2007-08-10 11:00:30 +00:00
|
|
|
/* $NetBSD: tmpfs_subr.c,v 1.35 2007/07/09 21:10:50 ad Exp $ */
|
2007-06-16 01:56:05 +00:00
|
|
|
|
2008-09-03 18:53:48 +00:00
|
|
|
/*-
|
2007-06-16 01:56:05 +00:00
|
|
|
* Copyright (c) 2005 The NetBSD Foundation, Inc.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
|
|
* by Julio M. Merino Vidal, developed as part of Google's Summer of Code
|
|
|
|
* 2005 program.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Efficient memory file system supporting functions.
|
|
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/namei.h>
|
|
|
|
#include <sys/priv.h>
|
|
|
|
#include <sys/proc.h>
|
|
|
|
#include <sys/stat.h>
|
|
|
|
#include <sys/systm.h>
|
2012-03-14 09:15:50 +00:00
|
|
|
#include <sys/sysctl.h>
|
2007-06-16 01:56:05 +00:00
|
|
|
#include <sys/vnode.h>
|
|
|
|
#include <sys/vmmeter.h>
|
|
|
|
|
|
|
|
#include <vm/vm.h>
|
|
|
|
#include <vm/vm_object.h>
|
|
|
|
#include <vm/vm_page.h>
|
Correct an error of omission in the implementation of the truncation
operation on POSIX shared memory objects and tmpfs. Previously, neither of
these modules correctly handled the case in which the new size of the object
or file was not a multiple of the page size. Specifically, they did not
handle partial page truncation of data stored on swap. As a result, stale
data might later be returned to an application.
Interestingly, a data inconsistency was less likely to occur under tmpfs
than POSIX shared memory objects. The reason being that a different mistake
by the tmpfs truncation operation helped avoid a data inconsistency. If the
data was still resident in memory in a PG_CACHED page, then the tmpfs
truncation operation would reactivate that page, zero the truncated portion,
and leave the page pinned in memory. More precisely, the benevolent error
was that the truncation operation didn't add the reactivated page to any of
the paging queues, effectively pinning the page. This page would remain
pinned until the file was destroyed or the page was read or written. With
this change, the page is now added to the inactive queue.
Discussed with: jhb
Reviewed by: kib (an earlier version)
MFC after: 3 weeks
2012-01-08 20:09:26 +00:00
|
|
|
#include <vm/vm_pageout.h>
|
2007-06-16 01:56:05 +00:00
|
|
|
#include <vm/vm_pager.h>
|
|
|
|
#include <vm/vm_extern.h>
|
|
|
|
|
|
|
|
#include <fs/tmpfs/tmpfs.h>
|
|
|
|
#include <fs/tmpfs/tmpfs_fifoops.h>
|
|
|
|
#include <fs/tmpfs/tmpfs_vnops.h>
|
|
|
|
|
2012-03-14 09:15:50 +00:00
|
|
|
SYSCTL_NODE(_vfs, OID_AUTO, tmpfs, CTLFLAG_RW, 0, "tmpfs file system");
|
|
|
|
|
2007-06-16 01:56:05 +00:00
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocates a new node of type 'type' inside the 'tmp' mount point, with
|
|
|
|
* its owner set to 'uid', its group to 'gid' and its mode set to 'mode',
|
|
|
|
* using the credentials of the process 'p'.
|
|
|
|
*
|
|
|
|
* If the node type is set to 'VDIR', then the parent parameter must point
|
|
|
|
* to the parent directory of the node being created. It may only be NULL
|
|
|
|
* while allocating the root node.
|
|
|
|
*
|
|
|
|
* If the node type is set to 'VBLK' or 'VCHR', then the rdev parameter
|
|
|
|
* specifies the device the node represents.
|
|
|
|
*
|
|
|
|
* If the node type is set to 'VLNK', then the parameter target specifies
|
|
|
|
* the file name of the target file for the symbolic link that is being
|
|
|
|
* created.
|
|
|
|
*
|
|
|
|
* Note that new nodes are retrieved from the available list if it has
|
|
|
|
* items or, if it is empty, from the node pool as long as there is enough
|
|
|
|
* space to create them.
|
|
|
|
*
|
|
|
|
* Returns zero on success or an appropriate error code on failure.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
tmpfs_alloc_node(struct tmpfs_mount *tmp, enum vtype type,
|
|
|
|
uid_t uid, gid_t gid, mode_t mode, struct tmpfs_node *parent,
|
2009-05-11 15:33:26 +00:00
|
|
|
char *target, dev_t rdev, struct tmpfs_node **node)
|
2007-06-16 01:56:05 +00:00
|
|
|
{
|
|
|
|
struct tmpfs_node *nnode;
|
|
|
|
|
|
|
|
/* If the root directory of the 'tmp' file system is not yet
|
|
|
|
* allocated, this must be the request to do it. */
|
|
|
|
MPASS(IMPLIES(tmp->tm_root == NULL, parent == NULL && type == VDIR));
|
|
|
|
|
|
|
|
MPASS(IFF(type == VLNK, target != NULL));
|
|
|
|
MPASS(IFF(type == VBLK || type == VCHR, rdev != VNOVAL));
|
|
|
|
|
2010-01-20 16:56:20 +00:00
|
|
|
if (tmp->tm_nodes_inuse >= tmp->tm_nodes_max)
|
2007-06-25 18:46:13 +00:00
|
|
|
return (ENOSPC);
|
2007-06-16 01:56:05 +00:00
|
|
|
|
2007-06-25 18:46:13 +00:00
|
|
|
nnode = (struct tmpfs_node *)uma_zalloc_arg(
|
|
|
|
tmp->tm_node_pool, tmp, M_WAITOK);
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
/* Generic initialization. */
|
|
|
|
nnode->tn_type = type;
|
2007-06-28 02:34:32 +00:00
|
|
|
vfs_timestamp(&nnode->tn_atime);
|
2007-06-16 01:56:05 +00:00
|
|
|
nnode->tn_birthtime = nnode->tn_ctime = nnode->tn_mtime =
|
|
|
|
nnode->tn_atime;
|
|
|
|
nnode->tn_uid = uid;
|
|
|
|
nnode->tn_gid = gid;
|
|
|
|
nnode->tn_mode = mode;
|
2007-07-11 14:26:27 +00:00
|
|
|
nnode->tn_id = alloc_unr(tmp->tm_ino_unr);
|
2007-06-28 02:39:31 +00:00
|
|
|
|
2007-06-16 01:56:05 +00:00
|
|
|
/* Type-specific initialization. */
|
|
|
|
switch (nnode->tn_type) {
|
|
|
|
case VBLK:
|
|
|
|
case VCHR:
|
|
|
|
nnode->tn_rdev = rdev;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case VDIR:
|
|
|
|
TAILQ_INIT(&nnode->tn_dir.tn_dirhead);
|
2007-11-18 04:52:40 +00:00
|
|
|
MPASS(parent != nnode);
|
|
|
|
MPASS(IMPLIES(parent == NULL, tmp->tm_root == NULL));
|
2007-06-16 01:56:05 +00:00
|
|
|
nnode->tn_dir.tn_parent = (parent == NULL) ? nnode : parent;
|
|
|
|
nnode->tn_dir.tn_readdir_lastn = 0;
|
|
|
|
nnode->tn_dir.tn_readdir_lastp = NULL;
|
|
|
|
nnode->tn_links++;
|
2009-10-11 07:03:56 +00:00
|
|
|
TMPFS_NODE_LOCK(nnode->tn_dir.tn_parent);
|
2007-06-16 01:56:05 +00:00
|
|
|
nnode->tn_dir.tn_parent->tn_links++;
|
2009-10-11 07:03:56 +00:00
|
|
|
TMPFS_NODE_UNLOCK(nnode->tn_dir.tn_parent);
|
2007-06-16 01:56:05 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case VFIFO:
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case VSOCK:
|
|
|
|
break;
|
|
|
|
|
|
|
|
case VLNK:
|
|
|
|
MPASS(strlen(target) < MAXPATHLEN);
|
|
|
|
nnode->tn_size = strlen(target);
|
2007-06-29 05:23:15 +00:00
|
|
|
nnode->tn_link = malloc(nnode->tn_size, M_TMPFSNAME,
|
|
|
|
M_WAITOK);
|
2007-06-16 01:56:05 +00:00
|
|
|
memcpy(nnode->tn_link, target, nnode->tn_size);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case VREG:
|
2007-06-28 02:39:31 +00:00
|
|
|
nnode->tn_reg.tn_aobj =
|
Implement global and per-uid accounting of the anonymous memory. Add
rlimit RLIMIT_SWAP that limits the amount of swap that may be reserved
for the uid.
The accounting information (charge) is associated with either map entry,
or vm object backing the entry, assuming the object is the first one
in the shadow chain and entry does not require COW. Charge is moved
from entry to object on allocation of the object, e.g. during the mmap,
assuming the object is allocated, or on the first page fault on the
entry. It moves back to the entry on forks due to COW setup.
The per-entry granularity of accounting makes the charge process fair
for processes that change uid during lifetime, and decrements charge
for proper uid when region is unmapped.
