freebsd-skq/contrib/gcc/tree-dfa.c

1033 lines
27 KiB
C
Raw Normal View History

2007-05-19 01:19:51 +00:00
/* Data flow functions for trees.
Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "hashtab.h"
#include "pointer-set.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "timevar.h"
#include "expr.h"
#include "ggc.h"
#include "langhooks.h"
#include "flags.h"
#include "function.h"
#include "diagnostic.h"
#include "tree-dump.h"
#include "tree-gimple.h"
#include "tree-flow.h"
#include "tree-inline.h"
#include "tree-pass.h"
#include "convert.h"
#include "params.h"
#include "cgraph.h"
/* Build and maintain data flow information for trees. */
/* Counters used to display DFA and SSA statistics. */
struct dfa_stats_d
{
long num_stmt_anns;
long num_var_anns;
long num_defs;
long num_uses;
long num_phis;
long num_phi_args;
int max_num_phi_args;
long num_v_may_defs;
long num_vuses;
long num_v_must_defs;
};
/* Local functions. */
static void collect_dfa_stats (struct dfa_stats_d *);
static tree collect_dfa_stats_r (tree *, int *, void *);
static tree find_vars_r (tree *, int *, void *);
/* Global declarations. */
/* Array of all variables referenced in the function. */
htab_t referenced_vars;
/* Default definition for this symbols. If set for symbol, it
means that the first reference to this variable in the function is a
USE or a VUSE. In those cases, the SSA renamer creates an SSA name
for this variable with an empty defining statement. */
htab_t default_defs;
/*---------------------------------------------------------------------------
Dataflow analysis (DFA) routines
---------------------------------------------------------------------------*/
/* Find all the variables referenced in the function. This function
builds the global arrays REFERENCED_VARS and CALL_CLOBBERED_VARS.
Note that this function does not look for statement operands, it simply
determines what variables are referenced in the program and detects
various attributes for each variable used by alias analysis and the
optimizer. */
static unsigned int
find_referenced_vars (void)
{
basic_block bb;
block_stmt_iterator si;
FOR_EACH_BB (bb)
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree *stmt_p = bsi_stmt_ptr (si);
walk_tree (stmt_p, find_vars_r, NULL, NULL);
}
return 0;
}
struct tree_opt_pass pass_referenced_vars =
{
NULL, /* name */
NULL, /* gate */
find_referenced_vars, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_FIND_REFERENCED_VARS, /* tv_id */
PROP_gimple_leh | PROP_cfg, /* properties_required */
PROP_referenced_vars, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
0 /* letter */
};
/*---------------------------------------------------------------------------
Manage annotations
---------------------------------------------------------------------------*/
/* Create a new annotation for a _DECL node T. */
var_ann_t
create_var_ann (tree t)
{
var_ann_t ann;
gcc_assert (t);
gcc_assert (DECL_P (t));
gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN);
ann = GGC_CNEW (struct var_ann_d);
ann->common.type = VAR_ANN;
t->common.ann = (tree_ann_t) ann;
return ann;
}
/* Create a new annotation for a FUNCTION_DECL node T. */
function_ann_t
create_function_ann (tree t)
{
function_ann_t ann;
gcc_assert (t);
gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
gcc_assert (!t->common.ann || t->common.ann->common.type == FUNCTION_ANN);
ann = ggc_alloc (sizeof (*ann));
