472 lines
16 KiB
Groff
Raw Normal View History

.\" $File: magic.man,v 1.39 2007/11/08 00:31:37 christos Exp $
.Dd January 10, 2007
.Dt MAGIC __FSECTION__
.Os
2000-11-05 08:33:55 +00:00
.\" install as magic.4 on USG, magic.5 on V7 or Berkeley systems.
.Sh NAME
.Nm magic
.Nd file command's magic number file
.Sh DESCRIPTION
2000-11-05 08:33:55 +00:00
This manual page documents the format of the magic file as
used by the
.Xr file __CSECTION__
command, version __VERSION__.
The
.Xr file __CSECTION__
2000-11-05 08:33:55 +00:00
command identifies the type of a file using,
among other tests,
a test for whether the file begins with a certain
.Dq "magic number" .
2000-11-05 08:33:55 +00:00
The file
.Pa __MAGIC__
2000-11-05 08:33:55 +00:00
specifies what magic numbers are to be tested for,
what message to print if a particular magic number is found,
and additional information to extract from the file.
.Pp
2000-11-05 08:33:55 +00:00
Each line of the file specifies a test to be performed.
A test compares the data starting at a particular offset
in the file with a 1-byte, 2-byte, or 4-byte numeric value or
a string.
If the test succeeds, a message is printed.
2000-11-05 08:33:55 +00:00
The line consists of the following fields:
.Bl -tag -width ".Dv message"
.It Dv offset
2000-11-05 08:33:55 +00:00
A number specifying the offset, in bytes, into the file of the data
which is to be tested.
.It Dv type
The type of the data to be tested.
The possible values are:
.Bl -tag -width ".Dv lestring16"
.It Dv byte
2000-11-05 08:33:55 +00:00
A one-byte value.
.It Dv short
2000-11-05 08:33:55 +00:00
A two-byte value (on most systems) in this machine's native byte order.
.It Dv long
2000-11-05 08:33:55 +00:00
A four-byte value (on most systems) in this machine's native byte order.
.It Dv quad
An eight-byte value (on most systems) in this machine's native byte order.
.It Dv float
A 32-bit (on most systems) single precision IEEE floating point number in this machine's native byte order.
.It Dv double
A 64-bit (on most systems) double precision IEEE floating point number in this machine's native byte order.
.It Dv string
A string of bytes.
The string type specification can be optionally followed
by /[Bbc]*.
The
.Dq B
flag compacts whitespace in the target, which must
contain at least one whitespace character.
If the magic has
.Dv n
consecutive blanks, the target needs at least
.Dv n
consecutive blanks to match.
The
.Dq b
flag treats every blank in the target as an optional blank.
Finally the
.Dq c
flag, specifies case insensitive matching: lowercase
characters in the magic match both lower and upper case characters in the
targer, whereas upper case characters in the magic, only much uppercase
characters in the target.
.It Dv pstring
A pascal style string where the first byte is interpreted as the an
unsigned length.
The string is not NUL terminated.
.It Dv date
A four-byte value interpreted as a UNIX date.
.It Dv qdate
A eight-byte value interpreted as a UNIX date.
.It Dv ldate
A four-byte value interpreted as a UNIX-style date, but interpreted as
local time rather than UTC.
.It Dv qldate
An eight-byte value interpreted as a UNIX-style date, but interpreted as
local time rather than UTC.
.It Dv beshort
2000-11-05 08:33:55 +00:00
A two-byte value (on most systems) in big-endian byte order.
.It Dv belong
2000-11-05 08:33:55 +00:00
A four-byte value (on most systems) in big-endian byte order.
.It Dv bequad
An eight-byte value (on most systems) in big-endian byte order.
.It Dv befloat
A 32-bit (on most systems) single precision IEEE floating point number in big-endian byte order.
.It Dv bedouble
A 64-bit (on most systems) double precision IEEE floating point number in big-endian byte order.
.It Dv bedate
2000-11-05 08:33:55 +00:00
A four-byte value (on most systems) in big-endian byte order,
interpreted as a Unix date.
.It Dv beqdate
An eight-byte value (on most systems) in big-endian byte order,
interpreted as a Unix date.
.It Dv beldate
A four-byte value (on most systems) in big-endian byte order,
interpreted as a UNIX-style date, but interpreted as local time rather
than UTC.
.It Dv beqldate
An eight-byte value (on most systems) in big-endian byte order,
interpreted as a UNIX-style date, but interpreted as local time rather
than UTC.
.It Dv bestring16
A two-byte unicode (UCS16) string in big-endian byte order.
.It Dv leshort
2000-11-05 08:33:55 +00:00
A two-byte value (on most systems) in little-endian byte order.