The interface of vm_pager_allocate(9) is extended by adding struct ucred *,
that is used to charge appropriate uid when allocation if performed by
kernel, e.g. md(4).
Several syscalls, among them is fork(2), may now return ENOMEM when
global or per-uid limits are enforced.
In collaboration with: pho
Reviewed by: alc
Approved by: re (kensmith)
2009-06-23 20:45:22 +00:00
|
|
|
vm_pager_allocate(OBJT_SWAP, NULL, 0, VM_PROT_DEFAULT, 0,
|
|
|
|
NULL /* XXXKIB - tmpfs needs swap reservation */);
|
2007-06-16 01:56:05 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
2007-12-07 00:00:21 +00:00
|
|
|
panic("tmpfs_alloc_node: type %p %d", nnode, (int)nnode->tn_type);
|
2007-06-16 01:56:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
TMPFS_LOCK(tmp);
|
|
|
|
LIST_INSERT_HEAD(&tmp->tm_nodes_used, nnode, tn_entries);
|
|
|
|
tmp->tm_nodes_inuse++;
|
|
|
|
TMPFS_UNLOCK(tmp);
|
|
|
|
|
|
|
|
*node = nnode;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Destroys the node pointed to by node from the file system 'tmp'.
|
|
|
|
* If the node does not belong to the given mount point, the results are
|
|
|
|
* unpredicted.
|
|
|
|
*
|
|
|
|
* If the node references a directory; no entries are allowed because
|
|
|
|
* their removal could need a recursive algorithm, something forbidden in
|
|
|
|
* kernel space. Furthermore, there is not need to provide such
|
|
|
|
* functionality (recursive removal) because the only primitives offered
|
|
|
|
* to the user are the removal of empty directories and the deletion of
|
|
|
|
* individual files.
|
|
|
|
*
|
|
|
|
* Note that nodes are not really deleted; in fact, when a node has been
|
|
|
|
* allocated, it cannot be deleted during the whole life of the file
|
|
|
|
* system. Instead, they are moved to the available list and remain there
|
|
|
|
* until reused.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
tmpfs_free_node(struct tmpfs_mount *tmp, struct tmpfs_node *node)
|
|
|
|
{
|
2011-02-13 14:46:39 +00:00
|
|
|
vm_object_t uobj;
|
2007-06-16 01:56:05 +00:00
|
|
|
|
2007-08-10 05:24:49 +00:00
|
|
|
#ifdef INVARIANTS
|
|
|
|
TMPFS_NODE_LOCK(node);
|
|
|
|
MPASS(node->tn_vnode == NULL);
|
2009-10-11 07:03:56 +00:00
|
|
|
MPASS((node->tn_vpstate & TMPFS_VNODE_ALLOCATING) == 0);
|
2007-08-10 05:24:49 +00:00
|
|
|
TMPFS_NODE_UNLOCK(node);
|
|
|
|
#endif
|
|
|
|
|
2007-06-16 01:56:05 +00:00
|
|
|
TMPFS_LOCK(tmp);
|
|
|
|
LIST_REMOVE(node, tn_entries);
|
|
|
|
tmp->tm_nodes_inuse--;
|
|
|
|
TMPFS_UNLOCK(tmp);
|
|
|
|
|
|
|
|
switch (node->tn_type) {
|
|
|
|
case VNON:
|
|
|
|
/* Do not do anything. VNON is provided to let the
|
|
|
|
* allocation routine clean itself easily by avoiding
|
|
|
|
* duplicating code in it. */
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case VBLK:
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case VCHR:
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case VDIR:
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case VFIFO:
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case VSOCK:
|
|
|
|
break;
|
|
|
|
|
|
|
|
case VLNK:
|
2007-06-29 05:23:15 +00:00
|
|
|
free(node->tn_link, M_TMPFSNAME);
|
2007-06-16 01:56:05 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case VREG:
|
2011-02-13 14:46:39 +00:00
|
|
|
uobj = node->tn_reg.tn_aobj;
|
|
|
|
if (uobj != NULL) {
|
|
|
|
TMPFS_LOCK(tmp);
|
|
|
|
tmp->tm_pages_used -= uobj->size;
|
|
|
|
TMPFS_UNLOCK(tmp);
|
|
|
|
vm_object_deallocate(uobj);
|
|
|
|
}
|
2007-06-16 01:56:05 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
2007-12-07 00:00:21 +00:00
|
|
|
panic("tmpfs_free_node: type %p %d", node, (int)node->tn_type);
|
2007-06-16 01:56:05 +00:00
|
|
|
}
|
|
|
|
|
2007-07-11 14:26:27 +00:00
|
|
|
free_unr(tmp->tm_ino_unr, node->tn_id);
|
2007-06-25 18:46:13 +00:00
|
|
|
uma_zfree(tmp->tm_node_pool, node);
|
2007-06-16 01:56:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocates a new directory entry for the node node with a name of name.
|
|
|
|
* The new directory entry is returned in *de.
|
|
|
|
*
|
|
|
|
* The link count of node is increased by one to reflect the new object
|
|
|
|
* referencing it.
|
|
|
|
*
|
|
|
|
* Returns zero on success or an appropriate error code on failure.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
tmpfs_alloc_dirent(struct tmpfs_mount *tmp, struct tmpfs_node *node,
|
|
|
|
const char *name, uint16_t len, struct tmpfs_dirent **de)
|
|
|
|
{
|
|
|
|
struct tmpfs_dirent *nde;
|
|
|
|
|
2007-06-25 18:46:13 +00:00
|
|
|
nde = (struct tmpfs_dirent *)uma_zalloc(
|
2007-06-16 01:56:05 +00:00
|
|
|
tmp->tm_dirent_pool, M_WAITOK);
|
2007-06-29 05:23:15 +00:00
|
|
|
nde->td_name = malloc(len, M_TMPFSNAME, M_WAITOK);
|
2007-06-16 01:56:05 +00:00
|
|
|
nde->td_namelen = len;
|
|
|
|
memcpy(nde->td_name, name, len);
|
|
|
|
|
|
|
|
nde->td_node = node;
|
2010-08-22 05:36:06 +00:00
|
|
|
if (node != NULL)
|
|
|
|
node->tn_links++;
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
*de = nde;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Frees a directory entry. It is the caller's responsibility to destroy
|
|
|
|
* the node referenced by it if needed.
|
|
|
|
*
|
|
|
|
* The link count of node is decreased by one to reflect the removal of an
|
|
|
|
* object that referenced it. This only happens if 'node_exists' is true;
|
|
|
|
* otherwise the function will not access the node referred to by the
|
|
|
|
* directory entry, as it may already have been released from the outside.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
tmpfs_free_dirent(struct tmpfs_mount *tmp, struct tmpfs_dirent *de,
|
|
|
|
boolean_t node_exists)
|
|
|
|
{
|
|
|
|
if (node_exists) {
|
|
|
|
struct tmpfs_node *node;
|
|
|
|
|
|
|
|
node = de->td_node;
|
2010-08-22 05:36:06 +00:00
|
|
|
if (node != NULL) {
|
|
|
|
MPASS(node->tn_links > 0);
|
|
|
|
node->tn_links--;
|
|
|
|
}
|
2007-06-16 01:56:05 +00:00
|
|
|
}
|
|
|
|
|
2007-06-29 05:23:15 +00:00
|
|
|
free(de->td_name, M_TMPFSNAME);
|
2007-06-25 18:46:13 +00:00
|
|
|
uma_zfree(tmp->tm_dirent_pool, de);
|
2007-06-16 01:56:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocates a new vnode for the node node or returns a new reference to
|
|
|
|
* an existing one if the node had already a vnode referencing it. The
|
|
|
|
* resulting locked vnode is returned in *vpp.
|
|
|
|
*
|
|
|
|
* Returns zero on success or an appropriate error code on failure.
|
|
|
|
*/
|
|
|
|
int
|
2007-08-10 05:24:49 +00:00
|
|
|
tmpfs_alloc_vp(struct mount *mp, struct tmpfs_node *node, int lkflag,
|
2009-05-11 15:33:26 +00:00
|
|
|
struct vnode **vpp)
|
2007-06-16 01:56:05 +00:00
|
|
|
{
|
2007-08-10 11:00:30 +00:00
|
|
|
int error = 0;
|
2007-06-16 01:56:05 +00:00
|
|
|
struct vnode *vp;
|
|
|
|
|
|
|
|
loop:
|
2007-08-10 05:24:49 +00:00
|
|
|
TMPFS_NODE_LOCK(node);
|
2007-08-03 06:24:31 +00:00
|
|
|
if ((vp = node->tn_vnode) != NULL) {
|
2009-10-11 07:03:56 +00:00
|
|
|
MPASS((node->tn_vpstate & TMPFS_VNODE_DOOMED) == 0);
|
2007-08-10 05:24:49 +00:00
|
|
|
VI_LOCK(vp);
|
|
|
|
TMPFS_NODE_UNLOCK(node);
|
2012-03-14 08:29:21 +00:00
|
|
|
error = vget(vp, lkflag | LK_INTERLOCK, curthread);
|
|
|
|
if (error != 0) {
|
|
|
|
vp = NULL;
|
|
|
|
goto out;
|
|
|
|
}
|
2007-06-28 02:39:31 +00:00
|
|
|
|
2007-06-16 01:56:05 +00:00
|
|
|
/*
|
|
|
|
* Make sure the vnode is still there after
|
|
|
|
* getting the interlock to avoid racing a free.