memset ((void *) ann, 0, sizeof (*ann));
ann->common.type = FUNCTION_ANN;
t->common.ann = (tree_ann_t) ann;
return ann;
}
/* Create a new annotation for a statement node T. */
stmt_ann_t
create_stmt_ann (tree t)
{
stmt_ann_t ann;
gcc_assert (is_gimple_stmt (t));
gcc_assert (!t->common.ann || t->common.ann->common.type == STMT_ANN);
ann = GGC_CNEW (struct stmt_ann_d);
ann->common.type = STMT_ANN;
/* Since we just created the annotation, mark the statement modified. */
ann->modified = true;
t->common.ann = (tree_ann_t) ann;
return ann;
}
/* Create a new annotation for a tree T. */
tree_ann_common_t
create_tree_common_ann (tree t)
{
tree_ann_common_t ann;
gcc_assert (t);
gcc_assert (!t->common.ann || t->common.ann->common.type == TREE_ANN_COMMON);
ann = GGC_CNEW (struct tree_ann_common_d);
ann->type = TREE_ANN_COMMON;
t->common.ann = (tree_ann_t) ann;
return ann;
}
/* Build a temporary. Make sure and register it to be renamed. */
tree
make_rename_temp (tree type, const char *prefix)
{
tree t = create_tmp_var (type, prefix);
if (TREE_CODE (type) == COMPLEX_TYPE)
DECL_COMPLEX_GIMPLE_REG_P (t) = 1;
if (referenced_vars)
{
add_referenced_var (t);
mark_sym_for_renaming (t);
}
return t;
}
/*---------------------------------------------------------------------------
Debugging functions
---------------------------------------------------------------------------*/
/* Dump the list of all the referenced variables in the current function to
FILE. */
void
dump_referenced_vars (FILE *file)
{
tree var;
referenced_var_iterator rvi;
fprintf (file, "\nReferenced variables in %s: %u\n\n",
get_name (current_function_decl), (unsigned) num_referenced_vars);
FOR_EACH_REFERENCED_VAR (var, rvi)
{
fprintf (file, "Variable: ");
dump_variable (file, var);
fprintf (file, "\n");
}
}
/* Dump the list of all the referenced variables to stderr. */
void
debug_referenced_vars (void)
{
dump_referenced_vars (stderr);
}
/* Dump sub-variables for VAR to FILE. */
void
dump_subvars_for (FILE *file, tree var)
{
subvar_t sv = get_subvars_for_var (var);
if (!sv)
return;
fprintf (file, "{ ");
for (; sv; sv = sv->next)
{
print_generic_expr (file, sv->var, dump_flags);
fprintf (file, " ");
}
fprintf (file, "}");
}
/* Dumb sub-variables for VAR to stderr. */
void
debug_subvars_for (tree var)
{
dump_subvars_for (stderr, var);
}
/* Dump variable VAR and its may-aliases to FILE. */
void
dump_variable (FILE *file, tree var)
{
var_ann_t ann;
if (TREE_CODE (var) == SSA_NAME)
{
if (POINTER_TYPE_P (TREE_TYPE (var)))
dump_points_to_info_for (file, var);
var = SSA_NAME_VAR (var);
}
if (var == NULL_TREE)
{
fprintf (file, "<nil>");
return;
}
print_generic_expr (file, var, dump_flags);
ann = var_ann (var);
fprintf (file, ", UID %u", (unsigned) DECL_UID (var));
fprintf (file, ", ");
print_generic_expr (file, TREE_TYPE (var), dump_flags);
if (ann && ann->symbol_mem_tag)
{
fprintf (file, ", symbol memory tag: ");
print_generic_expr (file, ann->symbol_mem_tag, dump_flags);
}
if (ann && ann->is_aliased)
fprintf (file, ", is aliased");
if (TREE_ADDRESSABLE (var))
fprintf (file, ", is addressable");
if (is_global_var (var))
fprintf (file, ", is global");
if (TREE_THIS_VOLATILE (var))
fprintf (file, ", is volatile");
if (is_call_clobbered (var))
{
fprintf (file, ", call clobbered");
if (dump_flags & TDF_DETAILS)
{
var_ann_t va = var_ann (var);
unsigned int escape_mask = va->escape_mask;