.It Dv lelong
2000-11-05 08:33:55 +00:00
A four-byte value (on most systems) in little-endian byte order.
.It Dv lequad
An eight-byte value (on most systems) in little-endian byte order.
.It Dv lefloat
A 32-bit (on most systems) single precision IEEE floating point number in little-endian byte order.
.It Dv ledouble
A 64-bit (on most systems) double precision IEEE floating point number in little-endian byte order.
.It Dv ledate
2000-11-05 08:33:55 +00:00
A four-byte value (on most systems) in little-endian byte order,
interpreted as a UNIX date.
.It Dv leqdate
An eight-byte value (on most systems) in little-endian byte order,
interpreted as a UNIX date.
.It Dv leldate
A four-byte value (on most systems) in little-endian byte order,
interpreted as a UNIX-style date, but interpreted as local time rather
than UTC.
.It Dv leqldate
An eight-byte value (on most systems) in little-endian byte order,
interpreted as a UNIX-style date, but interpreted as local time rather
than UTC.
.It Dv lestring16
A two-byte unicode (UCS16) string in little-endian byte order.
.It Dv melong
A four-byte value (on most systems) in middle-endian (PDP-11) byte order.
.It Dv medate
A four-byte value (on most systems) in middle-endian (PDP-11) byte order,
interpreted as a UNIX date.
.It Dv meldate
A four-byte value (on most systems) in middle-endian (PDP-11) byte order,
interpreted as a UNIX-style date, but interpreted as local time rather
than UTC.
.It Dv regex
A regular expression match in extended POSIX regular expression syntax
(much like egrep).
The type specification can be optionally followed by /[cse]*.
The
.Dq c
flag makes the match case insensitive, while the
.Dq s
or
.Dq e
flags update the offset to the starting or ending offsets of the
match (only one should be used).
By default, regex does not update the offset.
The regular expression is always tested against the first
.Dv N
lines, where
.Dv N
is the given offset, thus it
is only useful for (single-byte encoded) text.
.Dv ^
and
.Dv $
will match the beginning and end of individual lines, respectively,
not beginning and end of file.
.It Dv search
A literal string search starting at the given offset.
It must be followed by
.Dv \*[Lt]number\*[Gt]
which specifies how many matches shall be attempted (the range).
This is suitable for searching larger binary expressions with variable
offsets, using
.Dv \e
escapes for special characters.
.It Dv default
This is intended to be used with the text
.Dv x
(which is always true) and a message that is to be used if there are
no other matches.
.El
.El
.Pp
2000-11-05 08:33:55 +00:00
The numeric types may optionally be followed by
.Dv \*[Am]
2000-11-05 08:33:55 +00:00
and a numeric value,
to specify that the value is to be AND'ed with the
numeric value before any comparisons are done.
Prepending a
.Dv u
2000-11-05 08:33:55 +00:00
to the type indicates that ordered comparisons should be unsigned.
.Bl -tag -width ".Dv message"
.It Dv test
The value to be compared with the value from the file.
If the type is
numeric, this value
2000-11-05 08:33:55 +00:00
is specified in C form; if it is a string, it is specified as a C string
with the usual escapes permitted (e.g. \en for new-line).
.Pp
2000-11-05 08:33:55 +00:00
Numeric values
may be preceded by a character indicating the operation to be performed.
It may be
.Dv = ,
2000-11-05 08:33:55 +00:00
to specify that the value from the file must equal the specified value,
.Dv \*[Lt] ,
2000-11-05 08:33:55 +00:00
to specify that the value from the file must be less than the specified
value,
.Dv \*[Gt] ,
2000-11-05 08:33:55 +00:00
to specify that the value from the file must be greater than the specified
value,
.Dv \*[Am] ,
to specify that the value from the file must have set all of the bits
2000-11-05 08:33:55 +00:00
that are set in the specified value,
.Dv ^ ,
to specify that the value from the file must have clear any of the bits
2000-11-05 08:33:55 +00:00
that are set in the specified value, or
.Dv ~ ,
the value specified after is negated before tested.
.Dv x ,
to specify that any value will match.
If the character is omitted, it is assumed to be
.Dv = .
Operators
.Dv \*[Am] ,
.Dv ^ ,
and
.Dv ~
don't work with floats and doubles.
For all tests except
.Em string
and
.Em regex ,
operation
.Dv !
specifies that the line matches if the test does
.Em not
succeed.
.Pp
2000-11-05 08:33:55 +00:00
Numeric values are specified in C form; e.g.
.Dv 13
2000-11-05 08:33:55 +00:00
is decimal,
.Dv 013
2000-11-05 08:33:55 +00:00
is octal, and
.Dv 0x13
2000-11-05 08:33:55 +00:00
is hexadecimal.
