priv->conf.enableVJCompression) {
NG_FREE_DATA(m, meta);
return (ENXIO);
}
proto = PROT_VJUNCOMP;
break;
case HOOK_INDEX_COMPRESS:
if (!priv->conf.enableCompression) {
NG_FREE_DATA(m, meta);
return (ENXIO);
}
proto = PROT_COMPD;
break;
case HOOK_INDEX_ENCRYPT:
if (!priv->conf.enableEncryption) {
NG_FREE_DATA(m, meta);
return (ENXIO);
}
proto = PROT_CRYPTD;
break;
case HOOK_INDEX_BYPASS:
if (m->m_pkthdr.len < 4) {
2000-01-05 20:36:07 +00:00
NG_FREE_DATA(m, meta);
return (EINVAL);
}
if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) {
NG_FREE_META(meta);
return (ENOBUFS);
}
linkNum = ntohs(mtod(m, u_int16_t *)[0]);
proto = ntohs(mtod(m, u_int16_t *)[1]);
m_adj(m, 4);
if (linkNum >= NG_PPP_MAX_LINKS
2000-01-05 20:36:07 +00:00
&& linkNum != NG_PPP_BUNDLE_LINKNUM) {
NG_FREE_DATA(m, meta);
return (EINVAL);
2000-01-05 20:36:07 +00:00
}
break;
/* Incoming data */
case HOOK_INDEX_VJC_IP:
if (!priv->conf.enableIP || !priv->conf.enableVJDecompression) {
NG_FREE_DATA(m, meta);
return (ENXIO);
}
break;
case HOOK_INDEX_DECOMPRESS:
if (!priv->conf.enableDecompression) {
NG_FREE_DATA(m, meta);
return (ENXIO);
}
break;
case HOOK_INDEX_DECRYPT:
if (!priv->conf.enableDecryption) {
NG_FREE_DATA(m, meta);
return (ENXIO);
}
break;
default:
panic("%s: bogus index 0x%x", __FUNCTION__, index);
}
/* Now figure out what to do with the frame */
switch (index) {
/* Outgoing data */
case HOOK_INDEX_INET:
if (priv->conf.enableVJCompression && priv->vjCompHooked) {
outHook = priv->hooks[HOOK_INDEX_VJC_IP];
break;
}
/* FALLTHROUGH */
case HOOK_INDEX_ATALK:
case HOOK_INDEX_IPV6:
case HOOK_INDEX_IPX:
case HOOK_INDEX_VJC_COMP:
case HOOK_INDEX_VJC_UNCOMP:
case HOOK_INDEX_VJC_VJIP:
if (priv->conf.enableCompression
&& priv->hooks[HOOK_INDEX_COMPRESS] != NULL) {
if ((m = ng_ppp_addproto(m, proto, 1)) == NULL) {
NG_FREE_META(meta);
return (ENOBUFS);
}
outHook = priv->hooks[HOOK_INDEX_COMPRESS];
break;
}
/* FALLTHROUGH */
case HOOK_INDEX_COMPRESS:
if (priv->conf.enableEncryption
&& priv->hooks[HOOK_INDEX_ENCRYPT] != NULL) {
if ((m = ng_ppp_addproto(m, proto, 1)) == NULL) {
NG_FREE_META(meta);
return (ENOBUFS);
}
outHook = priv->hooks[HOOK_INDEX_ENCRYPT];
break;
}
/* FALLTHROUGH */
case HOOK_INDEX_ENCRYPT:
1999-11-10 23:56:57 +00:00
return ng_ppp_output(node, 0,
proto, NG_PPP_BUNDLE_LINKNUM, m, meta);
1999-11-10 23:56:57 +00:00
case HOOK_INDEX_BYPASS:
return ng_ppp_output(node, 1, proto, linkNum, m, meta);
/* Incoming data */
case HOOK_INDEX_DECRYPT:
case HOOK_INDEX_DECOMPRESS:
return ng_ppp_input(node, 0, NG_PPP_BUNDLE_LINKNUM, m, meta);
case HOOK_INDEX_VJC_IP:
outHook = priv->hooks[HOOK_INDEX_INET];
break;
}
/* Send packet out hook */
NG_SEND_DATA_RET(error, outHook, m, meta);
if (m != NULL || meta != NULL)
return ng_ppp_rcvdata(outHook, m, meta, NULL, NULL);
return (error);
}
/*
* Destroy node
*/
static int
ng_ppp_rmnode(node_p node)
{
const priv_p priv = node->private;
/* Stop fragment queue timer */
ng_ppp_stop_frag_timer(node);
/* Take down netgraph node */
node->flags |= NG_INVALID;
ng_cutlinks(node);
ng_unname(node);
ng_ppp_frag_reset(node);
bzero(priv, sizeof(*priv));
FREE(priv, M_NETGRAPH);
node->private = NULL;
ng_unref(node); /* let the node escape */
return (0);
}
/*
* Hook disconnection
*/
static int
ng_ppp_disconnect(hook_p hook)
{
const node_p node = hook->node;
const priv_p priv = node->private;
const int index = HOOK_INDEX(hook);
/* Zero out hook pointer */
if (index < 0)
priv->links[~index].hook = NULL;
else
priv->hooks[index] = NULL;
/* Update derived info (or go away if no hooks left) */
if (node->numhooks > 0)
ng_ppp_update(node, 0);
else
ng_rmnode(node);
return (0);
}
/************************************************************************
HELPER STUFF
************************************************************************/
/*
* Handle an incoming frame. Extract the PPP protocol number
* and dispatch accordingly.