fprintf (file, " (");
if (escape_mask & ESCAPE_STORED_IN_GLOBAL)
fprintf (file, ", stored in global");
if (escape_mask & ESCAPE_TO_ASM)
fprintf (file, ", goes through ASM");
if (escape_mask & ESCAPE_TO_CALL)
fprintf (file, ", passed to call");
if (escape_mask & ESCAPE_BAD_CAST)
fprintf (file, ", bad cast");
if (escape_mask & ESCAPE_TO_RETURN)
fprintf (file, ", returned from func");
if (escape_mask & ESCAPE_TO_PURE_CONST)
fprintf (file, ", passed to pure/const");
if (escape_mask & ESCAPE_IS_GLOBAL)
fprintf (file, ", is global var");
if (escape_mask & ESCAPE_IS_PARM)
fprintf (file, ", is incoming pointer");
if (escape_mask & ESCAPE_UNKNOWN)
fprintf (file, ", unknown escape");
fprintf (file, " )");
}
}
if (default_def (var))
{
fprintf (file, ", default def: ");
print_generic_expr (file, default_def (var), dump_flags);
}
if (may_aliases (var))
{
fprintf (file, ", may aliases: ");
dump_may_aliases_for (file, var);
}
if (get_subvars_for_var (var))
{
fprintf (file, ", sub-vars: ");
dump_subvars_for (file, var);
}
fprintf (file, "\n");
}
/* Dump variable VAR and its may-aliases to stderr. */
void
debug_variable (tree var)
{
dump_variable (stderr, var);
}
/* Dump various DFA statistics to FILE. */
void
dump_dfa_stats (FILE *file)
{
struct dfa_stats_d dfa_stats;
unsigned long size, total = 0;
const char * const fmt_str = "%-30s%-13s%12s\n";
const char * const fmt_str_1 = "%-30s%13lu%11lu%c\n";
const char * const fmt_str_3 = "%-43s%11lu%c\n";
const char *funcname
= lang_hooks.decl_printable_name (current_function_decl, 2);
collect_dfa_stats (&dfa_stats);
fprintf (file, "\nDFA Statistics for %s\n\n", funcname);
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, fmt_str, "", " Number of ", "Memory");
fprintf (file, fmt_str, "", " instances ", "used ");
fprintf (file, "---------------------------------------------------------\n");
size = num_referenced_vars * sizeof (tree);
total += size;
fprintf (file, fmt_str_1, "Referenced variables", (unsigned long)num_referenced_vars,
SCALE (size), LABEL (size));
size = dfa_stats.num_stmt_anns * sizeof (struct stmt_ann_d);
total += size;
fprintf (file, fmt_str_1, "Statements annotated", dfa_stats.num_stmt_anns,
SCALE (size), LABEL (size));
size = dfa_stats.num_var_anns * sizeof (struct var_ann_d);
total += size;
fprintf (file, fmt_str_1, "Variables annotated", dfa_stats.num_var_anns,
SCALE (size), LABEL (size));
size = dfa_stats.num_uses * sizeof (tree *);
total += size;
fprintf (file, fmt_str_1, "USE operands", dfa_stats.num_uses,
SCALE (size), LABEL (size));
size = dfa_stats.num_defs * sizeof (tree *);
total += size;
fprintf (file, fmt_str_1, "DEF operands", dfa_stats.num_defs,
SCALE (size), LABEL (size));
size = dfa_stats.num_vuses * sizeof (tree *);
total += size;
fprintf (file, fmt_str_1, "VUSE operands", dfa_stats.num_vuses,
SCALE (size), LABEL (size));
size = dfa_stats.num_v_may_defs * sizeof (tree *);
total += size;
fprintf (file, fmt_str_1, "V_MAY_DEF operands", dfa_stats.num_v_may_defs,
SCALE (size), LABEL (size));
size = dfa_stats.num_v_must_defs * sizeof (tree *);
total += size;
fprintf (file, fmt_str_1, "V_MUST_DEF operands", dfa_stats.num_v_must_defs,
SCALE (size), LABEL (size));
size = dfa_stats.num_phis * sizeof (struct tree_phi_node);
total += size;
fprintf (file, fmt_str_1, "PHI nodes", dfa_stats.num_phis,
SCALE (size), LABEL (size));
size = dfa_stats.num_phi_args * sizeof (struct phi_arg_d);
