1996-09-18 05:35:50 +00:00
|
|
|
|
/* Handle initialization things in C++.
|
2002-02-01 18:16:02 +00:00
|
|
|
|
Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
2004-07-28 03:11:36 +00:00
|
|
|
|
1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
Contributed by Michael Tiemann (tiemann@cygnus.com)
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
This file is part of GCC.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
1996-09-18 05:35:50 +00:00
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
|
|
|
any later version.
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
1996-09-18 05:35:50 +00:00
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
2004-07-28 03:11:36 +00:00
|
|
|
|
along with GCC; see the file COPYING. If not, write to
|
1996-09-18 05:35:50 +00:00
|
|
|
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|
|
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* High-level class interface. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
#include "config.h"
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#include "system.h"
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#include "coretypes.h"
|
|
|
|
|
#include "tm.h"
|
1996-09-18 05:35:50 +00:00
|
|
|
|
#include "tree.h"
|
|
|
|
|
#include "rtl.h"
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#include "expr.h"
|
1996-09-18 05:35:50 +00:00
|
|
|
|
#include "cp-tree.h"
|
|
|
|
|
#include "flags.h"
|
|
|
|
|
#include "output.h"
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#include "except.h"
|
|
|
|
|
#include "toplev.h"
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
static bool begin_init_stmts (tree *, tree *);
|
|
|
|
|
static tree finish_init_stmts (bool, tree, tree);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
static void construct_virtual_base (tree, tree);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
static void expand_aggr_init_1 (tree, tree, tree, tree, int);
|
|
|
|
|
static void expand_default_init (tree, tree, tree, tree, int);
|
|
|
|
|
static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
static void perform_member_init (tree, tree);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
static tree build_builtin_delete_call (tree);
|
|
|
|
|
static int member_init_ok_or_else (tree, tree, tree);
|
|
|
|
|
static void expand_virtual_init (tree, tree);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
static tree sort_mem_initializers (tree, tree);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
static tree initializing_context (tree);
|
|
|
|
|
static void expand_cleanup_for_base (tree, tree);
|
|
|
|
|
static tree get_temp_regvar (tree, tree);
|
|
|
|
|
static tree dfs_initialize_vtbl_ptrs (tree, void *);
|
|
|
|
|
static tree build_default_init (tree, tree);
|
|
|
|
|
static tree build_new_1 (tree);
|
|
|
|
|
static tree get_cookie_size (tree);
|
|
|
|
|
static tree build_dtor_call (tree, special_function_kind, int);
|
|
|
|
|
static tree build_field_list (tree, tree, int *);
|
|
|
|
|
static tree build_vtbl_address (tree);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* We are about to generate some complex initialization code.
|
|
|
|
|
Conceptually, it is all a single expression. However, we may want
|
|
|
|
|
to include conditionals, loops, and other such statement-level
|
|
|
|
|
constructs. Therefore, we build the initialization code inside a
|
|
|
|
|
statement-expression. This function starts such an expression.
|
|
|
|
|
STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
|
|
|
|
|
pass them back to finish_init_stmts when the expression is
|
|
|
|
|
complete. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
static bool
|
|
|
|
|
begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
bool is_global = !building_stmt_tree ();
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
*stmt_expr_p = begin_stmt_expr ();
|
|
|
|
|
*compound_stmt_p = begin_compound_stmt (/*has_no_scope=*/true);
|
|
|
|
|
|
|
|
|
|
return is_global;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Finish out the statement-expression begun by the previous call to
|
|
|
|
|
begin_init_stmts. Returns the statement-expression itself. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
static tree
|
|
|
|
|
finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
finish_compound_stmt (compound_stmt);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
stmt_expr = finish_stmt_expr (stmt_expr, true);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
my_friendly_assert (!building_stmt_tree () == is_global, 20030726);
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
return stmt_expr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Constructors */
|
|
|
|
|
|
|
|
|
|
/* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
|
|
|
|
|
which we want to initialize the vtable pointer for, DATA is
|
|
|
|
|
TREE_LIST whose TREE_VALUE is the this ptr expression. */
|
|
|
|
|
|
|
|
|
|
static tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
dfs_initialize_vtbl_ptrs (tree binfo, void *data)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
if ((!BINFO_PRIMARY_P (binfo) || TREE_VIA_VIRTUAL (binfo))
|
|
|
|
|
&& CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
|
|
|
|
|
{
|
|
|
|
|
tree base_ptr = TREE_VALUE ((tree) data);
|
|
|
|
|
|
|
|
|
|
base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
|
|
|
|
|
|
|
|
|
|
expand_virtual_init (binfo, base_ptr);
|
|
|
|
|
}
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
BINFO_MARKED (binfo) = 1;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
return NULL_TREE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Initialize all the vtable pointers in the object pointed to by
|
|
|
|
|
ADDR. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
void
|
2004-07-28 03:11:36 +00:00
|
|
|
|
initialize_vtbl_ptrs (tree addr)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
tree list;
|
|
|
|
|
tree type;
|
|
|
|
|
|
|
|
|
|
type = TREE_TYPE (TREE_TYPE (addr));
|
|
|
|
|
list = build_tree_list (type, addr);
|
|
|
|
|
|
|
|
|
|
/* Walk through the hierarchy, initializing the vptr in each base
|
2003-07-11 03:40:53 +00:00
|
|
|
|
class. We do these in pre-order because we can't find the virtual
|
2002-02-01 18:16:02 +00:00
|
|
|
|
bases for a class until we've initialized the vtbl for that
|
|
|
|
|
class. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
dfs_walk_real (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs,
|
|
|
|
|
NULL, unmarkedp, list);
|
|
|
|
|
dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Return an expression for the zero-initialization of an object with
|
|
|
|
|
type T. This expression will either be a constant (in the case
|
|
|
|
|
that T is a scalar), or a CONSTRUCTOR (in the case that T is an
|
|
|
|
|
aggregate). In either case, the value can be used as DECL_INITIAL
|
|
|
|
|
for a decl of the indicated TYPE; it is a valid static initializer.
|
|
|
|
|
If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
|
|
|
|
|
number of elements in the array. If STATIC_STORAGE_P is TRUE,
|
|
|
|
|
initializers are only generated for entities for which
|
|
|
|
|
zero-initialization does not simply mean filling the storage with
|
|
|
|
|
zero bytes. */
|
2002-09-01 20:38:57 +00:00
|
|
|
|
|
|
|
|
|
tree
|
2003-07-11 03:40:53 +00:00
|
|
|
|
build_zero_init (tree type, tree nelts, bool static_storage_p)
|
2002-09-01 20:38:57 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
tree init = NULL_TREE;
|
|
|
|
|
|
|
|
|
|
/* [dcl.init]
|
|
|
|
|
|
|
|
|
|
To zero-initialization storage for an object of type T means:
|
|
|
|
|
|
|
|
|
|
-- if T is a scalar type, the storage is set to the value of zero
|
|
|
|
|
converted to T.
|
|
|
|
|
|
|
|
|
|
-- if T is a non-union class type, the storage for each nonstatic
|
|
|
|
|
data member and each base-class subobject is zero-initialized.
|
|
|
|
|
|
|
|
|
|
-- if T is a union type, the storage for its first data member is
|
|
|
|
|
zero-initialized.
|
|
|
|
|
|
|
|
|
|
-- if T is an array type, the storage for each element is
|
|
|
|
|
zero-initialized.
|
2002-09-01 20:38:57 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
-- if T is a reference type, no initialization is performed. */
|
|
|
|
|
|
|
|
|
|
my_friendly_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST,
|
|
|
|
|
20030618);
|
|
|
|
|
|
|
|
|
|
if (type == error_mark_node)
|
|
|
|
|
;
|
|
|
|
|
else if (static_storage_p && zero_init_p (type))
|
|
|
|
|
/* In order to save space, we do not explicitly build initializers
|
|
|
|
|
for items that do not need them. GCC's semantics are that
|
|
|
|
|
items with static storage duration that are not otherwise
|
|
|
|
|
initialized are initialized to zero. */
|
|
|
|
|
;
|
|
|
|
|
else if (SCALAR_TYPE_P (type))
|
|
|
|
|
init = convert (type, integer_zero_node);
|
|
|
|
|
else if (CLASS_TYPE_P (type))
|
|
|
|
|
{
|
|
|
|
|
tree field;
|
|
|
|
|
tree inits;
|
|
|
|
|
|
|
|
|
|
/* Build a constructor to contain the initializations. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
init = build_constructor (type, NULL_TREE);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Iterate over the fields, building initializations. */
|
|
|
|
|
inits = NULL_TREE;
|
|
|
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
|
|
|
|
{
|
|
|
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* Note that for class types there will be FIELD_DECLs
|
|
|
|
|
corresponding to base classes as well. Thus, iterating
|
|
|
|
|
over TYPE_FIELDs will result in correct initialization of
|
|
|
|
|
all of the subobjects. */
|
|
|
|
|
if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
|
|
|
|
|
inits = tree_cons (field,
|
|
|
|
|
build_zero_init (TREE_TYPE (field),
|
|
|
|
|
/*nelts=*/NULL_TREE,
|
|
|
|
|
static_storage_p),
|
|
|
|
|
inits);
|
|
|
|
|
|
|
|
|
|
/* For unions, only the first field is initialized. */
|
|
|
|
|
if (TREE_CODE (type) == UNION_TYPE)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
CONSTRUCTOR_ELTS (init) = nreverse (inits);
|
|
|
|
|
}
|
|
|
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
2002-09-01 20:38:57 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
tree max_index;
|
|
|
|
|
tree inits;
|
|
|
|
|
|
|
|
|
|
/* Build a constructor to contain the initializations. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
init = build_constructor (type, NULL_TREE);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Iterate over the array elements, building initializations. */
|
|
|
|
|
inits = NULL_TREE;
|
|
|
|
|
max_index = nelts ? nelts : array_type_nelts (type);
|
|
|
|
|
my_friendly_assert (TREE_CODE (max_index) == INTEGER_CST, 20030618);
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* A zero-sized array, which is accepted as an extension, will
|
|
|
|
|
have an upper bound of -1. */
|
|
|
|
|
if (!tree_int_cst_equal (max_index, integer_minus_one_node))
|
2005-06-03 03:28:44 +00:00
|
|
|
|
{
|
|
|
|
|
tree elt_init = build_zero_init (TREE_TYPE (type),
|
|
|
|
|
/*nelts=*/NULL_TREE,
|
|
|
|
|
static_storage_p);
|
|
|
|
|
tree range = build (RANGE_EXPR,
|
|
|
|
|
sizetype, size_zero_node, max_index);
|
|
|
|
|
|
|
|
|
|
inits = tree_cons (range, elt_init, inits);
|
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
CONSTRUCTOR_ELTS (init) = nreverse (inits);
|
2002-09-01 20:38:57 +00:00
|
|
|
|
}
|
|
|
|
|
else if (TREE_CODE (type) == REFERENCE_TYPE)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
;
|
2002-09-01 20:38:57 +00:00
|
|
|
|
else
|
2003-07-11 03:40:53 +00:00
|
|
|
|
abort ();
|
2002-09-01 20:38:57 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* In all cases, the initializer is a constant. */
|
|
|
|
|
if (init)
|
|
|
|
|
TREE_CONSTANT (init) = 1;
|
2002-09-01 20:38:57 +00:00
|
|
|
|
|
|
|
|
|
return init;
|
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Build an expression for the default-initialization of an object of
|
|
|
|
|
the indicated TYPE. If NELTS is non-NULL, and TYPE is an
|
|
|
|
|
ARRAY_TYPE, NELTS is the number of elements in the array. If
|
|
|
|
|
initialization of TYPE requires calling constructors, this function
|
|
|
|
|
returns NULL_TREE; the caller is responsible for arranging for the
|
|
|
|
|
constructors to be called. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
static tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_default_init (tree type, tree nelts)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
{
|
|
|
|
|
/* [dcl.init]:
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
To default-initialize an object of type T means:
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
--if T is a non-POD class type (clause _class_), the default construc-
|
|
|
|
|
tor for T is called (and the initialization is ill-formed if T has
|
|
|
|
|
no accessible default constructor);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
--if T is an array type, each element is default-initialized;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
--otherwise, the storage for the object is zero-initialized.
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
A program that calls for default-initialization of an entity of refer-
|
|
|
|
|
ence type is ill-formed. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
|
|
|
|
|
performing the initialization. This is confusing in that some
|
|
|
|
|
non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
|
|
|
|
|
a class with a pointer-to-data member as a non-static data member
|
|
|
|
|
does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
|
|
|
|
|
passing non-PODs to build_zero_init below, which is contrary to
|
|
|
|
|
the semantics quoted above from [dcl.init].