*/
static int
ng_ppp_input(node_p node, int bypass, int linkNum, struct mbuf *m, meta_p meta)
{
const priv_p priv = node->private;
hook_p outHook = NULL;
int proto, error;
/* Extract protocol number */
for (proto = 0; !PROT_VALID(proto) && m->m_pkthdr.len > 0; ) {
if (m->m_len < 1 && (m = m_pullup(m, 1)) == NULL) {
NG_FREE_META(meta);
return (ENOBUFS);
}
proto = (proto << 8) + *mtod(m, u_char *);
m_adj(m, 1);
}
if (!PROT_VALID(proto)) {
if (linkNum == NG_PPP_BUNDLE_LINKNUM)
priv->bundleStats.badProtos++;
else
priv->links[linkNum].stats.badProtos++;
NG_FREE_DATA(m, meta);
return (EINVAL);
}
/* Bypass frame? */
if (bypass)
goto bypass;
/* Check protocol */
switch (proto) {
case PROT_COMPD:
if (priv->conf.enableDecompression)
outHook = priv->hooks[HOOK_INDEX_DECOMPRESS];
break;
case PROT_CRYPTD:
if (priv->conf.enableDecryption)
outHook = priv->hooks[HOOK_INDEX_DECRYPT];
break;
case PROT_VJCOMP:
if (priv->conf.enableVJDecompression && priv->vjCompHooked)
outHook = priv->hooks[HOOK_INDEX_VJC_COMP];
break;
case PROT_VJUNCOMP:
if (priv->conf.enableVJDecompression && priv->vjCompHooked)
outHook = priv->hooks[HOOK_INDEX_VJC_UNCOMP];
break;
case PROT_MP:
if (priv->conf.enableMultilink
&& linkNum != NG_PPP_BUNDLE_LINKNUM)
return ng_ppp_mp_input(node, linkNum, m, meta);
break;
case PROT_APPLETALK:
if (priv->conf.enableAtalk)
outHook = priv->hooks[HOOK_INDEX_ATALK];
break;
case PROT_IPX:
if (priv->conf.enableIPX)
outHook = priv->hooks[HOOK_INDEX_IPX];
break;
case PROT_IP:
if (priv->conf.enableIP)
outHook = priv->hooks[HOOK_INDEX_INET];
break;
case PROT_IPV6:
if (priv->conf.enableIPv6)
outHook = priv->hooks[HOOK_INDEX_IPV6];
break;
}
bypass:
2000-01-05 20:36:07 +00:00
/* For unknown/inactive protocols, forward out the bypass hook */
if (outHook == NULL) {
u_int16_t hdr[2];
hdr[0] = htons(linkNum);
hdr[1] = htons((u_int16_t)proto);
2000-01-05 20:36:07 +00:00
if ((m = ng_ppp_prepend(m, &hdr, 4)) == NULL) {
NG_FREE_META(meta);
return (ENOBUFS);
2000-01-05 20:36:07 +00:00
}
outHook = priv->hooks[HOOK_INDEX_BYPASS];
}
/* Forward frame */
NG_SEND_DATA(error, outHook, m, meta);
return (error);
}
/*
* Deliver a frame out a link, either a real one or NG_PPP_BUNDLE_LINKNUM
1999-11-10 23:56:57 +00:00
* If the link is not enabled then ENXIO is returned, unless "bypass" is != 0.
*/
static int
ng_ppp_output(node_p node, int bypass,
int proto, int linkNum, struct mbuf *m, meta_p meta)
{
const priv_p priv = node->private;
struct ng_ppp_link *link;
int len, error;
/* If not doing MP, map bundle virtual link to (the only) link */
if (linkNum == NG_PPP_BUNDLE_LINKNUM && !priv->conf.enableMultilink)
linkNum = priv->activeLinks[0];
/* Get link pointer (optimization) */
link = (linkNum != NG_PPP_BUNDLE_LINKNUM) ?
&priv->links[linkNum] : NULL;
/* Check link status (if real) */
1999-11-10 23:56:57 +00:00
if (linkNum != NG_PPP_BUNDLE_LINKNUM) {
if (!bypass && !link->conf.enableLink) {
2000-01-05 20:36:07 +00:00
NG_FREE_DATA(m, meta);
1999-11-10 23:56:57 +00:00
return (ENXIO);
2000-01-05 20:36:07 +00:00
}
if (link->hook == NULL) {
1999-11-10 23:56:57 +00:00
NG_FREE_DATA(m, meta);
return (ENETDOWN);
}
}
/* Prepend protocol number, possibly compressed */
if ((m = ng_ppp_addproto(m, proto,
linkNum == NG_PPP_BUNDLE_LINKNUM
|| link->conf.enableProtoComp)) == NULL) {
NG_FREE_META(meta);
return (ENOBUFS);
}
/* Special handling for the MP virtual link */
if (linkNum == NG_PPP_BUNDLE_LINKNUM)
return ng_ppp_mp_output(node, m, meta);
/* Prepend address and control field (unless compressed) */
if (proto == PROT_LCP || !link->conf.enableACFComp) {
if ((m = ng_ppp_prepend(m, &ng_ppp_acf, 2)) == NULL) {
NG_FREE_META(meta);
return (ENOBUFS);
}
}
/* Deliver frame */
len = m->m_pkthdr.len;
NG_SEND_DATA(error, link->hook, m, meta);
/* Update stats and 'bytes in queue' counter */
if (error == 0) {
link->stats.xmitFrames++;
link->stats.xmitOctets += len;
link->bytesInQueue += len;
getmicrouptime(&link->lastWrite);
}
return error;
}
/*
* Handle an incoming multi-link fragment
*
* The fragment reassembly algorithm is somewhat complex. This is mainly
* because we are required not to reorder the reconstructed packets, yet
* fragments are only guaranteed to arrive in order on a per-link basis.
* In other words, when we have a complete packet ready, but the previous
* packet is still incomplete, we have to decide between delivering the
* complete packet and throwing away the incomplete one, or waiting to
* see if the remainder of the incomplete one arrives, at which time we
* can deliver both packets, in order.