|
|
|
|
*/
|
|
|
|
if (node->tn_vnode == NULL || node->tn_vnode != vp) {
|
|
|
|
vput(vp);
|
|
|
|
goto loop;
|
|
|
|
}
|
|
|
|
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2009-10-11 07:03:56 +00:00
|
|
|
if ((node->tn_vpstate & TMPFS_VNODE_DOOMED) ||
|
|
|
|
(node->tn_type == VDIR && node->tn_dir.tn_parent == NULL)) {
|
|
|
|
TMPFS_NODE_UNLOCK(node);
|
|
|
|
error = ENOENT;
|
|
|
|
vp = NULL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2007-06-16 01:56:05 +00:00
|
|
|
/*
|
|
|
|
* otherwise lock the vp list while we call getnewvnode
|
|
|
|
* since that can block.
|
|
|
|
*/
|
|
|
|
if (node->tn_vpstate & TMPFS_VNODE_ALLOCATING) {
|
|
|
|
node->tn_vpstate |= TMPFS_VNODE_WANT;
|
2007-08-03 06:24:31 +00:00
|
|
|
error = msleep((caddr_t) &node->tn_vpstate,
|
|
|
|
TMPFS_NODE_MTX(node), PDROP | PCATCH,
|
2007-08-10 05:24:49 +00:00
|
|
|
"tmpfs_alloc_vp", 0);
|
2007-08-03 06:24:31 +00:00
|
|
|
if (error)
|
|
|
|
return error;
|
2007-06-16 01:56:05 +00:00
|
|
|
|
2007-08-03 06:24:31 +00:00
|
|
|
goto loop;
|
|
|
|
} else
|
|
|
|
node->tn_vpstate |= TMPFS_VNODE_ALLOCATING;
|
|
|
|
|
2007-06-16 01:56:05 +00:00
|
|
|
TMPFS_NODE_UNLOCK(node);
|
|
|
|
|
|
|
|
/* Get a new vnode and associate it with our node. */
|
|
|
|
error = getnewvnode("tmpfs", mp, &tmpfs_vnodeop_entries, &vp);
|
|
|
|
if (error != 0)
|
|
|
|
goto unlock;
|
|
|
|
MPASS(vp != NULL);
|
|
|
|
|
2008-01-10 01:10:58 +00:00
|
|
|
(void) vn_lock(vp, lkflag | LK_RETRY);
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
vp->v_data = node;
|
|
|
|
vp->v_type = node->tn_type;
|
|
|
|
|
|
|
|
/* Type-specific initialization. */
|
|
|
|
switch (node->tn_type) {
|
|
|
|
case VBLK:
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case VCHR:
|
2007-08-03 06:24:31 +00:00
|
|
|
/* FALLTHROUGH */
|
2007-06-16 01:56:05 +00:00
|
|
|
case VLNK:
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case VREG:
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case VSOCK:
|
|
|
|
break;
|
2007-08-03 06:24:31 +00:00
|
|
|
case VFIFO:
|
|
|
|
vp->v_op = &tmpfs_fifoop_entries;
|
|
|
|
break;
|
2007-11-18 04:52:40 +00:00
|
|
|
case VDIR:
|
2009-10-11 07:03:56 +00:00
|
|
|
MPASS(node->tn_dir.tn_parent != NULL);
|
2007-11-18 04:52:40 +00:00
|
|
|
if (node->tn_dir.tn_parent == node)
|
|
|
|
vp->v_vflag |= VV_ROOT;
|
|
|
|
break;
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
default:
|
2007-12-07 00:00:21 +00:00
|
|
|
panic("tmpfs_alloc_vp: type %p %d", node, (int)node->tn_type);
|
2007-06-16 01:56:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
vnode_pager_setsize(vp, node->tn_size);
|
2007-07-08 15:56:12 +00:00
|
|
|
error = insmntque(vp, mp);
|
2008-06-15 18:40:58 +00:00
|
|
|
if (error)
|
2007-08-10 05:24:49 +00:00
|
|
|
vp = NULL;
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
unlock:
|
|
|
|
TMPFS_NODE_LOCK(node);
|
2007-08-10 05:24:49 +00:00
|
|
|
|
2007-08-03 06:24:31 +00:00
|
|
|
MPASS(node->tn_vpstate & TMPFS_VNODE_ALLOCATING);
|
2007-06-16 01:56:05 +00:00
|
|
|
node->tn_vpstate &= ~TMPFS_VNODE_ALLOCATING;
|
2007-08-10 05:24:49 +00:00
|
|
|
node->tn_vnode = vp;
|
2007-06-28 02:39:31 +00:00
|
|
|
|
2007-06-16 01:56:05 +00:00
|
|
|
if (node->tn_vpstate & TMPFS_VNODE_WANT) {
|
|
|
|
node->tn_vpstate &= ~TMPFS_VNODE_WANT;
|
|
|
|
TMPFS_NODE_UNLOCK(node);
|
|
|
|
wakeup((caddr_t) &node->tn_vpstate);
|
2007-06-28 02:34:32 +00:00
|
|
|
} else
|
2007-06-16 01:56:05 +00:00
|
|
|
TMPFS_NODE_UNLOCK(node);
|
2007-06-28 02:39:31 +00:00
|
|
|
|
2007-06-16 01:56:05 +00:00
|
|
|
out:
|
|
|
|
*vpp = vp;
|
|
|
|
|
2007-08-10 05:24:49 +00:00
|
|
|
#ifdef INVARIANTS
|
2012-03-14 08:29:21 +00:00
|
|
|
if (error == 0) {
|
|
|
|
MPASS(*vpp != NULL && VOP_ISLOCKED(*vpp));
|
|
|
|
TMPFS_NODE_LOCK(node);
|
|
|
|
MPASS(*vpp == node->tn_vnode);
|
|
|
|
TMPFS_NODE_UNLOCK(node);
|
|
|
|
}
|
2007-08-10 05:24:49 +00:00
|
|
|
#endif
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Destroys the association between the vnode vp and the node it
|
|
|
|
* references.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
tmpfs_free_vp(struct vnode *vp)
|
|
|
|
{
|
|
|
|
struct tmpfs_node *node;
|
|
|
|
|
|
|
|
node = VP_TO_TMPFS_NODE(vp);
|
|
|
|
|
2009-10-11 07:03:56 +00:00
|
|
|
mtx_assert(TMPFS_NODE_MTX(node), MA_OWNED);
|
2007-06-16 01:56:05 +00:00
|
|
|
node->tn_vnode = NULL;
|
|
|
|
vp->v_data = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocates a new file of type 'type' and adds it to the parent directory
|
|
|
|
* 'dvp'; this addition is done using the component name given in 'cnp'.
|
|
|
|
* The ownership of the new file is automatically assigned based on the
|
|
|
|
* credentials of the caller (through 'cnp'), the group is set based on
|
|
|
|
* the parent directory and the mode is determined from the 'vap' argument.