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
It happens, however, that the behavior of the constructor the
|
|
|
|
|
standard says we should have generated would be precisely the
|
|
|
|
|
same as that obtained by calling build_zero_init below, so things
|
|
|
|
|
work out OK. */
|
|
|
|
|
if (TYPE_NEEDS_CONSTRUCTING (type)
|
|
|
|
|
|| (nelts && TREE_CODE (nelts) != INTEGER_CST))
|
|
|
|
|
return NULL_TREE;
|
|
|
|
|
|
|
|
|
|
/* At this point, TYPE is either a POD class type, an array of POD
|
2004-07-28 03:11:36 +00:00
|
|
|
|
classes, or something even more innocuous. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
return build_zero_init (type, nelts, /*static_storage_p=*/false);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
|
|
|
|
|
arguments. If TREE_LIST is void_type_node, an empty initializer
|
|
|
|
|
list was given; if NULL_TREE no initializer was given. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
static void
|
2003-07-11 03:40:53 +00:00
|
|
|
|
perform_member_init (tree member, tree init)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
tree decl;
|
|
|
|
|
tree type = TREE_TYPE (member);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
bool explicit;
|
|
|
|
|
|
|
|
|
|
explicit = (init != NULL_TREE);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Effective C++ rule 12 requires that all data members be
|
|
|
|
|
initialized. */
|
|
|
|
|
if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
|
|
|
|
|
warning ("`%D' should be initialized in the member initialization "
|
|
|
|
|
"list",
|
|
|
|
|
member);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (init == void_type_node)
|
|
|
|
|
init = NULL_TREE;
|
|
|
|
|
|
|
|
|
|
/* Get an lvalue for the data member. */
|
|
|
|
|
decl = build_class_member_access_expr (current_class_ref, member,
|
|
|
|
|
/*access_path=*/NULL_TREE,
|
|
|
|
|
/*preserve_reference=*/true);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (decl == error_mark_node)
|
|
|
|
|
return;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Deal with this here, as we will get confused if we try to call the
|
|
|
|
|
assignment op for an anonymous union. This can happen in a
|
|
|
|
|
synthesized copy constructor. */
|
|
|
|
|
if (ANON_AGGR_TYPE_P (type))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (init)
|
|
|
|
|
{
|
|
|
|
|
init = build (INIT_EXPR, type, decl, TREE_VALUE (init));
|
|
|
|
|
finish_expr_stmt (init);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (TYPE_NEEDS_CONSTRUCTING (type)
|
|
|
|
|
|| (init && TYPE_HAS_CONSTRUCTOR (type)))
|
|
|
|
|
{
|
1996-09-18 05:35:50 +00:00
|
|
|
|
if (explicit
|
|
|
|
|
&& TREE_CODE (type) == ARRAY_TYPE
|
|
|
|
|
&& init != NULL_TREE
|
|
|
|
|
&& TREE_CHAIN (init) == NULL_TREE
|
|
|
|
|
&& TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
|
|
|
|
|
{
|
|
|
|
|
/* Initialization of one array from another. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
|
|
|
|
|
/* from_array=*/1));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
2002-02-01 18:16:02 +00:00
|
|
|
|
finish_expr_stmt (build_aggr_init (decl, init, 0));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (init == NULL_TREE)
|
|
|
|
|
{
|
|
|
|
|
if (explicit)
|
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
init = build_default_init (type, /*nelts=*/NULL_TREE);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (TREE_CODE (type) == REFERENCE_TYPE)
|
|
|
|
|
warning
|
|
|
|
|
("default-initialization of `%#D', which has reference type",
|
|
|
|
|
member);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
/* member traversal: note it leaves init NULL */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
else if (TREE_CODE (type) == REFERENCE_TYPE)
|
|
|
|
|
pedwarn ("uninitialized reference member `%D'", member);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
else if (CP_TYPE_CONST_P (type))
|
|
|
|
|
pedwarn ("uninitialized member `%D' with `const' type `%T'",
|
|
|
|
|
member, type);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
else if (TREE_CODE (init) == TREE_LIST)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* There was an explicit member initialization. Do some work
|
|
|
|
|
in that case. */
|
|
|
|
|
init = build_x_compound_expr_from_list (init, "member initializer");
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (init)
|
|
|
|
|
finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
1999-08-26 09:30:50 +00:00
|
|
|
|
tree expr;
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
expr = build_class_member_access_expr (current_class_ref, member,
|
|
|
|
|
/*access_path=*/NULL_TREE,
|
|
|
|
|
/*preserve_reference=*/false);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
expr = build_delete (type, expr, sfk_complete_destructor,
|
1996-09-18 05:35:50 +00:00
|
|
|
|
LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
|
|
|
|
|
|
|
|
|
|
if (expr != error_mark_node)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
finish_eh_cleanup (expr);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
|
|
|
|
|
the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
static tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_field_list (tree t, tree list, int *uses_unions_p)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree fields;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-12-04 15:42:16 +00:00
|
|
|
|
*uses_unions_p = 0;
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Note whether or not T is a union. */
|
|
|
|
|
if (TREE_CODE (t) == UNION_TYPE)
|
|
|
|
|
*uses_unions_p = 1;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
|
|
|
|
|
{
|
|
|
|
|
/* Skip CONST_DECLs for enumeration constants and so forth. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
continue;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Keep track of whether or not any fields are unions. */
|
|
|
|
|
if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
|
|
|
|
|
*uses_unions_p = 1;
|
|
|
|
|
|
|
|
|
|
/* For an anonymous struct or union, we must recursively
|
|
|
|
|
consider the fields of the anonymous type. They can be
|
|
|
|
|
directly initialized from the constructor. */
|
|
|
|
|
if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
|
|
|
|
|
{
|
|
|
|
|
/* Add this field itself. Synthesized copy constructors
|
|
|
|
|
initialize the entire aggregate. */
|
|
|
|
|
list = tree_cons (fields, NULL_TREE, list);
|
|
|
|
|
/* And now add the fields in the anonymous aggregate. */
|
|
|
|
|
list = build_field_list (TREE_TYPE (fields), list,
|
|
|
|
|
uses_unions_p);
|
|
|
|
|
}
|
|
|
|
|
/* Add this field. */
|
|
|
|
|
else if (DECL_NAME (fields))
|
|
|
|
|
list = tree_cons (fields, NULL_TREE, list);
|
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
return list;
|
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
|
|
|
|
|
a FIELD_DECL or BINFO in T that needs initialization. The
|
|
|
|
|
TREE_VALUE gives the initializer, or list of initializer arguments.
|
|
|
|
|
|
|
|
|
|
Return a TREE_LIST containing all of the initializations required
|
|
|
|
|
for T, in the order in which they should be performed. The output
|
|
|
|
|
list has the same format as the input. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
static tree
|
2003-07-11 03:40:53 +00:00
|
|
|
|
sort_mem_initializers (tree t, tree mem_inits)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
tree init;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
tree base;
|
|
|
|
|
tree sorted_inits;
|
|
|
|
|
tree next_subobject;
|
|
|
|
|
int i;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
int uses_unions_p;
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Build up a list of initializations. The TREE_PURPOSE of entry
|
|
|
|
|
will be the subobject (a FIELD_DECL or BINFO) to initialize. The
|
|
|
|
|
TREE_VALUE will be the constructor arguments, or NULL if no
|
|
|
|
|
explicit initialization was provided. */
|
|
|
|
|
sorted_inits = NULL_TREE;
|
|
|
|
|
/* Process the virtual bases. */
|
|
|
|
|
for (base = CLASSTYPE_VBASECLASSES (t); base; base = TREE_CHAIN (base))
|
|
|
|
|
sorted_inits = tree_cons (TREE_VALUE (base), NULL_TREE, sorted_inits);
|
|
|
|
|
/* Process the direct bases. */
|
|
|
|
|
for (i = 0; i < CLASSTYPE_N_BASECLASSES (t); ++i)
|
|
|
|
|
{
|
|
|
|
|
base = BINFO_BASETYPE (TYPE_BINFO (t), i);
|
|
|
|
|
if (!TREE_VIA_VIRTUAL (base))
|
|
|
|
|
sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
|
|
|
|
|
}
|
|
|
|
|
/* Process the non-static data members. */
|
|
|
|
|
sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
|
|
|
|
|
/* Reverse the entire list of initializations, so that they are in
|
|
|
|
|
the order that they will actually be performed. */
|
|
|
|
|
sorted_inits = nreverse (sorted_inits);
|
|
|
|
|
|
|
|
|
|
/* If the user presented the initializers in an order different from
|
|
|
|
|
that in which they will actually occur, we issue a warning. Keep
|
|
|
|
|
track of the next subobject which can be explicitly initialized
|
|
|
|
|
without issuing a warning. */
|
|
|
|
|
next_subobject = sorted_inits;
|
|
|
|
|
|
|
|
|
|
/* Go through the explicit initializers, filling in TREE_PURPOSE in
|
|
|
|
|
the SORTED_INITS. */
|
|
|
|
|
for (init = mem_inits; init; init = TREE_CHAIN (init))
|
|
|
|
|
{
|
|
|
|
|
tree subobject;
|
|
|
|
|
tree subobject_init;
|
|
|
|
|
|
|
|
|
|
subobject = TREE_PURPOSE (init);
|
|
|
|
|
|
|
|
|
|
/* If the explicit initializers are in sorted order, then
|
|
|
|
|
SUBOBJECT will be NEXT_SUBOBJECT, or something following
|
|
|
|
|
it. */
|
|
|
|
|
for (subobject_init = next_subobject;
|
|
|
|
|
subobject_init;
|
|
|
|
|
subobject_init = TREE_CHAIN (subobject_init))
|
|
|
|
|
if (TREE_PURPOSE (subobject_init) == subobject)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
break;
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Issue a warning if the explicit initializer order does not
|
|
|
|
|
match that which will actually occur. */
|
|
|
|
|
if (warn_reorder && !subobject_init)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
|
|
|
|
|
cp_warning_at ("`%D' will be initialized after",
|
|
|
|
|
TREE_PURPOSE (next_subobject));
|
|
|
|
|
else
|
|
|
|
|
warning ("base `%T' will be initialized after",
|
|
|
|
|
TREE_PURPOSE (next_subobject));
|
|
|
|
|
if (TREE_CODE (subobject) == FIELD_DECL)
|
|
|
|
|
cp_warning_at (" `%#D'", subobject);
|
|
|
|
|
else
|
|
|
|
|
warning (" base `%T'", subobject);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
warning (" when initialized here");
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Look again, from the beginning of the list. */
|
|
|
|
|
if (!subobject_init)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
subobject_init = sorted_inits;
|
|
|
|
|
while (TREE_PURPOSE (subobject_init) != subobject)
|
|
|
|
|
subobject_init = TREE_CHAIN (subobject_init);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
|
|
|
|
/* It is invalid to initialize the same subobject more than
|
|
|
|
|
once. */
|
|
|
|
|
if (TREE_VALUE (subobject_init))
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (TREE_CODE (subobject) == FIELD_DECL)
|
|
|
|
|
error ("multiple initializations given for `%D'", subobject);
|
|
|
|
|
else
|
|
|
|
|
error ("multiple initializations given for base `%T'",
|
|
|
|
|
subobject);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Record the initialization. */
|
|
|
|
|
TREE_VALUE (subobject_init) = TREE_VALUE (init);
|
|
|
|
|
next_subobject = subobject_init;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* [class.base.init]
|
|
|
|
|
|
|
|
|
|
If a ctor-initializer specifies more than one mem-initializer for
|
|
|
|
|
multiple members of the same union (including members of
|
|
|
|
|
anonymous unions), the ctor-initializer is ill-formed. */
|
|
|
|
|
if (uses_unions_p)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
tree last_field = NULL_TREE;
|
|
|
|
|
for (init = sorted_inits; init; init = TREE_CHAIN (init))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree field;
|
|
|
|
|
tree field_type;
|
|
|
|
|
int done;
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Skip uninitialized members and base classes. */
|
|
|
|
|
if (!TREE_VALUE (init)
|
|
|
|
|
|| TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
continue;
|
|
|
|
|
/* See if this field is a member of a union, or a member of a
|
|
|
|
|
structure contained in a union, etc. */
|
|
|
|
|
field = TREE_PURPOSE (init);
|
|
|
|
|
for (field_type = DECL_CONTEXT (field);
|
|
|
|
|
!same_type_p (field_type, t);
|
|
|
|
|
field_type = TYPE_CONTEXT (field_type))
|
|
|
|
|
if (TREE_CODE (field_type) == UNION_TYPE)
|
|
|
|
|
break;
|
|
|
|
|
/* If this field is not a member of a union, skip it. */
|
|
|
|
|
if (TREE_CODE (field_type) != UNION_TYPE)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* It's only an error if we have two initializers for the same
|
|
|
|
|
union type. */
|
|
|
|
|
if (!last_field)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
last_field = field;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
continue;
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* See if LAST_FIELD and the field initialized by INIT are
|
|
|
|
|
members of the same union. If so, there's a problem,
|
|
|
|
|
unless they're actually members of the same structure
|
|
|
|
|
which is itself a member of a union. For example, given:
|
|
|
|
|
|
|
|
|
|
union { struct { int i; int j; }; };
|
|
|
|
|
|
|
|
|
|
initializing both `i' and `j' makes sense. */
|
|
|
|
|
field_type = DECL_CONTEXT (field);
|
|
|
|
|
done = 0;
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
tree last_field_type;
|
|
|
|
|
|
|
|
|
|
last_field_type = DECL_CONTEXT (last_field);
|
|
|
|
|
while (1)
|
|
|
|
|
{
|
|
|
|
|
if (same_type_p (last_field_type, field_type))
|
|
|
|
|
{
|
|
|
|
|
if (TREE_CODE (field_type) == UNION_TYPE)
|
|
|
|
|
error ("initializations for multiple members of `%T'",
|
|
|
|
|
last_field_type);
|
|
|
|
|
done = 1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (same_type_p (last_field_type, t))
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
last_field_type = TYPE_CONTEXT (last_field_type);
|
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* If we've reached the outermost class, then we're
|
|
|
|
|
done. */
|
|
|
|
|
if (same_type_p (field_type, t))
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
field_type = TYPE_CONTEXT (field_type);
|
|
|
|
|
}
|
|
|
|
|
while (!done);
|
|
|
|
|
|
|
|
|
|
last_field = field;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
return sorted_inits;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
|
|
|
|
|
is a TREE_LIST giving the explicit mem-initializer-list for the
|
|
|
|
|
constructor. The TREE_PURPOSE of each entry is a subobject (a
|
|
|
|
|
FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
|
|
|
|
|
is a TREE_LIST giving the arguments to the constructor or
|
|
|
|
|
void_type_node for an empty list of arguments. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
void
|
2003-07-11 03:40:53 +00:00
|
|
|
|
emit_mem_initializers (tree mem_inits)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Sort the mem-initializers into the order in which the
|
|
|
|
|
initializations should be performed. */
|
|
|
|
|
mem_inits = sort_mem_initializers (current_class_type, mem_inits);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
in_base_initializer = 1;
|
|
|
|
|
|
|
|
|
|
/* Initialize base classes. */
|
|
|
|
|
while (mem_inits
|
|
|
|
|
&& TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
|
|
|
|
|
{
|
|
|
|
|
tree subobject = TREE_PURPOSE (mem_inits);
|
|
|
|
|
tree arguments = TREE_VALUE (mem_inits);
|
|
|
|
|
|
|
|
|
|
/* If these initializations are taking place in a copy
|
|
|
|
|
constructor, the base class should probably be explicitly
|
|
|
|
|
initialized. */
|
|
|
|
|
if (extra_warnings && !arguments
|
|
|
|
|
&& DECL_COPY_CONSTRUCTOR_P (current_function_decl)
|
|
|
|
|
&& TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
|
|
|
|
|
warning ("base class `%#T' should be explicitly initialized in the "
|
|
|
|
|
"copy constructor",
|
|
|
|
|
BINFO_TYPE (subobject));
|
|
|
|
|
|
|
|
|
|
/* If an explicit -- but empty -- initializer list was present,
|
|
|
|
|
treat it just like default initialization at this point. */
|
|
|
|
|
if (arguments == void_type_node)
|
|
|
|
|
arguments = NULL_TREE;
|
|
|
|
|
|
|
|
|
|
/* Initialize the base. */
|
|
|
|
|
if (TREE_VIA_VIRTUAL (subobject))
|
|
|
|
|
construct_virtual_base (subobject, arguments);
|
|
|
|
|
else
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
tree base_addr;
|
|
|
|
|
|
|
|
|
|
base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
|
|
|
|
|
subobject, 1);
|
|
|
|
|
expand_aggr_init_1 (subobject, NULL_TREE,
|
|
|
|
|
build_indirect_ref (base_addr, NULL),
|
|
|
|
|
arguments,
|
1999-10-16 06:09:09 +00:00
|
|
|
|
LOOKUP_NORMAL);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
expand_cleanup_for_base (subobject, NULL_TREE);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
mem_inits = TREE_CHAIN (mem_inits);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2003-07-11 03:40:53 +00:00
|
|
|
|
in_base_initializer = 0;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Initialize the vptrs. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
initialize_vtbl_ptrs (current_class_ptr);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
|
|
|
|
/* Initialize the data members. */
|
|
|
|
|
while (mem_inits)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
perform_member_init (TREE_PURPOSE (mem_inits),
|
|
|
|
|
TREE_VALUE (mem_inits));
|
|
|
|
|
mem_inits = TREE_CHAIN (mem_inits);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Returns the address of the vtable (i.e., the value that should be
|
|
|
|
|
assigned to the vptr) for BINFO. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
static tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_vtbl_address (tree binfo)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
tree binfo_for = binfo;
|
|
|
|
|
tree vtbl;
|
|
|
|
|
|
|
|
|
|
if (BINFO_VPTR_INDEX (binfo) && TREE_VIA_VIRTUAL (binfo)
|
|
|
|
|
&& BINFO_PRIMARY_P (binfo))
|
|
|
|
|
/* If this is a virtual primary base, then the vtable we want to store
|
|
|
|
|
is that for the base this is being used as the primary base of. We
|
|
|
|
|
can't simply skip the initialization, because we may be expanding the
|
|
|
|
|
inits of a subobject constructor where the virtual base layout
|
|
|
|
|
can be different. */
|
|
|
|
|
while (BINFO_PRIMARY_BASE_OF (binfo_for))
|
|
|
|
|
binfo_for = BINFO_PRIMARY_BASE_OF (binfo_for);
|
|
|
|
|
|
|
|
|
|
/* Figure out what vtable BINFO's vtable is based on, and mark it as
|
|
|
|
|
used. */
|
|
|
|
|
vtbl = get_vtbl_decl_for_binfo (binfo_for);
|
|
|
|
|
assemble_external (vtbl);
|
|
|
|
|
TREE_USED (vtbl) = 1;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Now compute the address to use when initializing the vptr. */
|
|
|
|
|
vtbl = BINFO_VTABLE (binfo_for);
|
|
|
|
|
if (TREE_CODE (vtbl) == VAR_DECL)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
|
|
|
|
|
TREE_CONSTANT (vtbl) = 1;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
return vtbl;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This code sets up the virtual function tables appropriate for
|
|
|
|
|
the pointer DECL. It is a one-ply initialization.