total += size;
fprintf (file, fmt_str_1, "PHI arguments", dfa_stats.num_phi_args,
SCALE (size), LABEL (size));
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, fmt_str_3, "Total memory used by DFA/SSA data", SCALE (total),
LABEL (total));
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, "\n");
if (dfa_stats.num_phis)
fprintf (file, "Average number of arguments per PHI node: %.1f (max: %d)\n",
(float) dfa_stats.num_phi_args / (float) dfa_stats.num_phis,
dfa_stats.max_num_phi_args);
fprintf (file, "\n");
}
/* Dump DFA statistics on stderr. */
void
debug_dfa_stats (void)
{
dump_dfa_stats (stderr);
}
/* Collect DFA statistics and store them in the structure pointed to by
DFA_STATS_P. */
static void
collect_dfa_stats (struct dfa_stats_d *dfa_stats_p)
{
struct pointer_set_t *pset;
basic_block bb;
block_stmt_iterator i;
gcc_assert (dfa_stats_p);
memset ((void *)dfa_stats_p, 0, sizeof (struct dfa_stats_d));
/* Walk all the trees in the function counting references. Start at
basic block NUM_FIXED_BLOCKS, but don't stop at block boundaries. */
pset = pointer_set_create ();
for (i = bsi_start (BASIC_BLOCK (NUM_FIXED_BLOCKS));
!bsi_end_p (i); bsi_next (&i))
walk_tree (bsi_stmt_ptr (i), collect_dfa_stats_r, (void *) dfa_stats_p,
pset);
pointer_set_destroy (pset);
FOR_EACH_BB (bb)
{
tree phi;
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
dfa_stats_p->num_phis++;
dfa_stats_p->num_phi_args += PHI_NUM_ARGS (phi);
if (PHI_NUM_ARGS (phi) > dfa_stats_p->max_num_phi_args)
dfa_stats_p->max_num_phi_args = PHI_NUM_ARGS (phi);
}
}
}
/* Callback for walk_tree to collect DFA statistics for a tree and its
children. */
static tree
collect_dfa_stats_r (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data)
{
tree t = *tp;
struct dfa_stats_d *dfa_stats_p = (struct dfa_stats_d *)data;
if (t->common.ann)
{
switch (ann_type (t->common.ann))
{
case STMT_ANN:
{
dfa_stats_p->num_stmt_anns++;
dfa_stats_p->num_defs += NUM_SSA_OPERANDS (t, SSA_OP_DEF);
dfa_stats_p->num_uses += NUM_SSA_OPERANDS (t, SSA_OP_USE);
dfa_stats_p->num_v_may_defs += NUM_SSA_OPERANDS (t, SSA_OP_VMAYDEF);
dfa_stats_p->num_vuses += NUM_SSA_OPERANDS (t, SSA_OP_VUSE);
dfa_stats_p->num_v_must_defs +=
NUM_SSA_OPERANDS (t, SSA_OP_VMUSTDEF);
break;
}
case VAR_ANN:
dfa_stats_p->num_var_anns++;
break;
default:
break;
}
}
return NULL;
}
/*---------------------------------------------------------------------------
Miscellaneous helpers
---------------------------------------------------------------------------*/
/* Callback for walk_tree. Used to collect variables referenced in
the function. */
static tree
find_vars_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
/* If T is a regular variable that the optimizers are interested
in, add it to the list of variables. */
if (SSA_VAR_P (*tp))
add_referenced_var (*tp);
/* Type, _DECL and constant nodes have no interesting children.
Ignore them. */
else if (IS_TYPE_OR_DECL_P (*tp) || CONSTANT_CLASS_P (*tp))
*walk_subtrees = 0;
return NULL_TREE;
}
/* Lookup UID in the referenced_vars hashtable and return the associated
variable. */
tree
referenced_var_lookup (unsigned int uid)
{
struct int_tree_map *h, in;
in.uid = uid;
h = (struct int_tree_map *) htab_find_with_hash (referenced_vars, &in, uid);
gcc_assert (h || uid == 0);
if (h)
return h->to;
return NULL_TREE;
}
/* Check if TO is in the referenced_vars hash table and insert it if not.
