2007-12-15 09:16:26 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 2007 David Schultz <das@FreeBSD.org>
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Tests for csqrt{,f}()
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <complex.h>
|
|
|
|
#include <float.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
#define N(i) (sizeof(i) / sizeof((i)[0]))
|
|
|
|
|
|
|
|
/*
|
2008-03-30 20:09:51 +00:00
|
|
|
* This is a test hook that can point to csqrtl(), _csqrt(), or to _csqrtf().
|
|
|
|
* The latter two convert to float or double, respectively, and test csqrtf()
|
|
|
|
* and csqrt() with the same arguments.
|
2007-12-15 09:16:26 +00:00
|
|
|
*/
|
2008-03-30 20:09:51 +00:00
|
|
|
long double complex (*t_csqrt)(long double complex);
|
2007-12-15 09:16:26 +00:00
|
|
|
|
2008-03-30 20:09:51 +00:00
|
|
|
static long double complex
|
|
|
|
_csqrtf(long double complex d)
|
2007-12-15 09:16:26 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
return (csqrtf((float complex)d));
|
|
|
|
}
|
|
|
|
|
2008-03-30 20:09:51 +00:00
|
|
|
static long double complex
|
|
|
|
_csqrt(long double complex d)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (csqrt((double complex)d));
|
|
|
|
}
|
|
|
|
|
2007-12-15 09:16:26 +00:00
|
|
|
#pragma STDC CX_LIMITED_RANGE off
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX gcc implements complex multiplication incorrectly. In
|
|
|
|
* particular, it implements it as if the CX_LIMITED_RANGE pragma
|
|
|
|
* were ON. Consequently, we need this function to form numbers
|
|
|
|
* such as x + INFINITY * I, since gcc evalutes INFINITY * I as
|
|
|
|
* NaN + INFINITY * I.
|
|
|
|
*/
|
2008-03-30 20:09:51 +00:00
|
|
|
static inline long double complex
|
|
|
|
cpackl(long double x, long double y)
|
2007-12-15 09:16:26 +00:00
|
|
|
{
|
2008-03-30 20:09:51 +00:00
|
|
|
long double complex z;
|
2007-12-15 09:16:26 +00:00
|
|
|
|
|
|
|
__real__ z = x;
|
|
|
|
__imag__ z = y;
|
|
|
|
return (z);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Compare d1 and d2 using special rules: NaN == NaN and +0 != -0.
|
|
|
|
* Fail an assertion if they differ.
|
|
|
|
*/
|
|
|
|
static void
|
2008-03-30 20:09:51 +00:00
|
|
|
assert_equal(long double complex d1, long double complex d2)
|
2007-12-15 09:16:26 +00:00
|
|
|
{
|
|
|
|
|
2008-03-30 20:09:51 +00:00
|
|
|
if (isnan(creall(d1))) {
|
|
|
|
assert(isnan(creall(d2)));
|
2007-12-15 09:16:26 +00:00
|
|
|
} else {
|
2008-03-30 20:09:51 +00:00
|
|
|
assert(creall(d1) == creall(d2));
|
|
|
|
assert(copysignl(1.0, creall(d1)) ==
|
|
|
|
copysignl(1.0, creall(d2)));
|
2007-12-15 09:16:26 +00:00
|
|
|
}
|
2008-03-30 20:09:51 +00:00
|
|
|
if (isnan(cimagl(d1))) {
|
|
|
|
assert(isnan(cimagl(d2)));
|
2007-12-15 09:16:26 +00:00
|
|
|
} else {
|
2008-03-30 20:09:51 +00:00
|
|
|
assert(cimagl(d1) == cimagl(d2));
|
|
|
|
assert(copysignl(1.0, cimagl(d1)) ==
|
|
|
|
copysignl(1.0, cimagl(d2)));
|
2007-12-15 09:16:26 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test csqrt for some finite arguments where the answer is exact.
|
|
|
|
* (We do not test if it produces correctly rounded answers when the
|
|
|
|
* result is inexact, nor do we check whether it throws spurious
|
|
|
|
* exceptions.)