|
|
|
|
|
|
|
|
|
|
BINFO is the exact type that DECL is supposed to be. In
|
|
|
|
|
multiple inheritance, this might mean "C's A" if C : A, B. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
static void
|
2004-07-28 03:11:36 +00:00
|
|
|
|
expand_virtual_init (tree binfo, tree decl)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
tree vtbl, vtbl_ptr;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree vtt_index;
|
|
|
|
|
|
|
|
|
|
/* Compute the initializer for vptr. */
|
|
|
|
|
vtbl = build_vtbl_address (binfo);
|
|
|
|
|
|
|
|
|
|
/* We may get this vptr from a VTT, if this is a subobject
|
|
|
|
|
constructor or subobject destructor. */
|
|
|
|
|
vtt_index = BINFO_VPTR_INDEX (binfo);
|
|
|
|
|
if (vtt_index)
|
|
|
|
|
{
|
|
|
|
|
tree vtbl2;
|
|
|
|
|
tree vtt_parm;
|
|
|
|
|
|
|
|
|
|
/* Compute the value to use, when there's a VTT. */
|
|
|
|
|
vtt_parm = current_vtt_parm;
|
|
|
|
|
vtbl2 = build (PLUS_EXPR,
|
|
|
|
|
TREE_TYPE (vtt_parm),
|
|
|
|
|
vtt_parm,
|
|
|
|
|
vtt_index);
|
|
|
|
|
vtbl2 = build1 (INDIRECT_REF, TREE_TYPE (vtbl), vtbl2);
|
|
|
|
|
|
|
|
|
|
/* The actual initializer is the VTT value only in the subobject
|
|
|
|
|
constructor. In maybe_clone_body we'll substitute NULL for
|
|
|
|
|
the vtt_parm in the case of the non-subobject constructor. */
|
|
|
|
|
vtbl = build (COND_EXPR,
|
|
|
|
|
TREE_TYPE (vtbl),
|
|
|
|
|
build (EQ_EXPR, boolean_type_node,
|
|
|
|
|
current_in_charge_parm, integer_zero_node),
|
|
|
|
|
vtbl2,
|
|
|
|
|
vtbl);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Compute the location of the vtpr. */
|
|
|
|
|
vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
|
|
|
|
|
TREE_TYPE (binfo));
|
|
|
|
|
my_friendly_assert (vtbl_ptr != error_mark_node, 20010730);
|
|
|
|
|
|
|
|
|
|
/* Assign the vtable to the vptr. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* If an exception is thrown in a constructor, those base classes already
|
|
|
|
|
constructed must be destroyed. This function creates the cleanup
|
|
|
|
|
for BINFO, which has just been constructed. If FLAG is non-NULL,
|
2003-07-11 03:40:53 +00:00
|
|
|
|
it is a DECL which is nonzero when this base needs to be
|
1999-10-16 06:09:09 +00:00
|
|
|
|
destroyed. */
|
|
|
|
|
|
|
|
|
|
static void
|
2004-07-28 03:11:36 +00:00
|
|
|
|
expand_cleanup_for_base (tree binfo, tree flag)
|
1999-10-16 06:09:09 +00:00
|
|
|
|
{
|
|
|
|
|
tree expr;
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
|
|
|
|
|
return;
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Call the destructor. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
expr = build_special_member_call (current_class_ref,
|
|
|
|
|
base_dtor_identifier,
|
|
|
|
|
NULL_TREE,
|
|
|
|
|
binfo,
|
|
|
|
|
LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (flag)
|
|
|
|
|
expr = fold (build (COND_EXPR, void_type_node,
|
2003-07-11 03:40:53 +00:00
|
|
|
|
c_common_truthvalue_conversion (flag),
|
2002-02-01 18:16:02 +00:00
|
|
|
|
expr, integer_zero_node));
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
finish_eh_cleanup (expr);
|
1999-10-16 06:09:09 +00:00
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Construct the virtual base-class VBASE passing the ARGUMENTS to its
|
|
|
|
|
constructor. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
static void
|
2003-07-11 03:40:53 +00:00
|
|
|
|
construct_virtual_base (tree vbase, tree arguments)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
tree inner_if_stmt;
|
|
|
|
|
tree compound_stmt;
|
|
|
|
|
tree exp;
|
|
|
|
|
tree flag;
|
|
|
|
|
|
|
|
|
|
/* If there are virtual base classes with destructors, we need to
|
|
|
|
|
emit cleanups to destroy them if an exception is thrown during
|
|
|
|
|
the construction process. These exception regions (i.e., the
|
|
|
|
|
period during which the cleanups must occur) begin from the time
|
|
|
|
|
the construction is complete to the end of the function. If we
|
|
|
|
|
create a conditional block in which to initialize the
|
|
|
|
|
base-classes, then the cleanup region for the virtual base begins
|
|
|
|
|
inside a block, and ends outside of that block. This situation
|
|
|
|
|
confuses the sjlj exception-handling code. Therefore, we do not
|
|
|
|
|
create a single conditional block, but one for each
|
|
|
|
|
initialization. (That way the cleanup regions always begin
|
|
|
|
|
in the outer block.) We trust the back-end to figure out
|
|
|
|
|
that the FLAG will not change across initializations, and
|
|
|
|
|
avoid doing multiple tests. */
|
|
|
|
|
flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
|
|
|
|
|
inner_if_stmt = begin_if_stmt ();
|
|
|
|
|
finish_if_stmt_cond (flag, inner_if_stmt);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
compound_stmt = begin_compound_stmt (/*has_no_scope=*/true);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
|
|
|
|
/* Compute the location of the virtual base. If we're
|
|
|
|
|
constructing virtual bases, then we must be the most derived
|
|
|
|
|
class. Therefore, we don't have to look up the virtual base;
|
|
|
|
|
we already know where it is. */
|
2003-08-22 02:56:07 +00:00
|
|
|
|
exp = convert_to_base_statically (current_class_ref, vbase);
|
|
|
|
|
|
|
|
|
|
expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
|
|
|
|
|
LOOKUP_COMPLAIN);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
finish_compound_stmt (compound_stmt);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
finish_then_clause (inner_if_stmt);
|
|
|
|
|
finish_if_stmt ();
|
|
|
|
|
|
|
|
|
|
expand_cleanup_for_base (vbase, flag);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* Find the context in which this FIELD can be initialized. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
static tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
initializing_context (tree field)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
|
|
|
|
tree t = DECL_CONTEXT (field);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* Anonymous union members can be initialized in the first enclosing
|
|
|
|
|
non-anonymous union context. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
while (t && ANON_AGGR_TYPE_P (t))
|
1999-08-26 09:30:50 +00:00
|
|
|
|
t = TYPE_CONTEXT (t);
|
|
|
|
|
return t;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Function to give error message if member initialization specification
|
|
|
|
|
is erroneous. FIELD is the member we decided to initialize.
|
|
|
|
|
TYPE is the type for which the initialization is being performed.
|
1999-08-26 09:30:50 +00:00
|
|
|
|
FIELD must be a member of TYPE.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
MEMBER_NAME is the name of the member. */
|
|
|
|
|
|
|
|
|
|
static int
|
2004-07-28 03:11:36 +00:00
|
|
|
|
member_init_ok_or_else (tree field, tree type, tree member_name)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
if (field == error_mark_node)
|
|
|
|
|
return 0;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (!field)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
error ("class `%T' does not have any field named `%D'", type,
|
2004-07-28 03:11:36 +00:00
|
|
|
|
member_name);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (TREE_CODE (field) == VAR_DECL)
|
|
|
|
|
{
|
|
|
|
|
error ("`%#D' is a static data member; it can only be "
|
|
|
|
|
"initialized at its definition",
|
|
|
|
|
field);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
error ("`%#D' is not a non-static data member of `%T'",
|
|
|
|
|
field, type);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
if (initializing_context (field) != type)
|
|
|
|
|
{
|
|
|
|
|
error ("class `%T' does not have any field named `%D'", type,
|
|
|
|
|
member_name);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
|
|
|
|
|
is a _TYPE node or TYPE_DECL which names a base for that type.
|
|
|
|
|
Check the validity of NAME, and return either the base _TYPE, base
|
|
|
|
|
binfo, or the FIELD_DECL of the member. If NAME is invalid, return
|
|
|
|
|
NULL_TREE and issue a diagnostic.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
An old style unnamed direct single base construction is permitted,
|
|
|
|
|
where NAME is NULL. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree
|
2003-07-11 03:40:53 +00:00
|
|
|
|
expand_member_init (tree name)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
tree basetype;
|
|
|
|
|
tree field;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (!current_class_ref)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
return NULL_TREE;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (!name)
|
|
|
|
|
{
|
|
|
|
|
/* This is an obsolete unnamed base class initializer. The
|
|
|
|
|
parser will already have warned about its use. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
switch (CLASSTYPE_N_BASECLASSES (current_class_type))
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
case 0:
|
|
|
|
|
error ("unnamed initializer for `%T', which has no base classes",
|
2003-07-11 03:40:53 +00:00
|
|
|
|
current_class_type);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
return NULL_TREE;
|
|
|
|
|
case 1:
|
2003-07-11 03:40:53 +00:00
|
|
|
|
basetype = TYPE_BINFO_BASETYPE (current_class_type, 0);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
error ("unnamed initializer for `%T', which uses multiple inheritance",
|
2003-07-11 03:40:53 +00:00
|
|
|
|
current_class_type);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
return NULL_TREE;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
|
|
|
|
else if (TYPE_P (name))
|
|
|
|
|
{
|
2003-02-10 05:41:50 +00:00
|
|
|
|
basetype = TYPE_MAIN_VARIANT (name);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
name = TYPE_NAME (name);
|
|
|
|
|
}
|
|
|
|
|
else if (TREE_CODE (name) == TYPE_DECL)
|
|
|
|
|
basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
|
2003-07-11 03:40:53 +00:00
|
|
|
|
else
|
|
|
|
|
basetype = NULL_TREE;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (basetype)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree class_binfo;
|
|
|
|
|
tree direct_binfo;
|
|
|
|
|
tree virtual_binfo;
|
|
|
|
|
int i;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (current_template_parms)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
return basetype;
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
class_binfo = TYPE_BINFO (current_class_type);
|
|
|
|
|
direct_binfo = NULL_TREE;
|
|
|
|
|
virtual_binfo = NULL_TREE;
|
|
|
|
|
|
|
|
|
|
/* Look for a direct base. */
|
|
|
|
|
for (i = 0; i < BINFO_N_BASETYPES (class_binfo); ++i)
|
|
|
|
|
if (same_type_p (basetype,
|
|
|
|
|
TYPE_BINFO_BASETYPE (current_class_type, i)))
|
|
|
|
|
{
|
|
|
|
|
direct_binfo = BINFO_BASETYPE (class_binfo, i);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
/* Look for a virtual base -- unless the direct base is itself
|
|
|
|
|
virtual. */
|
|
|
|
|
if (!direct_binfo || !TREE_VIA_VIRTUAL (direct_binfo))
|
|
|
|
|
{
|
|
|
|
|
virtual_binfo
|
|
|
|
|
= purpose_member (basetype,
|
|
|
|
|
CLASSTYPE_VBASECLASSES (current_class_type));
|
|
|
|
|
if (virtual_binfo)
|
|
|
|
|
virtual_binfo = TREE_VALUE (virtual_binfo);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* [class.base.init]
|
|
|
|
|
|
|
|
|
|
If a mem-initializer-id is ambiguous because it designates
|
|
|
|
|
both a direct non-virtual base class and an inherited virtual
|
|
|
|
|
base class, the mem-initializer is ill-formed. */
|
|
|
|
|
if (direct_binfo && virtual_binfo)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
error ("'%D' is both a direct base and an indirect virtual base",
|
|
|
|
|
basetype);
|
|
|
|
|
return NULL_TREE;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
|
|
|
|
if (!direct_binfo && !virtual_binfo)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
{
|
|
|
|
|
if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
|
2006-08-26 21:29:10 +00:00
|
|
|
|
error ("type `%T' is not a direct or virtual base of `%T'",
|
|
|
|
|
basetype, current_class_type);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
else
|
2006-08-26 21:29:10 +00:00
|
|
|
|
error ("type `%T' is not a direct base of `%T'",
|
|
|
|
|
basetype, current_class_type);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
return NULL_TREE;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
return direct_binfo ? direct_binfo : virtual_binfo;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
2002-10-10 04:40:18 +00:00
|
|
|
|
if (TREE_CODE (name) == IDENTIFIER_NODE)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
field = lookup_field (current_class_type, name, 1, false);
|
2002-10-10 04:40:18 +00:00
|
|
|
|
else
|
|
|
|
|
field = name;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (member_init_ok_or_else (field, current_class_type, name))
|
|
|
|
|
return field;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
return NULL_TREE;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This is like `expand_member_init', only it stores one aggregate
|
|
|
|
|
value into another.
