freebsd-skq/contrib/gcc/cp/init.c

3201 lines
98 KiB
C
Raw Normal View History

/* Handle initialization things in C++.
Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
2004-07-28 03:11:36 +00:00
1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com)
2004-07-28 03:11:36 +00:00
This file is part of GCC.
2004-07-28 03:11:36 +00:00
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
2004-07-28 03:11:36 +00:00
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
2004-07-28 03:11:36 +00:00
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
1999-08-26 09:30:50 +00:00
/* High-level class interface. */
#include "config.h"
1999-08-26 09:30:50 +00:00
#include "system.h"
2004-07-28 03:11:36 +00:00
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "expr.h"
#include "cp-tree.h"
#include "flags.h"
#include "output.h"
1999-08-26 09:30:50 +00:00
#include "except.h"
#include "toplev.h"
2004-07-28 03:11:36 +00:00
static bool begin_init_stmts (tree *, tree *);
static tree finish_init_stmts (bool, tree, tree);
2003-07-11 03:40:53 +00:00
static void construct_virtual_base (tree, tree);
2004-07-28 03:11:36 +00:00
static void expand_aggr_init_1 (tree, tree, tree, tree, int);
static void expand_default_init (tree, tree, tree, tree, int);
static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
2003-07-11 03:40:53 +00:00
static void perform_member_init (tree, tree);
2004-07-28 03:11:36 +00:00
static tree build_builtin_delete_call (tree);
static int member_init_ok_or_else (tree, tree, tree);
static void expand_virtual_init (tree, tree);
2003-07-11 03:40:53 +00:00
static tree sort_mem_initializers (tree, tree);
2004-07-28 03:11:36 +00:00
static tree initializing_context (tree);
static void expand_cleanup_for_base (tree, tree);
static tree get_temp_regvar (tree, tree);
static tree dfs_initialize_vtbl_ptrs (tree, void *);
static tree build_default_init (tree, tree);
static tree build_new_1 (tree);
static tree get_cookie_size (tree);
static tree build_dtor_call (tree, special_function_kind, int);
static tree build_field_list (tree, tree, int *);
static tree build_vtbl_address (tree);
/* We are about to generate some complex initialization code.
Conceptually, it is all a single expression. However, we may want
to include conditionals, loops, and other such statement-level
constructs. Therefore, we build the initialization code inside a
statement-expression. This function starts such an expression.
STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
pass them back to finish_init_stmts when the expression is
complete. */
2004-07-28 03:11:36 +00:00
static bool
begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
{
2004-07-28 03:11:36 +00:00
bool is_global = !building_stmt_tree ();
2004-07-28 03:11:36 +00:00
*stmt_expr_p = begin_stmt_expr ();
*compound_stmt_p = begin_compound_stmt (/*has_no_scope=*/true);
return is_global;
}
/* Finish out the statement-expression begun by the previous call to
begin_init_stmts. Returns the statement-expression itself. */
2004-07-28 03:11:36 +00:00
static tree
finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
{
2004-07-28 03:11:36 +00:00
finish_compound_stmt (compound_stmt);
2004-07-28 03:11:36 +00:00
stmt_expr = finish_stmt_expr (stmt_expr, true);
2004-07-28 03:11:36 +00:00
my_friendly_assert (!building_stmt_tree () == is_global, 20030726);
return stmt_expr;
}
/* Constructors */
/* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
which we want to initialize the vtable pointer for, DATA is
TREE_LIST whose TREE_VALUE is the this ptr expression. */
static tree
2004-07-28 03:11:36 +00:00
dfs_initialize_vtbl_ptrs (tree binfo, void *data)
{
if ((!BINFO_PRIMARY_P (binfo) || TREE_VIA_VIRTUAL (binfo))
&& CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
{
tree base_ptr = TREE_VALUE ((tree) data);
base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
expand_virtual_init (binfo, base_ptr);
}
2004-07-28 03:11:36 +00:00
BINFO_MARKED (binfo) = 1;
return NULL_TREE;
}
/* Initialize all the vtable pointers in the object pointed to by
ADDR. */
1999-08-26 09:30:50 +00:00
void
2004-07-28 03:11:36 +00:00
initialize_vtbl_ptrs (tree addr)
{
tree list;
tree type;
type = TREE_TYPE (TREE_TYPE (addr));
list = build_tree_list (type, addr);
/* Walk through the hierarchy, initializing the vptr in each base
2003-07-11 03:40:53 +00:00
class. We do these in pre-order because we can't find the virtual
bases for a class until we've initialized the vtbl for that
class. */
2004-07-28 03:11:36 +00:00
dfs_walk_real (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs,
NULL, unmarkedp, list);
dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
}
2003-07-11 03:40:53 +00:00
/* Return an expression for the zero-initialization of an object with
type T. This expression will either be a constant (in the case
that T is a scalar), or a CONSTRUCTOR (in the case that T is an
aggregate). In either case, the value can be used as DECL_INITIAL
for a decl of the indicated TYPE; it is a valid static initializer.
If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
number of elements in the array. If STATIC_STORAGE_P is TRUE,
initializers are only generated for entities for which
zero-initialization does not simply mean filling the storage with
zero bytes. */
tree
2003-07-11 03:40:53 +00:00
build_zero_init (tree type, tree nelts, bool static_storage_p)
{
2003-07-11 03:40:53 +00:00
tree init = NULL_TREE;
/* [dcl.init]
To zero-initialization storage for an object of type T means:
-- if T is a scalar type, the storage is set to the value of zero
converted to T.
-- if T is a non-union class type, the storage for each nonstatic
data member and each base-class subobject is zero-initialized.
-- if T is a union type, the storage for its first data member is
zero-initialized.
-- if T is an array type, the storage for each element is
zero-initialized.
2003-07-11 03:40:53 +00:00
-- if T is a reference type, no initialization is performed. */
my_friendly_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST,
20030618);
if (type == error_mark_node)
;
else if (static_storage_p && zero_init_p (type))
/* In order to save space, we do not explicitly build initializers
for items that do not need them. GCC's semantics are that
items with static storage duration that are not otherwise
initialized are initialized to zero. */
;
else if (SCALAR_TYPE_P (type))
init = convert (type, integer_zero_node);
else if (CLASS_TYPE_P (type))
{
tree field;
tree inits;
/* Build a constructor to contain the initializations. */
2004-07-28 03:11:36 +00:00
init = build_constructor (type, NULL_TREE);
2003-07-11 03:40:53 +00:00
/* Iterate over the fields, building initializations. */
inits = NULL_TREE;
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
{
if (TREE_CODE (field) != FIELD_DECL)
continue;
/* Note that for class types there will be FIELD_DECLs
corresponding to base classes as well. Thus, iterating
over TYPE_FIELDs will result in correct initialization of
all of the subobjects. */
if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
inits = tree_cons (field,
build_zero_init (TREE_TYPE (field),
/*nelts=*/NULL_TREE,
static_storage_p),
inits);
/* For unions, only the first field is initialized. */
if (TREE_CODE (type) == UNION_TYPE)
break;
}
CONSTRUCTOR_ELTS (init) = nreverse (inits);
}
else if (TREE_CODE (type) == ARRAY_TYPE)
{
2003-07-11 03:40:53 +00:00
tree max_index;
tree inits;
/* Build a constructor to contain the initializations. */
2004-07-28 03:11:36 +00:00
init = build_constructor (type, NULL_TREE);
2003-07-11 03:40:53 +00:00
/* Iterate over the array elements, building initializations. */
inits = NULL_TREE;
max_index = nelts ? nelts : array_type_nelts (type);
my_friendly_assert (TREE_CODE (max_index) == INTEGER_CST, 20030618);
2004-07-28 03:11:36 +00:00
/* A zero-sized array, which is accepted as an extension, will
have an upper bound of -1. */
if (!tree_int_cst_equal (max_index, integer_minus_one_node))
2005-06-03 03:28:44 +00:00
{
tree elt_init = build_zero_init (TREE_TYPE (type),
/*nelts=*/NULL_TREE,
static_storage_p);
tree range = build (RANGE_EXPR,
sizetype, size_zero_node, max_index);
inits = tree_cons (range, elt_init, inits);
}
2003-07-11 03:40:53 +00:00
CONSTRUCTOR_ELTS (init) = nreverse (inits);
}
else if (TREE_CODE (type) == REFERENCE_TYPE)
2003-07-11 03:40:53 +00:00
;
else
2003-07-11 03:40:53 +00:00
abort ();
2003-07-11 03:40:53 +00:00
/* In all cases, the initializer is a constant. */
if (init)
TREE_CONSTANT (init) = 1;
return init;
}
2003-07-11 03:40:53 +00:00
/* Build an expression for the default-initialization of an object of
the indicated TYPE. If NELTS is non-NULL, and TYPE is an
ARRAY_TYPE, NELTS is the number of elements in the array. If
initialization of TYPE requires calling constructors, this function
returns NULL_TREE; the caller is responsible for arranging for the
constructors to be called. */
2003-07-11 03:40:53 +00:00
static tree
2004-07-28 03:11:36 +00:00
build_default_init (tree type, tree nelts)
2003-07-11 03:40:53 +00:00
{
/* [dcl.init]:
2003-07-11 03:40:53 +00:00
To default-initialize an object of type T means:
2003-07-11 03:40:53 +00:00
--if T is a non-POD class type (clause _class_), the default construc-
tor for T is called (and the initialization is ill-formed if T has
no accessible default constructor);
2003-07-11 03:40:53 +00:00
--if T is an array type, each element is default-initialized;
2003-07-11 03:40:53 +00:00
--otherwise, the storage for the object is zero-initialized.
2003-07-11 03:40:53 +00:00
A program that calls for default-initialization of an entity of refer-
ence type is ill-formed. */
2003-07-11 03:40:53 +00:00
/* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
performing the initialization. This is confusing in that some
non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
a class with a pointer-to-data member as a non-static data member
does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
passing non-PODs to build_zero_init below, which is contrary to
the semantics quoted above from [dcl.init].
2003-07-11 03:40:53 +00:00
It happens, however, that the behavior of the constructor the
standard says we should have generated would be precisely the
same as that obtained by calling build_zero_init below, so things
work out OK. */
if (TYPE_NEEDS_CONSTRUCTING (type)
|| (nelts && TREE_CODE (nelts) != INTEGER_CST))
return NULL_TREE;
/* At this point, TYPE is either a POD class type, an array of POD
2004-07-28 03:11:36 +00:00
classes, or something even more innocuous. */
2003-07-11 03:40:53 +00:00
return build_zero_init (type, nelts, /*static_storage_p=*/false);
}
2003-07-11 03:40:53 +00:00
/* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
arguments. If TREE_LIST is void_type_node, an empty initializer
list was given; if NULL_TREE no initializer was given. */
1999-08-26 09:30:50 +00:00
static void
2003-07-11 03:40:53 +00:00
perform_member_init (tree member, tree init)
{
tree decl;
tree type = TREE_TYPE (member);
2003-07-11 03:40:53 +00:00
bool explicit;
explicit = (init != NULL_TREE);
2003-07-11 03:40:53 +00:00
/* Effective C++ rule 12 requires that all data members be
initialized. */
if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
warning ("`%D' should be initialized in the member initialization "
"list",
member);
2003-07-11 03:40:53 +00:00
if (init == void_type_node)
init = NULL_TREE;
/* Get an lvalue for the data member. */
decl = build_class_member_access_expr (current_class_ref, member,
/*access_path=*/NULL_TREE,
/*preserve_reference=*/true);
if (decl == error_mark_node)
return;
1999-08-26 09:30:50 +00:00
/* Deal with this here, as we will get confused if we try to call the
assignment op for an anonymous union. This can happen in a
synthesized copy constructor. */
if (ANON_AGGR_TYPE_P (type))
{
if (init)
{
init = build (INIT_EXPR, type, decl, TREE_VALUE (init));
finish_expr_stmt (init);
}
}
else if (TYPE_NEEDS_CONSTRUCTING (type)
|| (init && TYPE_HAS_CONSTRUCTOR (type)))
{
if (explicit
&& TREE_CODE (type) == ARRAY_TYPE
&& init != NULL_TREE
&& TREE_CHAIN (init) == NULL_TREE
&& TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
{
/* Initialization of one array from another. */
2003-07-11 03:40:53 +00:00
finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
/* from_array=*/1));
}
else
finish_expr_stmt (build_aggr_init (decl, init, 0));
}
else
{
if (init == NULL_TREE)
{
if (explicit)
{
2003-07-11 03:40:53 +00:00
init = build_default_init (type, /*nelts=*/NULL_TREE);
if (TREE_CODE (type) == REFERENCE_TYPE)
warning
("default-initialization of `%#D', which has reference type",
member);
}
/* member traversal: note it leaves init NULL */
else if (TREE_CODE (type) == REFERENCE_TYPE)
pedwarn ("uninitialized reference member `%D'", member);
2004-07-28 03:11:36 +00:00
else if (CP_TYPE_CONST_P (type))
pedwarn ("uninitialized member `%D' with `const' type `%T'",
member, type);
}
else if (TREE_CODE (init) == TREE_LIST)
2004-07-28 03:11:36 +00:00
/* There was an explicit member initialization. Do some work
in that case. */
init = build_x_compound_expr_from_list (init, "member initializer");
if (init)
finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
}
1999-08-26 09:30:50 +00:00
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
{
1999-08-26 09:30:50 +00:00
tree expr;
2003-07-11 03:40:53 +00:00
expr = build_class_member_access_expr (current_class_ref, member,
/*access_path=*/NULL_TREE,
/*preserve_reference=*/false);
expr = build_delete (type, expr, sfk_complete_destructor,
LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
if (expr != error_mark_node)
2003-07-11 03:40:53 +00:00
finish_eh_cleanup (expr);
}
}
/* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
1999-08-26 09:30:50 +00:00
static tree
2004-07-28 03:11:36 +00:00
build_field_list (tree t, tree list, int *uses_unions_p)
{
tree fields;
*uses_unions_p = 0;
/* Note whether or not T is a union. */
if (TREE_CODE (t) == UNION_TYPE)
*uses_unions_p = 1;
for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
{
/* Skip CONST_DECLs for enumeration constants and so forth. */
2003-07-11 03:40:53 +00:00
if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
continue;
/* Keep track of whether or not any fields are unions. */
if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
*uses_unions_p = 1;
/* For an anonymous struct or union, we must recursively
consider the fields of the anonymous type. They can be
directly initialized from the constructor. */
if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
{
/* Add this field itself. Synthesized copy constructors
initialize the entire aggregate. */
list = tree_cons (fields, NULL_TREE, list);
/* And now add the fields in the anonymous aggregate. */
list = build_field_list (TREE_TYPE (fields), list,
uses_unions_p);
}
/* Add this field. */
else if (DECL_NAME (fields))
list = tree_cons (fields, NULL_TREE, list);
}
return list;
}
2003-07-11 03:40:53 +00:00
/* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
a FIELD_DECL or BINFO in T that needs initialization. The
TREE_VALUE gives the initializer, or list of initializer arguments.