|
|
|
|
* If successful, *vpp holds a vnode to the newly created file and zero
|
|
|
|
* is returned. Otherwise *vpp is NULL and the function returns an
|
|
|
|
* appropriate error code.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
tmpfs_alloc_file(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
|
|
|
|
struct componentname *cnp, char *target)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
struct tmpfs_dirent *de;
|
|
|
|
struct tmpfs_mount *tmp;
|
|
|
|
struct tmpfs_node *dnode;
|
|
|
|
struct tmpfs_node *node;
|
|
|
|
struct tmpfs_node *parent;
|
|
|
|
|
2008-02-25 18:45:57 +00:00
|
|
|
MPASS(VOP_ISLOCKED(dvp));
|
2007-06-16 01:56:05 +00:00
|
|
|
MPASS(cnp->cn_flags & HASBUF);
|
|
|
|
|
|
|
|
tmp = VFS_TO_TMPFS(dvp->v_mount);
|
|
|
|
dnode = VP_TO_TMPFS_DIR(dvp);
|
|
|
|
*vpp = NULL;
|
|
|
|
|
|
|
|
/* If the entry we are creating is a directory, we cannot overflow
|
|
|
|
* the number of links of its parent, because it will get a new
|
|
|
|
* link. */
|
|
|
|
if (vap->va_type == VDIR) {
|
|
|
|
/* Ensure that we do not overflow the maximum number of links
|
|
|
|
* imposed by the system. */
|
|
|
|
MPASS(dnode->tn_links <= LINK_MAX);
|
|
|
|
if (dnode->tn_links == LINK_MAX) {
|
|
|
|
error = EMLINK;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
parent = dnode;
|
2007-11-18 04:52:40 +00:00
|
|
|
MPASS(parent != NULL);
|
2007-06-16 01:56:05 +00:00
|
|
|
} else
|
|
|
|
parent = NULL;
|
|
|
|
|
|
|
|
/* Allocate a node that represents the new file. */
|
|
|
|
error = tmpfs_alloc_node(tmp, vap->va_type, cnp->cn_cred->cr_uid,
|
2009-05-11 15:33:26 +00:00
|
|
|
dnode->tn_gid, vap->va_mode, parent, target, vap->va_rdev, &node);
|
2007-06-16 01:56:05 +00:00
|
|
|
if (error != 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* Allocate a directory entry that points to the new file. */
|
|
|
|
error = tmpfs_alloc_dirent(tmp, node, cnp->cn_nameptr, cnp->cn_namelen,
|
|
|
|
&de);
|
|
|
|
if (error != 0) {
|
|
|
|
tmpfs_free_node(tmp, node);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocate a vnode for the new file. */
|
2009-05-11 15:33:26 +00:00
|
|
|
error = tmpfs_alloc_vp(dvp->v_mount, node, LK_EXCLUSIVE, vpp);
|
2007-06-16 01:56:05 +00:00
|
|
|
if (error != 0) {
|
|
|
|
tmpfs_free_dirent(tmp, de, TRUE);
|
|
|
|
tmpfs_free_node(tmp, node);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now that all required items are allocated, we can proceed to
|
|
|
|
* insert the new node into the directory, an operation that
|
|
|
|
* cannot fail. */
|
2010-08-22 05:36:06 +00:00
|
|
|
if (cnp->cn_flags & ISWHITEOUT)
|
|
|
|
tmpfs_dir_whiteout_remove(dvp, cnp);
|
2007-06-16 01:56:05 +00:00
|
|
|
tmpfs_dir_attach(dvp, de);
|
|
|
|
|
|
|
|
out:
|
|
|
|
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Attaches the directory entry de to the directory represented by vp.
|
|
|
|
* Note that this does not change the link count of the node pointed by
|
|
|
|
* the directory entry, as this is done by tmpfs_alloc_dirent.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
tmpfs_dir_attach(struct vnode *vp, struct tmpfs_dirent *de)
|
|
|
|
{
|
|
|
|
struct tmpfs_node *dnode;
|
|
|
|
|
2007-08-03 06:24:31 +00:00
|
|
|
ASSERT_VOP_ELOCKED(vp, __func__);
|
2007-06-16 01:56:05 +00:00
|
|
|
dnode = VP_TO_TMPFS_DIR(vp);
|
|
|
|
TAILQ_INSERT_TAIL(&dnode->tn_dir.tn_dirhead, de, td_entries);
|
|
|
|
dnode->tn_size += sizeof(struct tmpfs_dirent);
|
|
|
|
dnode->tn_status |= TMPFS_NODE_ACCESSED | TMPFS_NODE_CHANGED | \
|
|
|
|
TMPFS_NODE_MODIFIED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Detaches the directory entry de from the directory represented by vp.
|
|
|
|
* Note that this does not change the link count of the node pointed by
|
|
|
|
* the directory entry, as this is done by tmpfs_free_dirent.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
tmpfs_dir_detach(struct vnode *vp, struct tmpfs_dirent *de)
|
|
|
|
{
|
|
|
|
struct tmpfs_node *dnode;
|
|
|
|
|
2007-08-03 06:24:31 +00:00
|
|
|
ASSERT_VOP_ELOCKED(vp, __func__);
|
2007-06-16 01:56:05 +00:00
|
|
|
dnode = VP_TO_TMPFS_DIR(vp);
|
|
|
|
|
|
|
|
if (dnode->tn_dir.tn_readdir_lastp == de) {
|
|
|
|
dnode->tn_dir.tn_readdir_lastn = 0;
|
|
|
|
dnode->tn_dir.tn_readdir_lastp = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
TAILQ_REMOVE(&dnode->tn_dir.tn_dirhead, de, td_entries);
|
|
|
|
dnode->tn_size -= sizeof(struct tmpfs_dirent);
|
|
|
|
dnode->tn_status |= TMPFS_NODE_ACCESSED | TMPFS_NODE_CHANGED | \
|
|
|
|
TMPFS_NODE_MODIFIED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Looks for a directory entry in the directory represented by node.
|
|
|
|
* 'cnp' describes the name of the entry to look for. Note that the .
|
|
|
|
* and .. components are not allowed as they do not physically exist
|
|
|
|
* within directories.
|
|
|
|
*
|
|
|
|
* Returns a pointer to the entry when found, otherwise NULL.
|
|
|
|
*/
|
|
|
|
struct tmpfs_dirent *
|
2009-02-08 19:18:33 +00:00
|
|
|
tmpfs_dir_lookup(struct tmpfs_node *node, struct tmpfs_node *f,
|
|
|
|
struct componentname *cnp)
|
2007-06-16 01:56:05 +00:00
|
|
|
{
|
|
|
|
boolean_t found;
|
|
|
|
struct tmpfs_dirent *de;
|
|
|
|
|
|
|
|
MPASS(IMPLIES(cnp->cn_namelen == 1, cnp->cn_nameptr[0] != '.'));
|
|
|
|
MPASS(IMPLIES(cnp->cn_namelen == 2, !(cnp->cn_nameptr[0] == '.' &&
|
|
|
|
cnp->cn_nameptr[1] == '.')));
|
|
|
|
TMPFS_VALIDATE_DIR(node);
|
|
|
|
|
|
|
|
found = 0;
|
|
|
|
TAILQ_FOREACH(de, &node->tn_dir.tn_dirhead, td_entries) {
|
2009-02-08 19:18:33 +00:00
|
|
|
if (f != NULL && de->td_node != f)
|
|
|
|
continue;
|
2007-06-16 01:56:05 +00:00
|
|
|
MPASS(cnp->cn_namelen < 0xffff);
|
|
|
|
if (de->td_namelen == (uint16_t)cnp->cn_namelen &&
|
2008-09-23 14:45:10 +00:00
|
|
|
bcmp(de->td_name, cnp->cn_nameptr, de->td_namelen) == 0) {
|
2007-06-16 01:56:05 +00:00
|
|
|
found = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
node->tn_status |= TMPFS_NODE_ACCESSED;
|
2007-06-28 02:39:31 +00:00
|
|
|
|
2007-06-16 01:56:05 +00:00
|
|
|
return found ? de : NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Helper function for tmpfs_readdir. Creates a '.' entry for the given
|
|
|
|
* directory and returns it in the uio space. The function returns 0
|
|
|
|
* on success, -1 if there was not enough space in the uio structure to
|
|
|
|
* hold the directory entry or an appropriate error code if another
|
|
|
|
* error happens.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
tmpfs_dir_getdotdent(struct tmpfs_node *node, struct uio *uio)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
struct dirent dent;
|
|
|
|
|
|
|
|
TMPFS_VALIDATE_DIR(node);
|
|
|
|
MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOT);
|
|
|
|
|
|
|
|
dent.d_fileno = node->tn_id;
|
|
|
|
dent.d_type = DT_DIR;
|
|
|
|
dent.d_namlen = 1;
|
|
|
|
dent.d_name[0] = '.';
|
|
|
|
dent.d_name[1] = '\0';
|
|
|
|
dent.d_reclen = GENERIC_DIRSIZ(&dent);
|
|
|
|
|
|
|
|
if (dent.d_reclen > uio->uio_resid)
|
|
|
|
error = -1;
|
|
|
|
else {
|
|
|
|
error = uiomove(&dent, dent.d_reclen, uio);
|
|
|
|
if (error == 0)
|
|
|
|
uio->uio_offset = TMPFS_DIRCOOKIE_DOTDOT;
|
|
|
|
}
|
|
|
|
|
|
|
|
node->tn_status |= TMPFS_NODE_ACCESSED;
|
|
|
|
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Helper function for tmpfs_readdir. Creates a '..' entry for the given
|
|
|
|
* directory and returns it in the uio space. The function returns 0
|
|
|
|
* on success, -1 if there was not enough space in the uio structure to
|
|
|
|
* hold the directory entry or an appropriate error code if another
|
|
|
|
* error happens.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
tmpfs_dir_getdotdotdent(struct tmpfs_node *node, struct uio *uio)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
struct dirent dent;
|
|
|
|
|
|
|
|
TMPFS_VALIDATE_DIR(node);
|
|
|
|
MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOTDOT);
|
|
|
|
|
2009-10-11 07:03:56 +00:00
|
|
|
/*
|
|
|
|
* Return ENOENT if the current node is already removed.