|
|
|
|
|
|
|
|
|
|
INIT comes in two flavors: it is either a value which
|
|
|
|
|
is to be stored in EXP, or it is a parameter list
|
|
|
|
|
to go to a constructor, which will operate on EXP.
|
|
|
|
|
If INIT is not a parameter list for a constructor, then set
|
|
|
|
|
LOOKUP_ONLYCONVERTING.
|
|
|
|
|
If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
|
|
|
|
|
the initializer, if FLAGS is 0, then it is the (init) form.
|
|
|
|
|
If `init' is a CONSTRUCTOR, then we emit a warning message,
|
|
|
|
|
explaining that such initializations are invalid.
|
|
|
|
|
|
|
|
|
|
If INIT resolves to a CALL_EXPR which happens to return
|
|
|
|
|
something of the type we are looking for, then we know
|
|
|
|
|
that we can safely use that call to perform the
|
|
|
|
|
initialization.
|
|
|
|
|
|
|
|
|
|
The virtual function table pointer cannot be set up here, because
|
|
|
|
|
we do not really know its type.
|
|
|
|
|
|
|
|
|
|
This never calls operator=().
|
|
|
|
|
|
|
|
|
|
When initializing, nothing is CONST.
|
|
|
|
|
|
|
|
|
|
A default copy constructor may have to be used to perform the
|
|
|
|
|
initialization.
|
|
|
|
|
|
|
|
|
|
A constructor or a conversion operator may have to be used to
|
1999-08-26 09:30:50 +00:00
|
|
|
|
perform the initialization, but not both, as it would be ambiguous. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_aggr_init (tree exp, tree init, int flags)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree stmt_expr;
|
|
|
|
|
tree compound_stmt;
|
|
|
|
|
int destroy_temps;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
tree type = TREE_TYPE (exp);
|
|
|
|
|
int was_const = TREE_READONLY (exp);
|
|
|
|
|
int was_volatile = TREE_THIS_VOLATILE (exp);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
int is_global;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
if (init == error_mark_node)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
return error_mark_node;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
TREE_READONLY (exp) = 0;
|
|
|
|
|
TREE_THIS_VOLATILE (exp) = 0;
|
|
|
|
|
|
|
|
|
|
if (init && TREE_CODE (init) != TREE_LIST)
|
|
|
|
|
flags |= LOOKUP_ONLYCONVERTING;
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
|
|
|
|
{
|
|
|
|
|
/* Must arrange to initialize each element of EXP
|
|
|
|
|
from elements of INIT. */
|
|
|
|
|
tree itype = init ? TREE_TYPE (init) : NULL_TREE;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
if (init && !itype)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
/* Handle bad initializers like:
|
|
|
|
|
class COMPLEX {
|
|
|
|
|
public:
|
|
|
|
|
double re, im;
|
|
|
|
|
COMPLEX(double r = 0.0, double i = 0.0) {re = r; im = i;};
|
|
|
|
|
~COMPLEX() {};
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
int main(int argc, char **argv) {
|
|
|
|
|
COMPLEX zees(1.0, 0.0)[10];
|
|
|
|
|
}
|
|
|
|
|
*/
|
|
|
|
|
error ("bad array initializer");
|
2002-02-01 18:16:02 +00:00
|
|
|
|
return error_mark_node;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (cp_type_quals (type) != TYPE_UNQUALIFIED)
|
2002-09-01 20:38:57 +00:00
|
|
|
|
TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
|
|
|
|
|
if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
|
|
|
|
|
TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
stmt_expr = build_vec_init (exp, NULL_TREE, init,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
init && same_type_p (TREE_TYPE (init),
|
|
|
|
|
TREE_TYPE (exp)));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
TREE_READONLY (exp) = was_const;
|
|
|
|
|
TREE_THIS_VOLATILE (exp) = was_volatile;
|
|
|
|
|
TREE_TYPE (exp) = type;
|
|
|
|
|
if (init)
|
|
|
|
|
TREE_TYPE (init) = itype;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
return stmt_expr;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Just know that we've seen something for this node. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
TREE_USED (exp) = 1;
|
|
|
|
|
|
|
|
|
|
TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
destroy_temps = stmts_are_full_exprs_p ();
|
|
|
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
|
1999-10-16 06:09:09 +00:00
|
|
|
|
init, LOOKUP_NORMAL|flags);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
TREE_TYPE (exp) = type;
|
|
|
|
|
TREE_READONLY (exp) = was_const;
|
|
|
|
|
TREE_THIS_VOLATILE (exp) = was_volatile;
|
2000-05-27 02:25:28 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
return stmt_expr;
|
|
|
|
|
}
|
2000-05-27 02:25:28 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Like build_aggr_init, but not just for aggregates. */
|
|
|
|
|
|
|
|
|
|
tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_init (tree decl, tree init, int flags)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
{
|
|
|
|
|
tree expr;
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
expr = build_aggr_init (decl, init, flags);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
else if (CLASS_TYPE_P (TREE_TYPE (decl)))
|
|
|
|
|
expr = build_special_member_call (decl, complete_ctor_identifier,
|
|
|
|
|
build_tree_list (NULL_TREE, init),
|
|
|
|
|
TYPE_BINFO (TREE_TYPE (decl)),
|
|
|
|
|
LOOKUP_NORMAL|flags);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
else
|
|
|
|
|
expr = build (INIT_EXPR, TREE_TYPE (decl), decl, init);
|
|
|
|
|
|
|
|
|
|
return expr;
|
|
|
|
|
}
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
static void
|
2004-07-28 03:11:36 +00:00
|
|
|
|
expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
1999-08-26 09:30:50 +00:00
|
|
|
|
tree type = TREE_TYPE (exp);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree ctor_name;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* It fails because there may not be a constructor which takes
|
|
|
|
|
its own type as the first (or only parameter), but which does
|
|
|
|
|
take other types via a conversion. So, if the thing initializing
|
|
|
|
|
the expression is a unit element of type X, first try X(X&),
|
|
|
|
|
followed by initialization by X. If neither of these work
|
|
|
|
|
out, then look hard. */
|
|
|
|
|
tree rval;
|
|
|
|
|
tree parms;
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
if (init && TREE_CODE (init) != TREE_LIST
|
|
|
|
|
&& (flags & LOOKUP_ONLYCONVERTING))
|
|
|
|
|
{
|
|
|
|
|
/* Base subobjects should only get direct-initialization. */
|
|
|
|
|
if (true_exp != exp)
|
|
|
|
|
abort ();
|
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
if (flags & DIRECT_BIND)
|
|
|
|
|
/* Do nothing. We hit this in two cases: Reference initialization,
|
|
|
|
|
where we aren't initializing a real variable, so we don't want
|
|
|
|
|
to run a new constructor; and catching an exception, where we
|
|
|
|
|
have already built up the constructor call so we could wrap it
|
|
|
|
|
in an exception region. */;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
else if (TREE_CODE (init) == CONSTRUCTOR
|
|
|
|
|
&& TREE_HAS_CONSTRUCTOR (init))
|
|
|
|
|
{
|
|
|
|
|
/* A brace-enclosed initializer for an aggregate. */
|
|
|
|
|
my_friendly_assert (CP_AGGREGATE_TYPE_P (type), 20021016);
|
|
|
|
|
init = digest_init (type, init, (tree *)NULL);
|
|
|
|
|
}
|
1999-10-16 06:09:09 +00:00
|
|
|
|
else
|
1999-08-26 09:30:50 +00:00
|
|
|
|
init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
|
|
|
|
|
/* We need to protect the initialization of a catch parm with a
|
|
|
|
|
call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
|
1999-08-26 09:30:50 +00:00
|
|
|
|
around the TARGET_EXPR for the copy constructor. See
|
2004-07-28 03:11:36 +00:00
|
|
|
|
initialize_handler_parm. */
|
|
|
|
|
{
|
|
|
|
|
TREE_OPERAND (init, 0) = build (INIT_EXPR, TREE_TYPE (exp), exp,
|
|
|
|
|
TREE_OPERAND (init, 0));
|
|
|
|
|
TREE_TYPE (init) = void_type_node;
|
|
|
|
|
}
|
1999-08-26 09:30:50 +00:00
|
|
|
|
else
|
|
|
|
|
init = build (INIT_EXPR, TREE_TYPE (exp), exp, init);
|
|
|
|
|
TREE_SIDE_EFFECTS (init) = 1;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
finish_expr_stmt (init);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
if (init == NULL_TREE
|
|
|
|
|
|| (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
|
|
|
|
|
{
|
|
|
|
|
parms = init;
|
|
|
|
|
if (parms)
|
|
|
|
|
init = TREE_VALUE (parms);
|
|
|
|
|
}
|
|
|
|
|
else
|
2002-02-01 18:16:02 +00:00
|
|
|
|
parms = build_tree_list (NULL_TREE, init);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (true_exp == exp)
|
|
|
|
|
ctor_name = complete_ctor_identifier;
|
|
|
|
|
else
|
|
|
|
|
ctor_name = base_ctor_identifier;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (TREE_SIDE_EFFECTS (rval))
|
2004-07-28 03:11:36 +00:00
|
|
|
|
finish_expr_stmt (convert_to_void (rval, NULL));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This function is responsible for initializing EXP with INIT
|
|
|
|
|
(if any).
|
|
|
|
|
|
|
|
|
|
BINFO is the binfo of the type for who we are performing the
|
|
|
|
|
initialization. For example, if W is a virtual base class of A and B,
|
|
|
|
|
and C : A, B.
|
|
|
|
|
If we are initializing B, then W must contain B's W vtable, whereas
|
|
|
|
|
were we initializing C, W must contain C's W vtable.
|
|
|
|
|
|
|
|
|
|
TRUE_EXP is nonzero if it is the true expression being initialized.
|
|
|
|
|
In this case, it may be EXP, or may just contain EXP. The reason we
|
|
|
|
|
need this is because if EXP is a base element of TRUE_EXP, we
|
|
|
|
|
don't necessarily know by looking at EXP where its virtual
|
|
|
|
|
baseclass fields should really be pointing. But we do know
|
|
|
|
|
from TRUE_EXP. In constructors, we don't know anything about
|
|
|
|
|
the value being initialized.
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
FLAGS is just passed to `build_new_method_call'. See that function
|
|
|
|
|
for its description. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
static void
|
2004-07-28 03:11:36 +00:00
|
|
|
|
expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
tree type = TREE_TYPE (exp);
|
|
|
|
|
|
|
|
|
|
my_friendly_assert (init != error_mark_node && type != error_mark_node, 211);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
my_friendly_assert (building_stmt_tree (), 20021010);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* Use a function returning the desired type to initialize EXP for us.
|
|
|
|
|
If the function is a constructor, and its first argument is
|
|
|
|
|
NULL_TREE, know that it was meant for us--just slide exp on
|
|
|
|
|
in and expand the constructor. Constructors now come
|
|
|
|
|
as TARGET_EXPRs. */
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
if (init && TREE_CODE (exp) == VAR_DECL
|
|
|
|
|
&& TREE_CODE (init) == CONSTRUCTOR
|
|
|
|
|
&& TREE_HAS_CONSTRUCTOR (init))
|
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* If store_init_value returns NULL_TREE, the INIT has been
|
|
|
|
|
record in the DECL_INITIAL for EXP. That means there's
|
|
|
|
|
nothing more we have to do. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
init = store_init_value (exp, init);
|
|
|
|
|
if (init)
|
|
|
|
|
finish_expr_stmt (init);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
return;
|
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* We know that expand_default_init can handle everything we want
|
|
|
|
|
at this point. */
|
1999-10-16 06:09:09 +00:00
|
|
|
|
expand_default_init (binfo, true_exp, exp, init, flags);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* Report an error if TYPE is not a user-defined, aggregate type. If
|
|
|
|
|
OR_ELSE is nonzero, give an error message. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
int
|
2004-07-28 03:11:36 +00:00
|
|
|
|
is_aggr_type (tree type, int or_else)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
1999-08-26 09:30:50 +00:00
|
|
|
|
if (type == error_mark_node)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
if (! IS_AGGR_TYPE (type)
|
|
|
|
|
&& TREE_CODE (type) != TEMPLATE_TYPE_PARM
|
2002-02-01 18:16:02 +00:00
|
|
|
|
&& TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
if (or_else)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
error ("`%T' is not an aggregate type", type);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Like is_aggr_typedef, but returns typedef if successful. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
get_aggr_from_typedef (tree name, int or_else)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
tree type;
|
|
|
|
|
|
|
|
|
|
if (name == error_mark_node)
|
|
|
|
|
return NULL_TREE;
|
|
|
|
|
|
|
|
|
|
if (IDENTIFIER_HAS_TYPE_VALUE (name))
|
|
|
|
|
type = IDENTIFIER_TYPE_VALUE (name);
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (or_else)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
error ("`%T' fails to be an aggregate typedef", name);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
return NULL_TREE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (! IS_AGGR_TYPE (type)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
&& TREE_CODE (type) != TEMPLATE_TYPE_PARM
|
2002-02-01 18:16:02 +00:00
|
|
|
|
&& TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
if (or_else)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
error ("type `%T' is of non-aggregate type", type);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
return NULL_TREE;
|
|
|
|
|
}
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
get_type_value (tree name)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
if (name == error_mark_node)
|
|
|
|
|
return NULL_TREE;
|
|
|
|
|
|
|
|
|
|
if (IDENTIFIER_HAS_TYPE_VALUE (name))
|
|
|
|
|
return IDENTIFIER_TYPE_VALUE (name);
|
|
|
|
|
else
|
|
|
|
|
return NULL_TREE;
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Build a reference to a member of an aggregate. This is not a C++
|
|
|
|
|
`&', but really something which can have its address taken, and
|
|
|
|
|
then act as a pointer to member, for example TYPE :: FIELD can have
|
|
|
|
|
its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
|
|
|
|
|
this expression is the operand of "&".