Return a TREE_LIST containing all of the initializations required
for T, in the order in which they should be performed. The output
list has the same format as the input. */
static tree
2003-07-11 03:40:53 +00:00
sort_mem_initializers (tree t, tree mem_inits)
{
tree init;
2003-07-11 03:40:53 +00:00
tree base;
tree sorted_inits;
tree next_subobject;
int i;
int uses_unions_p;
2003-07-11 03:40:53 +00:00
/* Build up a list of initializations. The TREE_PURPOSE of entry
will be the subobject (a FIELD_DECL or BINFO) to initialize. The
TREE_VALUE will be the constructor arguments, or NULL if no
explicit initialization was provided. */
sorted_inits = NULL_TREE;
/* Process the virtual bases. */
for (base = CLASSTYPE_VBASECLASSES (t); base; base = TREE_CHAIN (base))
sorted_inits = tree_cons (TREE_VALUE (base), NULL_TREE, sorted_inits);
/* Process the direct bases. */
for (i = 0; i < CLASSTYPE_N_BASECLASSES (t); ++i)
{
base = BINFO_BASETYPE (TYPE_BINFO (t), i);
if (!TREE_VIA_VIRTUAL (base))
sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
}
/* Process the non-static data members. */
sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
/* Reverse the entire list of initializations, so that they are in
the order that they will actually be performed. */
sorted_inits = nreverse (sorted_inits);
/* If the user presented the initializers in an order different from
that in which they will actually occur, we issue a warning. Keep
track of the next subobject which can be explicitly initialized
without issuing a warning. */
next_subobject = sorted_inits;
/* Go through the explicit initializers, filling in TREE_PURPOSE in
the SORTED_INITS. */
for (init = mem_inits; init; init = TREE_CHAIN (init))
{
tree subobject;
tree subobject_init;
subobject = TREE_PURPOSE (init);
/* If the explicit initializers are in sorted order, then
SUBOBJECT will be NEXT_SUBOBJECT, or something following
it. */
for (subobject_init = next_subobject;
subobject_init;
subobject_init = TREE_CHAIN (subobject_init))
if (TREE_PURPOSE (subobject_init) == subobject)
break;
2003-07-11 03:40:53 +00:00
/* Issue a warning if the explicit initializer order does not
match that which will actually occur. */
if (warn_reorder && !subobject_init)
{
2003-07-11 03:40:53 +00:00
if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
cp_warning_at ("`%D' will be initialized after",
TREE_PURPOSE (next_subobject));
else
warning ("base `%T' will be initialized after",
TREE_PURPOSE (next_subobject));
if (TREE_CODE (subobject) == FIELD_DECL)
cp_warning_at (" `%#D'", subobject);
else
warning (" base `%T'", subobject);
2004-07-28 03:11:36 +00:00
warning (" when initialized here");
}
2003-07-11 03:40:53 +00:00
/* Look again, from the beginning of the list. */
if (!subobject_init)
{
2003-07-11 03:40:53 +00:00
subobject_init = sorted_inits;
while (TREE_PURPOSE (subobject_init) != subobject)
subobject_init = TREE_CHAIN (subobject_init);
}
2003-07-11 03:40:53 +00:00
/* It is invalid to initialize the same subobject more than
once. */
if (TREE_VALUE (subobject_init))
{
2003-07-11 03:40:53 +00:00
if (TREE_CODE (subobject) == FIELD_DECL)
error ("multiple initializations given for `%D'", subobject);
else
error ("multiple initializations given for base `%T'",
subobject);
}
2003-07-11 03:40:53 +00:00
/* Record the initialization. */
TREE_VALUE (subobject_init) = TREE_VALUE (init);
next_subobject = subobject_init;
}
/* [class.base.init]
If a ctor-initializer specifies more than one mem-initializer for
multiple members of the same union (including members of
anonymous unions), the ctor-initializer is ill-formed. */
if (uses_unions_p)
{
2003-07-11 03:40:53 +00:00
tree last_field = NULL_TREE;
for (init = sorted_inits; init; init = TREE_CHAIN (init))
{
tree field;
tree field_type;
int done;
2003-07-11 03:40:53 +00:00
/* Skip uninitialized members and base classes. */
if (!TREE_VALUE (init)
|| TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
continue;
/* See if this field is a member of a union, or a member of a
structure contained in a union, etc. */
field = TREE_PURPOSE (init);
for (field_type = DECL_CONTEXT (field);
!same_type_p (field_type, t);
field_type = TYPE_CONTEXT (field_type))
if (TREE_CODE (field_type) == UNION_TYPE)
break;
/* If this field is not a member of a union, skip it. */
if (TREE_CODE (field_type) != UNION_TYPE)
continue;
/* It's only an error if we have two initializers for the same
union type. */
if (!last_field)
{
last_field = field;
continue;
}
/* See if LAST_FIELD and the field initialized by INIT are
members of the same union. If so, there's a problem,
unless they're actually members of the same structure
which is itself a member of a union. For example, given:
union { struct { int i; int j; }; };
initializing both `i' and `j' makes sense. */
field_type = DECL_CONTEXT (field);
done = 0;
do
{
tree last_field_type;
last_field_type = DECL_CONTEXT (last_field);
while (1)
{
if (same_type_p (last_field_type, field_type))
{
if (TREE_CODE (field_type) == UNION_TYPE)
error ("initializations for multiple members of `%T'",
last_field_type);
done = 1;
break;
}
if (same_type_p (last_field_type, t))
break;
last_field_type = TYPE_CONTEXT (last_field_type);
}
/* If we've reached the outermost class, then we're
done. */
if (same_type_p (field_type, t))
break;
field_type = TYPE_CONTEXT (field_type);
}
while (!done);
last_field = field;
}
}
2003-07-11 03:40:53 +00:00
return sorted_inits;
}
2003-07-11 03:40:53 +00:00
/* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
is a TREE_LIST giving the explicit mem-initializer-list for the
constructor. The TREE_PURPOSE of each entry is a subobject (a
FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
is a TREE_LIST giving the arguments to the constructor or
void_type_node for an empty list of arguments. */
void
2003-07-11 03:40:53 +00:00
emit_mem_initializers (tree mem_inits)
{
2003-07-11 03:40:53 +00:00
/* Sort the mem-initializers into the order in which the
initializations should be performed. */
mem_inits = sort_mem_initializers (current_class_type, mem_inits);
2003-07-11 03:40:53 +00:00
in_base_initializer = 1;
/* Initialize base classes. */
while (mem_inits
&& TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
{
tree subobject = TREE_PURPOSE (mem_inits);
tree arguments = TREE_VALUE (mem_inits);
/* If these initializations are taking place in a copy
constructor, the base class should probably be explicitly
initialized. */
if (extra_warnings && !arguments
&& DECL_COPY_CONSTRUCTOR_P (current_function_decl)
&& TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
warning ("base class `%#T' should be explicitly initialized in the "
"copy constructor",
BINFO_TYPE (subobject));
/* If an explicit -- but empty -- initializer list was present,
treat it just like default initialization at this point. */
if (arguments == void_type_node)
arguments = NULL_TREE;
/* Initialize the base. */
if (TREE_VIA_VIRTUAL (subobject))
construct_virtual_base (subobject, arguments);
else
{
2003-07-11 03:40:53 +00:00
tree base_addr;
base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
subobject, 1);
expand_aggr_init_1 (subobject, NULL_TREE,
build_indirect_ref (base_addr, NULL),
arguments,
LOOKUP_NORMAL);
2003-07-11 03:40:53 +00:00
expand_cleanup_for_base (subobject, NULL_TREE);
}
2003-07-11 03:40:53 +00:00
mem_inits = TREE_CHAIN (mem_inits);
}
2003-07-11 03:40:53 +00:00
in_base_initializer = 0;
2003-07-11 03:40:53 +00:00
/* Initialize the vptrs. */
initialize_vtbl_ptrs (current_class_ptr);
2003-07-11 03:40:53 +00:00
/* Initialize the data members. */
while (mem_inits)
{
2003-07-11 03:40:53 +00:00
perform_member_init (TREE_PURPOSE (mem_inits),
TREE_VALUE (mem_inits));
mem_inits = TREE_CHAIN (mem_inits);
}
}
/* Returns the address of the vtable (i.e., the value that should be
assigned to the vptr) for BINFO. */
static tree
2004-07-28 03:11:36 +00:00
build_vtbl_address (tree binfo)
{
tree binfo_for = binfo;
tree vtbl;
if (BINFO_VPTR_INDEX (binfo) && TREE_VIA_VIRTUAL (binfo)
&& BINFO_PRIMARY_P (binfo))
/* If this is a virtual primary base, then the vtable we want to store
is that for the base this is being used as the primary base of. We
can't simply skip the initialization, because we may be expanding the
inits of a subobject constructor where the virtual base layout
can be different. */
while (BINFO_PRIMARY_BASE_OF (binfo_for))
binfo_for = BINFO_PRIMARY_BASE_OF (binfo_for);
/* Figure out what vtable BINFO's vtable is based on, and mark it as
used. */
vtbl = get_vtbl_decl_for_binfo (binfo_for);
assemble_external (vtbl);
TREE_USED (vtbl) = 1;
/* Now compute the address to use when initializing the vptr. */
vtbl = BINFO_VTABLE (binfo_for);
if (TREE_CODE (vtbl) == VAR_DECL)
{
vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
TREE_CONSTANT (vtbl) = 1;
}
return vtbl;
}
/* This code sets up the virtual function tables appropriate for
the pointer DECL. It is a one-ply initialization.