Return true if it required insertion. */
bool
referenced_var_check_and_insert (tree to)
{
struct int_tree_map *h, in;
void **loc;
unsigned int uid = DECL_UID (to);
in.uid = uid;
in.to = to;
h = (struct int_tree_map *) htab_find_with_hash (referenced_vars, &in, uid);
if (h)
{
/* DECL_UID has already been entered in the table. Verify that it is
the same entry as TO. See PR 27793. */
gcc_assert (h->to == to);
return false;
}
h = GGC_NEW (struct int_tree_map);
h->uid = uid;
h->to = to;
loc = htab_find_slot_with_hash (referenced_vars, h, uid, INSERT);
*(struct int_tree_map **) loc = h;
return true;
}
/* Lookup VAR UID in the default_defs hashtable and return the associated
variable. */
tree
default_def (tree var)
{
struct int_tree_map *h, in;
gcc_assert (SSA_VAR_P (var));
in.uid = DECL_UID (var);
h = (struct int_tree_map *) htab_find_with_hash (default_defs, &in,
DECL_UID (var));
if (h)
return h->to;
return NULL_TREE;
}
/* Insert the pair VAR's UID, DEF into the default_defs hashtable. */
void
set_default_def (tree var, tree def)
{
struct int_tree_map in;
struct int_tree_map *h;
void **loc;
gcc_assert (SSA_VAR_P (var));
in.uid = DECL_UID (var);
if (!def && default_def (var))
{
loc = htab_find_slot_with_hash (default_defs, &in, DECL_UID (var), INSERT);
htab_remove_elt (default_defs, *loc);
return;
}
gcc_assert (TREE_CODE (def) == SSA_NAME);
loc = htab_find_slot_with_hash (default_defs, &in, DECL_UID (var), INSERT);
/* Default definition might be changed by tail call optimization. */
if (!*loc)
{
h = GGC_NEW (struct int_tree_map);
h->uid = DECL_UID (var);
h->to = def;
*(struct int_tree_map **) loc = h;
}
else
{
h = (struct int_tree_map *) *loc;
h->to = def;
}
}
/* Add VAR to the list of referenced variables if it isn't already there. */
void
add_referenced_var (tree var)
{
var_ann_t v_ann;
v_ann = get_var_ann (var);
gcc_assert (DECL_P (var));
/* Insert VAR into the referenced_vars has table if it isn't present. */
if (referenced_var_check_and_insert (var))
{
/* This is the first time we found this variable, annotate it with
attributes that are intrinsic to the variable. */
/* Tag's don't have DECL_INITIAL. */
if (MTAG_P (var))
return;
/* Scan DECL_INITIAL for pointer variables as they may contain
address arithmetic referencing the address of other
variables. */
if (DECL_INITIAL (var)
/* Initializers of external variables are not useful to the
optimizers. */
&& !DECL_EXTERNAL (var)
/* It's not necessary to walk the initial value of non-constant
variables because it cannot be propagated by the
optimizers. */
&& (TREE_CONSTANT (var) || TREE_READONLY (var)))
walk_tree (&DECL_INITIAL (var), find_vars_r, NULL, 0);
}
}
/* Return the virtual variable associated to the non-scalar variable VAR. */
tree
get_virtual_var (tree var)
{
STRIP_NOPS (var);
if (TREE_CODE (var) == SSA_NAME)
var = SSA_NAME_VAR (var);
while (TREE_CODE (var) == REALPART_EXPR || TREE_CODE (var) == IMAGPART_EXPR
|| handled_component_p (var))
var = TREE_OPERAND (var, 0);
/* Treating GIMPLE registers as virtual variables makes no sense.
Also complain if we couldn't extract a _DECL out of the original
expression. */
gcc_assert (SSA_VAR_P (var));
gcc_assert (!is_gimple_reg (var));
return var;
}
/* Mark all the non-SSA variables found in STMT's operands to be
processed by update_ssa. */
void
mark_new_vars_to_rename (tree stmt)
{
ssa_op_iter iter;
tree val;
bitmap vars_in_vops_to_rename;
bool found_exposed_symbol = false;
int v_may_defs_before, v_may_defs_after;
int v_must_defs_before, v_must_defs_after;
if (TREE_CODE (stmt) == PHI_NODE)
return;
get_stmt_ann (stmt);
vars_in_vops_to_rename = BITMAP_ALLOC (NULL);
/* Before re-scanning the statement for operands, mark the existing
virtual operands to be renamed again. We do this because when new
symbols are exposed, the virtual operands that were here before due to
aliasing will probably be removed by the call to get_stmt_operand.