*
* This problem is exacerbated by "sequence number slew", which is when
* the sequence numbers coming in from different links are far apart from
* each other. In particular, certain unnamed equipment (*cough* Ascend)
* has been seen to generate sequence number slew of up to 10 on an ISDN
* 2B-channel MP link. There is nothing invalid about sequence number slew
* but it makes the reasssembly process have to work harder.
*
* However, the peer is required to transmit fragments in order on each
* link. That means if we define MSEQ as the minimum over all links of
* the highest sequence number received on that link, then we can always
* give up any hope of receiving a fragment with sequence number < MSEQ in
* the future (all of this using 'wraparound' sequence number space).
* Therefore we can always immediately throw away incomplete packets
* missing fragments with sequence numbers < MSEQ.
*
* Here is an overview of our algorithm:
*
* o Received fragments are inserted into a queue, for which we
* maintain these invariants between calls to this function:
*
* - Fragments are ordered in the queue by sequence number
* - If a complete packet is at the head of the queue, then
* the first fragment in the packet has seq# > MSEQ + 1
* (otherwise, we could deliver it immediately)
* - If any fragments have seq# < MSEQ, then they are necessarily
* part of a packet whose missing seq#'s are all > MSEQ (otherwise,
* we can throw them away because they'll never be completed)
* - The queue contains at most MP_MAX_QUEUE_LEN fragments
*
* o We have a periodic timer that checks the queue for the first
* complete packet that has been sitting in the queue "too long".
* When one is detected, all previous (incomplete) fragments are
* discarded, their missing fragments are declared lost and MSEQ
* is increased.
*
* o If we recieve a fragment with seq# < MSEQ, we throw it away
* because we've already delcared it lost.
*
* This assumes linkNum != NG_PPP_BUNDLE_LINKNUM.
*/
static int
ng_ppp_mp_input(node_p node, int linkNum, struct mbuf *m, meta_p meta)
{
const priv_p priv = node->private;
struct ng_ppp_link *const link = &priv->links[linkNum];
struct ng_ppp_frag frag0, *frag = &frag0;
struct ng_ppp_frag *qent;
int i, diff, inserted;
/* Stats */
priv->bundleStats.recvFrames++;
priv->bundleStats.recvOctets += m->m_pkthdr.len;
/* Extract fragment information from MP header */
if (priv->conf.recvShortSeq) {
u_int16_t shdr;
if (m->m_pkthdr.len < 2) {
link->stats.runts++;
NG_FREE_DATA(m, meta);
return (EINVAL);
}
if (m->m_len < 2 && (m = m_pullup(m, 2)) == NULL) {
NG_FREE_META(meta);
return (ENOBUFS);
}
shdr = ntohs(*mtod(m, u_int16_t *));
frag->seq = MP_SHORT_EXTEND(shdr);
frag->first = (shdr & MP_SHORT_FIRST_FLAG) != 0;
frag->last = (shdr & MP_SHORT_LAST_FLAG) != 0;
diff = MP_SHORT_SEQ_DIFF(frag->seq, priv->mseq);
m_adj(m, 2);
} else {
u_int32_t lhdr;
if (m->m_pkthdr.len < 4) {
link->stats.runts++;
NG_FREE_DATA(m, meta);
return (EINVAL);
}
if (m->m_len < 4 && (m = m_pullup(m, 4)) == NULL) {
NG_FREE_META(meta);
return (ENOBUFS);
}
lhdr = ntohl(*mtod(m, u_int32_t *));
frag->seq = MP_LONG_EXTEND(lhdr);
frag->first = (lhdr & MP_LONG_FIRST_FLAG) != 0;
frag->last = (lhdr & MP_LONG_LAST_FLAG) != 0;
diff = MP_LONG_SEQ_DIFF(frag->seq, priv->mseq);
m_adj(m, 4);
}
frag->data = m;
frag->meta = meta;
getmicrouptime(&frag->timestamp);
/* If sequence number is < MSEQ, we've already declared this
fragment as lost, so we have no choice now but to drop it */
if (diff < 0) {
link->stats.dropFragments++;
NG_FREE_DATA(m, meta);
return (0);
}
/* Update highest received sequence number on this link and MSEQ */
priv->mseq = link->seq = frag->seq;
for (i = 0; i < priv->numActiveLinks; i++) {
struct ng_ppp_link *const alink =
&priv->links[priv->activeLinks[i]];
if (MP_RECV_SEQ_DIFF(priv, alink->seq, priv->mseq) < 0)
priv->mseq = alink->seq;
}
/* Allocate a new frag struct for the queue */
MALLOC(frag, struct ng_ppp_frag *, sizeof(*frag), M_NETGRAPH, M_NOWAIT);
if (frag == NULL) {
NG_FREE_DATA(m, meta);
ng_ppp_frag_process(node);
return (ENOMEM);
}
*frag = frag0;
/* Add fragment to queue, which is sorted by sequence number */
inserted = 0;
TAILQ_FOREACH_REVERSE(qent, &priv->frags, ng_ppp_fraglist, f_qent) {
diff = MP_RECV_SEQ_DIFF(priv, frag->seq, qent->seq);
if (diff > 0) {
TAILQ_INSERT_AFTER(&priv->frags, qent, frag, f_qent);
inserted = 1;
break;
} else if (diff == 0) { /* should never happen! */
link->stats.dupFragments++;
NG_FREE_DATA(frag->data, frag->meta);
FREE(frag, M_NETGRAPH);
return (EINVAL);
}
}
if (!inserted)
TAILQ_INSERT_HEAD(&priv->frags, frag, f_qent);
priv->qlen++;
/* Process the queue */
return ng_ppp_frag_process(node);
}
/*
* Examine our list of fragments, and determine if there is a
* complete and deliverable packet at the head of the list.