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
test_finite()
|
|
|
|
{
|
|
|
|
static const double tests[] = {
|
|
|
|
/* csqrt(a + bI) = x + yI */
|
|
|
|
/* a b x y */
|
|
|
|
0, 8, 2, 2,
|
|
|
|
0, -8, 2, -2,
|
|
|
|
4, 0, 2, 0,
|
|
|
|
-4, 0, 0, 2,
|
|
|
|
3, 4, 2, 1,
|
|
|
|
3, -4, 2, -1,
|
|
|
|
-3, 4, 1, 2,
|
|
|
|
-3, -4, 1, -2,
|
|
|
|
5, 12, 3, 2,
|
|
|
|
7, 24, 4, 3,
|
|
|
|
9, 40, 5, 4,
|
|
|
|
11, 60, 6, 5,
|
|
|
|
13, 84, 7, 6,
|
|
|
|
33, 56, 7, 4,
|
|
|
|
39, 80, 8, 5,
|
|
|
|
65, 72, 9, 4,
|
|
|
|
987, 9916, 74, 67,
|
|
|
|
5289, 6640, 83, 40,
|
|
|
|
460766389075.0, 16762287900.0, 678910, 12345
|
|
|
|
};
|
|
|
|
/*
|
|
|
|
* We also test some multiples of the above arguments. This
|
|
|
|
* array defines which multiples we use. Note that these have
|
|
|
|
* to be small enough to not cause overflow for float precision
|
|
|
|
* with all of the constants in the above table.
|
|
|
|
*/
|
|
|
|
static const double mults[] = {
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
13,
|
|
|
|
16,
|
|
|
|
0x1.p30,
|
|
|
|
0x1.p-30,
|
|
|
|
};
|
|
|
|
|
|
|
|
double a, b;
|
|
|
|
double x, y;
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
for (i = 0; i < N(tests); i += 4) {
|
|
|
|
for (j = 0; j < N(mults); j++) {
|
|
|
|
a = tests[i] * mults[j] * mults[j];
|
|
|
|
b = tests[i + 1] * mults[j] * mults[j];
|
|
|
|
x = tests[i + 2] * mults[j];
|
|
|
|
y = tests[i + 3] * mults[j];
|
2008-03-30 20:09:51 +00:00
|
|
|
assert(t_csqrt(cpackl(a, b)) == cpackl(x, y));
|
2007-12-15 09:16:26 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test the handling of +/- 0.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
test_zeros()
|
|
|
|
{
|
|
|
|
|
2008-03-30 20:09:51 +00:00
|
|
|
assert_equal(t_csqrt(cpackl(0.0, 0.0)), cpackl(0.0, 0.0));
|
|
|
|
assert_equal(t_csqrt(cpackl(-0.0, 0.0)), cpackl(0.0, 0.0));
|
|
|
|
assert_equal(t_csqrt(cpackl(0.0, -0.0)), cpackl(0.0, -0.0));
|
|
|
|
assert_equal(t_csqrt(cpackl(-0.0, -0.0)), cpackl(0.0, -0.0));
|
2007-12-15 09:16:26 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test the handling of infinities when the other argument is not NaN.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
test_infinities()
|
|
|
|
{
|
|
|
|
static const double vals[] = {
|
|
|
|
0.0,
|
|
|
|
-0.0,
|
|
|
|
42.0,
|
|
|
|
-42.0,
|
|
|
|
INFINITY,
|
|
|
|
-INFINITY,
|
|
|
|
};
|
|
|
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < N(vals); i++) {
|
|
|
|
if (isfinite(vals[i])) {
|
2008-03-30 20:09:51 +00:00
|
|
|
assert_equal(t_csqrt(cpackl(-INFINITY, vals[i])),
|
|
|
|
cpackl(0.0, copysignl(INFINITY, vals[i])));
|
|
|
|
assert_equal(t_csqrt(cpackl(INFINITY, vals[i])),
|
|
|
|
cpackl(INFINITY, copysignl(0.0, vals[i])));
|
2007-12-15 09:16:26 +00:00
|
|
|
}
|
2008-03-30 20:09:51 +00:00
|
|
|
assert_equal(t_csqrt(cpackl(vals[i], INFINITY)),
|
|
|
|
cpackl(INFINITY, INFINITY));
|
|
|
|
assert_equal(t_csqrt(cpackl(vals[i], -INFINITY)),
|
|
|
|
cpackl(INFINITY, -INFINITY));
|
2007-12-15 09:16:26 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test the handling of NaNs.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
test_nans()
|
|
|
|
{
|
|
|
|
|
2008-03-30 20:09:51 +00:00
|
|
|
assert(creall(t_csqrt(cpackl(INFINITY, NAN))) == INFINITY);
|
|
|
|