Therefore, we need to flag them to be renamed beforehand.
We flag them in a separate bitmap because we don't really want to
rename them if there are not any newly exposed symbols in the
statement operands. */
v_may_defs_before = NUM_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF);
v_must_defs_before = NUM_SSA_OPERANDS (stmt, SSA_OP_VMUSTDEF);
FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter,
SSA_OP_VMAYDEF | SSA_OP_VUSE | SSA_OP_VMUSTDEF)
{
if (!DECL_P (val))
val = SSA_NAME_VAR (val);
bitmap_set_bit (vars_in_vops_to_rename, DECL_UID (val));
}
/* Now force an operand re-scan on the statement and mark any newly
exposed variables. */
update_stmt (stmt);
v_may_defs_after = NUM_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF);
v_must_defs_after = NUM_SSA_OPERANDS (stmt, SSA_OP_VMUSTDEF);
FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_ALL_OPERANDS)
if (DECL_P (val))
{
found_exposed_symbol = true;
mark_sym_for_renaming (val);
}
/* If we found any newly exposed symbols, or if there are fewer VDEF
operands in the statement, add the variables we had set in
VARS_IN_VOPS_TO_RENAME to VARS_TO_RENAME. We need to check for
vanishing VDEFs because in those cases, the names that were formerly
generated by this statement are not going to be available anymore. */
if (found_exposed_symbol
|| v_may_defs_before > v_may_defs_after
|| v_must_defs_before > v_must_defs_after)
mark_set_for_renaming (vars_in_vops_to_rename);
BITMAP_FREE (vars_in_vops_to_rename);
}
/* Find all variables within the gimplified statement that were not previously
visible to the function and add them to the referenced variables list. */
static tree
find_new_referenced_vars_1 (tree *tp, int *walk_subtrees,
void *data ATTRIBUTE_UNUSED)
{
tree t = *tp;
if (TREE_CODE (t) == VAR_DECL && !var_ann (t))
{
add_referenced_var (t);
mark_sym_for_renaming (t);
}
if (IS_TYPE_OR_DECL_P (t))
*walk_subtrees = 0;
return NULL;
}
void
find_new_referenced_vars (tree *stmt_p)
{
walk_tree (stmt_p, find_new_referenced_vars_1, NULL, NULL);
}
/* If REF is a handled component reference for a structure, return the
base variable. The access range is delimited by bit positions *POFFSET and
*POFFSET + *PMAX_SIZE. The access size is *PSIZE bits. If either
*PSIZE or *PMAX_SIZE is -1, they could not be determined. If *PSIZE
and *PMAX_SIZE are equal, the access is non-variable. */
tree
get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
HOST_WIDE_INT *psize,
HOST_WIDE_INT *pmax_size)
{
HOST_WIDE_INT bitsize = -1;
HOST_WIDE_INT maxsize = -1;
tree size_tree = NULL_TREE;
tree bit_offset = bitsize_zero_node;
bool seen_variable_array_ref = false;
gcc_assert (!SSA_VAR_P (exp));
/* First get the final access size from just the outermost expression. */
if (TREE_CODE (exp) == COMPONENT_REF)
size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
else if (TREE_CODE (exp) == BIT_FIELD_REF)
size_tree = TREE_OPERAND (exp, 1);
else
{
enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
if (mode == BLKmode)
size_tree = TYPE_SIZE (TREE_TYPE (exp));
else
bitsize = GET_MODE_BITSIZE (mode);
}
if (size_tree != NULL_TREE)
{
if (! host_integerp (size_tree, 1))
bitsize = -1;
else
bitsize = TREE_INT_CST_LOW (size_tree);
}
/* Initially, maxsize is the same as the accessed element size.