* Return 1 if so, zero otherwise.
*/
static int
ng_ppp_check_packet(node_p node)
{
const priv_p priv = node->private;
struct ng_ppp_frag *qent, *qnext;
/* Check for empty queue */
if (TAILQ_EMPTY(&priv->frags))
return (0);
/* Check first fragment is the start of a deliverable packet */
qent = TAILQ_FIRST(&priv->frags);
if (!qent->first || MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) > 1)
return (0);
/* Check that all the fragments are there */
while (!qent->last) {
qnext = TAILQ_NEXT(qent, f_qent);
if (qnext == NULL) /* end of queue */
return (0);
if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq))
return (0);
qent = qnext;
}
/* Got one */
return (1);
}
/*
* Pull a completed packet off the head of the incoming fragment queue.
* This assumes there is a completed packet there to pull off.
*/
static void
ng_ppp_get_packet(node_p node, struct mbuf **mp, meta_p *metap)
{
const priv_p priv = node->private;
struct ng_ppp_frag *qent, *qnext;
struct mbuf *m = NULL, *tail;
qent = TAILQ_FIRST(&priv->frags);
KASSERT(!TAILQ_EMPTY(&priv->frags) && qent->first,
("%s: no packet", __FUNCTION__));
for (tail = NULL; qent != NULL; qent = qnext) {
qnext = TAILQ_NEXT(qent, f_qent);
KASSERT(!TAILQ_EMPTY(&priv->frags),
("%s: empty q", __FUNCTION__));
TAILQ_REMOVE(&priv->frags, qent, f_qent);
if (tail == NULL) {
tail = m = qent->data;
*metap = qent->meta; /* inherit first frag's meta */
} else {
m->m_pkthdr.len += qent->data->m_pkthdr.len;
tail->m_next = qent->data;
NG_FREE_META(qent->meta); /* drop other frags' metas */
}
while (tail->m_next != NULL)
tail = tail->m_next;
if (qent->last)
qnext = NULL;
FREE(qent, M_NETGRAPH);
priv->qlen--;
}
*mp = m;
}
/*
* Trim fragments from the queue whose packets can never be completed.
* This assumes a complete packet is NOT at the beginning of the queue.
* Returns 1 if fragments were removed, zero otherwise.
*/
static int
ng_ppp_frag_trim(node_p node)
{
const priv_p priv = node->private;
struct ng_ppp_frag *qent, *qnext = NULL;
int removed = 0;
/* Scan for "dead" fragments and remove them */
while (1) {
int dead = 0;
/* If queue is empty, we're done */
if (TAILQ_EMPTY(&priv->frags))
break;
/* Determine whether first fragment can ever be completed */
TAILQ_FOREACH(qent, &priv->frags, f_qent) {
if (MP_RECV_SEQ_DIFF(priv, qent->seq, priv->mseq) >= 0)
break;
qnext = TAILQ_NEXT(qent, f_qent);
KASSERT(qnext != NULL,
("%s: last frag < MSEQ?", __FUNCTION__));
if (qnext->seq != MP_NEXT_RECV_SEQ(priv, qent->seq)
|| qent->last || qnext->first) {
dead = 1;
break;
}
}
if (!dead)
break;
/* Remove fragment and all others in the same packet */
while ((qent = TAILQ_FIRST(&priv->frags)) != qnext) {
KASSERT(!TAILQ_EMPTY(&priv->frags),
("%s: empty q", __FUNCTION__));
priv->bundleStats.dropFragments++;
TAILQ_REMOVE(&priv->frags, qent, f_qent);
NG_FREE_DATA(qent->data, qent->meta);
FREE(qent, M_NETGRAPH);
priv->qlen--;
removed = 1;
}
}
return (removed);
}
/*
* Run the queue, restoring the queue invariants
*/
static int
ng_ppp_frag_process(node_p node)
{
const priv_p priv = node->private;
struct mbuf *m;
meta_p meta;
/* Deliver any deliverable packets */
while (ng_ppp_check_packet(node)) {
ng_ppp_get_packet(node, &m, &meta);
ng_ppp_input(node, 0, NG_PPP_BUNDLE_LINKNUM, m, meta);
}
/* Delete dead fragments and try again */
if (ng_ppp_frag_trim(node)) {
while (ng_ppp_check_packet(node)) {
ng_ppp_get_packet(node, &m, &meta);
ng_ppp_input(node, 0, NG_PPP_BUNDLE_LINKNUM, m, meta);
}
}
/* Check for stale fragments while we're here */
ng_ppp_frag_checkstale(node);
/* Check queue length */
if (priv->qlen > MP_MAX_QUEUE_LEN) {
struct ng_ppp_frag *qent;
int i;
/* Get oldest fragment */
KASSERT(!TAILQ_EMPTY(&priv->frags),
("%s: empty q", __FUNCTION__));
qent = TAILQ_FIRST(&priv->frags);
/* Bump MSEQ if necessary */
if (MP_RECV_SEQ_DIFF(priv, priv->mseq, qent->seq) < 0) {
priv->mseq = qent->seq;
for (i = 0; i < priv->numActiveLinks; i++) {
struct ng_ppp_link *const alink =
&priv->links[priv->activeLinks[i]];
if (MP_RECV_SEQ_DIFF(priv,
alink->seq, priv->mseq) < 0)
alink->seq = priv->mseq;
}
}
/* Drop it */
priv->bundleStats.dropFragments++;
TAILQ_REMOVE(&priv->frags, qent, f_qent);
NG_FREE_DATA(qent->data, qent->meta);
FREE(qent, M_NETGRAPH);
priv->qlen--;
/* Process queue again */
return ng_ppp_frag_process(node);
}
/* Done */
return (0);
}
/*
* Check for 'stale' completed packets that need to be delivered
*
* If a link goes down or has a temporary failure, MSEQ can get
* "stuck", because no new incoming fragments appear on that link.