|
|
|
|
*/
|
|
|
|
TMPFS_ASSERT_LOCKED(node);
|
|
|
|
if (node->tn_dir.tn_parent == NULL) {
|
|
|
|
return (ENOENT);
|
|
|
|
}
|
|
|
|
|
|
|
|
TMPFS_NODE_LOCK(node->tn_dir.tn_parent);
|
2007-06-16 01:56:05 +00:00
|
|
|
dent.d_fileno = node->tn_dir.tn_parent->tn_id;
|
2009-10-11 07:03:56 +00:00
|
|
|
TMPFS_NODE_UNLOCK(node->tn_dir.tn_parent);
|
|
|
|
|
2007-06-16 01:56:05 +00:00
|
|
|
dent.d_type = DT_DIR;
|
|
|
|
dent.d_namlen = 2;
|
|
|
|
dent.d_name[0] = '.';
|
|
|
|
dent.d_name[1] = '.';
|
|
|
|
dent.d_name[2] = '\0';
|
|
|
|
dent.d_reclen = GENERIC_DIRSIZ(&dent);
|
|
|
|
|
|
|
|
if (dent.d_reclen > uio->uio_resid)
|
|
|
|
error = -1;
|
|
|
|
else {
|
|
|
|
error = uiomove(&dent, dent.d_reclen, uio);
|
|
|
|
if (error == 0) {
|
|
|
|
struct tmpfs_dirent *de;
|
|
|
|
|
|
|
|
de = TAILQ_FIRST(&node->tn_dir.tn_dirhead);
|
|
|
|
if (de == NULL)
|
|
|
|
uio->uio_offset = TMPFS_DIRCOOKIE_EOF;
|
|
|
|
else
|
2007-08-10 11:00:30 +00:00
|
|
|
uio->uio_offset = tmpfs_dircookie(de);
|
2007-06-16 01:56:05 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
node->tn_status |= TMPFS_NODE_ACCESSED;
|
|
|
|
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Lookup a directory entry by its associated cookie.
|
|
|
|
*/
|
|
|
|
struct tmpfs_dirent *
|
|
|
|
tmpfs_dir_lookupbycookie(struct tmpfs_node *node, off_t cookie)
|
|
|
|
{
|
|
|
|
struct tmpfs_dirent *de;
|
|
|
|
|
|
|
|
if (cookie == node->tn_dir.tn_readdir_lastn &&
|
|
|
|
node->tn_dir.tn_readdir_lastp != NULL) {
|
|
|
|
return node->tn_dir.tn_readdir_lastp;
|
|
|
|
}
|
|
|
|
|
|
|
|
TAILQ_FOREACH(de, &node->tn_dir.tn_dirhead, td_entries) {
|
2007-08-10 11:00:30 +00:00
|
|
|
if (tmpfs_dircookie(de) == cookie) {
|
2007-06-16 01:56:05 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return de;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Helper function for tmpfs_readdir. Returns as much directory entries
|
|
|
|
* as can fit in the uio space. The read starts at uio->uio_offset.
|
|
|
|
* The function returns 0 on success, -1 if there was not enough space
|
|
|
|
* in the uio structure to hold the directory entry or an appropriate
|
|
|
|
* error code if another error happens.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
tmpfs_dir_getdents(struct tmpfs_node *node, struct uio *uio, off_t *cntp)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
off_t startcookie;
|
|
|
|
struct tmpfs_dirent *de;
|
|
|
|
|
|
|
|
TMPFS_VALIDATE_DIR(node);
|
|
|
|
|
|
|
|
/* Locate the first directory entry we have to return. We have cached
|
|
|
|
* the last readdir in the node, so use those values if appropriate.
|
|
|
|
* Otherwise do a linear scan to find the requested entry. */
|
|
|
|
startcookie = uio->uio_offset;
|
|
|
|
MPASS(startcookie != TMPFS_DIRCOOKIE_DOT);
|
|
|
|
MPASS(startcookie != TMPFS_DIRCOOKIE_DOTDOT);
|
|
|
|
if (startcookie == TMPFS_DIRCOOKIE_EOF) {
|
|
|
|
return 0;
|
|
|
|
} else {
|
|
|
|
de = tmpfs_dir_lookupbycookie(node, startcookie);
|
|
|
|
}
|
|
|
|
if (de == NULL) {
|
|
|
|
return EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Read as much entries as possible; i.e., until we reach the end of
|
|
|
|
* the directory or we exhaust uio space. */
|
|
|
|
do {
|
|
|
|
struct dirent d;
|
|
|
|
|
|
|
|
/* Create a dirent structure representing the current
|
|
|
|
* tmpfs_node and fill it. */
|
2010-08-22 05:36:06 +00:00
|
|
|
if (de->td_node == NULL) {
|
|
|
|
d.d_fileno = 1;
|
|
|
|
d.d_type = DT_WHT;
|
|
|
|
} else {
|
|
|
|
d.d_fileno = de->td_node->tn_id;
|
|
|
|
switch (de->td_node->tn_type) {
|
|
|
|
case VBLK:
|
|
|
|
d.d_type = DT_BLK;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case VCHR:
|
|
|
|
d.d_type = DT_CHR;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case VDIR:
|
|
|
|
d.d_type = DT_DIR;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case VFIFO:
|
|
|
|
d.d_type = DT_FIFO;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case VLNK:
|
|
|
|
d.d_type = DT_LNK;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case VREG:
|
|
|
|
d.d_type = DT_REG;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case VSOCK:
|
|
|
|
d.d_type = DT_SOCK;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
panic("tmpfs_dir_getdents: type %p %d",
|
|
|
|
de->td_node, (int)de->td_node->tn_type);
|
|
|
|
}
|
2007-06-16 01:56:05 +00:00
|
|
|
}
|
|
|
|
d.d_namlen = de->td_namelen;
|
|
|
|
MPASS(de->td_namelen < sizeof(d.d_name));
|
|
|
|
(void)memcpy(d.d_name, de->td_name, de->td_namelen);
|
|
|
|
d.d_name[de->td_namelen] = '\0';
|
|
|
|
d.d_reclen = GENERIC_DIRSIZ(&d);
|
|
|
|
|
|
|
|
/* Stop reading if the directory entry we are treating is
|
|
|
|
* bigger than the amount of data that can be returned. */
|
|
|
|
if (d.d_reclen > uio->uio_resid) {
|
|
|
|
error = -1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Copy the new dirent structure into the output buffer and
|
|
|
|
* advance pointers. */
|
|
|
|
error = uiomove(&d, d.d_reclen, uio);
|
2011-01-20 09:39:16 +00:00
|
|
|
if (error == 0) {
|
|
|
|
(*cntp)++;
|
|
|
|
de = TAILQ_NEXT(de, td_entries);
|
|
|
|
}
|
2007-06-16 01:56:05 +00:00
|
|
|
} while (error == 0 && uio->uio_resid > 0 && de != NULL);
|
|
|
|
|
|
|
|
/* Update the offset and cache. */
|
|
|
|
if (de == NULL) {
|
|
|
|
uio->uio_offset = TMPFS_DIRCOOKIE_EOF;
|
|
|
|
node->tn_dir.tn_readdir_lastn = 0;
|
|
|
|
node->tn_dir.tn_readdir_lastp = NULL;
|
|
|
|
} else {
|
2007-08-10 11:00:30 +00:00
|
|
|
node->tn_dir.tn_readdir_lastn = uio->uio_offset = tmpfs_dircookie(de);
|
2007-06-16 01:56:05 +00:00
|
|
|
node->tn_dir.tn_readdir_lastp = de;
|
|
|
|
}
|
|
|
|
|
|
|
|
node->tn_status |= TMPFS_NODE_ACCESSED;
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
2010-08-22 05:36:06 +00:00
|
|
|
int
|
|
|
|
tmpfs_dir_whiteout_add(struct vnode *dvp, struct componentname *cnp)
|
|
|
|
{
|
|
|
|
struct tmpfs_dirent *de;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
error = tmpfs_alloc_dirent(VFS_TO_TMPFS(dvp->v_mount), NULL,
|
|
|
|
cnp->cn_nameptr, cnp->cn_namelen, &de);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
tmpfs_dir_attach(dvp, de);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
tmpfs_dir_whiteout_remove(struct vnode *dvp, struct componentname *cnp)
|
|
|
|
{
|
|
|
|
struct tmpfs_dirent *de;
|
|
|
|
|
|
|
|
de = tmpfs_dir_lookup(VP_TO_TMPFS_DIR(dvp), NULL, cnp);
|
|
|
|
MPASS(de != NULL && de->td_node == NULL);
|
|
|
|
tmpfs_dir_detach(dvp, de);
|
|
|
|
tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de, TRUE);
|
|
|
|
}
|
|
|
|
|
2007-06-16 01:56:05 +00:00
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
2011-02-14 15:36:38 +00:00
|
|
|
* Resizes the aobj associated with the regular file pointed to by 'vp' to the
|
|
|
|
* size 'newsize'. 'vp' must point to a vnode that represents a regular file.
|
|
|
|
* 'newsize' must be positive.
|
2007-06-16 01:56:05 +00:00
|
|
|
*
|
|
|
|
* Returns zero on success or an appropriate error code on failure.
|
|
|
|
*/
|
|
|
|
int
|
2012-01-16 00:26:49 +00:00
|
|
|
tmpfs_reg_resize(struct vnode *vp, off_t newsize, boolean_t ignerr)
|
2007-06-16 01:56:05 +00:00
|
|
|
{
|
|
|
|
struct tmpfs_mount *tmp;
|
|
|
|
struct tmpfs_node *node;
|
2011-02-13 14:46:39 +00:00
|
|
|
vm_object_t uobj;
|
Correct an error of omission in the implementation of the truncation
operation on POSIX shared memory objects and tmpfs. Previously, neither of
these modules correctly handled the case in which the new size of the object
or file was not a multiple of the page size. Specifically, they did not
handle partial page truncation of data stored on swap. As a result, stale
data might later be returned to an application.