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
@@ Prints out lousy diagnostics for operator <typename>
|
|
|
|
|
@@ fields.
|
|
|
|
|
|
|
|
|
|
@@ This function should be rewritten and placed in search.c. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_offset_ref (tree type, tree name, bool address_p)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree decl;
|
1999-10-16 06:09:09 +00:00
|
|
|
|
tree member;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
tree basebinfo = NULL_TREE;
|
|
|
|
|
tree orig_name = name;
|
|
|
|
|
|
|
|
|
|
/* class templates can come in as TEMPLATE_DECLs here. */
|
|
|
|
|
if (TREE_CODE (name) == TEMPLATE_DECL)
|
|
|
|
|
return name;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2005-06-03 03:28:44 +00:00
|
|
|
|
if (dependent_type_p (type) || type_dependent_expression_p (name))
|
1999-08-26 09:30:50 +00:00
|
|
|
|
return build_min_nt (SCOPE_REF, type, name);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
|
|
|
|
|
{
|
|
|
|
|
/* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
|
|
|
|
|
something like `a.template f<int>' or the like. For the most
|
|
|
|
|
part, we treat this just like a.f. We do remember, however,
|
|
|
|
|
the template-id that was used. */
|
|
|
|
|
name = TREE_OPERAND (orig_name, 0);
|
|
|
|
|
|
|
|
|
|
if (DECL_P (name))
|
|
|
|
|
name = DECL_NAME (name);
|
|
|
|
|
else
|
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (TREE_CODE (name) == COMPONENT_REF)
|
|
|
|
|
name = TREE_OPERAND (name, 1);
|
|
|
|
|
if (TREE_CODE (name) == OVERLOAD)
|
|
|
|
|
name = DECL_NAME (OVL_CURRENT (name));
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (type == NULL_TREE)
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Handle namespace names fully here. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
if (TREE_CODE (type) == NAMESPACE_DECL)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree t = lookup_namespace_name (type, name);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (t == error_mark_node)
|
|
|
|
|
return t;
|
|
|
|
|
if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
|
|
|
|
|
/* Reconstruct the TEMPLATE_ID_EXPR. */
|
|
|
|
|
t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t),
|
|
|
|
|
t, TREE_OPERAND (orig_name, 1));
|
|
|
|
|
if (! type_unknown_p (t))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
1999-08-26 09:30:50 +00:00
|
|
|
|
mark_used (t);
|
|
|
|
|
t = convert_from_reference (t);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
1999-08-26 09:30:50 +00:00
|
|
|
|
return t;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (! is_aggr_type (type, 1))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
return error_mark_node;
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (name) == BIT_NOT_EXPR)
|
|
|
|
|
{
|
1999-08-26 09:30:50 +00:00
|
|
|
|
if (! check_dtor_name (type, name))
|
2002-02-01 18:16:02 +00:00
|
|
|
|
error ("qualified type `%T' does not match destructor name `~%T'",
|
1999-08-26 09:30:50 +00:00
|
|
|
|
type, TREE_OPERAND (name, 0));
|
|
|
|
|
name = dtor_identifier;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (!COMPLETE_TYPE_P (complete_type (type))
|
1999-10-16 06:09:09 +00:00
|
|
|
|
&& !TYPE_BEING_DEFINED (type))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
error ("incomplete type `%T' does not have member `%D'", type,
|
1999-10-16 06:09:09 +00:00
|
|
|
|
name);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
|
2005-06-03 03:28:44 +00:00
|
|
|
|
/* Set up BASEBINFO for member lookup. */
|
1999-10-16 06:09:09 +00:00
|
|
|
|
decl = maybe_dummy_object (type, &basebinfo);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (BASELINK_P (name) || DECL_P (name))
|
|
|
|
|
member = name;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
member = lookup_member (basebinfo, name, 1, 0);
|
|
|
|
|
|
|
|
|
|
if (member == error_mark_node)
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (!member)
|
|
|
|
|
{
|
|
|
|
|
error ("`%D' is not a member of type `%T'", name, type);
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (member) == TYPE_DECL)
|
|
|
|
|
{
|
|
|
|
|
TREE_USED (member) = 1;
|
|
|
|
|
return member;
|
|
|
|
|
}
|
|
|
|
|
/* static class members and class-specific enum
|
|
|
|
|
values can be returned without further ado. */
|
|
|
|
|
if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
|
|
|
|
|
{
|
|
|
|
|
mark_used (member);
|
|
|
|
|
return convert_from_reference (member);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
|
|
|
|
|
{
|
|
|
|
|
error ("invalid pointer to bit-field `%D'", member);
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* A lot of this logic is now handled in lookup_member. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (BASELINK_P (member))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
/* Go from the TREE_BASELINK to the member function info. */
|
1999-10-16 06:09:09 +00:00
|
|
|
|
tree fnfields = member;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree t = BASELINK_FUNCTIONS (fnfields);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* The FNFIELDS are going to contain functions that aren't
|
|
|
|
|
necessarily templates, and templates that don't
|
|
|
|
|
necessarily match the explicit template parameters. We
|
|
|
|
|
save all the functions, and the explicit parameters, and
|
|
|
|
|
then figure out exactly what to instantiate with what
|
|
|
|
|
arguments in instantiate_type. */
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (t) != OVERLOAD)
|
|
|
|
|
/* The code in instantiate_type which will process this
|
|
|
|
|
expects to encounter OVERLOADs, not raw functions. */
|
|
|
|
|
t = ovl_cons (t, NULL_TREE);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t), t,
|
|
|
|
|
TREE_OPERAND (orig_name, 1));
|
|
|
|
|
t = build (OFFSET_REF, unknown_type_node, decl, t);
|
|
|
|
|
|
|
|
|
|
PTRMEM_OK_P (t) = 1;
|
|
|
|
|
|
|
|
|
|
return t;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Get rid of a potential OVERLOAD around it. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
t = OVL_CURRENT (t);
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Unique functions are handled easily. */
|
|
|
|
|
|
|
|
|
|
/* For non-static member of base class, we need a special rule
|
|
|
|
|
for access checking [class.protected]:
|
|
|
|
|
|
|
|
|
|
If the access is to form a pointer to member, the
|
|
|
|
|
nested-name-specifier shall name the derived class
|
|
|
|
|
(or any class derived from that class). */
|
|
|
|
|
if (address_p && DECL_P (t)
|
|
|
|
|
&& DECL_NONSTATIC_MEMBER_P (t))
|
|
|
|
|
perform_or_defer_access_check (TYPE_BINFO (type), t);
|
|
|
|
|
else
|
|
|
|
|
perform_or_defer_access_check (basebinfo, t);
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
mark_used (t);
|
1999-10-16 06:09:09 +00:00
|
|
|
|
if (DECL_STATIC_FUNCTION_P (t))
|
|
|
|
|
return t;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
member = t;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
else
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
TREE_TYPE (fnfields) = unknown_type_node;
|
|
|
|
|
member = fnfields;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
else if (address_p && TREE_CODE (member) == FIELD_DECL)
|
|
|
|
|
/* We need additional test besides the one in
|
|
|
|
|
check_accessibility_of_qualified_id in case it is
|
|
|
|
|
a pointer to non-static member. */
|
|
|
|
|
perform_or_defer_access_check (TYPE_BINFO (type), member);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (!address_p)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* If MEMBER is non-static, then the program has fallen afoul of
|
|
|
|
|
[expr.prim]:
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
An id-expression that denotes a nonstatic data member or
|
|
|
|
|
nonstatic member function of a class can only be used:
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
-- as part of a class member access (_expr.ref_) in which the
|
|
|
|
|
object-expression refers to the member's class or a class
|
|
|
|
|
derived from that class, or
|
2002-05-09 20:02:13 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
-- to form a pointer to member (_expr.unary.op_), or
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
-- in the body of a nonstatic member function of that class or
|
|
|
|
|
of a class derived from that class (_class.mfct.nonstatic_), or
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
-- in a mem-initializer for a constructor for that class or for
|
|
|
|
|
a class derived from that class (_class.base.init_). */
|
|
|
|
|
if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
|
|
|
|
|
{
|
|
|
|
|
/* Build a representation of a the qualified name suitable
|
|
|
|
|
for use as the operand to "&" -- even though the "&" is
|
|
|
|
|
not actually present. */
|
|
|
|
|
member = build (OFFSET_REF, TREE_TYPE (member), decl, member);
|
|
|
|
|
/* In Microsoft mode, treat a non-static member function as if
|
|
|
|
|
it were a pointer-to-member. */
|
|
|
|
|
if (flag_ms_extensions)
|
|
|
|
|
{
|
|
|
|
|
PTRMEM_OK_P (member) = 1;
|
|
|
|
|
return build_unary_op (ADDR_EXPR, member, 0);
|
|
|
|
|
}
|
|
|
|
|
error ("invalid use of non-static member function `%D'",
|
|
|
|
|
TREE_OPERAND (member, 1));
|
|
|
|
|
return member;
|
|
|
|
|
}
|
|
|
|
|
else if (TREE_CODE (member) == FIELD_DECL)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
error ("invalid use of non-static data member `%D'", member);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
return member;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
|
|
|
|
/* In member functions, the form `type::name' is no longer
|
|
|
|
|
equivalent to `this->type::name', at least not until
|
|
|
|
|
resolve_offset_ref. */
|
|
|
|
|
member = build (OFFSET_REF, TREE_TYPE (member), decl, member);
|
|
|
|
|
PTRMEM_OK_P (member) = 1;
|
|
|
|
|
return member;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* If DECL is a `const' declaration, and its value is a known
|
|
|
|
|
constant, then return that value. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
decl_constant_value (tree decl)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* When we build a COND_EXPR, we don't know whether it will be used
|
|
|
|
|
as an lvalue or as an rvalue. If it is an lvalue, it's not safe
|
|
|
|
|
to replace the second and third operands with their
|
|
|
|
|
initializers. So, we do that here. */
|
|
|
|
|
if (TREE_CODE (decl) == COND_EXPR)
|
|
|
|
|
{
|
|
|
|
|
tree d1;
|
|
|
|
|
tree d2;
|
|
|
|
|
|
|
|
|
|
d1 = decl_constant_value (TREE_OPERAND (decl, 1));
|
|
|
|
|
d2 = decl_constant_value (TREE_OPERAND (decl, 2));
|
|
|
|
|
|
|
|
|
|
if (d1 != TREE_OPERAND (decl, 1) || d2 != TREE_OPERAND (decl, 2))
|
|
|
|
|
return build (COND_EXPR,
|
|
|
|
|
TREE_TYPE (decl),
|
|
|
|
|
TREE_OPERAND (decl, 0), d1, d2);
|
|
|
|
|
}
|
|
|
|
|
|
2005-06-03 03:28:44 +00:00
|
|
|
|
while (DECL_P (decl)
|
|
|
|
|
&& (/* Enumeration constants are constant. */
|
|
|
|
|
TREE_CODE (decl) == CONST_DECL
|
|
|
|
|
/* And so are variables with a 'const' type -- unless they
|
|
|
|
|
are also 'volatile'. */
|
|
|
|
|
|| CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))
|
|
|
|
|
&& DECL_INITIAL (decl)
|
|
|
|
|
&& DECL_INITIAL (decl) != error_mark_node
|
|
|
|
|
/* This is invalid if initial value is not constant. If it
|
|
|
|
|
has either a function call, a memory reference, or a
|
|
|
|
|
variable, then re-evaluating it could give different
|
|
|
|
|
results. */
|
|
|
|
|
&& TREE_CONSTANT (DECL_INITIAL (decl))
|
|
|
|
|
/* Check for cases where this is sub-optimal, even though
|
|
|
|
|
valid. */
|
|
|
|
|
&& TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
|
|
|
|
|
decl = DECL_INITIAL (decl);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
return decl;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Common subroutines of build_new and build_vec_delete. */
|
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* Call the global __builtin_delete to delete ADDR. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
static tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_builtin_delete_call (tree addr)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
1999-10-16 06:09:09 +00:00
|
|
|
|
mark_used (global_delete_fndecl);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Generate a C++ "new" expression. DECL is either a TREE_LIST
|
|
|
|
|
(which needs to go through some sort of groktypename) or it
|
|
|
|
|
is the name of the class we are newing. INIT is an initialization value.
|
|
|
|
|
It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces.
|
|
|
|
|
If INIT is void_type_node, it means do *not* call a constructor
|
|
|
|
|
for this instance.
|
|
|
|
|
|
|
|
|
|
For types with constructors, the data returned is initialized
|
|
|
|
|
by the appropriate constructor.
|
|
|
|
|
|
|
|
|
|
Whether the type has a constructor or not, if it has a pointer
|
|
|
|
|
to a virtual function table, then that pointer is set up
|
|
|
|
|
here.
|
|
|
|
|
|
|
|
|
|
Unless I am mistaken, a call to new () will return initialized
|
|
|
|
|
data regardless of whether the constructor itself is private or
|
|
|
|
|
not. NOPE; new fails if the constructor is private (jcm).
|
|
|
|
|
|
|
|
|
|
Note that build_new does nothing to assure that any special
|
|
|
|
|
alignment requirements of the type are met. Rather, it leaves
|
|
|
|
|
it up to malloc to do the right thing. Otherwise, folding to
|
|
|
|
|
the right alignment cal cause problems if the user tries to later
|
|
|
|
|
free the memory returned by `new'.