BINFO is the exact type that DECL is supposed to be. In
multiple inheritance, this might mean "C's A" if C : A, B. */
1999-08-26 09:30:50 +00:00
static void
2004-07-28 03:11:36 +00:00
expand_virtual_init (tree binfo, tree decl)
{
tree vtbl, vtbl_ptr;
tree vtt_index;
/* Compute the initializer for vptr. */
vtbl = build_vtbl_address (binfo);
/* We may get this vptr from a VTT, if this is a subobject
constructor or subobject destructor. */
vtt_index = BINFO_VPTR_INDEX (binfo);
if (vtt_index)
{
tree vtbl2;
tree vtt_parm;
/* Compute the value to use, when there's a VTT. */
vtt_parm = current_vtt_parm;
vtbl2 = build (PLUS_EXPR,
TREE_TYPE (vtt_parm),
vtt_parm,
vtt_index);
vtbl2 = build1 (INDIRECT_REF, TREE_TYPE (vtbl), vtbl2);
/* The actual initializer is the VTT value only in the subobject
constructor. In maybe_clone_body we'll substitute NULL for
the vtt_parm in the case of the non-subobject constructor. */
vtbl = build (COND_EXPR,
TREE_TYPE (vtbl),
build (EQ_EXPR, boolean_type_node,
current_in_charge_parm, integer_zero_node),
vtbl2,
vtbl);
}
/* Compute the location of the vtpr. */
vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
TREE_TYPE (binfo));
my_friendly_assert (vtbl_ptr != error_mark_node, 20010730);
/* Assign the vtable to the vptr. */
vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
}
/* If an exception is thrown in a constructor, those base classes already
constructed must be destroyed. This function creates the cleanup
for BINFO, which has just been constructed. If FLAG is non-NULL,
2003-07-11 03:40:53 +00:00
it is a DECL which is nonzero when this base needs to be
destroyed. */
static void
2004-07-28 03:11:36 +00:00
expand_cleanup_for_base (tree binfo, tree flag)
{
tree expr;
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
return;
/* Call the destructor. */
2003-07-11 03:40:53 +00:00
expr = build_special_member_call (current_class_ref,
base_dtor_identifier,
NULL_TREE,
binfo,
LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
if (flag)
expr = fold (build (COND_EXPR, void_type_node,
2003-07-11 03:40:53 +00:00
c_common_truthvalue_conversion (flag),
expr, integer_zero_node));
2003-07-11 03:40:53 +00:00
finish_eh_cleanup (expr);
}
2003-07-11 03:40:53 +00:00
/* Construct the virtual base-class VBASE passing the ARGUMENTS to its
constructor. */
1999-08-26 09:30:50 +00:00
static void
2003-07-11 03:40:53 +00:00
construct_virtual_base (tree vbase, tree arguments)
{
2003-07-11 03:40:53 +00:00
tree inner_if_stmt;
tree compound_stmt;
tree exp;
tree flag;
/* If there are virtual base classes with destructors, we need to
emit cleanups to destroy them if an exception is thrown during
the construction process. These exception regions (i.e., the
period during which the cleanups must occur) begin from the time
the construction is complete to the end of the function. If we
create a conditional block in which to initialize the
base-classes, then the cleanup region for the virtual base begins
inside a block, and ends outside of that block. This situation
confuses the sjlj exception-handling code. Therefore, we do not
create a single conditional block, but one for each
initialization. (That way the cleanup regions always begin
in the outer block.) We trust the back-end to figure out
that the FLAG will not change across initializations, and
avoid doing multiple tests. */
flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
inner_if_stmt = begin_if_stmt ();
finish_if_stmt_cond (flag, inner_if_stmt);
2004-07-28 03:11:36 +00:00
compound_stmt = begin_compound_stmt (/*has_no_scope=*/true);
2003-07-11 03:40:53 +00:00
/* Compute the location of the virtual base. If we're
constructing virtual bases, then we must be the most derived
class. Therefore, we don't have to look up the virtual base;
we already know where it is. */
2003-08-22 02:56:07 +00:00
exp = convert_to_base_statically (current_class_ref, vbase);
expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
LOOKUP_COMPLAIN);
2004-07-28 03:11:36 +00:00
finish_compound_stmt (compound_stmt);
2003-07-11 03:40:53 +00:00
finish_then_clause (inner_if_stmt);
finish_if_stmt ();
expand_cleanup_for_base (vbase, flag);
}
1999-08-26 09:30:50 +00:00
/* Find the context in which this FIELD can be initialized. */
1999-08-26 09:30:50 +00:00
static tree
2004-07-28 03:11:36 +00:00
initializing_context (tree field)
1999-08-26 09:30:50 +00:00
{
tree t = DECL_CONTEXT (field);
1999-08-26 09:30:50 +00:00
/* Anonymous union members can be initialized in the first enclosing
non-anonymous union context. */
while (t && ANON_AGGR_TYPE_P (t))
1999-08-26 09:30:50 +00:00
t = TYPE_CONTEXT (t);
return t;
}
/* Function to give error message if member initialization specification
is erroneous. FIELD is the member we decided to initialize.
TYPE is the type for which the initialization is being performed.
1999-08-26 09:30:50 +00:00
FIELD must be a member of TYPE.
MEMBER_NAME is the name of the member. */
static int
2004-07-28 03:11:36 +00:00
member_init_ok_or_else (tree field, tree type, tree member_name)
{
if (field == error_mark_node)
return 0;
2004-07-28 03:11:36 +00:00
if (!field)
{
error ("class `%T' does not have any field named `%D'", type,
2004-07-28 03:11:36 +00:00
member_name);
return 0;
}
if (TREE_CODE (field) == VAR_DECL)
{
error ("`%#D' is a static data member; it can only be "
"initialized at its definition",
field);
return 0;
}
2004-07-28 03:11:36 +00:00
if (TREE_CODE (field) != FIELD_DECL)
{
2004-07-28 03:11:36 +00:00
error ("`%#D' is not a non-static data member of `%T'",
field, type);
return 0;
}
if (initializing_context (field) != type)
{
error ("class `%T' does not have any field named `%D'", type,
member_name);
return 0;
}
return 1;
}
2003-07-11 03:40:53 +00:00
/* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
is a _TYPE node or TYPE_DECL which names a base for that type.
Check the validity of NAME, and return either the base _TYPE, base
binfo, or the FIELD_DECL of the member. If NAME is invalid, return
NULL_TREE and issue a diagnostic.
An old style unnamed direct single base construction is permitted,
where NAME is NULL. */
1999-08-26 09:30:50 +00:00
tree
2003-07-11 03:40:53 +00:00
expand_member_init (tree name)
{
2003-07-11 03:40:53 +00:00
tree basetype;
tree field;
2003-07-11 03:40:53 +00:00
if (!current_class_ref)
return NULL_TREE;
if (!name)
{
/* This is an obsolete unnamed base class initializer. The
parser will already have warned about its use. */
2003-07-11 03:40:53 +00:00
switch (CLASSTYPE_N_BASECLASSES (current_class_type))
{
case 0:
error ("unnamed initializer for `%T', which has no base classes",
2003-07-11 03:40:53 +00:00
current_class_type);
return NULL_TREE;
case 1:
2003-07-11 03:40:53 +00:00
basetype = TYPE_BINFO_BASETYPE (current_class_type, 0);
break;
default:
error ("unnamed initializer for `%T', which uses multiple inheritance",
2003-07-11 03:40:53 +00:00
current_class_type);
return NULL_TREE;
}
}
else if (TYPE_P (name))
{
2003-02-10 05:41:50 +00:00
basetype = TYPE_MAIN_VARIANT (name);
name = TYPE_NAME (name);
}
else if (TREE_CODE (name) == TYPE_DECL)
basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
2003-07-11 03:40:53 +00:00
else
basetype = NULL_TREE;
if (basetype)
1999-08-26 09:30:50 +00:00
{
2004-07-28 03:11:36 +00:00
tree class_binfo;
tree direct_binfo;
tree virtual_binfo;
int i;
2003-07-11 03:40:53 +00:00
if (current_template_parms)
2003-07-11 03:40:53 +00:00
return basetype;
2004-07-28 03:11:36 +00:00
class_binfo = TYPE_BINFO (current_class_type);
direct_binfo = NULL_TREE;
virtual_binfo = NULL_TREE;
/* Look for a direct base. */
for (i = 0; i < BINFO_N_BASETYPES (class_binfo); ++i)
if (same_type_p (basetype,
TYPE_BINFO_BASETYPE (current_class_type, i)))
{
direct_binfo = BINFO_BASETYPE (class_binfo, i);
break;
}
/* Look for a virtual base -- unless the direct base is itself
virtual. */
if (!direct_binfo || !TREE_VIA_VIRTUAL (direct_binfo))
{
virtual_binfo
= purpose_member (basetype,
CLASSTYPE_VBASECLASSES (current_class_type));
if (virtual_binfo)
virtual_binfo = TREE_VALUE (virtual_binfo);
}
/* [class.base.init]
If a mem-initializer-id is ambiguous because it designates
both a direct non-virtual base class and an inherited virtual
base class, the mem-initializer is ill-formed. */
if (direct_binfo && virtual_binfo)
1999-08-26 09:30:50 +00:00
{
2004-07-28 03:11:36 +00:00
error ("'%D' is both a direct base and an indirect virtual base",
basetype);
return NULL_TREE;
2003-07-11 03:40:53 +00:00
}
2004-07-28 03:11:36 +00:00
if (!direct_binfo && !virtual_binfo)
2003-07-11 03:40:53 +00:00
{
if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
2006-08-26 21:29:10 +00:00
error ("type `%T' is not a direct or virtual base of `%T'",
basetype, current_class_type);
1999-08-26 09:30:50 +00:00
else
2006-08-26 21:29:10 +00:00
error ("type `%T' is not a direct base of `%T'",
basetype, current_class_type);
return NULL_TREE;
}
2004-07-28 03:11:36 +00:00
return direct_binfo ? direct_binfo : virtual_binfo;
1999-08-26 09:30:50 +00:00
}
else
{
if (TREE_CODE (name) == IDENTIFIER_NODE)
2004-07-28 03:11:36 +00:00
field = lookup_field (current_class_type, name, 1, false);
else
field = name;
1999-08-26 09:30:50 +00:00
2003-07-11 03:40:53 +00:00
if (member_init_ok_or_else (field, current_class_type, name))
return field;
1999-08-26 09:30:50 +00:00
}
2003-07-11 03:40:53 +00:00
return NULL_TREE;
}
/* This is like `expand_member_init', only it stores one aggregate
value into another.
INIT comes in two flavors: it is either a value which
is to be stored in EXP, or it is a parameter list
to go to a constructor, which will operate on EXP.
If INIT is not a parameter list for a constructor, then set
LOOKUP_ONLYCONVERTING.
If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
the initializer, if FLAGS is 0, then it is the (init) form.
If `init' is a CONSTRUCTOR, then we emit a warning message,
explaining that such initializations are invalid.
If INIT resolves to a CALL_EXPR which happens to return
something of the type we are looking for, then we know
that we can safely use that call to perform the
initialization.
The virtual function table pointer cannot be set up here, because
we do not really know its type.
This never calls operator=().
When initializing, nothing is CONST.
A default copy constructor may have to be used to perform the
initialization.
A constructor or a conversion operator may have to be used to
1999-08-26 09:30:50 +00:00
perform the initialization, but not both, as it would be ambiguous. */
tree
2004-07-28 03:11:36 +00:00
build_aggr_init (tree exp, tree init, int flags)
{
tree stmt_expr;
tree compound_stmt;
int destroy_temps;
tree type = TREE_TYPE (exp);
int was_const = TREE_READONLY (exp);
int was_volatile = TREE_THIS_VOLATILE (exp);
2004-07-28 03:11:36 +00:00
int is_global;
if (init == error_mark_node)
return error_mark_node;
TREE_READONLY (exp) = 0;
TREE_THIS_VOLATILE (exp) = 0;
if (init && TREE_CODE (init) != TREE_LIST)
flags |= LOOKUP_ONLYCONVERTING;
if (TREE_CODE (type) == ARRAY_TYPE)
{
/* Must arrange to initialize each element of EXP
from elements of INIT. */
tree itype = init ? TREE_TYPE (init) : NULL_TREE;
if (init && !itype)
{
/* Handle bad initializers like:
class COMPLEX {
public:
double re, im;
COMPLEX(double r = 0.0, double i = 0.0) {re = r; im = i;};
~COMPLEX() {};
};
int main(int argc, char **argv) {
COMPLEX zees(1.0, 0.0)[10];
}
*/
error ("bad array initializer");
return error_mark_node;
}
if (cp_type_quals (type) != TYPE_UNQUALIFIED)
TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
2003-07-11 03:40:53 +00:00
stmt_expr = build_vec_init (exp, NULL_TREE, init,
init && same_type_p (TREE_TYPE (init),
TREE_TYPE (exp)));
TREE_READONLY (exp) = was_const;
TREE_THIS_VOLATILE (exp) = was_volatile;
TREE_TYPE (exp) = type;
if (init)
TREE_TYPE (init) = itype;
return stmt_expr;
}
if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
2004-07-28 03:11:36 +00:00
/* Just know that we've seen something for this node. */
TREE_USED (exp) = 1;
TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
2004-07-28 03:11:36 +00:00
is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
destroy_temps = stmts_are_full_exprs_p ();
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
init, LOOKUP_NORMAL|flags);
2004-07-28 03:11:36 +00:00
stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
TREE_TYPE (exp) = type;
TREE_READONLY (exp) = was_const;
TREE_THIS_VOLATILE (exp) = was_volatile;
return stmt_expr;
}
2003-07-11 03:40:53 +00:00
/* Like build_aggr_init, but not just for aggregates. */
tree
2004-07-28 03:11:36 +00:00
build_init (tree decl, tree init, int flags)
2003-07-11 03:40:53 +00:00
{
tree expr;
2004-07-28 03:11:36 +00:00
if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
2003-07-11 03:40:53 +00:00
expr = build_aggr_init (decl, init, flags);
2004-07-28 03:11:36 +00:00
else if (CLASS_TYPE_P (TREE_TYPE (decl)))
expr = build_special_member_call (decl, complete_ctor_identifier,
build_tree_list (NULL_TREE, init),
TYPE_BINFO (TREE_TYPE (decl)),
LOOKUP_NORMAL|flags);
2003-07-11 03:40:53 +00:00
else
expr = build (INIT_EXPR, TREE_TYPE (decl), decl, init);
return expr;
}
static void
2004-07-28 03:11:36 +00:00
expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
{
1999-08-26 09:30:50 +00:00
tree type = TREE_TYPE (exp);
tree ctor_name;
1999-08-26 09:30:50 +00:00
/* It fails because there may not be a constructor which takes
its own type as the first (or only parameter), but which does
take other types via a conversion. So, if the thing initializing
the expression is a unit element of type X, first try X(X&),
followed by initialization by X. If neither of these work
out, then look hard. */
tree rval;
tree parms;
1999-08-26 09:30:50 +00:00
if (init && TREE_CODE (init) != TREE_LIST
&& (flags & LOOKUP_ONLYCONVERTING))
{
/* Base subobjects should only get direct-initialization. */
if (true_exp != exp)
abort ();
if (flags & DIRECT_BIND)
/* Do nothing. We hit this in two cases: Reference initialization,
where we aren't initializing a real variable, so we don't want
to run a new constructor; and catching an exception, where we
have already built up the constructor call so we could wrap it
in an exception region. */;
2003-07-11 03:40:53 +00:00
else if (TREE_CODE (init) == CONSTRUCTOR
&& TREE_HAS_CONSTRUCTOR (init))
{
/* A brace-enclosed initializer for an aggregate. */
my_friendly_assert (CP_AGGREGATE_TYPE_P (type), 20021016);
init = digest_init (type, init, (tree *)NULL);
}
else
1999-08-26 09:30:50 +00:00
init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
2004-07-28 03:11:36 +00:00
if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
/* We need to protect the initialization of a catch parm with a
call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1999-08-26 09:30:50 +00:00
around the TARGET_EXPR for the copy constructor. See
2004-07-28 03:11:36 +00:00
initialize_handler_parm. */
{
TREE_OPERAND (init, 0) = build (INIT_EXPR, TREE_TYPE (exp), exp,
TREE_OPERAND (init, 0));
TREE_TYPE (init) = void_type_node;
}
1999-08-26 09:30:50 +00:00
else
init = build (INIT_EXPR, TREE_TYPE (exp), exp, init);
TREE_SIDE_EFFECTS (init) = 1;
finish_expr_stmt (init);
1999-08-26 09:30:50 +00:00
return;
}
if (init == NULL_TREE
|| (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
{
parms = init;
if (parms)
init = TREE_VALUE (parms);
}
else
parms = build_tree_list (NULL_TREE, init);
if (true_exp == exp)
ctor_name = complete_ctor_identifier;
else
ctor_name = base_ctor_identifier;
2003-07-11 03:40:53 +00:00
rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
if (TREE_SIDE_EFFECTS (rval))
2004-07-28 03:11:36 +00:00
finish_expr_stmt (convert_to_void (rval, NULL));
}
/* This function is responsible for initializing EXP with INIT
(if any).