Interestingly, a data inconsistency was less likely to occur under tmpfs
than POSIX shared memory objects. The reason being that a different mistake
by the tmpfs truncation operation helped avoid a data inconsistency. If the
data was still resident in memory in a PG_CACHED page, then the tmpfs
truncation operation would reactivate that page, zero the truncated portion,
and leave the page pinned in memory. More precisely, the benevolent error
was that the truncation operation didn't add the reactivated page to any of
the paging queues, effectively pinning the page. This page would remain
pinned until the file was destroyed or the page was read or written. With
this change, the page is now added to the inactive queue.
Discussed with: jhb
Reviewed by: kib (an earlier version)
MFC after: 3 weeks
2012-01-08 20:09:26 +00:00
|
|
|
vm_page_t m, ma[1];
|
|
|
|
vm_pindex_t idx, newpages, oldpages;
|
2007-06-16 01:56:05 +00:00
|
|
|
off_t oldsize;
|
Correct an error of omission in the implementation of the truncation
operation on POSIX shared memory objects and tmpfs. Previously, neither of
these modules correctly handled the case in which the new size of the object
or file was not a multiple of the page size. Specifically, they did not
handle partial page truncation of data stored on swap. As a result, stale
data might later be returned to an application.
Interestingly, a data inconsistency was less likely to occur under tmpfs
than POSIX shared memory objects. The reason being that a different mistake
by the tmpfs truncation operation helped avoid a data inconsistency. If the
data was still resident in memory in a PG_CACHED page, then the tmpfs
truncation operation would reactivate that page, zero the truncated portion,
and leave the page pinned in memory. More precisely, the benevolent error
was that the truncation operation didn't add the reactivated page to any of
the paging queues, effectively pinning the page. This page would remain
pinned until the file was destroyed or the page was read or written. With
this change, the page is now added to the inactive queue.
Discussed with: jhb
Reviewed by: kib (an earlier version)
MFC after: 3 weeks
2012-01-08 20:09:26 +00:00
|
|
|
int base, rv;
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
MPASS(vp->v_type == VREG);
|
|
|
|
MPASS(newsize >= 0);
|
|
|
|
|
|
|
|
node = VP_TO_TMPFS_NODE(vp);
|
2011-02-13 14:46:39 +00:00
|
|
|
uobj = node->tn_reg.tn_aobj;
|
2007-06-16 01:56:05 +00:00
|
|
|
tmp = VFS_TO_TMPFS(vp->v_mount);
|
|
|
|
|
2011-02-14 15:36:38 +00:00
|
|
|
/*
|
|
|
|
* Convert the old and new sizes to the number of pages needed to
|
2007-06-16 01:56:05 +00:00
|
|
|
* store them. It may happen that we do not need to do anything
|
|
|
|
* because the last allocated page can accommodate the change on
|
2011-02-14 15:36:38 +00:00
|
|
|
* its own.
|
|
|
|
*/
|
2007-06-16 01:56:05 +00:00
|
|
|
oldsize = node->tn_size;
|
2011-02-13 14:46:39 +00:00
|
|
|
oldpages = OFF_TO_IDX(oldsize + PAGE_MASK);
|
|
|
|
MPASS(oldpages == uobj->size);
|
|
|
|
newpages = OFF_TO_IDX(newsize + PAGE_MASK);
|
2007-06-16 01:56:05 +00:00
|
|
|
if (newpages > oldpages &&
|
2011-02-14 15:36:38 +00:00
|
|
|
newpages - oldpages > TMPFS_PAGES_AVAIL(tmp))
|
|
|
|
return (ENOSPC);
|
2007-06-16 01:56:05 +00:00
|
|
|
|
2011-02-13 14:46:39 +00:00
|
|
|
VM_OBJECT_LOCK(uobj);
|
2007-06-16 01:56:05 +00:00
|
|
|
if (newsize < oldsize) {
|
Correct an error of omission in the implementation of the truncation
operation on POSIX shared memory objects and tmpfs. Previously, neither of
these modules correctly handled the case in which the new size of the object
or file was not a multiple of the page size. Specifically, they did not
handle partial page truncation of data stored on swap. As a result, stale
data might later be returned to an application.
Interestingly, a data inconsistency was less likely to occur under tmpfs
than POSIX shared memory objects. The reason being that a different mistake
by the tmpfs truncation operation helped avoid a data inconsistency. If the
data was still resident in memory in a PG_CACHED page, then the tmpfs
truncation operation would reactivate that page, zero the truncated portion,
and leave the page pinned in memory. More precisely, the benevolent error
was that the truncation operation didn't add the reactivated page to any of
the paging queues, effectively pinning the page. This page would remain
pinned until the file was destroyed or the page was read or written. With
this change, the page is now added to the inactive queue.
Discussed with: jhb
Reviewed by: kib (an earlier version)
MFC after: 3 weeks
2012-01-08 20:09:26 +00:00
|
|
|
/*
|
|
|
|
* Zero the truncated part of the last page.
|
|
|
|
*/
|
|
|
|
base = newsize & PAGE_MASK;
|
|
|
|
if (base != 0) {
|
|
|
|
idx = OFF_TO_IDX(newsize);
|
|
|
|
retry:
|
|
|
|
m = vm_page_lookup(uobj, idx);
|
|
|
|
if (m != NULL) {
|
|
|
|
if ((m->oflags & VPO_BUSY) != 0 ||
|
|
|
|
m->busy != 0) {
|
|
|
|
vm_page_sleep(m, "tmfssz");
|
|
|
|
goto retry;
|
|
|
|
}
|
2012-01-14 23:04:27 +00:00
|
|
|
MPASS(m->valid == VM_PAGE_BITS_ALL);
|
Correct an error of omission in the implementation of the truncation
operation on POSIX shared memory objects and tmpfs. Previously, neither of
these modules correctly handled the case in which the new size of the object
or file was not a multiple of the page size. Specifically, they did not
handle partial page truncation of data stored on swap. As a result, stale
data might later be returned to an application.
Interestingly, a data inconsistency was less likely to occur under tmpfs
than POSIX shared memory objects. The reason being that a different mistake
by the tmpfs truncation operation helped avoid a data inconsistency. If the
data was still resident in memory in a PG_CACHED page, then the tmpfs
truncation operation would reactivate that page, zero the truncated portion,
and leave the page pinned in memory. More precisely, the benevolent error
was that the truncation operation didn't add the reactivated page to any of
the paging queues, effectively pinning the page. This page would remain
pinned until the file was destroyed or the page was read or written. With
this change, the page is now added to the inactive queue.
Discussed with: jhb
Reviewed by: kib (an earlier version)
MFC after: 3 weeks
2012-01-08 20:09:26 +00:00
|
|
|
} else if (vm_pager_has_page(uobj, idx, NULL, NULL)) {
|
|
|
|
m = vm_page_alloc(uobj, idx, VM_ALLOC_NORMAL);
|
|
|
|
if (m == NULL) {
|
|
|
|
VM_OBJECT_UNLOCK(uobj);
|
|
|
|
VM_WAIT;
|
|
|
|
VM_OBJECT_LOCK(uobj);
|
|
|
|
goto retry;
|
|
|
|
} else if (m->valid != VM_PAGE_BITS_ALL) {
|
|
|
|
ma[0] = m;
|
|
|
|
rv = vm_pager_get_pages(uobj, ma, 1, 0);
|
|
|
|
m = vm_page_lookup(uobj, idx);
|
|
|
|
} else
|
|
|
|
/* A cached page was reactivated. */
|
|
|
|
rv = VM_PAGER_OK;
|
|
|
|
vm_page_lock(m);
|
|
|
|
if (rv == VM_PAGER_OK) {
|
|
|
|
vm_page_deactivate(m);
|
|
|
|
vm_page_unlock(m);
|
|
|
|
vm_page_wakeup(m);
|
|
|
|
} else {
|
|
|
|
vm_page_free(m);
|
|
|
|
vm_page_unlock(m);
|
2012-01-16 00:26:49 +00:00
|
|
|
if (ignerr)
|
|
|
|
m = NULL;
|
|
|
|
else {
|
|
|
|
VM_OBJECT_UNLOCK(uobj);
|
|
|
|
return (EIO);
|
|
|
|
}
|
Correct an error of omission in the implementation of the truncation
operation on POSIX shared memory objects and tmpfs. Previously, neither of
these modules correctly handled the case in which the new size of the object
or file was not a multiple of the page size. Specifically, they did not
handle partial page truncation of data stored on swap. As a result, stale
data might later be returned to an application.