.Pp
2000-11-05 08:33:55 +00:00
For string values, the byte string from the
file must match the specified byte string.
2000-11-05 08:33:55 +00:00
The operators
.Dv = ,
.Dv \*[Lt]
2000-11-05 08:33:55 +00:00
and
.Dv \*[Gt]
2000-11-05 08:33:55 +00:00
(but not
.Dv \*[Am] )
2000-11-05 08:33:55 +00:00
can be applied to strings.
The length used for matching is that of the string argument
in the magic file.
This means that a line can match any string, and
2000-11-05 08:33:55 +00:00
then presumably print that string, by doing
.Em \*[Gt]\e0
2000-11-05 08:33:55 +00:00
(because all strings are greater than the null string).
.Pp
The special test
.Em x
always evaluates to true.
.Dv message
The message to be printed if the comparison succeeds.
If the string contains a
.Xr printf 3
2000-11-05 08:33:55 +00:00
format specification, the value from the file (with any specified masking
performed) is printed using the message as the format string.
If the string begins with ``\\b'', the message printed is the
remainder of the string with no whitespace added before it: multiple
matches are normally separated by a single space.
.El
.Pp
2000-11-05 08:33:55 +00:00
Some file formats contain additional information which is to be printed
along with the file type or need additional tests to determine the true
file type.
These additional tests are introduced by one or more
.Em \*[Gt]
characters preceding the offset.
The number of
.Em \*[Gt]
2000-11-05 08:33:55 +00:00
on the line indicates the level of the test; a line with no
.Em \*[Gt]
2000-11-05 08:33:55 +00:00
at the beginning is considered to be at level 0.
Tests are arranged in a tree-like hierarchy:
If a the test on a line at level
.Em n
succeeds, all following tests at level
.Em n+1
are performed, and the messages printed if the tests succeed, untile a line
with level
.Em n
(or less) appears.
For more complex files, one can use empty messages to get just the
"if/then" effect, in the following way:
.Bd -literal -offset indent
0 string MZ
\*[Gt]0x18 leshort \*[Lt]0x40 MS-DOS executable
\*[Gt]0x18 leshort \*[Gt]0x3f extended PC executable (e.g., MS Windows)
.Ed
.Pp
Offsets do not need to be constant, but can also be read from the file
being examined.
2000-11-05 08:33:55 +00:00
If the first character following the last
.Em \*[Gt]
2000-11-05 08:33:55 +00:00
is a
.Em (
2000-11-05 08:33:55 +00:00
then the string after the parenthesis is interpreted as an indirect offset.
That means that the number after the parenthesis is used as an offset in
the file.
The value at that offset is read, and is used again as an offset
in the file.
Indirect offsets are of the form:
.Em (( x [.[bslBSL]][+\-][ y ]) .
The value of
.Em x
is used as an offset in the file.
A byte, short or long is read at that offset depending on the
.Em [bslBSLm]
type specifier.
The capitalized types interpret the number as a big endian
value, whereas the small letter versions interpret the number as a little
endian value;
the
.Em m
type interprets the number as a middle endian (PDP-11) value.
To that number the value of
.Em y
is added and the result is used as an offset in the file.
The default type if one is not specified is long.
.Pp
That way variable length structures can be examined:
.Bd -literal -offset indent
# MS Windows executables are also valid MS-DOS executables
0 string MZ
\*[Gt]0x18 leshort \*[Lt]0x40 MZ executable (MS-DOS)
# skip the whole block below if it is not an extended executable
\*[Gt]0x18 leshort \*[Gt]0x3f
\*[Gt]\*[Gt](0x3c.l) string PE\e0\e0 PE executable (MS-Windows)
\*[Gt]\*[Gt](0x3c.l) string LX\e0\e0 LX executable (OS/2)
.Ed
.Pp
This strategy of examining has one drawback: You must make sure that
you eventually print something, or users may get empty output (like, when
there is neither PE\e0\e0 nor LE\e0\e0 in the above example)
.Pp
If this indirect offset cannot be used as-is, there are simple calculations
possible: appending
.Em [+-*/%\*[Am]|^]\*[Lt]number\*[Gt]
inside parentheses allows one to modify
the value read from the file before it is used as an offset:
.Bd -literal -offset indent
# MS Windows executables are also valid MS-DOS executables
0 string MZ
# sometimes, the value at 0x18 is less that 0x40 but there's still an
# extended executable, simply appended to the file
\*[Gt]0x18 leshort \*[Lt]0x40
\*[Gt]\*[Gt](4.s*512) leshort 0x014c COFF executable (MS-DOS, DJGPP)
\*[Gt]\*[Gt](4.s*512) leshort !0x014c MZ executable (MS-DOS)
.Ed
.Pp
Sometimes you do not know the exact offset as this depends on the length or
position (when indirection was used before) of preceding fields.