* This can cause completed packets to never get delivered if
* their sequence numbers are all > MSEQ + 1.
*
* This routine checks how long all of the completed packets have
* been sitting in the queue, and if too long, removes fragments
* from the queue and increments MSEQ to allow them to be delivered.
*/
static void
ng_ppp_frag_checkstale(node_p node)
{
const priv_p priv = node->private;
struct ng_ppp_frag *qent, *beg, *end;
struct timeval now, age;
struct mbuf *m;
meta_p meta;
int i, seq;
now.tv_sec = 0; /* uninitialized state */
while (1) {
/* If queue is empty, we're done */
if (TAILQ_EMPTY(&priv->frags))
break;
/* Find the first complete packet in the queue */
beg = end = NULL;
seq = TAILQ_FIRST(&priv->frags)->seq;
TAILQ_FOREACH(qent, &priv->frags, f_qent) {
if (qent->first)
beg = qent;
else if (qent->seq != seq)
beg = NULL;
if (beg != NULL && qent->last) {
end = qent;
break;
}
seq = MP_NEXT_RECV_SEQ(priv, seq);
}
/* If none found, exit */
if (end == NULL)
break;
/* Get current time (we assume we've been up for >= 1 second) */
if (now.tv_sec == 0)
getmicrouptime(&now);
/* Check if packet has been queued too long */
age = now;
timevalsub(&age, &beg->timestamp);
if (timevalcmp(&age, &ng_ppp_max_staleness, < ))
break;
/* Throw away junk fragments in front of the completed packet */
while ((qent = TAILQ_FIRST(&priv->frags)) != beg) {
KASSERT(!TAILQ_EMPTY(&priv->frags),
("%s: empty q", __FUNCTION__));
priv->bundleStats.dropFragments++;
TAILQ_REMOVE(&priv->frags, qent, f_qent);
NG_FREE_DATA(qent->data, qent->meta);
FREE(qent, M_NETGRAPH);
priv->qlen--;
}
/* Extract completed packet */
ng_ppp_get_packet(node, &m, &meta);
/* Bump MSEQ if necessary */
if (MP_RECV_SEQ_DIFF(priv, priv->mseq, end->seq) < 0) {
priv->mseq = end->seq;
for (i = 0; i < priv->numActiveLinks; i++) {
struct ng_ppp_link *const alink =
&priv->links[priv->activeLinks[i]];
if (MP_RECV_SEQ_DIFF(priv,
alink->seq, priv->mseq) < 0)
alink->seq = priv->mseq;
}
}
/* Deliver packet */
ng_ppp_input(node, 0, NG_PPP_BUNDLE_LINKNUM, m, meta);
}
}
/*
* Periodically call ng_ppp_frag_checkstale()
*/
static void
ng_ppp_frag_timeout(void *arg)
{
const node_p node = arg;
const priv_p priv = node->private;
int s = splnet();
/* Handle the race where shutdown happens just before splnet() above */
if ((node->flags & NG_INVALID) != 0) {
ng_unref(node);
splx(s);
return;
}
/* Reset timer state after timeout */
KASSERT(priv->timerActive, ("%s: !timerActive", __FUNCTION__));
priv->timerActive = 0;
KASSERT(node->refs > 1, ("%s: refs=%d", __FUNCTION__, node->refs));
ng_unref(node);
/* Start timer again */
ng_ppp_start_frag_timer(node);
/* Scan the fragment queue */
ng_ppp_frag_checkstale(node);
splx(s);
}
/*
* Deliver a frame out on the bundle, i.e., figure out how to fragment
* the frame across the individual PPP links and do so.
*/
static int
ng_ppp_mp_output(node_p node, struct mbuf *m, meta_p meta)
{
const priv_p priv = node->private;
int distrib[NG_PPP_MAX_LINKS];
int firstFragment;
int activeLinkNum;
/* At least one link must be active */
if (priv->numActiveLinks == 0) {
NG_FREE_DATA(m, meta);
return (ENETDOWN);
}
/* Round-robin strategy */
if (priv->conf.enableRoundRobin || m->m_pkthdr.len < MP_MIN_FRAG_LEN) {
activeLinkNum = priv->lastLink++ % priv->numActiveLinks;
bzero(&distrib, priv->numActiveLinks * sizeof(distrib[0]));
distrib[activeLinkNum] = m->m_pkthdr.len;
goto deliver;
}
/* Strategy when all links are equivalent (optimize the common case) */
if (priv->allLinksEqual) {
const int fraction = m->m_pkthdr.len / priv->numActiveLinks;
int i, remain;
for (i = 0; i < priv->numActiveLinks; i++)
distrib[priv->lastLink++ % priv->numActiveLinks]
= fraction;
remain = m->m_pkthdr.len - (fraction * priv->numActiveLinks);
while (remain > 0) {
distrib[priv->lastLink++ % priv->numActiveLinks]++;
remain--;
}
goto deliver;
}
/* Strategy when all links are not equivalent */
ng_ppp_mp_strategy(node, m->m_pkthdr.len, distrib);
deliver:
/* Update stats */
priv->bundleStats.xmitFrames++;
priv->bundleStats.xmitOctets += m->m_pkthdr.len;
/* Send alloted portions of frame out on the link(s) */
for (firstFragment = 1, activeLinkNum = priv->numActiveLinks - 1;
activeLinkNum >= 0; activeLinkNum--) {
const int linkNum = priv->activeLinks[activeLinkNum];
struct ng_ppp_link *const link = &priv->links[linkNum];
/* Deliver fragment(s) out the next link */
for ( ; distrib[activeLinkNum] > 0; firstFragment = 0) {
int len, lastFragment, error;
struct mbuf *m2;
meta_p meta2;
/* Calculate fragment length; don't exceed link MTU */
len = distrib[activeLinkNum];
if (len > link->conf.mru)
len = link->conf.mru;
distrib[activeLinkNum] -= len;
lastFragment = (len == m->m_pkthdr.len);
/* Split off next fragment as "m2" */
m2 = m;
if (!lastFragment) {
struct mbuf *n = m_split(m, len, M_NOWAIT);
if (n == NULL) {