BINFO is the binfo of the type for who we are performing the
initialization. For example, if W is a virtual base class of A and B,
and C : A, B.
If we are initializing B, then W must contain B's W vtable, whereas
were we initializing C, W must contain C's W vtable.
TRUE_EXP is nonzero if it is the true expression being initialized.
In this case, it may be EXP, or may just contain EXP. The reason we
need this is because if EXP is a base element of TRUE_EXP, we
don't necessarily know by looking at EXP where its virtual
baseclass fields should really be pointing. But we do know
from TRUE_EXP. In constructors, we don't know anything about
the value being initialized.
2004-07-28 03:11:36 +00:00
FLAGS is just passed to `build_new_method_call'. See that function
for its description. */
static void
2004-07-28 03:11:36 +00:00
expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
{
tree type = TREE_TYPE (exp);
my_friendly_assert (init != error_mark_node && type != error_mark_node, 211);
2003-07-11 03:40:53 +00:00
my_friendly_assert (building_stmt_tree (), 20021010);
/* Use a function returning the desired type to initialize EXP for us.
If the function is a constructor, and its first argument is
NULL_TREE, know that it was meant for us--just slide exp on
in and expand the constructor. Constructors now come
as TARGET_EXPRs. */
1999-08-26 09:30:50 +00:00
if (init && TREE_CODE (exp) == VAR_DECL
&& TREE_CODE (init) == CONSTRUCTOR
&& TREE_HAS_CONSTRUCTOR (init))
{
/* If store_init_value returns NULL_TREE, the INIT has been
record in the DECL_INITIAL for EXP. That means there's
nothing more we have to do. */
2004-07-28 03:11:36 +00:00
init = store_init_value (exp, init);
if (init)
finish_expr_stmt (init);
1999-08-26 09:30:50 +00:00
return;
}
1999-08-26 09:30:50 +00:00
/* We know that expand_default_init can handle everything we want
at this point. */
expand_default_init (binfo, true_exp, exp, init, flags);
1999-08-26 09:30:50 +00:00
}
1999-08-26 09:30:50 +00:00
/* Report an error if TYPE is not a user-defined, aggregate type. If
OR_ELSE is nonzero, give an error message. */
1999-08-26 09:30:50 +00:00
int
2004-07-28 03:11:36 +00:00
is_aggr_type (tree type, int or_else)
{
1999-08-26 09:30:50 +00:00
if (type == error_mark_node)
return 0;
if (! IS_AGGR_TYPE (type)
&& TREE_CODE (type) != TEMPLATE_TYPE_PARM
&& TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
{
if (or_else)
error ("`%T' is not an aggregate type", type);
return 0;
}
return 1;
}
/* Like is_aggr_typedef, but returns typedef if successful. */
1999-08-26 09:30:50 +00:00
tree
2004-07-28 03:11:36 +00:00
get_aggr_from_typedef (tree name, int or_else)
{
tree type;
if (name == error_mark_node)
return NULL_TREE;
if (IDENTIFIER_HAS_TYPE_VALUE (name))
type = IDENTIFIER_TYPE_VALUE (name);
else
{
if (or_else)
error ("`%T' fails to be an aggregate typedef", name);
return NULL_TREE;
}
if (! IS_AGGR_TYPE (type)
1999-08-26 09:30:50 +00:00
&& TREE_CODE (type) != TEMPLATE_TYPE_PARM
&& TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
{
if (or_else)
error ("type `%T' is of non-aggregate type", type);
return NULL_TREE;
}
return type;
}
tree
2004-07-28 03:11:36 +00:00
get_type_value (tree name)
{
if (name == error_mark_node)
return NULL_TREE;
if (IDENTIFIER_HAS_TYPE_VALUE (name))
return IDENTIFIER_TYPE_VALUE (name);
else
return NULL_TREE;
}
2004-07-28 03:11:36 +00:00
/* Build a reference to a member of an aggregate. This is not a C++
`&', but really something which can have its address taken, and
then act as a pointer to member, for example TYPE :: FIELD can have
its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
this expression is the operand of "&".
@@ Prints out lousy diagnostics for operator <typename>
@@ fields.
@@ This function should be rewritten and placed in search.c. */
1999-08-26 09:30:50 +00:00
tree
2004-07-28 03:11:36 +00:00
build_offset_ref (tree type, tree name, bool address_p)
{
2004-07-28 03:11:36 +00:00
tree decl;
tree member;
1999-08-26 09:30:50 +00:00
tree basebinfo = NULL_TREE;
tree orig_name = name;
/* class templates can come in as TEMPLATE_DECLs here. */
if (TREE_CODE (name) == TEMPLATE_DECL)
return name;
2005-06-03 03:28:44 +00:00
if (dependent_type_p (type) || type_dependent_expression_p (name))
1999-08-26 09:30:50 +00:00
return build_min_nt (SCOPE_REF, type, name);
if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
{
/* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
something like `a.template f<int>' or the like. For the most
part, we treat this just like a.f. We do remember, however,
the template-id that was used. */
name = TREE_OPERAND (orig_name, 0);
if (DECL_P (name))
name = DECL_NAME (name);
else
{
2004-07-28 03:11:36 +00:00
if (TREE_CODE (name) == COMPONENT_REF)
name = TREE_OPERAND (name, 1);
if (TREE_CODE (name) == OVERLOAD)
name = DECL_NAME (OVL_CURRENT (name));
}
my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 0);
}
if (type == NULL_TREE)
return error_mark_node;
/* Handle namespace names fully here. */
1999-08-26 09:30:50 +00:00
if (TREE_CODE (type) == NAMESPACE_DECL)
{
2004-07-28 03:11:36 +00:00
tree t = lookup_namespace_name (type, name);
if (t == error_mark_node)
return t;
if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
/* Reconstruct the TEMPLATE_ID_EXPR. */
t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t),
t, TREE_OPERAND (orig_name, 1));
if (! type_unknown_p (t))
{
1999-08-26 09:30:50 +00:00
mark_used (t);
t = convert_from_reference (t);
}
1999-08-26 09:30:50 +00:00
return t;
}
if (! is_aggr_type (type, 1))
return error_mark_node;
if (TREE_CODE (name) == BIT_NOT_EXPR)
{
1999-08-26 09:30:50 +00:00
if (! check_dtor_name (type, name))
error ("qualified type `%T' does not match destructor name `~%T'",
1999-08-26 09:30:50 +00:00
type, TREE_OPERAND (name, 0));
name = dtor_identifier;
}
if (!COMPLETE_TYPE_P (complete_type (type))
&& !TYPE_BEING_DEFINED (type))
{
error ("incomplete type `%T' does not have member `%D'", type,
name);
return error_mark_node;
}
2005-06-03 03:28:44 +00:00
/* Set up BASEBINFO for member lookup. */
decl = maybe_dummy_object (type, &basebinfo);
2003-07-11 03:40:53 +00:00
if (BASELINK_P (name) || DECL_P (name))
member = name;
else
{
member = lookup_member (basebinfo, name, 1, 0);
if (member == error_mark_node)
return error_mark_node;
}
2004-07-28 03:11:36 +00:00
if (!member)
{
error ("`%D' is not a member of type `%T'", name, type);
return error_mark_node;
}
if (TREE_CODE (member) == TYPE_DECL)
{
TREE_USED (member) = 1;
return member;
}
/* static class members and class-specific enum
values can be returned without further ado. */
if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
{
mark_used (member);
return convert_from_reference (member);
}
if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
{
error ("invalid pointer to bit-field `%D'", member);
return error_mark_node;
}
/* A lot of this logic is now handled in lookup_member. */
2004-07-28 03:11:36 +00:00
if (BASELINK_P (member))
{
/* Go from the TREE_BASELINK to the member function info. */
tree fnfields = member;
2004-07-28 03:11:36 +00:00
tree t = BASELINK_FUNCTIONS (fnfields);
1999-08-26 09:30:50 +00:00
if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
{
1999-08-26 09:30:50 +00:00
/* The FNFIELDS are going to contain functions that aren't
necessarily templates, and templates that don't
necessarily match the explicit template parameters. We
save all the functions, and the explicit parameters, and
then figure out exactly what to instantiate with what
arguments in instantiate_type. */
if (TREE_CODE (t) != OVERLOAD)
/* The code in instantiate_type which will process this
expects to encounter OVERLOADs, not raw functions. */
t = ovl_cons (t, NULL_TREE);
t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t), t,
TREE_OPERAND (orig_name, 1));
t = build (OFFSET_REF, unknown_type_node, decl, t);
PTRMEM_OK_P (t) = 1;
return t;
1999-08-26 09:30:50 +00:00
}
2003-07-11 03:40:53 +00:00
if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1999-08-26 09:30:50 +00:00
{
2004-07-28 03:11:36 +00:00
/* Get rid of a potential OVERLOAD around it. */
1999-08-26 09:30:50 +00:00
t = OVL_CURRENT (t);
2004-07-28 03:11:36 +00:00
/* Unique functions are handled easily. */
/* For non-static member of base class, we need a special rule
for access checking [class.protected]:
If the access is to form a pointer to member, the
nested-name-specifier shall name the derived class
(or any class derived from that class). */
if (address_p && DECL_P (t)
&& DECL_NONSTATIC_MEMBER_P (t))
perform_or_defer_access_check (TYPE_BINFO (type), t);
else
perform_or_defer_access_check (basebinfo, t);
1999-08-26 09:30:50 +00:00
mark_used (t);
if (DECL_STATIC_FUNCTION_P (t))
return t;
2004-07-28 03:11:36 +00:00
member = t;
}
2004-07-28 03:11:36 +00:00
else
{
2004-07-28 03:11:36 +00:00
TREE_TYPE (fnfields) = unknown_type_node;
member = fnfields;
}
}
2004-07-28 03:11:36 +00:00
else if (address_p && TREE_CODE (member) == FIELD_DECL)
/* We need additional test besides the one in
check_accessibility_of_qualified_id in case it is
a pointer to non-static member. */
perform_or_defer_access_check (TYPE_BINFO (type), member);
2004-07-28 03:11:36 +00:00
if (!address_p)
{
2004-07-28 03:11:36 +00:00
/* If MEMBER is non-static, then the program has fallen afoul of
[expr.prim]:
2004-07-28 03:11:36 +00:00
An id-expression that denotes a nonstatic data member or
nonstatic member function of a class can only be used:
2004-07-28 03:11:36 +00:00
-- as part of a class member access (_expr.ref_) in which the
object-expression refers to the member's class or a class
derived from that class, or
2004-07-28 03:11:36 +00:00
-- to form a pointer to member (_expr.unary.op_), or
2004-07-28 03:11:36 +00:00
-- in the body of a nonstatic member function of that class or
of a class derived from that class (_class.mfct.nonstatic_), or
1999-08-26 09:30:50 +00:00
2004-07-28 03:11:36 +00:00
-- in a mem-initializer for a constructor for that class or for
a class derived from that class (_class.base.init_). */
if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
{
/* Build a representation of a the qualified name suitable
for use as the operand to "&" -- even though the "&" is
not actually present. */
member = build (OFFSET_REF, TREE_TYPE (member), decl, member);
/* In Microsoft mode, treat a non-static member function as if
it were a pointer-to-member. */
if (flag_ms_extensions)
{
PTRMEM_OK_P (member) = 1;
return build_unary_op (ADDR_EXPR, member, 0);
}
error ("invalid use of non-static member function `%D'",
TREE_OPERAND (member, 1));
return member;
}
else if (TREE_CODE (member) == FIELD_DECL)
1999-08-26 09:30:50 +00:00
{
2004-07-28 03:11:36 +00:00
error ("invalid use of non-static data member `%D'", member);
1999-08-26 09:30:50 +00:00
return error_mark_node;
}
2004-07-28 03:11:36 +00:00
return member;
}
2004-07-28 03:11:36 +00:00
/* In member functions, the form `type::name' is no longer
equivalent to `this->type::name', at least not until
resolve_offset_ref. */
member = build (OFFSET_REF, TREE_TYPE (member), decl, member);
PTRMEM_OK_P (member) = 1;
return member;
}
/* If DECL is a `const' declaration, and its value is a known
constant, then return that value. */
tree
2004-07-28 03:11:36 +00:00
decl_constant_value (tree decl)
{
2004-07-28 03:11:36 +00:00
/* When we build a COND_EXPR, we don't know whether it will be used
as an lvalue or as an rvalue. If it is an lvalue, it's not safe
to replace the second and third operands with their
initializers. So, we do that here. */
if (TREE_CODE (decl) == COND_EXPR)
{
tree d1;
tree d2;
d1 = decl_constant_value (TREE_OPERAND (decl, 1));
d2 = decl_constant_value (TREE_OPERAND (decl, 2));
if (d1 != TREE_OPERAND (decl, 1) || d2 != TREE_OPERAND (decl, 2))
return build (COND_EXPR,
TREE_TYPE (decl),
TREE_OPERAND (decl, 0), d1, d2);
}
2005-06-03 03:28:44 +00:00
while (DECL_P (decl)
&& (/* Enumeration constants are constant. */
TREE_CODE (decl) == CONST_DECL
/* And so are variables with a 'const' type -- unless they
are also 'volatile'. */
|| CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))
&& DECL_INITIAL (decl)
&& DECL_INITIAL (decl) != error_mark_node
/* This is invalid if initial value is not constant. If it
has either a function call, a memory reference, or a
variable, then re-evaluating it could give different
results. */
&& TREE_CONSTANT (DECL_INITIAL (decl))
/* Check for cases where this is sub-optimal, even though
valid. */
&& TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
decl = DECL_INITIAL (decl);
return decl;
}
/* Common subroutines of build_new and build_vec_delete. */
/* Call the global __builtin_delete to delete ADDR. */
1999-08-26 09:30:50 +00:00
static tree
2004-07-28 03:11:36 +00:00
build_builtin_delete_call (tree addr)
{
mark_used (global_delete_fndecl);
return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
}
/* Generate a C++ "new" expression. DECL is either a TREE_LIST
(which needs to go through some sort of groktypename) or it
is the name of the class we are newing. INIT is an initialization value.