|
|
|
|
|
|
|
|
|
|
PLACEMENT is the `placement' list for user-defined operator new (). */
|
|
|
|
|
|
|
|
|
|
tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_new (tree placement, tree decl, tree init, int use_global_new)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
1999-08-26 09:30:50 +00:00
|
|
|
|
tree type, rval;
|
|
|
|
|
tree nelts = NULL_TREE, t;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
int has_array = 0;
|
|
|
|
|
|
|
|
|
|
if (decl == error_mark_node)
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (decl) == TREE_LIST)
|
|
|
|
|
{
|
|
|
|
|
tree absdcl = TREE_VALUE (decl);
|
|
|
|
|
tree last_absdcl = NULL_TREE;
|
|
|
|
|
|
|
|
|
|
if (current_function_decl
|
|
|
|
|
&& DECL_CONSTRUCTOR_P (current_function_decl))
|
2002-02-01 18:16:02 +00:00
|
|
|
|
my_friendly_assert (immediate_size_expand == 0, 19990926);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
nelts = integer_one_node;
|
|
|
|
|
|
|
|
|
|
if (absdcl && TREE_CODE (absdcl) == CALL_EXPR)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
abort ();
|
1996-09-18 05:35:50 +00:00
|
|
|
|
while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF)
|
|
|
|
|
{
|
|
|
|
|
last_absdcl = absdcl;
|
|
|
|
|
absdcl = TREE_OPERAND (absdcl, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (absdcl && TREE_CODE (absdcl) == ARRAY_REF)
|
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Probably meant to be a vec new. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
tree this_nelts;
|
|
|
|
|
|
|
|
|
|
while (TREE_OPERAND (absdcl, 0)
|
|
|
|
|
&& TREE_CODE (TREE_OPERAND (absdcl, 0)) == ARRAY_REF)
|
|
|
|
|
{
|
|
|
|
|
last_absdcl = absdcl;
|
|
|
|
|
absdcl = TREE_OPERAND (absdcl, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
has_array = 1;
|
|
|
|
|
this_nelts = TREE_OPERAND (absdcl, 1);
|
|
|
|
|
if (this_nelts != error_mark_node)
|
|
|
|
|
{
|
|
|
|
|
if (this_nelts == NULL_TREE)
|
|
|
|
|
error ("new of array type fails to specify size");
|
1999-08-26 09:30:50 +00:00
|
|
|
|
else if (processing_template_decl)
|
|
|
|
|
{
|
|
|
|
|
nelts = this_nelts;
|
|
|
|
|
absdcl = TREE_OPERAND (absdcl, 0);
|
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
else
|
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (build_expr_type_conversion (WANT_INT | WANT_ENUM,
|
2004-07-28 03:11:36 +00:00
|
|
|
|
this_nelts, false)
|
1999-10-16 06:09:09 +00:00
|
|
|
|
== NULL_TREE)
|
|
|
|
|
pedwarn ("size in array new must have integral type");
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
this_nelts = save_expr (cp_convert (sizetype, this_nelts));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
absdcl = TREE_OPERAND (absdcl, 0);
|
|
|
|
|
if (this_nelts == integer_zero_node)
|
|
|
|
|
{
|
|
|
|
|
warning ("zero size array reserves no space");
|
|
|
|
|
nelts = integer_zero_node;
|
|
|
|
|
}
|
|
|
|
|
else
|
2002-02-01 18:16:02 +00:00
|
|
|
|
nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
nelts = integer_zero_node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (last_absdcl)
|
|
|
|
|
TREE_OPERAND (last_absdcl, 0) = absdcl;
|
|
|
|
|
else
|
|
|
|
|
TREE_VALUE (decl) = absdcl;
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
type = groktypename (decl);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
if (! type || type == error_mark_node)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
return error_mark_node;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
else if (TREE_CODE (decl) == IDENTIFIER_NODE)
|
|
|
|
|
{
|
|
|
|
|
if (IDENTIFIER_HAS_TYPE_VALUE (decl))
|
|
|
|
|
{
|
|
|
|
|
/* An aggregate type. */
|
|
|
|
|
type = IDENTIFIER_TYPE_VALUE (decl);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
decl = TYPE_MAIN_DECL (type);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* A builtin type. */
|
|
|
|
|
decl = lookup_name (decl, 1);
|
|
|
|
|
my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 215);
|
|
|
|
|
type = TREE_TYPE (decl);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (TREE_CODE (decl) == TYPE_DECL)
|
|
|
|
|
{
|
|
|
|
|
type = TREE_TYPE (decl);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
type = decl;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
decl = TYPE_MAIN_DECL (type);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (processing_template_decl)
|
|
|
|
|
{
|
|
|
|
|
if (has_array)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
t = tree_cons (tree_cons (NULL_TREE, type, NULL_TREE),
|
|
|
|
|
build_min_nt (ARRAY_REF, NULL_TREE, nelts),
|
|
|
|
|
NULL_TREE);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
else
|
|
|
|
|
t = type;
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
rval = build_min (NEW_EXPR, build_pointer_type (type),
|
|
|
|
|
placement, t, init);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
TREE_SIDE_EFFECTS (rval) = 1;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
return rval;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* ``A reference cannot be created by the new operator. A reference
|
|
|
|
|
is not an object (8.2.2, 8.4.3), so a pointer to it could not be
|
|
|
|
|
returned by new.'' ARM 5.3.3 */
|
|
|
|
|
if (TREE_CODE (type) == REFERENCE_TYPE)
|
|
|
|
|
{
|
|
|
|
|
error ("new cannot be applied to a reference type");
|
1999-08-26 09:30:50 +00:00
|
|
|
|
type = TREE_TYPE (type);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (type) == FUNCTION_TYPE)
|
|
|
|
|
{
|
|
|
|
|
error ("new cannot be applied to a function type");
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* When the object being created is an array, the new-expression yields a
|
|
|
|
|
pointer to the initial element (if any) of the array. For example,
|
|
|
|
|
both new int and new int[10] return an int*. 5.3.4. */
|
|
|
|
|
if (TREE_CODE (type) == ARRAY_TYPE && has_array == 0)
|
|
|
|
|
{
|
|
|
|
|
nelts = array_type_nelts_top (type);
|
|
|
|
|
has_array = 1;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
type = TREE_TYPE (type);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (has_array)
|
|
|
|
|
t = build_nt (ARRAY_REF, type, nelts);
|
|
|
|
|
else
|
|
|
|
|
t = type;
|
|
|
|
|
|
|
|
|
|
rval = build (NEW_EXPR, build_pointer_type (type), placement, t, init);
|
|
|
|
|
NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
|
|
|
|
|
TREE_SIDE_EFFECTS (rval) = 1;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
rval = build_new_1 (rval);
|
|
|
|
|
if (rval == error_mark_node)
|
|
|
|
|
return error_mark_node;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
|
|
|
|
|
rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
|
|
|
|
|
TREE_NO_UNUSED_WARNING (rval) = 1;
|
|
|
|
|
|
|
|
|
|
return rval;
|
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Given a Java class, return a decl for the corresponding java.lang.Class. */
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_java_class_ref (tree type)
|
1999-10-16 06:09:09 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree name = NULL_TREE, class_decl;
|
|
|
|
|
static tree CL_suffix = NULL_TREE;
|
|
|
|
|
if (CL_suffix == NULL_TREE)
|
|
|
|
|
CL_suffix = get_identifier("class$");
|
1999-10-16 06:09:09 +00:00
|
|
|
|
if (jclass_node == NULL_TREE)
|
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
|
1999-10-16 06:09:09 +00:00
|
|
|
|
if (jclass_node == NULL_TREE)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
fatal_error ("call to Java constructor, while `jclass' undefined");
|
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
jclass_node = TREE_TYPE (jclass_node);
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Mangle the class$ field. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
tree field;
|
|
|
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
|
|
|
|
if (DECL_NAME (field) == CL_suffix)
|
|
|
|
|
{
|
|
|
|
|
mangle_decl (field);
|
|
|
|
|
name = DECL_ASSEMBLER_NAME (field);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
if (!field)
|
|
|
|
|
internal_error ("can't find class$");
|
|
|
|
|
}
|
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
class_decl = IDENTIFIER_GLOBAL_VALUE (name);
|
|
|
|
|
if (class_decl == NULL_TREE)
|
|
|
|
|
{
|
|
|
|
|
class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
|
|
|
|
|
TREE_STATIC (class_decl) = 1;
|
|
|
|
|
DECL_EXTERNAL (class_decl) = 1;
|
|
|
|
|
TREE_PUBLIC (class_decl) = 1;
|
|
|
|
|
DECL_ARTIFICIAL (class_decl) = 1;
|
|
|
|
|
DECL_IGNORED_P (class_decl) = 1;
|
|
|
|
|
pushdecl_top_level (class_decl);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
make_decl_rtl (class_decl, NULL);
|
1999-10-16 06:09:09 +00:00
|
|
|
|
}
|
|
|
|
|
return class_decl;
|
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Returns the size of the cookie to use when allocating an array
|
|
|
|
|
whose elements have the indicated TYPE. Assumes that it is already
|
|
|
|
|
known that a cookie is needed. */
|
|
|
|
|
|
|
|
|
|
static tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
get_cookie_size (tree type)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
tree cookie_size;
|
|
|
|
|
|
|
|
|
|
/* We need to allocate an additional max (sizeof (size_t), alignof
|
|
|
|
|
(true_type)) bytes. */
|
|
|
|
|
tree sizetype_size;
|
|
|
|
|
tree type_align;
|
|
|
|
|
|
|
|
|
|
sizetype_size = size_in_bytes (sizetype);
|
|
|
|
|
type_align = size_int (TYPE_ALIGN_UNIT (type));
|
|
|
|
|
if (INT_CST_LT_UNSIGNED (type_align, sizetype_size))
|
|
|
|
|
cookie_size = sizetype_size;
|
|
|
|
|
else
|
|
|
|
|
cookie_size = type_align;
|
|
|
|
|
|
|
|
|
|
return cookie_size;
|
|
|
|
|
}
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
|
|
|
|
|
value is immediately handed to expand_expr. */
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
static tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_new_1 (tree exp)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
|
|
|
|
tree placement, init;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree true_type, size, rval;
|
|
|
|
|
/* The type of the new-expression. (This type is always a pointer
|
|
|
|
|
type.) */
|
|
|
|
|
tree pointer_type;
|
|
|
|
|
/* The type pointed to by POINTER_TYPE. */
|
|
|
|
|
tree type;
|
|
|
|
|
/* The type being allocated. For "new T[...]" this will be an
|
|
|
|
|
ARRAY_TYPE. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree full_type;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* A pointer type pointing to to the FULL_TYPE. */
|
|
|
|
|
tree full_pointer_type;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
tree outer_nelts = NULL_TREE;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
tree nelts = NULL_TREE;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree alloc_call, alloc_expr;
|
|
|
|
|
/* The address returned by the call to "operator new". This node is
|
|
|
|
|
a VAR_DECL and is therefore reusable. */
|
|
|
|
|
tree alloc_node;
|
2002-05-09 20:02:13 +00:00
|
|
|
|
tree alloc_fn;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree cookie_expr, init_expr;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
int has_array = 0;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
enum tree_code code;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
int nothrow, check_new;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Nonzero if the user wrote `::new' rather than just `new'. */
|
|
|
|
|
int globally_qualified_p;
|
1999-10-16 06:09:09 +00:00
|
|
|
|
int use_java_new = 0;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* If non-NULL, the number of extra bytes to allocate at the
|
|
|
|
|
beginning of the storage allocated for an array-new expression in
|
|
|
|
|
order to store the number of elements. */
|
|
|
|
|
tree cookie_size = NULL_TREE;
|
|
|
|
|
/* True if the function we are calling is a placement allocation
|
|
|
|
|
function. */
|
|
|
|
|
bool placement_allocation_fn_p;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree args = NULL_TREE;
|
|
|
|
|
/* True if the storage must be initialized, either by a constructor
|
|
|
|
|
or due to an explicit new-initializer. */
|
|
|
|
|
bool is_initialized;
|
|
|
|
|
/* The address of the thing allocated, not including any cookie. In
|
|
|
|
|
particular, if an array cookie is in use, DATA_ADDR is the
|
|
|
|
|
address of the first array element. This node is a VAR_DECL, and
|
|
|
|
|
is therefore reusable. */
|
|
|
|
|
tree data_addr;
|
|
|
|
|
tree init_preeval_expr = NULL_TREE;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
placement = TREE_OPERAND (exp, 0);
|
|
|
|
|
type = TREE_OPERAND (exp, 1);
|
|
|
|
|
init = TREE_OPERAND (exp, 2);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
if (TREE_CODE (type) == ARRAY_REF)
|
|
|
|
|
{
|
|
|
|
|
has_array = 1;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
nelts = outer_nelts = TREE_OPERAND (type, 1);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
type = TREE_OPERAND (type, 0);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Use an incomplete array type to avoid VLA headaches. */
|
|
|
|
|
full_type = build_cplus_array_type (type, NULL_TREE);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
else
|
|
|
|
|
full_type = type;
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
true_type = type;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
code = has_array ? VEC_NEW_EXPR : NEW_EXPR;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* If our base type is an array, then make sure we know how many elements
|
|
|
|
|
it has. */
|
|
|
|
|
while (TREE_CODE (true_type) == ARRAY_TYPE)
|
|
|
|
|
{
|
|
|
|
|
tree this_nelts = array_type_nelts_top (true_type);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
true_type = TREE_TYPE (true_type);
|
|
|
|
|
}
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
if (!complete_type_or_else (true_type, exp))
|
1999-08-26 09:30:50 +00:00
|
|
|
|
return error_mark_node;
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (true_type) == VOID_TYPE)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
error ("invalid type `void' for new");
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (abstract_virtuals_error (NULL_TREE, true_type))
|
|
|
|
|
return error_mark_node;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
is_initialized = (TYPE_NEEDS_CONSTRUCTING (type) || init);
|
|
|
|
|
if (CP_TYPE_CONST_P (true_type) && !is_initialized)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
error ("uninitialized const in `new' of `%#T'", true_type);
|
|
|
|
|
return error_mark_node;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
size = size_in_bytes (true_type);
|
|
|
|
|
if (has_array)
|
|
|
|
|
size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* Allocate the object. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (! placement && TYPE_FOR_JAVA (true_type))
|
1999-10-16 06:09:09 +00:00
|
|
|
|
{
|
|
|
|
|
tree class_addr, alloc_decl;
|
|
|
|
|
tree class_decl = build_java_class_ref (true_type);
|
|
|
|
|
tree class_size = size_in_bytes (true_type);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
static const char alloc_name[] = "_Jv_AllocObject";
|
1999-10-16 06:09:09 +00:00
|
|
|
|
use_java_new = 1;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (!get_global_value_if_present (get_identifier (alloc_name),
|
|
|
|
|
&alloc_decl))
|
|
|
|
|
{
|
|
|
|
|
error ("call to Java constructor with `%s' undefined", alloc_name);
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
else if (really_overloaded_fn (alloc_decl))
|
|
|
|
|
{
|
|
|
|
|
error ("`%D' should never be overloaded", alloc_decl);
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
alloc_decl = OVL_CURRENT (alloc_decl);
|
1999-10-16 06:09:09 +00:00