NG_FREE_DATA(m, meta);
return (ENOMEM);
}
m = n;
}
/* Prepend MP header */
if (priv->conf.xmitShortSeq) {
u_int16_t shdr;
shdr = priv->xseq;
priv->xseq =
(priv->xseq + 1) & MP_SHORT_SEQ_MASK;
if (firstFragment)
shdr |= MP_SHORT_FIRST_FLAG;
if (lastFragment)
shdr |= MP_SHORT_LAST_FLAG;
shdr = htons(shdr);
m2 = ng_ppp_prepend(m2, &shdr, 2);
} else {
u_int32_t lhdr;
lhdr = priv->xseq;
priv->xseq =
(priv->xseq + 1) & MP_LONG_SEQ_MASK;
if (firstFragment)
lhdr |= MP_LONG_FIRST_FLAG;
if (lastFragment)
lhdr |= MP_LONG_LAST_FLAG;
lhdr = htonl(lhdr);
m2 = ng_ppp_prepend(m2, &lhdr, 4);
}
if (m2 == NULL) {
if (!lastFragment)
m_freem(m);
NG_FREE_META(meta);
return (ENOBUFS);
}
/* Copy the meta information, if any */
meta2 = lastFragment ? meta : ng_copy_meta(meta);
/* Send fragment */
error = ng_ppp_output(node, 0,
PROT_MP, linkNum, m2, meta2);
if (error != 0) {
if (!lastFragment)
NG_FREE_DATA(m, meta);
return (error);
}
}
}
/* Done */
return (0);
}
/*
* Computing the optimal fragmentation
* -----------------------------------
*
* This routine tries to compute the optimal fragmentation pattern based
* on each link's latency, bandwidth, and calculated additional latency.
* The latter quantity is the additional latency caused by previously
* written data that has not been transmitted yet.
*
* This algorithm is only useful when not all of the links have the
* same latency and bandwidth values.
*
* The essential idea is to make the last bit of each fragment of the
* frame arrive at the opposite end at the exact same time. This greedy
* algorithm is optimal, in that no other scheduling could result in any
* packet arriving any sooner unless packets are delivered out of order.
*
* Suppose link i has bandwidth b_i (in tens of bytes per milisecond) and
* latency l_i (in miliseconds). Consider the function function f_i(t)
* which is equal to the number of bytes that will have arrived at
* the peer after t miliseconds if we start writing continuously at
* time t = 0. Then f_i(t) = b_i * (t - l_i) = ((b_i * t) - (l_i * b_i).
* That is, f_i(t) is a line with slope b_i and y-intersect -(l_i * b_i).
* Note that the y-intersect is always <= zero because latency can't be
* negative. Note also that really the function is f_i(t) except when
* f_i(t) is negative, in which case the function is zero. To take
* care of this, let Q_i(t) = { if (f_i(t) > 0) return 1; else return 0; }.
* So the actual number of bytes that will have arrived at the peer after
* t miliseconds is f_i(t) * Q_i(t).
*
* At any given time, each link has some additional latency a_i >= 0
* due to previously written fragment(s) which are still in the queue.
* This value is easily computed from the time since last transmission,
* the previous latency value, the number of bytes written, and the
* link's bandwidth.
*
* Assume that l_i includes any a_i already, and that the links are
* sorted by latency, so that l_i <= l_{i+1}.
*
* Let N be the total number of bytes in the current frame we are sending.
*
* Suppose we were to start writing bytes at time t = 0 on all links
* simultaneously, which is the most we can possibly do. Then let
* F(t) be equal to the total number of bytes received by the peer
* after t miliseconds. Then F(t) = Sum_i (f_i(t) * Q_i(t)).
*
* Our goal is simply this: fragment the frame across the links such
* that the peer is able to reconstruct the completed frame as soon as
* possible, i.e., at the least possible value of t. Call this value t_0.
*
* Then it follows that F(t_0) = N. Our strategy is first to find the value
* of t_0, and then deduce how many bytes to write to each link.
*
* Rewriting F(t_0):
*
* t_0 = ( N + Sum_i ( l_i * b_i * Q_i(t_0) ) ) / Sum_i ( b_i * Q_i(t_0) )
*
* Now, we note that Q_i(t) is constant for l_i <= t <= l_{i+1}. t_0 will
* lie in one of these ranges. To find it, we just need to find the i such
* that F(l_i) <= N <= F(l_{i+1}). Then we compute all the constant values
* for Q_i() in this range, plug in the remaining values, solving for t_0.
*
* Once t_0 is known, then the number of bytes to send on link i is
* just f_i(t_0) * Q_i(t_0).
*
* In other words, we start allocating bytes to the links one at a time.
* We keep adding links until the frame is completely sent. Some links
* may not get any bytes because their latency is too high.
*
* Is all this work really worth the trouble? Depends on the situation.
* The bigger the ratio of computer speed to link speed, and the more
* important total bundle latency is (e.g., for interactive response time),
* the more it's worth it. There is however the cost of calling this
* function for every frame. The running time is O(n^2) where n is the
* number of links that receive a non-zero number of bytes.
*
* Since latency is measured in miliseconds, the "resolution" of this
* algorithm is one milisecond.