In the following it will only grow (or become -1). */
maxsize = bitsize;
/* Compute cumulative bit-offset for nested component-refs and array-refs,
and find the ultimate containing object. */
while (1)
{
switch (TREE_CODE (exp))
{
case BIT_FIELD_REF:
bit_offset = size_binop (PLUS_EXPR, bit_offset,
TREE_OPERAND (exp, 2));
break;
case COMPONENT_REF:
{
tree field = TREE_OPERAND (exp, 1);
tree this_offset = component_ref_field_offset (exp);
if (this_offset && TREE_CODE (this_offset) == INTEGER_CST)
{
this_offset = size_binop (MULT_EXPR,
fold_convert (bitsizetype,
this_offset),
bitsize_unit_node);
bit_offset = size_binop (PLUS_EXPR,
bit_offset, this_offset);
bit_offset = size_binop (PLUS_EXPR, bit_offset,
DECL_FIELD_BIT_OFFSET (field));
}
else
{
tree csize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
/* We need to adjust maxsize to the whole structure bitsize.
But we can subtract any constant offset seen sofar,
because that would get us out of the structure otherwise. */
if (maxsize != -1
&& csize && host_integerp (csize, 1))
{
maxsize = (TREE_INT_CST_LOW (csize)
- TREE_INT_CST_LOW (bit_offset));
}
else
maxsize = -1;
}
}
break;
case ARRAY_REF:
case ARRAY_RANGE_REF:
{
tree index = TREE_OPERAND (exp, 1);
tree low_bound = array_ref_low_bound (exp);
tree unit_size = array_ref_element_size (exp);
if (! integer_zerop (low_bound))
index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
index, low_bound);
index = size_binop (MULT_EXPR,
fold_convert (sizetype, index), unit_size);
if (TREE_CODE (index) == INTEGER_CST)
{
index = size_binop (MULT_EXPR,
fold_convert (bitsizetype, index),
bitsize_unit_node);
bit_offset = size_binop (PLUS_EXPR, bit_offset, index);
/* An array ref with a constant index up in the structure
hierarchy will constrain the size of any variable array ref
lower in the access hierarchy. */
seen_variable_array_ref = false;
}
else
{
tree asize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
/* We need to adjust maxsize to the whole array bitsize.
But we can subtract any constant offset seen sofar,
because that would get us outside of the array otherwise. */
if (maxsize != -1
&& asize && host_integerp (asize, 1))
{
maxsize = (TREE_INT_CST_LOW (asize)
- TREE_INT_CST_LOW (bit_offset));
}
else
maxsize = -1;
/* Remember that we have seen an array ref with a variable
index. */
seen_variable_array_ref = true;
}
}
break;
case REALPART_EXPR:
break;
case IMAGPART_EXPR:
bit_offset = size_binop (PLUS_EXPR, bit_offset,
bitsize_int (bitsize));
break;
case VIEW_CONVERT_EXPR:
/* ??? We probably should give up here and bail out. */
break;
default:
goto done;
}
exp = TREE_OPERAND (exp, 0);
}
done:
/* We need to deal with variable arrays ending structures such as
struct { int length; int a[1]; } x; x.a[d]
struct { struct { int a; int b; } a[1]; } x; x.a[d].a
struct { struct { int a[1]; } a[1]; } x; x.a[0][d], x.a[d][0]
where we do not know maxsize for variable index accesses to
the array. The simplest way to conservatively deal with this
is to punt in the case that offset + maxsize reaches the
base type boundary. */
if (seen_variable_array_ref
&& maxsize != -1
&& host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
&& TREE_INT_CST_LOW (bit_offset) + maxsize
== TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp))))
maxsize = -1;
/* ??? Due to negative offsets in ARRAY_REF we can end up with
negative bit_offset here. We might want to store a zero offset
in this case. */
*poffset = TREE_INT_CST_LOW (bit_offset);
*psize = bitsize;
*pmax_size = maxsize;
return exp;
}