It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces.
If INIT is void_type_node, it means do *not* call a constructor
for this instance.
For types with constructors, the data returned is initialized
by the appropriate constructor.
Whether the type has a constructor or not, if it has a pointer
to a virtual function table, then that pointer is set up
here.
Unless I am mistaken, a call to new () will return initialized
data regardless of whether the constructor itself is private or
not. NOPE; new fails if the constructor is private (jcm).
Note that build_new does nothing to assure that any special
alignment requirements of the type are met. Rather, it leaves
it up to malloc to do the right thing. Otherwise, folding to
the right alignment cal cause problems if the user tries to later
free the memory returned by `new'.
PLACEMENT is the `placement' list for user-defined operator new (). */
tree
2004-07-28 03:11:36 +00:00
build_new (tree placement, tree decl, tree init, int use_global_new)
{
1999-08-26 09:30:50 +00:00
tree type, rval;
tree nelts = NULL_TREE, t;
int has_array = 0;
if (decl == error_mark_node)
return error_mark_node;
if (TREE_CODE (decl) == TREE_LIST)
{
tree absdcl = TREE_VALUE (decl);
tree last_absdcl = NULL_TREE;
if (current_function_decl
&& DECL_CONSTRUCTOR_P (current_function_decl))
my_friendly_assert (immediate_size_expand == 0, 19990926);
nelts = integer_one_node;
if (absdcl && TREE_CODE (absdcl) == CALL_EXPR)
abort ();
while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF)
{
last_absdcl = absdcl;
absdcl = TREE_OPERAND (absdcl, 0);
}
if (absdcl && TREE_CODE (absdcl) == ARRAY_REF)
{
2004-07-28 03:11:36 +00:00
/* Probably meant to be a vec new. */
tree this_nelts;
while (TREE_OPERAND (absdcl, 0)
&& TREE_CODE (TREE_OPERAND (absdcl, 0)) == ARRAY_REF)
{
last_absdcl = absdcl;
absdcl = TREE_OPERAND (absdcl, 0);
}
has_array = 1;
this_nelts = TREE_OPERAND (absdcl, 1);
if (this_nelts != error_mark_node)
{
if (this_nelts == NULL_TREE)
error ("new of array type fails to specify size");
1999-08-26 09:30:50 +00:00
else if (processing_template_decl)
{
nelts = this_nelts;
absdcl = TREE_OPERAND (absdcl, 0);
}
else
{
if (build_expr_type_conversion (WANT_INT | WANT_ENUM,
2004-07-28 03:11:36 +00:00
this_nelts, false)
== NULL_TREE)
pedwarn ("size in array new must have integral type");
1999-08-26 09:30:50 +00:00
this_nelts = save_expr (cp_convert (sizetype, this_nelts));
absdcl = TREE_OPERAND (absdcl, 0);
if (this_nelts == integer_zero_node)
{
warning ("zero size array reserves no space");
nelts = integer_zero_node;
}
else
nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
}
}
else
nelts = integer_zero_node;
}
if (last_absdcl)
TREE_OPERAND (last_absdcl, 0) = absdcl;
else
TREE_VALUE (decl) = absdcl;
1999-08-26 09:30:50 +00:00
type = groktypename (decl);
if (! type || type == error_mark_node)
return error_mark_node;
}
else if (TREE_CODE (decl) == IDENTIFIER_NODE)
{
if (IDENTIFIER_HAS_TYPE_VALUE (decl))
{
/* An aggregate type. */
type = IDENTIFIER_TYPE_VALUE (decl);
1999-08-26 09:30:50 +00:00
decl = TYPE_MAIN_DECL (type);
}
else
{
/* A builtin type. */
decl = lookup_name (decl, 1);
my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 215);
type = TREE_TYPE (decl);
}
}
else if (TREE_CODE (decl) == TYPE_DECL)
{
type = TREE_TYPE (decl);
}
else
{
type = decl;
1999-08-26 09:30:50 +00:00
decl = TYPE_MAIN_DECL (type);
}
if (processing_template_decl)
{
if (has_array)
t = tree_cons (tree_cons (NULL_TREE, type, NULL_TREE),
build_min_nt (ARRAY_REF, NULL_TREE, nelts),
NULL_TREE);
1999-08-26 09:30:50 +00:00
else
t = type;
2004-07-28 03:11:36 +00:00
rval = build_min (NEW_EXPR, build_pointer_type (type),
placement, t, init);
1999-08-26 09:30:50 +00:00
NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
2004-07-28 03:11:36 +00:00
TREE_SIDE_EFFECTS (rval) = 1;
1999-08-26 09:30:50 +00:00
return rval;
}
/* ``A reference cannot be created by the new operator. A reference
is not an object (8.2.2, 8.4.3), so a pointer to it could not be
returned by new.'' ARM 5.3.3 */
if (TREE_CODE (type) == REFERENCE_TYPE)
{
error ("new cannot be applied to a reference type");
1999-08-26 09:30:50 +00:00
type = TREE_TYPE (type);
}
if (TREE_CODE (type) == FUNCTION_TYPE)
{
error ("new cannot be applied to a function type");
return error_mark_node;
}
/* When the object being created is an array, the new-expression yields a
pointer to the initial element (if any) of the array. For example,
both new int and new int[10] return an int*. 5.3.4. */
if (TREE_CODE (type) == ARRAY_TYPE && has_array == 0)
{
nelts = array_type_nelts_top (type);
has_array = 1;
1999-08-26 09:30:50 +00:00
type = TREE_TYPE (type);
}
if (has_array)
t = build_nt (ARRAY_REF, type, nelts);
else
t = type;
rval = build (NEW_EXPR, build_pointer_type (type), placement, t, init);
NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
TREE_SIDE_EFFECTS (rval) = 1;
rval = build_new_1 (rval);
if (rval == error_mark_node)
return error_mark_node;
1999-08-26 09:30:50 +00:00
/* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
TREE_NO_UNUSED_WARNING (rval) = 1;
return rval;
}
2003-07-11 03:40:53 +00:00
/* Given a Java class, return a decl for the corresponding java.lang.Class. */
tree
2004-07-28 03:11:36 +00:00
build_java_class_ref (tree type)
{
tree name = NULL_TREE, class_decl;
static tree CL_suffix = NULL_TREE;
if (CL_suffix == NULL_TREE)
CL_suffix = get_identifier("class$");
if (jclass_node == NULL_TREE)
{
jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
if (jclass_node == NULL_TREE)
fatal_error ("call to Java constructor, while `jclass' undefined");
jclass_node = TREE_TYPE (jclass_node);
}
2004-07-28 03:11:36 +00:00
/* Mangle the class$ field. */
{
tree field;
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
if (DECL_NAME (field) == CL_suffix)
{
mangle_decl (field);
name = DECL_ASSEMBLER_NAME (field);
break;
}
if (!field)
internal_error ("can't find class$");
}
class_decl = IDENTIFIER_GLOBAL_VALUE (name);
if (class_decl == NULL_TREE)
{
class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
TREE_STATIC (class_decl) = 1;
DECL_EXTERNAL (class_decl) = 1;
TREE_PUBLIC (class_decl) = 1;
DECL_ARTIFICIAL (class_decl) = 1;
DECL_IGNORED_P (class_decl) = 1;
pushdecl_top_level (class_decl);
make_decl_rtl (class_decl, NULL);
}
return class_decl;
}
/* Returns the size of the cookie to use when allocating an array
whose elements have the indicated TYPE. Assumes that it is already
known that a cookie is needed. */
static tree
2004-07-28 03:11:36 +00:00
get_cookie_size (tree type)
{
tree cookie_size;
/* We need to allocate an additional max (sizeof (size_t), alignof
(true_type)) bytes. */
tree sizetype_size;
tree type_align;
sizetype_size = size_in_bytes (sizetype);
type_align = size_int (TYPE_ALIGN_UNIT (type));
if (INT_CST_LT_UNSIGNED (type_align, sizetype_size))
cookie_size = sizetype_size;
else
cookie_size = type_align;
return cookie_size;
}
1999-08-26 09:30:50 +00:00
/* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
value is immediately handed to expand_expr. */
static tree
2004-07-28 03:11:36 +00:00
build_new_1 (tree exp)
1999-08-26 09:30:50 +00:00
{
tree placement, init;
2004-07-28 03:11:36 +00:00
tree true_type, size, rval;
/* The type of the new-expression. (This type is always a pointer
type.) */
tree pointer_type;
/* The type pointed to by POINTER_TYPE. */
tree type;
/* The type being allocated. For "new T[...]" this will be an
ARRAY_TYPE. */
tree full_type;
2004-07-28 03:11:36 +00:00
/* A pointer type pointing to to the FULL_TYPE. */
tree full_pointer_type;
2003-07-11 03:40:53 +00:00
tree outer_nelts = NULL_TREE;
1999-08-26 09:30:50 +00:00
tree nelts = NULL_TREE;
2004-07-28 03:11:36 +00:00
tree alloc_call, alloc_expr;
/* The address returned by the call to "operator new". This node is
a VAR_DECL and is therefore reusable. */
tree alloc_node;
tree alloc_fn;
tree cookie_expr, init_expr;
1999-08-26 09:30:50 +00:00
int has_array = 0;
enum tree_code code;
2004-07-28 03:11:36 +00:00
int nothrow, check_new;
/* Nonzero if the user wrote `::new' rather than just `new'. */
int globally_qualified_p;
int use_java_new = 0;
/* If non-NULL, the number of extra bytes to allocate at the
beginning of the storage allocated for an array-new expression in
order to store the number of elements. */
tree cookie_size = NULL_TREE;
/* True if the function we are calling is a placement allocation
function. */
bool placement_allocation_fn_p;
2004-07-28 03:11:36 +00:00
tree args = NULL_TREE;
/* True if the storage must be initialized, either by a constructor
or due to an explicit new-initializer. */
bool is_initialized;
/* The address of the thing allocated, not including any cookie. In
particular, if an array cookie is in use, DATA_ADDR is the
address of the first array element. This node is a VAR_DECL, and
is therefore reusable. */
tree data_addr;
tree init_preeval_expr = NULL_TREE;
1999-08-26 09:30:50 +00:00
placement = TREE_OPERAND (exp, 0);
type = TREE_OPERAND (exp, 1);
init = TREE_OPERAND (exp, 2);
globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
1999-08-26 09:30:50 +00:00
if (TREE_CODE (type) == ARRAY_REF)
{
has_array = 1;
2003-07-11 03:40:53 +00:00
nelts = outer_nelts = TREE_OPERAND (type, 1);
1999-08-26 09:30:50 +00:00
type = TREE_OPERAND (type, 0);
2003-07-11 03:40:53 +00:00
/* Use an incomplete array type to avoid VLA headaches. */
full_type = build_cplus_array_type (type, NULL_TREE);
}
else
full_type = type;
1999-08-26 09:30:50 +00:00
true_type = type;
code = has_array ? VEC_NEW_EXPR : NEW_EXPR;
/* If our base type is an array, then make sure we know how many elements
it has. */
while (TREE_CODE (true_type) == ARRAY_TYPE)
{
tree this_nelts = array_type_nelts_top (true_type);
nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
true_type = TREE_TYPE (true_type);
}
1999-08-26 09:30:50 +00:00
if (!complete_type_or_else (true_type, exp))
1999-08-26 09:30:50 +00:00
return error_mark_node;
if (TREE_CODE (true_type) == VOID_TYPE)
{
error ("invalid type `void' for new");
return error_mark_node;
}
if (abstract_virtuals_error (NULL_TREE, true_type))
return error_mark_node;
1999-08-26 09:30:50 +00:00
2004-07-28 03:11:36 +00:00
is_initialized = (TYPE_NEEDS_CONSTRUCTING (type) || init);
if (CP_TYPE_CONST_P (true_type) && !is_initialized)
{
2004-07-28 03:11:36 +00:00
error ("uninitialized const in `new' of `%#T'", true_type);
return error_mark_node;
}
1999-08-26 09:30:50 +00:00
2004-07-28 03:11:36 +00:00
size = size_in_bytes (true_type);
if (has_array)
size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1999-08-26 09:30:50 +00:00
/* Allocate the object. */
if (! placement && TYPE_FOR_JAVA (true_type))
{
tree class_addr, alloc_decl;
tree class_decl = build_java_class_ref (true_type);
tree class_size = size_in_bytes (true_type);
static const char alloc_name[] = "_Jv_AllocObject";
use_java_new = 1;
2004-07-28 03:11:36 +00:00
if (!get_global_value_if_present (get_identifier (alloc_name),
&alloc_decl))
{
error ("call to Java constructor with `%s' undefined", alloc_name);
return error_mark_node;
}
else if (really_overloaded_fn (alloc_decl))
{
error ("`%D' should never be overloaded", alloc_decl);
return error_mark_node;
}