|
|
|
|
class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
alloc_call = (build_function_call
|
|
|
|
|
(alloc_decl,
|
|
|
|
|
tree_cons (NULL_TREE, class_addr,
|
|
|
|
|
build_tree_list (NULL_TREE, class_size))));
|
1999-10-16 06:09:09 +00:00
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
else
|
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree fnname;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree fns;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
fnname = ansi_opname (code);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (!globally_qualified_p
|
|
|
|
|
&& CLASS_TYPE_P (true_type)
|
|
|
|
|
&& (has_array
|
|
|
|
|
? TYPE_HAS_ARRAY_NEW_OPERATOR (true_type)
|
|
|
|
|
: TYPE_HAS_NEW_OPERATOR (true_type)))
|
|
|
|
|
{
|
|
|
|
|
/* Use a class-specific operator new. */
|
|
|
|
|
/* If a cookie is required, add some extra space. */
|
|
|
|
|
if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
|
|
|
|
|
{
|
|
|
|
|
cookie_size = get_cookie_size (true_type);
|
|
|
|
|
size = size_binop (PLUS_EXPR, size, cookie_size);
|
|
|
|
|
}
|
|
|
|
|
/* Create the argument list. */
|
|
|
|
|
args = tree_cons (NULL_TREE, size, placement);
|
|
|
|
|
/* Do name-lookup to find the appropriate operator. */
|
|
|
|
|
fns = lookup_fnfields (true_type, fnname, /*protect=*/2);
|
|
|
|
|
if (!fns)
|
|
|
|
|
{
|
|
|
|
|
error ("no suitable or ambiguous `%D' found in class `%T'",
|
|
|
|
|
fnname, true_type);
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
if (TREE_CODE (fns) == TREE_LIST)
|
|
|
|
|
{
|
|
|
|
|
error ("request for member `%D' is ambiguous", fnname);
|
|
|
|
|
print_candidates (fns);
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
alloc_call = build_new_method_call (build_dummy_object (true_type),
|
|
|
|
|
fns, args,
|
|
|
|
|
/*conversion_path=*/NULL_TREE,
|
|
|
|
|
LOOKUP_NORMAL);
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
else
|
2004-07-28 03:11:36 +00:00
|
|
|
|
{
|
|
|
|
|
/* Use a global operator new. */
|
|
|
|
|
/* See if a cookie might be required. */
|
|
|
|
|
if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
|
|
|
|
|
cookie_size = get_cookie_size (true_type);
|
|
|
|
|
else
|
|
|
|
|
cookie_size = NULL_TREE;
|
|
|
|
|
|
|
|
|
|
alloc_call = build_operator_new_call (fnname, placement,
|
|
|
|
|
&size, &cookie_size);
|
|
|
|
|
}
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (alloc_call == error_mark_node)
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* In the simple case, we can stop now. */
|
|
|
|
|
pointer_type = build_pointer_type (type);
|
|
|
|
|
if (!cookie_size && !is_initialized)
|
|
|
|
|
return build_nop (pointer_type, alloc_call);
|
|
|
|
|
|
|
|
|
|
/* While we're working, use a pointer to the type we've actually
|
|
|
|
|
allocated. Store the result of the call in a variable so that we
|
|
|
|
|
can use it more than once. */
|
|
|
|
|
full_pointer_type = build_pointer_type (full_type);
|
|
|
|
|
alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
|
|
|
|
|
alloc_node = TARGET_EXPR_SLOT (alloc_expr);
|
|
|
|
|
|
|
|
|
|
/* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
|
|
|
|
|
while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
|
|
|
|
|
alloc_call = TREE_OPERAND (alloc_call, 1);
|
|
|
|
|
alloc_fn = get_callee_fndecl (alloc_call);
|
2002-05-09 20:02:13 +00:00
|
|
|
|
my_friendly_assert (alloc_fn != NULL_TREE, 20020325);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Now, check to see if this function is actually a placement
|
|
|
|
|
allocation function. This can happen even when PLACEMENT is NULL
|
|
|
|
|
because we might have something like:
|
|
|
|
|
|
|
|
|
|
struct S { void* operator new (size_t, int i = 0); };
|
|
|
|
|
|
|
|
|
|
A call to `new S' will get this allocation function, even though
|
|
|
|
|
there is no explicit placement argument. If there is more than
|
|
|
|
|
one argument, or there are variable arguments, then this is a
|
|
|
|
|
placement allocation function. */
|
|
|
|
|
placement_allocation_fn_p
|
2002-05-09 20:02:13 +00:00
|
|
|
|
= (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
|
|
|
|
|
|| varargs_function_p (alloc_fn));
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Preevaluate the placement args so that we don't reevaluate them for a
|
|
|
|
|
placement delete. */
|
|
|
|
|
if (placement_allocation_fn_p)
|
|
|
|
|
{
|
|
|
|
|
tree inits;
|
|
|
|
|
stabilize_call (alloc_call, &inits);
|
|
|
|
|
if (inits)
|
|
|
|
|
alloc_expr = build (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
|
|
|
|
|
alloc_expr);
|
|
|
|
|
}
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* unless an allocation function is declared with an empty excep-
|
|
|
|
|
tion-specification (_except.spec_), throw(), it indicates failure to
|
|
|
|
|
allocate storage by throwing a bad_alloc exception (clause _except_,
|
|
|
|
|
_lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
|
|
|
|
|
cation function is declared with an empty exception-specification,
|
|
|
|
|
throw(), it returns null to indicate failure to allocate storage and a
|
|
|
|
|
non-null pointer otherwise.
|
|
|
|
|
|
|
|
|
|
So check for a null exception spec on the op new we just called. */
|
|
|
|
|
|
2002-05-09 20:02:13 +00:00
|
|
|
|
nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
|
1999-10-16 06:09:09 +00:00
|
|
|
|
check_new = (flag_check_new || nothrow) && ! use_java_new;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (cookie_size)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree cookie;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Adjust so we're pointing to the start of the object. */
|
|
|
|
|
data_addr = get_target_expr (build (PLUS_EXPR, full_pointer_type,
|
|
|
|
|
alloc_node, cookie_size));
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Store the number of bytes allocated so that we can know how
|
|
|
|
|
many elements to destroy later. We use the last sizeof
|
|
|
|
|
(size_t) bytes to store the number of elements. */
|
|
|
|
|
cookie = build (MINUS_EXPR, build_pointer_type (sizetype),
|
2004-07-28 03:11:36 +00:00
|
|
|
|
data_addr, size_in_bytes (sizetype));
|
2002-02-01 18:16:02 +00:00
|
|
|
|
cookie = build_indirect_ref (cookie, NULL);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
cookie_expr = build (MODIFY_EXPR, sizetype, cookie, nelts);
|
|
|
|
|
data_addr = TARGET_EXPR_SLOT (data_addr);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
2004-07-28 03:11:36 +00:00
|
|
|
|
{
|
|
|
|
|
cookie_expr = NULL_TREE;
|
|
|
|
|
data_addr = alloc_node;
|
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Now initialize the allocated object. Note that we preevaluate the
|
|
|
|
|
initialization expression, apart from the actual constructor call or
|
|
|
|
|
assignment--we do this because we want to delay the allocation as long
|
|
|
|
|
as possible in order to minimize the size of the exception region for
|
|
|
|
|
placement delete. */
|
|
|
|
|
if (is_initialized)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
bool stable;
|
|
|
|
|
|
|
|
|
|
init_expr = build_indirect_ref (data_addr, NULL);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
if (init == void_zero_node)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
init = build_default_init (full_type, nelts);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
else if (init && has_array)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
pedwarn ("ISO C++ forbids initialization in array new");
|
|
|
|
|
|
|
|
|
|
if (has_array)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
{
|
|
|
|
|
init_expr
|
|
|
|
|
= build_vec_init (init_expr,
|
|
|
|
|
cp_build_binary_op (MINUS_EXPR, outer_nelts,
|
|
|
|
|
integer_one_node),
|
|
|
|
|
init, /*from_array=*/0);
|
|
|
|
|
|
|
|
|
|
/* An array initialization is stable because the initialization
|
|
|
|
|
of each element is a full-expression, so the temporaries don't
|
|
|
|
|
leak out. */
|
|
|
|
|
stable = true;
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
else if (TYPE_NEEDS_CONSTRUCTING (type))
|
2004-07-28 03:11:36 +00:00
|
|
|
|
{
|
|
|
|
|
init_expr = build_special_member_call (init_expr,
|
|
|
|
|
complete_ctor_identifier,
|
|
|
|
|
init, TYPE_BINFO (true_type),
|
|
|
|
|
LOOKUP_NORMAL);
|
|
|
|
|
stable = stabilize_init (init_expr, &init_preeval_expr);
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
else
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* We are processing something like `new int (10)', which
|
|
|
|
|
means allocate an int, and initialize it with 10. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
if (TREE_CODE (init) == TREE_LIST)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
init = build_x_compound_expr_from_list (init, "new initializer");
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
else if (TREE_CODE (init) == CONSTRUCTOR
|
|
|
|
|
&& TREE_TYPE (init) == NULL_TREE)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
abort ();
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
stable = stabilize_init (init_expr, &init_preeval_expr);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
if (init_expr == error_mark_node)
|
|
|
|
|
return error_mark_node;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* If any part of the object initialization terminates by throwing an
|
|
|
|
|
exception and a suitable deallocation function can be found, the
|
|
|
|
|
deallocation function is called to free the memory in which the
|
|
|
|
|
object was being constructed, after which the exception continues
|
|
|
|
|
to propagate in the context of the new-expression. If no
|
|
|
|
|
unambiguous matching deallocation function can be found,
|
|
|
|
|
propagating the exception does not cause the object's memory to be
|
|
|
|
|
freed. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (flag_exceptions && ! use_java_new)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
1999-08-26 09:30:50 +00:00
|
|
|
|
enum tree_code dcode = has_array ? VEC_DELETE_EXPR : DELETE_EXPR;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree cleanup;
|
|
|
|
|
int flags = (LOOKUP_NORMAL
|
|
|
|
|
| (globally_qualified_p * LOOKUP_GLOBAL));
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* The Standard is unclear here, but the right thing to do
|
2004-07-28 03:11:36 +00:00
|
|
|
|
is to use the same method for finding deallocation
|
|
|
|
|
functions that we use for finding allocation functions. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
flags |= LOOKUP_SPECULATIVELY;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
cleanup = build_op_delete_call (dcode, alloc_node, size, flags,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
(placement_allocation_fn_p
|
|
|
|
|
? alloc_call : NULL_TREE));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (!cleanup)
|
|
|
|
|
/* We're done. */;
|
|
|
|
|
else if (stable)
|
|
|
|
|
/* This is much simpler if we were able to preevaluate all of
|
|
|
|
|
the arguments to the constructor call. */
|
|
|
|
|
init_expr = build (TRY_CATCH_EXPR, void_type_node,
|
|
|
|
|
init_expr, cleanup);
|
|
|
|
|
else
|
|
|
|
|
/* Ack! First we allocate the memory. Then we set our sentry
|
|
|
|
|
variable to true, and expand a cleanup that deletes the
|
|
|
|
|
memory if sentry is true. Then we run the constructor, and
|
|
|
|
|
finally clear the sentry.
|
|
|
|
|
|
|
|
|
|
We need to do this because we allocate the space first, so
|
|
|
|
|
if there are any temporaries with cleanups in the
|
|
|
|
|
constructor args and we weren't able to preevaluate them, we
|
|
|
|
|
need this EH region to extend until end of full-expression
|
|
|
|
|
to preserve nesting. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree end, sentry, begin;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
begin = get_target_expr (boolean_true_node);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
CLEANUP_EH_ONLY (begin) = 1;
|
|
|
|
|
|
|
|
|
|
sentry = TARGET_EXPR_SLOT (begin);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
TARGET_EXPR_CLEANUP (begin)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
= build (COND_EXPR, void_type_node, sentry,
|
|
|
|
|
cleanup, void_zero_node);
|
|
|
|
|
|
|
|
|
|
end = build (MODIFY_EXPR, TREE_TYPE (sentry),
|
|
|
|
|
sentry, boolean_false_node);
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
init_expr
|
|
|
|
|
= build (COMPOUND_EXPR, void_type_node, begin,
|
|
|
|
|
build (COMPOUND_EXPR, void_type_node, init_expr,
|
|
|
|
|
end));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
else
|
|
|
|
|
init_expr = NULL_TREE;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Now build up the return value in reverse order. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
rval = data_addr;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (init_expr)
|
|
|
|
|
rval = build (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
|
|
|
|
|
if (cookie_expr)
|
|
|
|
|
rval = build (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (rval == alloc_node)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* If we don't have an initializer or a cookie, strip the TARGET_EXPR
|
|
|
|
|
and return the call (which doesn't need to be adjusted). */
|
|
|
|
|
rval = TARGET_EXPR_INITIAL (alloc_expr);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
else
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (check_new)
|
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
|
|
|
|
|
integer_zero_node);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
rval = build_conditional_expr (ifexp, rval, alloc_node);
|
|
|
|
|
}
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Perform the allocation before anything else, so that ALLOC_NODE
|
|
|
|
|
has been initialized before we start using it. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
rval = build (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (init_preeval_expr)
|
|
|
|
|
rval = build (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
|
|
|
|
|
|
|
|
|
|
/* Convert to the final type. */
|
|
|
|
|
rval = build_nop (pointer_type, rval);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2003-11-07 02:43:04 +00:00
|
|
|
|
/* A new-expression is never an lvalue. */
|
|
|
|
|
if (real_lvalue_p (rval))
|
|
|
|
|
rval = build1 (NON_LVALUE_EXPR, TREE_TYPE (rval), rval);
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
return rval;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_vec_delete_1 (tree base, tree maxindex, tree type,
|
|
|
|
|
special_function_kind auto_delete_vec, int use_global_delete)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
tree virtual_size;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
tree ptype = build_pointer_type (type = complete_type (type));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
tree size_exp = size_in_bytes (type);
|
|
|
|
|
|
|
|
|
|
/* Temporary variables used by the loop. */
|
|
|
|
|
tree tbase, tbase_init;
|
|
|
|
|
|
|
|
|
|
/* This is the body of the loop that implements the deletion of a
|
|
|
|
|
single element, and moves temp variables to next elements. */
|
|
|
|
|
tree body;
|
|
|
|
|
|
|
|
|
|
/* This is the LOOP_EXPR that governs the deletion of the elements. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree loop = 0;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
/* This is the thing that governs what to do after the loop has run. */
|
|
|
|
|
tree deallocate_expr = 0;
|
|
|
|
|
|
|
|
|
|
/* This is the BIND_EXPR which holds the outermost iterator of the
|
|
|
|
|
loop. It is convenient to set this variable up and test it before
|
|
|
|
|
executing any other code in the loop.