assert(isnan(cimagl(t_csqrt(cpackl(INFINITY, NAN)))));
|
|
|
|
|
|
|
|
assert(isnan(creall(t_csqrt(cpackl(-INFINITY, NAN)))));
|
|
|
|
assert(isinf(cimagl(t_csqrt(cpackl(-INFINITY, NAN)))));
|
|
|
|
|
|
|
|
assert_equal(t_csqrt(cpackl(NAN, INFINITY)),
|
|
|
|
cpackl(INFINITY, INFINITY));
|
|
|
|
assert_equal(t_csqrt(cpackl(NAN, -INFINITY)),
|
|
|
|
cpackl(INFINITY, -INFINITY));
|
|
|
|
|
|
|
|
assert_equal(t_csqrt(cpackl(0.0, NAN)), cpackl(NAN, NAN));
|
|
|
|
assert_equal(t_csqrt(cpackl(-0.0, NAN)), cpackl(NAN, NAN));
|
|
|
|
assert_equal(t_csqrt(cpackl(42.0, NAN)), cpackl(NAN, NAN));
|
|
|
|
assert_equal(t_csqrt(cpackl(-42.0, NAN)), cpackl(NAN, NAN));
|
|
|
|
assert_equal(t_csqrt(cpackl(NAN, 0.0)), cpackl(NAN, NAN));
|
|
|
|
assert_equal(t_csqrt(cpackl(NAN, -0.0)), cpackl(NAN, NAN));
|
|
|
|
assert_equal(t_csqrt(cpackl(NAN, 42.0)), cpackl(NAN, NAN));
|
|
|
|
assert_equal(t_csqrt(cpackl(NAN, -42.0)), cpackl(NAN, NAN));
|
|
|
|
assert_equal(t_csqrt(cpackl(NAN, NAN)), cpackl(NAN, NAN));
|
2007-12-15 09:16:26 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test whether csqrt(a + bi) works for inputs that are large enough to
|
|
|
|
* cause overflow in hypot(a, b) + a. In this case we are using
|
|
|
|
* csqrt(115 + 252*I) == 14 + 9*I
|
|
|
|
* scaled up to near MAX_EXP.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
test_overflow(int maxexp)
|
|
|
|
{
|
2008-03-30 20:09:51 +00:00
|
|
|
long double a, b;
|
|
|
|
long double complex result;
|
|
|
|
|
|
|
|
a = ldexpl(115 * 0x1p-8, maxexp);
|
|
|
|
b = ldexpl(252 * 0x1p-8, maxexp);
|
|
|
|
result = t_csqrt(cpackl(a, b));
|
|
|
|
assert(creall(result) == ldexpl(14 * 0x1p-4, maxexp / 2));
|
|
|
|
assert(cimagl(result) == ldexpl(9 * 0x1p-4, maxexp / 2));
|
2007-12-15 09:16:26 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
main(int argc, char *argv[])
|
|
|
|
{
|
|
|
|
|
2008-03-30 20:09:51 +00:00
|
|
|
printf("1..15\n");
|
2007-12-15 09:16:26 +00:00
|
|
|
|
|
|
|
/* Test csqrt() */
|
2008-03-30 20:09:51 +00:00
|
|
|
t_csqrt = _csqrt;
|
2007-12-15 09:16:26 +00:00
|
|
|
|
|
|
|
test_finite();
|
|
|
|
printf("ok 1 - csqrt\n");
|
|
|
|
|
|
|
|
test_zeros();
|
|
|
|
printf("ok 2 - csqrt\n");
|
|
|
|
|
|
|
|
test_infinities();
|
|
|
|
printf("ok 3 - csqrt\n");
|
|
|
|
|
|
|
|
test_nans();
|
|
|
|
printf("ok 4 - csqrt\n");
|
|
|
|
|
|
|
|
test_overflow(DBL_MAX_EXP);
|
|
|
|
printf("ok 5 - csqrt\n");
|
|
|
|
|
|
|
|
/* Now test csqrtf() */
|
|
|
|
t_csqrt = _csqrtf;
|
|
|
|
|
|
|
|
test_finite();
|
|
|
|
printf("ok 6 - csqrt\n");
|
|
|
|
|
|
|
|
test_zeros();
|
|
|
|
printf("ok 7 - csqrt\n");
|
|
|
|
|
|
|
|
test_infinities();
|
|
|
|
printf("ok 8 - csqrt\n");
|
|
|
|
|
|
|
|
test_nans();
|
|
|
|
printf("ok 9 - csqrt\n");
|
|
|
|
|
|
|
|
test_overflow(FLT_MAX_EXP);
|
|
|
|
printf("ok 10 - csqrt\n");
|
|
|
|
|
2008-03-30 20:09:51 +00:00
|
|
|
/* Now test csqrtl() */
|
|
|
|
t_csqrt = csqrtl;
|
|
|
|
|
|
|
|
test_finite();
|
|
|
|
printf("ok 11 - csqrt\n");
|
|
|
|
|
|
|
|
test_zeros();
|
|
|
|
printf("ok 12 - csqrt\n");
|
|
|
|
|
|
|
|
test_infinities();
|
|
|
|
printf("ok 13 - csqrt\n");
|
|
|
|
|
|
|
|
test_nans();
|
|
|
|
printf("ok 14 - csqrt\n");
|
|
|
|
|
|
|
|
test_overflow(LDBL_MAX_EXP);
|
|
|
|
printf("ok 15 - csqrt\n");
|
|
|
|
|
2007-12-15 09:16:26 +00:00
|
|
|
return (0);
|
|
|
|
}
|