alloc_decl = OVL_CURRENT (alloc_decl);
class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
alloc_call = (build_function_call
(alloc_decl,
tree_cons (NULL_TREE, class_addr,
build_tree_list (NULL_TREE, class_size))));
}
else
{
tree fnname;
2004-07-28 03:11:36 +00:00
tree fns;
1999-08-26 09:30:50 +00:00
fnname = ansi_opname (code);
1999-08-26 09:30:50 +00:00
2004-07-28 03:11:36 +00:00
if (!globally_qualified_p
&& CLASS_TYPE_P (true_type)
&& (has_array
? TYPE_HAS_ARRAY_NEW_OPERATOR (true_type)
: TYPE_HAS_NEW_OPERATOR (true_type)))
{
/* Use a class-specific operator new. */
/* If a cookie is required, add some extra space. */
if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
{
cookie_size = get_cookie_size (true_type);
size = size_binop (PLUS_EXPR, size, cookie_size);
}
/* Create the argument list. */
args = tree_cons (NULL_TREE, size, placement);
/* Do name-lookup to find the appropriate operator. */
fns = lookup_fnfields (true_type, fnname, /*protect=*/2);
if (!fns)
{
error ("no suitable or ambiguous `%D' found in class `%T'",
fnname, true_type);
return error_mark_node;
}
if (TREE_CODE (fns) == TREE_LIST)
{
error ("request for member `%D' is ambiguous", fnname);
print_candidates (fns);
return error_mark_node;
}
alloc_call = build_new_method_call (build_dummy_object (true_type),
fns, args,
/*conversion_path=*/NULL_TREE,
LOOKUP_NORMAL);
}
else
2004-07-28 03:11:36 +00:00
{
/* Use a global operator new. */
/* See if a cookie might be required. */
if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
cookie_size = get_cookie_size (true_type);
else
cookie_size = NULL_TREE;
alloc_call = build_operator_new_call (fnname, placement,
&size, &cookie_size);
}
1999-08-26 09:30:50 +00:00
}
if (alloc_call == error_mark_node)
return error_mark_node;
2004-07-28 03:11:36 +00:00
/* In the simple case, we can stop now. */
pointer_type = build_pointer_type (type);
if (!cookie_size && !is_initialized)
return build_nop (pointer_type, alloc_call);
/* While we're working, use a pointer to the type we've actually
allocated. Store the result of the call in a variable so that we
can use it more than once. */
full_pointer_type = build_pointer_type (full_type);
alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
alloc_node = TARGET_EXPR_SLOT (alloc_expr);
/* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
alloc_call = TREE_OPERAND (alloc_call, 1);
alloc_fn = get_callee_fndecl (alloc_call);
my_friendly_assert (alloc_fn != NULL_TREE, 20020325);
2004-07-28 03:11:36 +00:00
/* Now, check to see if this function is actually a placement
allocation function. This can happen even when PLACEMENT is NULL
because we might have something like:
struct S { void* operator new (size_t, int i = 0); };
A call to `new S' will get this allocation function, even though
there is no explicit placement argument. If there is more than
one argument, or there are variable arguments, then this is a
placement allocation function. */
placement_allocation_fn_p
= (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
|| varargs_function_p (alloc_fn));
2004-07-28 03:11:36 +00:00
/* Preevaluate the placement args so that we don't reevaluate them for a
placement delete. */
if (placement_allocation_fn_p)
{
tree inits;
stabilize_call (alloc_call, &inits);
if (inits)
alloc_expr = build (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
alloc_expr);
}
1999-08-26 09:30:50 +00:00
/* unless an allocation function is declared with an empty excep-
tion-specification (_except.spec_), throw(), it indicates failure to
allocate storage by throwing a bad_alloc exception (clause _except_,
_lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
cation function is declared with an empty exception-specification,
throw(), it returns null to indicate failure to allocate storage and a
non-null pointer otherwise.
So check for a null exception spec on the op new we just called. */
nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
check_new = (flag_check_new || nothrow) && ! use_java_new;
2004-07-28 03:11:36 +00:00
if (cookie_size)
{
tree cookie;
2004-07-28 03:11:36 +00:00
/* Adjust so we're pointing to the start of the object. */
data_addr = get_target_expr (build (PLUS_EXPR, full_pointer_type,
alloc_node, cookie_size));
/* Store the number of bytes allocated so that we can know how
many elements to destroy later. We use the last sizeof
(size_t) bytes to store the number of elements. */
cookie = build (MINUS_EXPR, build_pointer_type (sizetype),
2004-07-28 03:11:36 +00:00
data_addr, size_in_bytes (sizetype));
cookie = build_indirect_ref (cookie, NULL);
2004-07-28 03:11:36 +00:00
cookie_expr = build (MODIFY_EXPR, sizetype, cookie, nelts);
data_addr = TARGET_EXPR_SLOT (data_addr);
}
else
2004-07-28 03:11:36 +00:00
{
cookie_expr = NULL_TREE;
data_addr = alloc_node;
}
2004-07-28 03:11:36 +00:00
/* Now initialize the allocated object. Note that we preevaluate the
initialization expression, apart from the actual constructor call or
assignment--we do this because we want to delay the allocation as long
as possible in order to minimize the size of the exception region for
placement delete. */
if (is_initialized)
{
2004-07-28 03:11:36 +00:00
bool stable;
init_expr = build_indirect_ref (data_addr, NULL);
if (init == void_zero_node)
2003-07-11 03:40:53 +00:00
init = build_default_init (full_type, nelts);
2004-07-28 03:11:36 +00:00
else if (init && has_array)
pedwarn ("ISO C++ forbids initialization in array new");
if (has_array)
2004-07-28 03:11:36 +00:00
{
init_expr
= build_vec_init (init_expr,
cp_build_binary_op (MINUS_EXPR, outer_nelts,
integer_one_node),
init, /*from_array=*/0);
/* An array initialization is stable because the initialization
of each element is a full-expression, so the temporaries don't
leak out. */
stable = true;
}
else if (TYPE_NEEDS_CONSTRUCTING (type))
2004-07-28 03:11:36 +00:00
{
init_expr = build_special_member_call (init_expr,
complete_ctor_identifier,
init, TYPE_BINFO (true_type),
LOOKUP_NORMAL);
stable = stabilize_init (init_expr, &init_preeval_expr);
}
else
{
/* We are processing something like `new int (10)', which
means allocate an int, and initialize it with 10. */
if (TREE_CODE (init) == TREE_LIST)
2004-07-28 03:11:36 +00:00
init = build_x_compound_expr_from_list (init, "new initializer");
else if (TREE_CODE (init) == CONSTRUCTOR
&& TREE_TYPE (init) == NULL_TREE)
2004-07-28 03:11:36 +00:00
abort ();
init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2004-07-28 03:11:36 +00:00
stable = stabilize_init (init_expr, &init_preeval_expr);
}
if (init_expr == error_mark_node)
return error_mark_node;
1999-08-26 09:30:50 +00:00
/* If any part of the object initialization terminates by throwing an
exception and a suitable deallocation function can be found, the
deallocation function is called to free the memory in which the
object was being constructed, after which the exception continues
to propagate in the context of the new-expression. If no
unambiguous matching deallocation function can be found,
propagating the exception does not cause the object's memory to be
freed. */
if (flag_exceptions && ! use_java_new)
{
1999-08-26 09:30:50 +00:00
enum tree_code dcode = has_array ? VEC_DELETE_EXPR : DELETE_EXPR;
tree cleanup;
int flags = (LOOKUP_NORMAL
| (globally_qualified_p * LOOKUP_GLOBAL));
1999-08-26 09:30:50 +00:00
/* The Standard is unclear here, but the right thing to do
2004-07-28 03:11:36 +00:00
is to use the same method for finding deallocation
functions that we use for finding allocation functions. */
flags |= LOOKUP_SPECULATIVELY;
2004-07-28 03:11:36 +00:00
cleanup = build_op_delete_call (dcode, alloc_node, size, flags,
(placement_allocation_fn_p
? alloc_call : NULL_TREE));
2004-07-28 03:11:36 +00:00
if (!cleanup)
/* We're done. */;
else if (stable)
/* This is much simpler if we were able to preevaluate all of
the arguments to the constructor call. */
init_expr = build (TRY_CATCH_EXPR, void_type_node,
init_expr, cleanup);
else
/* Ack! First we allocate the memory. Then we set our sentry
variable to true, and expand a cleanup that deletes the
memory if sentry is true. Then we run the constructor, and
finally clear the sentry.
We need to do this because we allocate the space first, so
if there are any temporaries with cleanups in the
constructor args and we weren't able to preevaluate them, we
need this EH region to extend until end of full-expression
to preserve nesting. */
{
tree end, sentry, begin;
1999-08-26 09:30:50 +00:00
begin = get_target_expr (boolean_true_node);
2003-07-11 03:40:53 +00:00
CLEANUP_EH_ONLY (begin) = 1;
sentry = TARGET_EXPR_SLOT (begin);
1999-08-26 09:30:50 +00:00
2003-07-11 03:40:53 +00:00
TARGET_EXPR_CLEANUP (begin)
1999-08-26 09:30:50 +00:00
= build (COND_EXPR, void_type_node, sentry,
cleanup, void_zero_node);
end = build (MODIFY_EXPR, TREE_TYPE (sentry),
sentry, boolean_false_node);
init_expr
= build (COMPOUND_EXPR, void_type_node, begin,
build (COMPOUND_EXPR, void_type_node, init_expr,
end));
}
2004-07-28 03:11:36 +00:00
}
}
2004-07-28 03:11:36 +00:00
else
init_expr = NULL_TREE;
/* Now build up the return value in reverse order. */
2004-07-28 03:11:36 +00:00
rval = data_addr;
if (init_expr)
rval = build (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
if (cookie_expr)
rval = build (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
if (rval == alloc_node)
2004-07-28 03:11:36 +00:00
/* If we don't have an initializer or a cookie, strip the TARGET_EXPR
and return the call (which doesn't need to be adjusted). */
rval = TARGET_EXPR_INITIAL (alloc_expr);
else
{
if (check_new)
{
2004-07-28 03:11:36 +00:00
tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
integer_zero_node);
rval = build_conditional_expr (ifexp, rval, alloc_node);
}
2004-07-28 03:11:36 +00:00
/* Perform the allocation before anything else, so that ALLOC_NODE
has been initialized before we start using it. */
rval = build (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
}
2004-07-28 03:11:36 +00:00
if (init_preeval_expr)
rval = build (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
/* Convert to the final type. */
rval = build_nop (pointer_type, rval);
2003-11-07 02:43:04 +00:00
/* A new-expression is never an lvalue. */
if (real_lvalue_p (rval))
rval = build1 (NON_LVALUE_EXPR, TREE_TYPE (rval), rval);
return rval;
}
static tree
2004-07-28 03:11:36 +00:00
build_vec_delete_1 (tree base, tree maxindex, tree type,
special_function_kind auto_delete_vec, int use_global_delete)
{
tree virtual_size;
1999-08-26 09:30:50 +00:00
tree ptype = build_pointer_type (type = complete_type (type));
tree size_exp = size_in_bytes (type);
/* Temporary variables used by the loop. */
tree tbase, tbase_init;
/* This is the body of the loop that implements the deletion of a
single element, and moves temp variables to next elements. */
tree body;
/* This is the LOOP_EXPR that governs the deletion of the elements. */
2004-07-28 03:11:36 +00:00
tree loop = 0;
/* This is the thing that governs what to do after the loop has run. */
tree deallocate_expr = 0;
/* This is the BIND_EXPR which holds the outermost iterator of the
loop. It is convenient to set this variable up and test it before
executing any other code in the loop.