*
* To avoid this algorithm altogether, configure all links to have the
* same latency and bandwidth.
*/
static void
ng_ppp_mp_strategy(node_p node, int len, int *distrib)
{
const priv_p priv = node->private;
int latency[NG_PPP_MAX_LINKS];
int sortByLatency[NG_PPP_MAX_LINKS];
int activeLinkNum;
int t0, total, topSum, botSum;
struct timeval now;
int i, numFragments;
/* If only one link, this gets real easy */
if (priv->numActiveLinks == 1) {
distrib[0] = len;
return;
}
/* Get current time */
getmicrouptime(&now);
/* Compute latencies for each link at this point in time */
for (activeLinkNum = 0;
activeLinkNum < priv->numActiveLinks; activeLinkNum++) {
struct ng_ppp_link *alink;
struct timeval diff;
int xmitBytes;
/* Start with base latency value */
alink = &priv->links[priv->activeLinks[activeLinkNum]];
latency[activeLinkNum] = alink->conf.latency;
sortByLatency[activeLinkNum] = activeLinkNum; /* see below */
/* Any additional latency? */
if (alink->bytesInQueue == 0)
continue;
/* Compute time delta since last write */
diff = now;
timevalsub(&diff, &alink->lastWrite);
if (now.tv_sec < 0 || diff.tv_sec >= 10) { /* sanity */
alink->bytesInQueue = 0;
continue;
}
/* How many bytes could have transmitted since last write? */
xmitBytes = (alink->conf.bandwidth * diff.tv_sec)
+ (alink->conf.bandwidth * (diff.tv_usec / 1000)) / 100;
alink->bytesInQueue -= xmitBytes;
if (alink->bytesInQueue < 0)
alink->bytesInQueue = 0;
else
latency[activeLinkNum] +=
(100 * alink->bytesInQueue) / alink->conf.bandwidth;
}
/* Sort active links by latency */
compareLatencies = latency;
qsort(sortByLatency,
priv->numActiveLinks, sizeof(*sortByLatency), ng_ppp_intcmp);
compareLatencies = NULL;
/* Find the interval we need (add links in sortByLatency[] order) */
for (numFragments = 1;
numFragments < priv->numActiveLinks; numFragments++) {
for (total = i = 0; i < numFragments; i++) {
int flowTime;
flowTime = latency[sortByLatency[numFragments]]
- latency[sortByLatency[i]];
total += ((flowTime * priv->links[
priv->activeLinks[sortByLatency[i]]].conf.bandwidth)
+ 99) / 100;
}
if (total >= len)
break;
}
/* Solve for t_0 in that interval */
for (topSum = botSum = i = 0; i < numFragments; i++) {
int bw = priv->links[
priv->activeLinks[sortByLatency[i]]].conf.bandwidth;
topSum += latency[sortByLatency[i]] * bw; /* / 100 */
botSum += bw; /* / 100 */
}
t0 = ((len * 100) + topSum + botSum / 2) / botSum;
/* Compute f_i(t_0) all i */
bzero(distrib, priv->numActiveLinks * sizeof(*distrib));
for (total = i = 0; i < numFragments; i++) {
int bw = priv->links[
priv->activeLinks[sortByLatency[i]]].conf.bandwidth;
distrib[sortByLatency[i]] =
(bw * (t0 - latency[sortByLatency[i]]) + 50) / 100;
total += distrib[sortByLatency[i]];
}
/* Deal with any rounding error */
if (total < len) {
struct ng_ppp_link *fastLink =
&priv->links[priv->activeLinks[sortByLatency[0]]];
int fast = 0;
/* Find the fastest link */
for (i = 1; i < numFragments; i++) {
struct ng_ppp_link *const link =
&priv->links[priv->activeLinks[sortByLatency[i]]];
if (link->conf.bandwidth > fastLink->conf.bandwidth) {
fast = i;
fastLink = link;
}
}
distrib[sortByLatency[fast]] += len - total;
} else while (total > len) {
struct ng_ppp_link *slowLink =
&priv->links[priv->activeLinks[sortByLatency[0]]];
int delta, slow = 0;
/* Find the slowest link that still has bytes to remove */
for (i = 1; i < numFragments; i++) {
struct ng_ppp_link *const link =
&priv->links[priv->activeLinks[sortByLatency[i]]];
if (distrib[sortByLatency[slow]] == 0
|| (distrib[sortByLatency[i]] > 0
&& link->conf.bandwidth <
slowLink->conf.bandwidth)) {
slow = i;
slowLink = link;
}
}
delta = total - len;
if (delta > distrib[sortByLatency[slow]])
delta = distrib[sortByLatency[slow]];
distrib[sortByLatency[slow]] -= delta;
total -= delta;
}
}
/*
* Compare two integers
*/
static int
ng_ppp_intcmp(const void *v1, const void *v2)
{
const int index1 = *((const int *) v1);
const int index2 = *((const int *) v2);
return compareLatencies[index1] - compareLatencies[index2];
}
/*
* Prepend a possibly compressed PPP protocol number in front of a frame
*/
static struct mbuf *
ng_ppp_addproto(struct mbuf *m, int proto, int compOK)
{
if (compOK && PROT_COMPRESSABLE(proto)) {
u_char pbyte = (u_char)proto;
return ng_ppp_prepend(m, &pbyte, 1);
} else {
u_int16_t pword = htons((u_int16_t)proto);
return ng_ppp_prepend(m, &pword, 2);
}
}
/*
* Prepend some bytes to an mbuf
*/
static struct mbuf *
ng_ppp_prepend(struct mbuf *m, const void *buf, int len)
{
M_PREPEND(m, len, M_NOWAIT);