You can specify an offset relative to the end of the last up-level
field using
.Sq \*[Am]
as a prefix to the offset:
.Bd -literal -offset indent
0 string MZ
\*[Gt]0x18 leshort \*[Gt]0x3f
\*[Gt]\*[Gt](0x3c.l) string PE\e0\e0 PE executable (MS-Windows)
# immediately following the PE signature is the CPU type
\*[Gt]\*[Gt]\*[Gt]\*[Am]0 leshort 0x14c for Intel 80386
\*[Gt]\*[Gt]\*[Gt]\*[Am]0 leshort 0x184 for DEC Alpha
.Ed
.Pp
Indirect and relative offsets can be combined:
.Bd -literal -offset indent
0 string MZ
\*[Gt]0x18 leshort \*[Lt]0x40
\*[Gt]\*[Gt](4.s*512) leshort !0x014c MZ executable (MS-DOS)
# if it's not COFF, go back 512 bytes and add the offset taken
# from byte 2/3, which is yet another way of finding the start
# of the extended executable
\*[Gt]\*[Gt]\*[Gt]\*[Am](2.s-514) string LE LE executable (MS Windows VxD driver)
.Ed
.Pp
Or the other way around:
.Bd -literal -offset indent
0 string MZ
\*[Gt]0x18 leshort \*[Gt]0x3f
\*[Gt]\*[Gt](0x3c.l) string LE\e0\e0 LE executable (MS-Windows)
# at offset 0x80 (-4, since relative offsets start at the end
# of the up-level match) inside the LE header, we find the absolute
# offset to the code area, where we look for a specific signature
\*[Gt]\*[Gt]\*[Gt](\*[Am]0x7c.l+0x26) string UPX \eb, UPX compressed
.Ed
.Pp
Or even both!
.Bd -literal -offset indent
0 string MZ
\*[Gt]0x18 leshort \*[Gt]0x3f
\*[Gt]\*[Gt](0x3c.l) string LE\e0\e0 LE executable (MS-Windows)
# at offset 0x58 inside the LE header, we find the relative offset
# to a data area where we look for a specific signature
\*[Gt]\*[Gt]\*[Gt]\*[Am](\*[Am]0x54.l-3) string UNACE \eb, ACE self-extracting archive
.Ed
.Pp
Finally, if you have to deal with offset/length pairs in your file, even the
second value in a parenthesized expression can be taken from the file itself,
using another set of parentheses.
Note that this additional indirect offset is always relative to the
start of the main indirect offset.
.Bd -literal -offset indent
0 string MZ
\*[Gt]0x18 leshort \*[Gt]0x3f
\*[Gt]\*[Gt](0x3c.l) string PE\e0\e0 PE executable (MS-Windows)
# search for the PE section called ".idata"...
\*[Gt]\*[Gt]\*[Gt]\*[Am]0xf4 search/0x140 .idata
# ...and go to the end of it, calculated from start+length;
# these are located 14 and 10 bytes after the section name
\*[Gt]\*[Gt]\*[Gt]\*[Gt](\*[Am]0xe.l+(-4)) string PK\e3\e4 \eb, ZIP self-extracting archive
.Ed
.Sh SEE ALSO
.Xr file __CSECTION__
\- the command that reads this file.
.Sh BUGS
The formats
.Dv long ,
.Dv belong ,
.Dv lelong ,
.Dv melong ,
.Dv short ,
.Dv beshort ,
.Dv leshort ,
.Dv date ,
.Dv bedate ,
.Dv medate ,
.Dv ledate ,
.Dv beldate ,
.Dv leldate ,
2000-11-05 08:33:55 +00:00
and
.Dv meldate
2000-11-05 08:33:55 +00:00
are system-dependent; perhaps they should be specified as a number
of bytes (2B, 4B, etc),
2000-11-05 08:33:55 +00:00
since the files being recognized typically come from
a system on which the lengths are invariant.
.\"
.\" From: guy@sun.uucp (Guy Harris)
.\" Newsgroups: net.bugs.usg
.\" Subject: /etc/magic's format isn't well documented
.\" Message-ID: <2752@sun.uucp>
2000-11-05 08:33:55 +00:00
.\" Date: 3 Sep 85 08:19:07 GMT
.\" Organization: Sun Microsystems, Inc.
.\" Lines: 136
.\"
2000-11-05 08:33:55 +00:00
.\" Here's a manual page for the format accepted by the "file" made by adding
.\" the changes I posted to the S5R2 version.
.\"
.\" Modified for Ian Darwin's version of the file command.
.\" @(#)$Id: magic.man,v 1.39 2007/11/08 00:31:37 christos Exp $