This is also the containing expression returned by this function. */
tree controller = NULL_TREE;
/* We should only have 1-D arrays here. */
if (TREE_CODE (type) == ARRAY_TYPE)
abort ();
if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2004-07-28 03:11:36 +00:00
goto no_destructor;
/* The below is short by the cookie size. */
virtual_size = size_binop (MULT_EXPR, size_exp,
convert (sizetype, maxindex));
tbase = create_temporary_var (ptype);
tbase_init = build_modify_expr (tbase, NOP_EXPR,
fold (build (PLUS_EXPR, ptype,
base,
virtual_size)));
DECL_REGISTER (tbase) = 1;
1999-08-26 09:30:50 +00:00
controller = build (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
TREE_SIDE_EFFECTS (controller) = 1;
2004-07-28 03:11:36 +00:00
body = build (EXIT_EXPR, void_type_node,
build (EQ_EXPR, boolean_type_node, base, tbase));
body = build_compound_expr
(body, build_modify_expr (tbase, NOP_EXPR,
build (MINUS_EXPR, ptype, tbase, size_exp)));
body = build_compound_expr
(body, build_delete (ptype, tbase, sfk_complete_destructor,
LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2004-07-28 03:11:36 +00:00
loop = build (LOOP_EXPR, void_type_node, body);
loop = build_compound_expr (tbase_init, loop);
no_destructor:
/* If the delete flag is one, or anything else with the low bit set,
delete the storage. */
if (auto_delete_vec != sfk_base_destructor)
{
tree base_tbd;
/* The below is short by the cookie size. */
virtual_size = size_binop (MULT_EXPR, size_exp,
convert (sizetype, maxindex));
if (! TYPE_VEC_NEW_USES_COOKIE (type))
/* no header */
base_tbd = base;
else
{
tree cookie_size;
cookie_size = get_cookie_size (type);
base_tbd
= cp_convert (ptype,
cp_build_binary_op (MINUS_EXPR,
cp_convert (string_type_node,
base),
cookie_size));
1999-08-26 09:30:50 +00:00
/* True size with header. */
virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
}
if (auto_delete_vec == sfk_deleting_destructor)
deallocate_expr = build_x_delete (base_tbd,
2 | use_global_delete,
virtual_size);
}
2004-07-28 03:11:36 +00:00
body = loop;
if (!deallocate_expr)
;
else if (!body)
body = deallocate_expr;
else
2004-07-28 03:11:36 +00:00
body = build_compound_expr (body, deallocate_expr);
if (!body)
body = integer_zero_node;
/* Outermost wrapper: If pointer is null, punt. */
body = fold (build (COND_EXPR, void_type_node,
fold (build (NE_EXPR, boolean_type_node, base,
integer_zero_node)),
body, integer_zero_node));
body = build1 (NOP_EXPR, void_type_node, body);
if (controller)
{
TREE_OPERAND (controller, 1) = body;
2004-07-28 03:11:36 +00:00
body = controller;
}
2004-07-28 03:11:36 +00:00
if (TREE_CODE (base) == SAVE_EXPR)
/* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
body = build (COMPOUND_EXPR, void_type_node, base, body);
return convert_to_void (body, /*implicit=*/NULL);
}
/* Create an unnamed variable of the indicated TYPE. */
1999-08-26 09:30:50 +00:00
tree
2004-07-28 03:11:36 +00:00
create_temporary_var (tree type)
{
tree decl;
decl = build_decl (VAR_DECL, NULL_TREE, type);
TREE_USED (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
2004-07-28 03:11:36 +00:00
DECL_SOURCE_LOCATION (decl) = input_location;
DECL_IGNORED_P (decl) = 1;
DECL_CONTEXT (decl) = current_function_decl;
return decl;
}
/* Create a new temporary variable of the indicated TYPE, initialized
to INIT.
It is not entered into current_binding_level, because that breaks
things when it comes time to do final cleanups (which take place
"outside" the binding contour of the function). */
static tree
2004-07-28 03:11:36 +00:00
get_temp_regvar (tree type, tree init)
{
tree decl;
decl = create_temporary_var (type);
2004-07-28 03:11:36 +00:00
add_decl_stmt (decl);
finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
return decl;
}
/* `build_vec_init' returns tree structure that performs
initialization of a vector of aggregate types.
BASE is a reference to the vector, of ARRAY_TYPE.
2003-07-11 03:40:53 +00:00
MAXINDEX is the maximum index of the array (one less than the
number of elements). It is only used if
TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
INIT is the (possibly NULL) initializer.
FROM_ARRAY is 0 if we should init everything with INIT
(i.e., every element initialized from INIT).
FROM_ARRAY is 1 if we should index into INIT in parallel
with initialization of DECL.
FROM_ARRAY is 2 if we should index into INIT in parallel,
but use assignment instead of initialization. */
tree
2004-07-28 03:11:36 +00:00
build_vec_init (tree base, tree maxindex, tree init, int from_array)
{
tree rval;
tree base2 = NULL_TREE;
tree size;
tree itype = NULL_TREE;
tree iterator;
/* The type of the array. */
tree atype = TREE_TYPE (base);
/* The type of an element in the array. */
tree type = TREE_TYPE (atype);
2005-06-03 03:28:44 +00:00
/* The element type reached after removing all outer array
types. */
tree inner_elt_type;
/* The type of a pointer to an element in the array. */
tree ptype;
tree stmt_expr;
tree compound_stmt;
int destroy_temps;
tree try_block = NULL_TREE;
tree try_body = NULL_TREE;
int num_initialized_elts = 0;
2004-07-28 03:11:36 +00:00
bool is_global;
2003-07-11 03:40:53 +00:00
if (TYPE_DOMAIN (atype))
maxindex = array_type_nelts (atype);
if (maxindex == NULL_TREE || maxindex == error_mark_node)
return error_mark_node;
2005-06-03 03:28:44 +00:00
inner_elt_type = strip_array_types (atype);
2003-07-11 03:40:53 +00:00
if (init
&& (from_array == 2
2005-06-03 03:28:44 +00:00
? (!CLASS_TYPE_P (inner_elt_type)
|| !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2003-07-11 03:40:53 +00:00
: !TYPE_NEEDS_CONSTRUCTING (type))
&& ((TREE_CODE (init) == CONSTRUCTOR
/* Don't do this if the CONSTRUCTOR might contain something
that might throw and require us to clean up. */
&& (CONSTRUCTOR_ELTS (init) == NULL_TREE
2005-06-03 03:28:44 +00:00
|| ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
|| from_array))
{
/* Do non-default initialization of POD arrays resulting from
brace-enclosed initializers. In this case, digest_init and
store_constructor will handle the semantics for us. */
stmt_expr = build (INIT_EXPR, atype, base, init);
return stmt_expr;
}
maxindex = cp_convert (ptrdiff_type_node, maxindex);
ptype = build_pointer_type (type);
size = size_in_bytes (type);
if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2004-07-28 03:11:36 +00:00
base = cp_convert (ptype, decay_conversion (base));
/* The code we are generating looks like:
2004-07-28 03:11:36 +00:00
({
T* t1 = (T*) base;
T* rval = t1;
ptrdiff_t iterator = maxindex;
try {
2004-07-28 03:11:36 +00:00
for (; iterator != -1; --iterator) {
... initialize *t1 ...
++t1;
2004-07-28 03:11:36 +00:00
}
} catch (...) {
... destroy elements that were constructed ...
}
2004-07-28 03:11:36 +00:00
rval;
})
We can omit the try and catch blocks if we know that the
initialization will never throw an exception, or if the array
elements do not have destructors. We can omit the loop completely if
the elements of the array do not have constructors.
We actually wrap the entire body of the above in a STMT_EXPR, for
tidiness.
When copying from array to another, when the array elements have
only trivial copy constructors, we should use __builtin_memcpy
rather than generating a loop. That way, we could take advantage
of whatever cleverness the back-end has for dealing with copies
of blocks of memory. */
2004-07-28 03:11:36 +00:00
is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
destroy_temps = stmts_are_full_exprs_p ();
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
rval = get_temp_regvar (ptype, base);
base = get_temp_regvar (ptype, rval);
iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
/* Protect the entire array initialization so that we can destroy
the partially constructed array if an exception is thrown.
But don't do this if we're assigning. */
if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
&& from_array != 2)
{
try_block = begin_try_block ();
2004-07-28 03:11:36 +00:00
try_body = begin_compound_stmt (/*has_no_scope=*/true);
}
if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
{
/* Do non-default initialization of non-POD arrays resulting from
brace-enclosed initializers. */
tree elts;
from_array = 0;
for (elts = CONSTRUCTOR_ELTS (init); elts; elts = TREE_CHAIN (elts))
{
tree elt = TREE_VALUE (elts);
tree baseref = build1 (INDIRECT_REF, type, base);
num_initialized_elts++;
2004-07-28 03:11:36 +00:00
current_stmt_tree ()->stmts_are_full_exprs_p = 1;
if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
finish_expr_stmt (build_aggr_init (baseref, elt, 0));
else
finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
elt));
2004-07-28 03:11:36 +00:00
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
}
/* Clear out INIT so that we don't get confused below. */
init = NULL_TREE;
}
else if (from_array)
{
/* If initializing one array from another, initialize element by
element. We rely upon the below calls the do argument
checking. */
if (init)
{
2004-07-28 03:11:36 +00:00
base2 = decay_conversion (init);
itype = TREE_TYPE (base2);
base2 = get_temp_regvar (itype, base2);
itype = TREE_TYPE (itype);
}
else if (TYPE_LANG_SPECIFIC (type)
&& TYPE_NEEDS_CONSTRUCTING (type)
&& ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
{
error ("initializer ends prematurely");
return error_mark_node;
}
}
/* Now, default-initialize any remaining elements. We don't need to
do that if a) the type does not need constructing, or b) we've
already initialized all the elements.
We do need to keep going if we're copying an array. */
if (from_array
|| (TYPE_NEEDS_CONSTRUCTING (type)
&& ! (host_integerp (maxindex, 0)
&& (num_initialized_elts
== tree_low_cst (maxindex, 0) + 1))))
{
/* If the ITERATOR is equal to -1, then we don't have to loop;
we've already initialized all the elements. */
2004-07-28 03:11:36 +00:00
tree for_stmt;
tree for_body;
tree elt_init;
2004-07-28 03:11:36 +00:00
for_stmt = begin_for_stmt ();
finish_for_init_stmt (for_stmt);
finish_for_cond (build (NE_EXPR, boolean_type_node,
iterator, integer_minus_one_node),
for_stmt);
finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
for_stmt);
/* Otherwise, loop through the elements. */
2004-07-28 03:11:36 +00:00
for_body = begin_compound_stmt (/*has_no_scope=*/true);
1999-08-26 09:30:50 +00:00
if (from_array)
{
tree to = build1 (INDIRECT_REF, type, base);
tree from;
if (base2)
from = build1 (INDIRECT_REF, itype, base2);
else
from = NULL_TREE;
if (from_array == 2)
elt_init = build_modify_expr (to, NOP_EXPR, from);
else if (TYPE_NEEDS_CONSTRUCTING (type))
elt_init = build_aggr_init (to, from, 0);
else if (from)
elt_init = build_modify_expr (to, NOP_EXPR, from);
else
abort ();
}
else if (TREE_CODE (type) == ARRAY_TYPE)
{
if (init != 0)
sorry
("cannot initialize multi-dimensional array with initializer");
elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2003-07-11 03:40:53 +00:00
0, 0, 0);
}
else
elt_init = build_aggr_init (build1 (INDIRECT_REF, type, base),
init, 0);
2004-07-28 03:11:36 +00:00
current_stmt_tree ()->stmts_are_full_exprs_p = 1;
finish_expr_stmt (elt_init);
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
if (base2)
finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
1999-08-26 09:30:50 +00:00
2004-07-28 03:11:36 +00:00
finish_compound_stmt (for_body);
finish_for_stmt (for_stmt);
}
/* Make sure to cleanup any partially constructed elements. */
if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
&& from_array != 2)
{
tree e;
tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
/* Flatten multi-dimensional array since build_vec_delete only
expects one-dimensional array. */
if (TREE_CODE (type) == ARRAY_TYPE)
{
m = cp_build_binary_op (MULT_EXPR, m,
array_type_nelts_total (type));
type = strip_array_types (type);
}
2004-07-28 03:11:36 +00:00
finish_compound_stmt (try_body);
finish_cleanup_try_block (try_block);
2004-07-28 03:11:36 +00:00
e = build_vec_delete_1 (rval, m, type, sfk_base_destructor,
/*use_global_delete=*/0);
finish_cleanup (e, try_block);
}
2004-07-28 03:11:36 +00:00
/* The value of the array initialization is the array itself, RVAL
is a pointer to the first element. */
finish_stmt_expr_expr (rval);
stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2004-07-28 03:11:36 +00:00
/* Now convert make the result have the correct type. */
atype = build_pointer_type (atype);
stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
stmt_expr = build_indirect_ref (stmt_expr, NULL);
current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
return stmt_expr;
}
/* Free up storage of type TYPE, at address ADDR.
TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
of pointer.
VIRTUAL_SIZE is the amount of storage that was allocated, and is
used as the second argument to operator delete. It can include
things like padding and magic size cookies. It has virtual in it,
because if you have a base pointer and you delete through a virtual
destructor, it should be the size of the dynamic object, not the
static object, see Free Store 12.5 ISO C++.
This does not call any destructors. */
1999-08-26 09:30:50 +00:00
tree
2004-07-28 03:11:36 +00:00
build_x_delete (tree addr, int which_delete, tree virtual_size)
{
int use_global_delete = which_delete & 1;
int use_vec_delete = !!(which_delete & 2);
enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
1999-08-26 09:30:50 +00:00
int flags = LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL);
1999-08-26 09:30:50 +00:00
return build_op_delete_call (code, addr, virtual_size, flags, NULL_TREE);
}
/* Call the DTOR_KIND destructor for EXP. FLAGS are as for
build_delete. */
static tree
2004-07-28 03:11:36 +00:00
build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
{
tree name;
2004-07-28 03:11:36 +00:00
tree fn;
switch (dtor_kind)
{
case sfk_complete_destructor:
name = complete_dtor_identifier;
break;
case sfk_base_destructor:
name = base_dtor_identifier;
break;
case sfk_deleting_destructor:
name = deleting_dtor_identifier;
break;
default:
abort ();
}
2004-07-28 03:11:36 +00:00
exp = convert_from_reference (exp);
fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
return build_new_method_call (exp, fn,
/*args=*/NULL_TREE,
/*conversion_path=*/NULL_TREE,
flags);
}
/* Generate a call to a destructor. TYPE is the type to cast ADDR to.
ADDR is an expression which yields the store to be destroyed.
AUTO_DELETE is the name of the destructor to call, i.e., either
sfk_complete_destructor, sfk_base_destructor, or
sfk_deleting_destructor.
FLAGS is the logical disjunction of zero or more LOOKUP_
flags. See cp-tree.h for more info. */
1999-08-26 09:30:50 +00:00
tree
2004-07-28 03:11:36 +00:00
build_delete (tree type, tree addr, special_function_kind auto_delete,
int flags, int use_global_delete)
{
tree expr;
if (addr == error_mark_node)
return error_mark_node;
/* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
set to `error_mark_node' before it gets properly cleaned up. */
if (type == error_mark_node)
return error_mark_node;
type = TYPE_MAIN_VARIANT (type);
if (TREE_CODE (type) == POINTER_TYPE)
{
2004-07-28 03:11:36 +00:00
bool complete_p = true;
type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
if (TREE_CODE (type) == ARRAY_TYPE)
goto handle_array;
2003-07-11 03:40:53 +00:00
2004-07-28 03:11:36 +00:00
/* We don't want to warn about delete of void*, only other
incomplete types. Deleting other incomplete types
invokes undefined behavior, but it is not ill-formed, so
compile to something that would even do The Right Thing
(TM) should the type have a trivial dtor and no delete
operator. */
if (!VOID_TYPE_P (type))
{
2004-07-28 03:11:36 +00:00
complete_type (type);
if (!COMPLETE_TYPE_P (type))
{
warning ("possible problem detected in invocation of "
"delete operator:");
cxx_incomplete_type_diagnostic (addr, type, 1);
inform ("neither the destructor nor the class-specific "
"operator delete will be called, even if they are "
"declared when the class is defined.");
complete_p = false;
}
}
2004-07-28 03:11:36 +00:00
if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
/* Call the builtin operator delete. */
return build_builtin_delete_call (addr);
if (TREE_SIDE_EFFECTS (addr))
addr = save_expr (addr);
2004-07-28 03:11:36 +00:00
/* Throw away const and volatile on target type of addr. */
addr = convert_force (build_pointer_type (type), addr, 0);
}
else if (TREE_CODE (type) == ARRAY_TYPE)
{
handle_array:
2003-07-11 03:40:53 +00:00
if (TYPE_DOMAIN (type) == NULL_TREE)
{
error ("unknown array size in delete");
return error_mark_node;
}
return build_vec_delete (addr, array_type_nelts (type),
auto_delete, use_global_delete);
}
else
{
/* Don't check PROTECT here; leave that decision to the
destructor. If the destructor is accessible, call it,
else report error. */
addr = build_unary_op (ADDR_EXPR, addr, 0);
if (TREE_SIDE_EFFECTS (addr))
addr = save_expr (addr);
addr = convert_force (build_pointer_type (type), addr, 0);
}
my_friendly_assert (IS_AGGR_TYPE (type), 220);
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
{
if (auto_delete != sfk_deleting_destructor)
return void_zero_node;
1999-08-26 09:30:50 +00:00
return build_op_delete_call
2003-07-11 03:40:53 +00:00
(DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
1999-08-26 09:30:50 +00:00
LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL),
NULL_TREE);
}
else
{
tree do_delete = NULL_TREE;
1999-08-26 09:30:50 +00:00
tree ifexp;
my_friendly_assert (TYPE_HAS_DESTRUCTOR (type), 20011213);
/* For `::delete x', we must not use the deleting destructor
since then we would not be sure to get the global `operator
delete'. */
if (use_global_delete && auto_delete == sfk_deleting_destructor)
{
/* We will use ADDR multiple times so we must save it. */
addr = save_expr (addr);
2003-07-11 03:40:53 +00:00
/* Delete the object. */
do_delete = build_builtin_delete_call (addr);
/* Otherwise, treat this like a complete object destructor
call. */
auto_delete = sfk_complete_destructor;
}
/* If the destructor is non-virtual, there is no deleting
variant. Instead, we must explicitly call the appropriate
`operator delete' here. */
else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
&& auto_delete == sfk_deleting_destructor)
{
/* We will use ADDR multiple times so we must save it. */
addr = save_expr (addr);
/* Build the call. */
do_delete = build_op_delete_call (DELETE_EXPR,
addr,
2003-07-11 03:40:53 +00:00
cxx_sizeof_nowarn (type),
LOOKUP_NORMAL,
NULL_TREE);
/* Call the complete object destructor. */
auto_delete = sfk_complete_destructor;
}
else if (auto_delete == sfk_deleting_destructor
&& TYPE_GETS_REG_DELETE (type))
{
/* Make sure we have access to the member op delete, even though
we'll actually be calling it from the destructor. */
2003-07-11 03:40:53 +00:00
build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
LOOKUP_NORMAL, NULL_TREE);
}
expr = build_dtor_call (build_indirect_ref (addr, NULL),
auto_delete, flags);
1999-08-26 09:30:50 +00:00
if (do_delete)
expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete);
1999-08-26 09:30:50 +00:00
if (flags & LOOKUP_DESTRUCTOR)
/* Explicit destructor call; don't check for null pointer. */
ifexp = integer_one_node;
else
1999-08-26 09:30:50 +00:00
/* Handle deleting a null pointer. */
ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
1999-08-26 09:30:50 +00:00
if (ifexp != integer_one_node)
expr = build (COND_EXPR, void_type_node,
ifexp, expr, void_zero_node);
return expr;
}
}
2003-07-11 03:40:53 +00:00
/* At the beginning of a destructor, push cleanups that will call the
destructors for our base classes and members.
2003-07-11 03:40:53 +00:00
Called from begin_destructor_body. */
void
2004-07-28 03:11:36 +00:00
push_base_cleanups (void)
{
tree binfos;
int i, n_baseclasses;
tree member;
tree expr;
/* Run destructors for all virtual baseclasses. */
if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
{
tree vbases;
tree cond = (condition_conversion
(build (BIT_AND_EXPR, integer_type_node,
current_in_charge_parm,
integer_two_node)));
vbases = CLASSTYPE_VBASECLASSES (current_class_type);
/* The CLASSTYPE_VBASECLASSES list is in initialization
order, which is also the right order for pushing cleanups. */
for (; vbases;
vbases = TREE_CHAIN (vbases))
{
tree vbase = TREE_VALUE (vbases);
tree base_type = BINFO_TYPE (vbase);
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (base_type))
{
2003-07-11 03:40:53 +00:00
expr = build_special_member_call (current_class_ref,
base_dtor_identifier,
NULL_TREE,
vbase,
(LOOKUP_NORMAL
| LOOKUP_NONVIRTUAL));
expr = build (COND_EXPR, void_type_node, cond,
expr, void_zero_node);
2003-07-11 03:40:53 +00:00
finish_decl_cleanup (NULL_TREE, expr);
}
}
}
2003-07-11 03:40:53 +00:00
binfos = BINFO_BASETYPES (TYPE_BINFO (current_class_type));
n_baseclasses = CLASSTYPE_N_BASECLASSES (current_class_type);
/* Take care of the remaining baseclasses. */
for (i = 0; i < n_baseclasses; i++)
{
tree base_binfo = TREE_VEC_ELT (binfos, i);
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
|| TREE_VIA_VIRTUAL (base_binfo))
continue;
expr = build_special_member_call (current_class_ref,
base_dtor_identifier,
NULL_TREE, base_binfo,
LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
finish_decl_cleanup (NULL_TREE, expr);
}
for (member = TYPE_FIELDS (current_class_type); member;
member = TREE_CHAIN (member))
{
if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
continue;
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
{
tree this_member = (build_class_member_access_expr
(current_class_ref, member,
/*access_path=*/NULL_TREE,
/*preserve_reference=*/false));
tree this_type = TREE_TYPE (member);
expr = build_delete (this_type, this_member,
sfk_complete_destructor,
LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
0);
finish_decl_cleanup (NULL_TREE, expr);
}
}
}
/* For type TYPE, delete the virtual baseclass objects of DECL. */
tree
2004-07-28 03:11:36 +00:00
build_vbase_delete (tree type, tree decl)
{
tree vbases = CLASSTYPE_VBASECLASSES (type);
2004-07-28 03:11:36 +00:00
tree result;
tree addr = build_unary_op (ADDR_EXPR, decl, 0);
my_friendly_assert (addr != error_mark_node, 222);
2004-07-28 03:11:36 +00:00
for (result = convert_to_void (integer_zero_node, NULL);
vbases; vbases = TREE_CHAIN (vbases))
{
2004-07-28 03:11:36 +00:00
tree base_addr = convert_force
(build_pointer_type (BINFO_TYPE (TREE_VALUE (vbases))), addr, 0);
tree base_delete = build_delete
(TREE_TYPE (base_addr), base_addr, sfk_base_destructor,
LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0);
result = build_compound_expr (result, base_delete);
}
2004-07-28 03:11:36 +00:00
return result;
}
/* Build a C++ vector delete expression.
MAXINDEX is the number of elements to be deleted.
ELT_SIZE is the nominal size of each element in the vector.
BASE is the expression that should yield the store to be deleted.
This function expands (or synthesizes) these calls itself.
AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
This also calls delete for virtual baseclasses of elements of the vector.
Update: MAXINDEX is no longer needed. The size can be extracted from the
start of the vector for pointers, and from the type for arrays. We still
use MAXINDEX for arrays because it happens to already have one of the
values we'd have to extract. (We could use MAXINDEX with pointers to
confirm the size, and trap if the numbers differ; not clear that it'd
be worth bothering.) */
1999-08-26 09:30:50 +00:00
tree
2004-07-28 03:11:36 +00:00
build_vec_delete (tree base, tree maxindex,
special_function_kind auto_delete_vec, int use_global_delete)
{
tree type;
2004-07-28 03:11:36 +00:00
tree rval;
tree base_init = NULL_TREE;
type = TREE_TYPE (base);
if (TREE_CODE (type) == POINTER_TYPE)
{
/* Step back one from start of vector, and read dimension. */
tree cookie_addr;
2003-07-11 03:40:53 +00:00
if (TREE_SIDE_EFFECTS (base))
2004-07-28 03:11:36 +00:00
{
base_init = get_target_expr (base);
base = TARGET_EXPR_SLOT (base_init);
}
type = strip_array_types (TREE_TYPE (type));
cookie_addr = build (MINUS_EXPR,
build_pointer_type (sizetype),
base,
TYPE_SIZE_UNIT (sizetype));
maxindex = build_indirect_ref (cookie_addr, NULL);
}
else if (TREE_CODE (type) == ARRAY_TYPE)
{
2004-07-28 03:11:36 +00:00
/* Get the total number of things in the array, maxindex is a
bad name. */
maxindex = array_type_nelts_total (type);
type = strip_array_types (type);
base = build_unary_op (ADDR_EXPR, base, 1);
2003-07-11 03:40:53 +00:00
if (TREE_SIDE_EFFECTS (base))
2004-07-28 03:11:36 +00:00
{
base_init = get_target_expr (base);
base = TARGET_EXPR_SLOT (base_init);
}
}
else
{
1999-08-26 09:30:50 +00:00
if (base != error_mark_node)
error ("type to vector delete is neither pointer or array type");
return error_mark_node;
}
2004-07-28 03:11:36 +00:00
rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
use_global_delete);
2004-07-28 03:11:36 +00:00
if (base_init)
rval = build (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
return rval;
}