if (m == NULL || (m->m_len < len && (m = m_pullup(m, len)) == NULL))
return (NULL);
bcopy(buf, mtod(m, u_char *), len);
return (m);
}
/*
* Update private information that is derived from other private information
*/
static void
ng_ppp_update(node_p node, int newConf)
{
const priv_p priv = node->private;
int i;
/* Update active status for VJ Compression */
priv->vjCompHooked = priv->hooks[HOOK_INDEX_VJC_IP] != NULL
&& priv->hooks[HOOK_INDEX_VJC_COMP] != NULL
&& priv->hooks[HOOK_INDEX_VJC_UNCOMP] != NULL
&& priv->hooks[HOOK_INDEX_VJC_VJIP] != NULL;
/* Increase latency for each link an amount equal to one MP header */
if (newConf) {
for (i = 0; i < NG_PPP_MAX_LINKS; i++) {
int hdrBytes;
hdrBytes = (priv->links[i].conf.enableACFComp ? 0 : 2)
+ (priv->links[i].conf.enableProtoComp ? 1 : 2)
+ (priv->conf.xmitShortSeq ? 2 : 4);
priv->links[i].conf.latency +=
((hdrBytes * priv->links[i].conf.bandwidth) + 50)
/ 100;
}
}
/* Update list of active links */
bzero(&priv->activeLinks, sizeof(priv->activeLinks));
priv->numActiveLinks = 0;
priv->allLinksEqual = 1;
for (i = 0; i < NG_PPP_MAX_LINKS; i++) {
struct ng_ppp_link *const link = &priv->links[i];
/* Is link active? */
if (link->conf.enableLink && link->hook != NULL) {
struct ng_ppp_link *link0;
1999-11-10 23:56:57 +00:00
/* Add link to list of active links */
priv->activeLinks[priv->numActiveLinks++] = i;
link0 = &priv->links[priv->activeLinks[0]];
/* Determine if all links are still equal */
if (link->conf.latency != link0->conf.latency
|| link->conf.bandwidth != link0->conf.bandwidth)
priv->allLinksEqual = 0;
/* Initialize rec'd sequence number */
if (link->seq == MP_NOSEQ) {
link->seq = (link == link0) ?
MP_INITIAL_SEQ : link0->seq;
}
} else
link->seq = MP_NOSEQ;
}
/* Update MP state as multi-link is active or not */
if (priv->conf.enableMultilink && priv->numActiveLinks > 0)
ng_ppp_start_frag_timer(node);
else {
ng_ppp_stop_frag_timer(node);
ng_ppp_frag_reset(node);
priv->xseq = MP_INITIAL_SEQ;
priv->mseq = MP_INITIAL_SEQ;
for (i = 0; i < NG_PPP_MAX_LINKS; i++) {
struct ng_ppp_link *const link = &priv->links[i];
bzero(&link->lastWrite, sizeof(link->lastWrite));
link->bytesInQueue = 0;
link->seq = MP_NOSEQ;
}
}
}
/*
* Determine if a new configuration would represent a valid change
* from the current configuration and link activity status.
*/
static int
ng_ppp_config_valid(node_p node, const struct ng_ppp_node_conf *newConf)
{
const priv_p priv = node->private;
int i, newNumLinksActive;
/* Check per-link config and count how many links would be active */
for (newNumLinksActive = i = 0; i < NG_PPP_MAX_LINKS; i++) {
if (newConf->links[i].enableLink && priv->links[i].hook != NULL)
newNumLinksActive++;
if (!newConf->links[i].enableLink)
continue;
if (newConf->links[i].mru < MP_MIN_LINK_MRU)
return (0);
if (newConf->links[i].bandwidth == 0)
return (0);
if (newConf->links[i].bandwidth > NG_PPP_MAX_BANDWIDTH)
return (0);
if (newConf->links[i].latency > NG_PPP_MAX_LATENCY)
return (0);
}
/* Check bundle parameters */
if (newConf->bund.enableMultilink && newConf->bund.mrru < MP_MIN_MRRU)
return (0);
/* Disallow changes to multi-link configuration while MP is active */
if (priv->numActiveLinks > 0 && newNumLinksActive > 0) {
if (!priv->conf.enableMultilink
!= !newConf->bund.enableMultilink
|| !priv->conf.xmitShortSeq != !newConf->bund.xmitShortSeq
|| !priv->conf.recvShortSeq != !newConf->bund.recvShortSeq)
return (0);
}
/* At most one link can be active unless multi-link is enabled */
if (!newConf->bund.enableMultilink && newNumLinksActive > 1)
return (0);
/* Configuration change would be valid */
return (1);
}
/*
* Free all entries in the fragment queue
*/
static void
ng_ppp_frag_reset(node_p node)
{
const priv_p priv = node->private;
struct ng_ppp_frag *qent, *qnext;
for (qent = TAILQ_FIRST(&priv->frags); qent; qent = qnext) {
qnext = TAILQ_NEXT(qent, f_qent);
NG_FREE_DATA(qent->data, qent->meta);
FREE(qent, M_NETGRAPH);
}
TAILQ_INIT(&priv->frags);
priv->qlen = 0;
}
/*
* Start fragment queue timer
*/
static void
ng_ppp_start_frag_timer(node_p node)
{
const priv_p priv = node->private;
if (!priv->timerActive) {
priv->fragTimer = timeout(ng_ppp_frag_timeout,
node, MP_FRAGTIMER_INTERVAL);
priv->timerActive = 1;
node->refs++;
}
}
/*
* Stop fragment queue timer
*/
static void
ng_ppp_stop_frag_timer(node_p node)
{
const priv_p priv = node->private;
if (priv->timerActive) {
untimeout(ng_ppp_frag_timeout, node, priv->fragTimer);
priv->timerActive = 0;
KASSERT(node->refs > 1,
("%s: refs=%d", __FUNCTION__, node->refs));
ng_unref(node);
}
}