Interestingly, a data inconsistency was less likely to occur under tmpfs
than POSIX shared memory objects. The reason being that a different mistake
by the tmpfs truncation operation helped avoid a data inconsistency. If the
data was still resident in memory in a PG_CACHED page, then the tmpfs
truncation operation would reactivate that page, zero the truncated portion,
and leave the page pinned in memory. More precisely, the benevolent error
was that the truncation operation didn't add the reactivated page to any of
the paging queues, effectively pinning the page. This page would remain
pinned until the file was destroyed or the page was read or written. With
this change, the page is now added to the inactive queue.
Discussed with: jhb
Reviewed by: kib (an earlier version)
MFC after: 3 weeks
2012-01-08 20:09:26 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
if (m != NULL) {
|
|
|
|
pmap_zero_page_area(m, base, PAGE_SIZE - base);
|
|
|
|
vm_page_dirty(m);
|
|
|
|
vm_pager_page_unswapped(m);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-06-16 01:56:05 +00:00
|
|
|
/*
|
2011-02-14 15:36:38 +00:00
|
|
|
* Release any swap space and free any whole pages.
|
2007-06-16 01:56:05 +00:00
|
|
|
*/
|
|
|
|
if (newpages < oldpages) {
|
2011-02-13 14:46:39 +00:00
|
|
|
swap_pager_freespace(uobj, newpages, oldpages -
|
|
|
|
newpages);
|
2011-06-29 16:40:41 +00:00
|
|
|
vm_object_page_remove(uobj, newpages, 0, 0);
|
2007-06-16 01:56:05 +00:00
|
|
|
}
|
|
|
|
}
|
2011-02-13 14:46:39 +00:00
|
|
|
uobj->size = newpages;
|
|
|
|
VM_OBJECT_UNLOCK(uobj);
|
Correct an error of omission in the implementation of the truncation
operation on POSIX shared memory objects and tmpfs. Previously, neither of
these modules correctly handled the case in which the new size of the object
or file was not a multiple of the page size. Specifically, they did not
handle partial page truncation of data stored on swap. As a result, stale
data might later be returned to an application.
Interestingly, a data inconsistency was less likely to occur under tmpfs
than POSIX shared memory objects. The reason being that a different mistake
by the tmpfs truncation operation helped avoid a data inconsistency. If the
data was still resident in memory in a PG_CACHED page, then the tmpfs
truncation operation would reactivate that page, zero the truncated portion,
and leave the page pinned in memory. More precisely, the benevolent error
was that the truncation operation didn't add the reactivated page to any of
the paging queues, effectively pinning the page. This page would remain
pinned until the file was destroyed or the page was read or written. With
this change, the page is now added to the inactive queue.
Discussed with: jhb
Reviewed by: kib (an earlier version)
MFC after: 3 weeks
2012-01-08 20:09:26 +00:00
|
|
|
|
|
|
|
TMPFS_LOCK(tmp);
|
|
|
|
tmp->tm_pages_used += (newpages - oldpages);
|
|
|
|
TMPFS_UNLOCK(tmp);
|
|
|
|
|
|
|
|
node->tn_size = newsize;
|
|
|
|
vnode_pager_setsize(vp, newsize);
|
2011-02-14 15:36:38 +00:00
|
|
|
return (0);
|
2007-06-16 01:56:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Change flags of the given vnode.
|
|
|
|
* Caller should execute tmpfs_update on vp after a successful execution.
|
|
|
|
* The vnode must be locked on entry and remain locked on exit.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
tmpfs_chflags(struct vnode *vp, int flags, struct ucred *cred, struct thread *p)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
struct tmpfs_node *node;
|
|
|
|
|
2008-02-25 18:45:57 +00:00
|
|
|
MPASS(VOP_ISLOCKED(vp));
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
node = VP_TO_TMPFS_NODE(vp);
|
|
|
|
|
|
|
|
/* Disallow this operation if the file system is mounted read-only. */
|
|
|
|
if (vp->v_mount->mnt_flag & MNT_RDONLY)
|
|
|
|
return EROFS;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Callers may only modify the file flags on objects they
|
|
|
|
* have VADMIN rights for.
|
|
|
|
*/
|
|
|
|
if ((error = VOP_ACCESS(vp, VADMIN, cred, p)))
|
|
|
|
return (error);
|
|
|
|
/*
|
|
|
|
* Unprivileged processes are not permitted to unset system
|
|
|
|
* flags, or modify flags if any system flags are set.
|
|
|
|
*/
|
|
|
|
if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0)) {
|
|
|
|
if (node->tn_flags
|
|
|
|
& (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) {
|
|
|
|
error = securelevel_gt(cred, 0);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
/* Snapshot flag cannot be set or cleared */
|
|
|
|
if (((flags & SF_SNAPSHOT) != 0 &&
|
|
|
|
(node->tn_flags & SF_SNAPSHOT) == 0) ||
|
|
|
|
((flags & SF_SNAPSHOT) == 0 &&
|
|
|
|
(node->tn_flags & SF_SNAPSHOT) != 0))
|
|
|
|
return (EPERM);
|
|
|
|
node->tn_flags = flags;
|
|
|
|
} else {
|
|
|
|
if (node->tn_flags
|
|
|
|
& (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) ||
|
|
|
|
(flags & UF_SETTABLE) != flags)
|
|
|
|
return (EPERM);
|
|
|
|
node->tn_flags &= SF_SETTABLE;
|
|
|
|
node->tn_flags |= (flags & UF_SETTABLE);
|
|
|
|
}
|
|
|
|
node->tn_status |= TMPFS_NODE_CHANGED;
|
|
|
|
|
2008-02-25 18:45:57 +00:00
|
|
|
MPASS(VOP_ISLOCKED(vp));
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Change access mode on the given vnode.
|
|
|
|
* Caller should execute tmpfs_update on vp after a successful execution.
|
|
|
|
* The vnode must be locked on entry and remain locked on exit.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
tmpfs_chmod(struct vnode *vp, mode_t mode, struct ucred *cred, struct thread *p)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
struct tmpfs_node *node;
|
|
|
|
|
2008-02-25 18:45:57 +00:00
|
|
|
MPASS(VOP_ISLOCKED(vp));
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
node = VP_TO_TMPFS_NODE(vp);
|
|
|
|
|
|
|
|
/* Disallow this operation if the file system is mounted read-only. */
|
|
|
|
if (vp->v_mount->mnt_flag & MNT_RDONLY)
|
|
|
|
return EROFS;
|
|
|
|
|
|
|
|
/* Immutable or append-only files cannot be modified, either. */
|
|
|
|
if (node->tn_flags & (IMMUTABLE | APPEND))
|
|
|
|
return EPERM;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To modify the permissions on a file, must possess VADMIN
|
|
|
|
* for that file.
|
|
|
|
*/
|
|
|
|
if ((error = VOP_ACCESS(vp, VADMIN, cred, p)))
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Privileged processes may set the sticky bit on non-directories,
|
|
|
|
* as well as set the setgid bit on a file with a group that the
|
|
|
|
* process is not a member of.
|
|
|
|
*/
|
|
|
|
if (vp->v_type != VDIR && (mode & S_ISTXT)) {
|
|
|
|
if (priv_check_cred(cred, PRIV_VFS_STICKYFILE, 0))
|
|
|
|
return (EFTYPE);
|
|
|
|
}
|
|
|
|
if (!groupmember(node->tn_gid, cred) && (mode & S_ISGID)) {
|
|
|
|
error = priv_check_cred(cred, PRIV_VFS_SETGID, 0);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
node->tn_mode &= ~ALLPERMS;
|
|
|
|
node->tn_mode |= mode & ALLPERMS;
|
|
|
|
|
|
|
|
node->tn_status |= TMPFS_NODE_CHANGED;
|
|
|
|
|
2008-02-25 18:45:57 +00:00
|
|
|
MPASS(VOP_ISLOCKED(vp));
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Change ownership of the given vnode. At least one of uid or gid must
|
|
|
|
* be different than VNOVAL. If one is set to that value, the attribute
|
|
|
|
* is unchanged.
|
|
|
|
* Caller should execute tmpfs_update on vp after a successful execution.
|
|
|
|
* The vnode must be locked on entry and remain locked on exit.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
tmpfs_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred,
|
|
|
|
struct thread *p)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
struct tmpfs_node *node;
|
|
|
|
uid_t ouid;
|
|
|
|
gid_t ogid;
|
|
|
|
|
2008-02-25 18:45:57 +00:00
|
|
|
MPASS(VOP_ISLOCKED(vp));
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
node = VP_TO_TMPFS_NODE(vp);
|
|
|
|
|
|
|
|
/* Assign default values if they are unknown. */
|
|
|
|
MPASS(uid != VNOVAL || gid != VNOVAL);
|
|
|
|
if (uid == VNOVAL)
|
|
|
|
uid = node->tn_uid;
|
|
|
|
if (gid == VNOVAL)
|
|
|
|
gid = node->tn_gid;
|
|
|
|
MPASS(uid != VNOVAL && gid != VNOVAL);
|
|
|
|
|
|
|
|
/* Disallow this operation if the file system is mounted read-only. */
|
|
|
|
if (vp->v_mount->mnt_flag & MNT_RDONLY)
|
|
|
|
return EROFS;
|
|
|
|
|
|
|
|
/* Immutable or append-only files cannot be modified, either. */
|
|
|
|
if (node->tn_flags & (IMMUTABLE | APPEND))
|
|
|
|
return EPERM;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To modify the ownership of a file, must possess VADMIN for that
|
|
|
|
* file.
|
|
|
|
*/
|
|
|
|
if ((error = VOP_ACCESS(vp, VADMIN, cred, p)))
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To change the owner of a file, or change the group of a file to a
|
|
|
|
* group of which we are not a member, the caller must have
|
|
|
|
* privilege.
|
|
|
|
*/
|
2007-06-28 02:39:31 +00:00
|
|
|
if ((uid != node->tn_uid ||
|
2007-06-16 01:56:05 +00:00
|
|
|
(gid != node->tn_gid && !groupmember(gid, cred))) &&
|
|
|
|
(error = priv_check_cred(cred, PRIV_VFS_CHOWN, 0)))
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
ogid = node->tn_gid;
|
|
|
|
ouid = node->tn_uid;
|
|
|
|
|
|
|
|
node->tn_uid = uid;
|
|
|
|
node->tn_gid = gid;
|
|
|
|
|
|
|
|
node->tn_status |= TMPFS_NODE_CHANGED;
|
|
|
|
|
|
|
|
if ((node->tn_mode & (S_ISUID | S_ISGID)) && (ouid != uid || ogid != gid)) {
|
|
|
|
if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID, 0))
|
|
|
|
node->tn_mode &= ~(S_ISUID | S_ISGID);
|
|
|
|
}
|
|
|
|
|
2008-02-25 18:45:57 +00:00
|
|
|
MPASS(VOP_ISLOCKED(vp));
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Change size of the given vnode.
|
|
|
|
* Caller should execute tmpfs_update on vp after a successful execution.
|
|
|
|
* The vnode must be locked on entry and remain locked on exit.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
tmpfs_chsize(struct vnode *vp, u_quad_t size, struct ucred *cred,
|
|
|
|
struct thread *p)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
struct tmpfs_node *node;
|
|
|
|
|
2008-02-25 18:45:57 +00:00
|
|
|
MPASS(VOP_ISLOCKED(vp));
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
node = VP_TO_TMPFS_NODE(vp);
|
|
|
|
|
|
|
|
/* Decide whether this is a valid operation based on the file type. */
|
|
|
|
error = 0;
|
|
|
|
switch (vp->v_type) {
|
|
|
|
case VDIR:
|
|
|
|
return EISDIR;
|
|
|
|
|
|
|
|
case VREG:
|
|
|
|
if (vp->v_mount->mnt_flag & MNT_RDONLY)
|
|
|
|
return EROFS;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case VBLK:
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case VCHR:
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case VFIFO:
|
|
|
|
/* Allow modifications of special files even if in the file
|
|
|
|
* system is mounted read-only (we are not modifying the
|
|
|
|
* files themselves, but the objects they represent). */
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
default:
|
|
|
|
/* Anything else is unsupported. */
|
|
|
|
return EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Immutable or append-only files cannot be modified, either. */
|
|
|
|
if (node->tn_flags & (IMMUTABLE | APPEND))
|
|
|
|
return EPERM;
|
|
|
|
|
|
|
|
error = tmpfs_truncate(vp, size);
|
|
|
|
/* tmpfs_truncate will raise the NOTE_EXTEND and NOTE_ATTRIB kevents
|
|
|
|
* for us, as will update tn_status; no need to do that here. */
|
|
|
|
|
2008-02-25 18:45:57 +00:00
|
|
|
MPASS(VOP_ISLOCKED(vp));
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Change access and modification times of the given vnode.
|
|
|
|
* Caller should execute tmpfs_update on vp after a successful execution.
|
|
|
|
* The vnode must be locked on entry and remain locked on exit.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
tmpfs_chtimes(struct vnode *vp, struct timespec *atime, struct timespec *mtime,
|
|
|
|
struct timespec *birthtime, int vaflags, struct ucred *cred, struct thread *l)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
struct tmpfs_node *node;
|
|
|
|
|
2008-02-25 18:45:57 +00:00
|
|
|
MPASS(VOP_ISLOCKED(vp));
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
node = VP_TO_TMPFS_NODE(vp);
|
|
|
|
|
|
|
|
/* Disallow this operation if the file system is mounted read-only. */
|
|
|
|
if (vp->v_mount->mnt_flag & MNT_RDONLY)
|
|
|
|
return EROFS;
|
|
|
|
|
|
|
|
/* Immutable or append-only files cannot be modified, either. */
|
|
|
|
if (node->tn_flags & (IMMUTABLE | APPEND))
|
|
|
|
return EPERM;
|
|
|
|
|
2007-06-29 05:23:15 +00:00
|
|
|
/* Determine if the user have proper privilege to update time. */
|
|
|
|
if (vaflags & VA_UTIMES_NULL) {
|
|
|
|
error = VOP_ACCESS(vp, VADMIN, cred, l);
|
|
|
|
if (error)
|
|
|
|
error = VOP_ACCESS(vp, VWRITE, cred, l);
|
|
|
|
} else
|
|
|
|
error = VOP_ACCESS(vp, VADMIN, cred, l);
|
|
|
|
if (error)
|
|
|
|
return (error);
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
if (atime->tv_sec != VNOVAL && atime->tv_nsec != VNOVAL)
|
|
|
|
node->tn_status |= TMPFS_NODE_ACCESSED;
|
|
|
|
|
|
|
|
if (mtime->tv_sec != VNOVAL && mtime->tv_nsec != VNOVAL)
|
|
|
|
node->tn_status |= TMPFS_NODE_MODIFIED;
|
|
|
|
|
|
|
|
if (birthtime->tv_nsec != VNOVAL && birthtime->tv_nsec != VNOVAL)
|
|
|
|
node->tn_status |= TMPFS_NODE_MODIFIED;
|
2007-06-28 02:39:31 +00:00
|
|
|
|
2007-06-16 01:56:05 +00:00
|
|
|
tmpfs_itimes(vp, atime, mtime);
|
2007-06-28 02:39:31 +00:00
|
|
|
|
2007-06-16 01:56:05 +00:00
|
|
|
if (birthtime->tv_nsec != VNOVAL && birthtime->tv_nsec != VNOVAL)
|
|
|
|
node->tn_birthtime = *birthtime;
|
2008-02-25 18:45:57 +00:00
|
|
|
MPASS(VOP_ISLOCKED(vp));
|
2007-06-16 01:56:05 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* Sync timestamps */
|
|
|
|
void
|
|
|
|
tmpfs_itimes(struct vnode *vp, const struct timespec *acc,
|
|
|
|
const struct timespec *mod)
|
|
|
|
{
|
|
|
|
struct tmpfs_node *node;
|
|
|
|
struct timespec now;
|
|
|
|
|
|
|
|
node = VP_TO_TMPFS_NODE(vp);
|
|
|
|
|
|
|
|
if ((node->tn_status & (TMPFS_NODE_ACCESSED | TMPFS_NODE_MODIFIED |
|
|
|
|
TMPFS_NODE_CHANGED)) == 0)
|
|
|
|
return;
|
|
|
|
|
2007-06-18 14:40:19 +00:00
|
|
|
vfs_timestamp(&now);
|
2007-06-16 01:56:05 +00:00
|
|
|
if (node->tn_status & TMPFS_NODE_ACCESSED) {
|
|
|
|
if (acc == NULL)
|
|
|
|
acc = &now;
|
|
|
|
node->tn_atime = *acc;
|
|
|
|
}
|
|
|
|
if (node->tn_status & TMPFS_NODE_MODIFIED) {
|
|
|
|
if (mod == NULL)
|
|
|
|
mod = &now;
|
|
|
|
node->tn_mtime = *mod;
|
|
|
|
}
|
|
|
|
if (node->tn_status & TMPFS_NODE_CHANGED) {
|
|
|
|
node->tn_ctime = now;
|
|
|
|
}
|
|
|
|
node->tn_status &=
|
|
|
|
~(TMPFS_NODE_ACCESSED | TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
void
|
|
|
|
tmpfs_update(struct vnode *vp)
|
|
|
|
{
|
|
|
|
|
|
|
|
tmpfs_itimes(vp, NULL, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
int
|
|
|
|
tmpfs_truncate(struct vnode *vp, off_t length)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
struct tmpfs_node *node;
|
|
|
|
|
|
|
|
node = VP_TO_TMPFS_NODE(vp);
|
|
|
|
|
|
|
|
if (length < 0) {
|
|
|
|
error = EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (node->tn_size == length) {
|
|
|
|
error = 0;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (length > VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize)
|
|
|
|
return (EFBIG);
|
|
|
|
|
2012-01-16 00:26:49 +00:00
|
|
|
error = tmpfs_reg_resize(vp, length, FALSE);
|
2007-06-16 01:56:05 +00:00
|
|
|
if (error == 0) {
|
|
|
|
node->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED;
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
tmpfs_update(vp);
|
|
|
|
|
|
|
|
return error;
|
|
|
|
}
|