|
|
|
|
|
This is also the containing expression returned by this function. */
|
|
|
|
|
tree controller = NULL_TREE;
|
|
|
|
|
|
2002-09-01 20:38:57 +00:00
|
|
|
|
/* We should only have 1-D arrays here. */
|
|
|
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
|
|
|
|
abort ();
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
|
2004-07-28 03:11:36 +00:00
|
|
|
|
goto no_destructor;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* The below is short by the cookie size. */
|
|
|
|
|
virtual_size = size_binop (MULT_EXPR, size_exp,
|
|
|
|
|
convert (sizetype, maxindex));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tbase = create_temporary_var (ptype);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
tbase_init = build_modify_expr (tbase, NOP_EXPR,
|
|
|
|
|
fold (build (PLUS_EXPR, ptype,
|
|
|
|
|
base,
|
|
|
|
|
virtual_size)));
|
|
|
|
|
DECL_REGISTER (tbase) = 1;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
controller = build (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
TREE_SIDE_EFFECTS (controller) = 1;
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
body = build (EXIT_EXPR, void_type_node,
|
|
|
|
|
build (EQ_EXPR, boolean_type_node, base, tbase));
|
|
|
|
|
body = build_compound_expr
|
|
|
|
|
(body, build_modify_expr (tbase, NOP_EXPR,
|
|
|
|
|
build (MINUS_EXPR, ptype, tbase, size_exp)));
|
|
|
|
|
body = build_compound_expr
|
|
|
|
|
(body, build_delete (ptype, tbase, sfk_complete_destructor,
|
|
|
|
|
LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
loop = build (LOOP_EXPR, void_type_node, body);
|
|
|
|
|
loop = build_compound_expr (tbase_init, loop);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
no_destructor:
|
|
|
|
|
/* If the delete flag is one, or anything else with the low bit set,
|
|
|
|
|
delete the storage. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (auto_delete_vec != sfk_base_destructor)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
tree base_tbd;
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* The below is short by the cookie size. */
|
|
|
|
|
virtual_size = size_binop (MULT_EXPR, size_exp,
|
|
|
|
|
convert (sizetype, maxindex));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
if (! TYPE_VEC_NEW_USES_COOKIE (type))
|
|
|
|
|
/* no header */
|
|
|
|
|
base_tbd = base;
|
|
|
|
|
else
|
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree cookie_size;
|
|
|
|
|
|
|
|
|
|
cookie_size = get_cookie_size (type);
|
|
|
|
|
base_tbd
|
|
|
|
|
= cp_convert (ptype,
|
|
|
|
|
cp_build_binary_op (MINUS_EXPR,
|
|
|
|
|
cp_convert (string_type_node,
|
|
|
|
|
base),
|
|
|
|
|
cookie_size));
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* True size with header. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
if (auto_delete_vec == sfk_deleting_destructor)
|
|
|
|
|
deallocate_expr = build_x_delete (base_tbd,
|
|
|
|
|
2 | use_global_delete,
|
|
|
|
|
virtual_size);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
body = loop;
|
|
|
|
|
if (!deallocate_expr)
|
|
|
|
|
;
|
|
|
|
|
else if (!body)
|
|
|
|
|
body = deallocate_expr;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
else
|
2004-07-28 03:11:36 +00:00
|
|
|
|
body = build_compound_expr (body, deallocate_expr);
|
|
|
|
|
|
|
|
|
|
if (!body)
|
|
|
|
|
body = integer_zero_node;
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Outermost wrapper: If pointer is null, punt. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
body = fold (build (COND_EXPR, void_type_node,
|
|
|
|
|
fold (build (NE_EXPR, boolean_type_node, base,
|
|
|
|
|
integer_zero_node)),
|
|
|
|
|
body, integer_zero_node));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
body = build1 (NOP_EXPR, void_type_node, body);
|
|
|
|
|
|
|
|
|
|
if (controller)
|
|
|
|
|
{
|
|
|
|
|
TREE_OPERAND (controller, 1) = body;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
body = controller;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
|
|
|
|
if (TREE_CODE (base) == SAVE_EXPR)
|
|
|
|
|
/* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
|
|
|
|
|
body = build (COMPOUND_EXPR, void_type_node, base, body);
|
|
|
|
|
|
|
|
|
|
return convert_to_void (body, /*implicit=*/NULL);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Create an unnamed variable of the indicated TYPE. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
create_temporary_var (tree type)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree decl;
|
|
|
|
|
|
|
|
|
|
decl = build_decl (VAR_DECL, NULL_TREE, type);
|
|
|
|
|
TREE_USED (decl) = 1;
|
|
|
|
|
DECL_ARTIFICIAL (decl) = 1;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
DECL_SOURCE_LOCATION (decl) = input_location;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
DECL_IGNORED_P (decl) = 1;
|
|
|
|
|
DECL_CONTEXT (decl) = current_function_decl;
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
return decl;
|
1999-10-16 06:09:09 +00:00
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Create a new temporary variable of the indicated TYPE, initialized
|
|
|
|
|
to INIT.
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
It is not entered into current_binding_level, because that breaks
|
|
|
|
|
things when it comes time to do final cleanups (which take place
|
|
|
|
|
"outside" the binding contour of the function). */
|
|
|
|
|
|
|
|
|
|
static tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
get_temp_regvar (tree type, tree init)
|
1999-10-16 06:09:09 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree decl;
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
decl = create_temporary_var (type);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
add_decl_stmt (decl);
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
|
|
|
|
|
|
|
|
|
|
return decl;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* `build_vec_init' returns tree structure that performs
|
|
|
|
|
initialization of a vector of aggregate types.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
BASE is a reference to the vector, of ARRAY_TYPE.
|
2003-07-11 03:40:53 +00:00
|
|
|
|
MAXINDEX is the maximum index of the array (one less than the
|
|
|
|
|
number of elements). It is only used if
|
|
|
|
|
TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
INIT is the (possibly NULL) initializer.
|
|
|
|
|
|
|
|
|
|
FROM_ARRAY is 0 if we should init everything with INIT
|
|
|
|
|
(i.e., every element initialized from INIT).
|
|
|
|
|
FROM_ARRAY is 1 if we should index into INIT in parallel
|
|
|
|
|
with initialization of DECL.
|
|
|
|
|
FROM_ARRAY is 2 if we should index into INIT in parallel,
|
|
|
|
|
but use assignment instead of initialization. */
|
|
|
|
|
|
|
|
|
|
tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_vec_init (tree base, tree maxindex, tree init, int from_array)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
tree rval;
|
1999-10-16 06:09:09 +00:00
|
|
|
|
tree base2 = NULL_TREE;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
tree size;
|
1999-10-16 06:09:09 +00:00
|
|
|
|
tree itype = NULL_TREE;
|
|
|
|
|
tree iterator;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* The type of the array. */
|
|
|
|
|
tree atype = TREE_TYPE (base);
|
|
|
|
|
/* The type of an element in the array. */
|
|
|
|
|
tree type = TREE_TYPE (atype);
|
2005-06-03 03:28:44 +00:00
|
|
|
|
/* The element type reached after removing all outer array
|
|
|
|
|
types. */
|
|
|
|
|
tree inner_elt_type;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* The type of a pointer to an element in the array. */
|
|
|
|
|
tree ptype;
|
|
|
|
|
tree stmt_expr;
|
|
|
|
|
tree compound_stmt;
|
|
|
|
|
int destroy_temps;
|
|
|
|
|
tree try_block = NULL_TREE;
|
|
|
|
|
tree try_body = NULL_TREE;
|
1999-10-16 06:09:09 +00:00
|
|
|
|
int num_initialized_elts = 0;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
bool is_global;
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (TYPE_DOMAIN (atype))
|
|
|
|
|
maxindex = array_type_nelts (atype);
|
|
|
|
|
|
|
|
|
|
if (maxindex == NULL_TREE || maxindex == error_mark_node)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
return error_mark_node;
|
|
|
|
|
|
2005-06-03 03:28:44 +00:00
|
|
|
|
inner_elt_type = strip_array_types (atype);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (init
|
|
|
|
|
&& (from_array == 2
|
2005-06-03 03:28:44 +00:00
|
|
|
|
? (!CLASS_TYPE_P (inner_elt_type)
|
|
|
|
|
|| !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
|
2003-07-11 03:40:53 +00:00
|
|
|
|
: !TYPE_NEEDS_CONSTRUCTING (type))
|
2002-02-01 18:16:02 +00:00
|
|
|
|
&& ((TREE_CODE (init) == CONSTRUCTOR
|
|
|
|
|
/* Don't do this if the CONSTRUCTOR might contain something
|
|
|
|
|
that might throw and require us to clean up. */
|
|
|
|
|
&& (CONSTRUCTOR_ELTS (init) == NULL_TREE
|
2005-06-03 03:28:44 +00:00
|
|
|
|
|| ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|| from_array))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Do non-default initialization of POD arrays resulting from
|
|
|
|
|
brace-enclosed initializers. In this case, digest_init and
|
|
|
|
|
store_constructor will handle the semantics for us. */
|
|
|
|
|
|
|
|
|
|
stmt_expr = build (INIT_EXPR, atype, base, init);
|
|
|
|
|
return stmt_expr;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
maxindex = cp_convert (ptrdiff_type_node, maxindex);
|
|
|
|
|
ptype = build_pointer_type (type);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
size = size_in_bytes (type);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
base = cp_convert (ptype, decay_conversion (base));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* The code we are generating looks like:
|
2004-07-28 03:11:36 +00:00
|
|
|
|
({
|
2002-02-01 18:16:02 +00:00
|
|
|
|
T* t1 = (T*) base;
|
|
|
|
|
T* rval = t1;
|
|
|
|
|
ptrdiff_t iterator = maxindex;
|
|
|
|
|
try {
|
2004-07-28 03:11:36 +00:00
|
|
|
|
for (; iterator != -1; --iterator) {
|
2002-02-01 18:16:02 +00:00
|
|
|
|
... initialize *t1 ...
|
|
|
|
|
++t1;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
} catch (...) {
|
|
|
|
|
... destroy elements that were constructed ...
|
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
rval;
|
|
|
|
|
})
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
We can omit the try and catch blocks if we know that the
|
|
|
|
|
initialization will never throw an exception, or if the array
|
|
|
|
|
elements do not have destructors. We can omit the loop completely if
|
|
|
|
|
the elements of the array do not have constructors.
|
|
|
|
|
|
|
|
|
|
We actually wrap the entire body of the above in a STMT_EXPR, for
|
|
|
|
|
tidiness.
|
|
|
|
|
|
|
|
|
|
When copying from array to another, when the array elements have
|
|
|
|
|
only trivial copy constructors, we should use __builtin_memcpy
|
|
|
|
|
rather than generating a loop. That way, we could take advantage
|
|
|
|
|
of whatever cleverness the back-end has for dealing with copies
|
|
|
|
|
of blocks of memory. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
destroy_temps = stmts_are_full_exprs_p ();
|
|
|
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
|
|
|
|
rval = get_temp_regvar (ptype, base);
|
|
|
|
|
base = get_temp_regvar (ptype, rval);
|
1999-10-16 06:09:09 +00:00
|
|
|
|
iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* Protect the entire array initialization so that we can destroy
|
2002-02-01 18:16:02 +00:00
|
|
|
|
the partially constructed array if an exception is thrown.
|
|
|
|
|
But don't do this if we're assigning. */
|
|
|
|
|
if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
|
|
|
|
|
&& from_array != 2)
|
|
|
|
|
{
|
|
|
|
|
try_block = begin_try_block ();
|
2004-07-28 03:11:36 +00:00
|
|
|
|
try_body = begin_compound_stmt (/*has_no_scope=*/true);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Do non-default initialization of non-POD arrays resulting from
|
|
|
|
|
brace-enclosed initializers. */
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
|
|
|
|
tree elts;
|
|
|
|
|
from_array = 0;
|
|
|
|
|
|
|
|
|
|
for (elts = CONSTRUCTOR_ELTS (init); elts; elts = TREE_CHAIN (elts))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
1999-10-16 06:09:09 +00:00
|
|
|
|
tree elt = TREE_VALUE (elts);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree baseref = build1 (INDIRECT_REF, type, base);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
num_initialized_elts++;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = 1;
|
1999-10-16 06:09:09 +00:00
|
|
|
|
if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
finish_expr_stmt (build_aggr_init (baseref, elt, 0));
|
1999-10-16 06:09:09 +00:00
|
|
|
|
else
|
2002-02-01 18:16:02 +00:00
|
|
|
|
finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
|
|
|
|
|
elt));
|
2004-07-28 03:11:36 +00:00
|
|
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
|
|
|
|
|
finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* Clear out INIT so that we don't get confused below. */
|
|
|
|
|
init = NULL_TREE;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
1999-10-16 06:09:09 +00:00
|
|
|
|
else if (from_array)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* If initializing one array from another, initialize element by
|
|
|
|
|
element. We rely upon the below calls the do argument
|
|
|
|
|
checking. */
|
|
|
|
|
if (init)
|
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
base2 = decay_conversion (init);
|
1999-10-16 06:09:09 +00:00
|
|
|
|
itype = TREE_TYPE (base2);
|
|
|
|
|
base2 = get_temp_regvar (itype, base2);
|
|
|
|
|
itype = TREE_TYPE (itype);
|
|
|
|
|
}
|
|
|
|
|
else if (TYPE_LANG_SPECIFIC (type)
|
|
|
|
|
&& TYPE_NEEDS_CONSTRUCTING (type)
|
|
|
|
|
&& ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
|
|
|
|
|
{
|
|
|
|
|
error ("initializer ends prematurely");
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* Now, default-initialize any remaining elements. We don't need to
|
|
|
|
|
do that if a) the type does not need constructing, or b) we've
|
|
|
|
|
already initialized all the elements.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
We do need to keep going if we're copying an array. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
if (from_array
|
|
|
|
|
|| (TYPE_NEEDS_CONSTRUCTING (type)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
&& ! (host_integerp (maxindex, 0)
|
|
|
|
|
&& (num_initialized_elts
|
|
|
|
|
== tree_low_cst (maxindex, 0) + 1))))
|
1999-10-16 06:09:09 +00:00
|
|
|
|
{
|
|
|
|
|
/* If the ITERATOR is equal to -1, then we don't have to loop;
|
|
|
|
|
we've already initialized all the elements. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree for_stmt;
|
|
|
|
|
tree for_body;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree elt_init;
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
for_stmt = begin_for_stmt ();
|
|
|
|
|
finish_for_init_stmt (for_stmt);
|
|
|
|
|
finish_for_cond (build (NE_EXPR, boolean_type_node,
|
|
|
|
|
iterator, integer_minus_one_node),
|
|
|
|
|
for_stmt);
|
|
|
|
|
finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
|
|
|
|
|
for_stmt);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-10-16 06:09:09 +00:00
|
|
|
|
/* Otherwise, loop through the elements. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
for_body = begin_compound_stmt (/*has_no_scope=*/true);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
if (from_array)
|
|
|
|
|
{
|
|
|
|
|
tree to = build1 (INDIRECT_REF, type, base);
|
|
|
|
|
tree from;
|
|
|
|
|
|
|
|
|
|
if (base2)
|
|
|
|
|
from = build1 (INDIRECT_REF, itype, base2);
|
|
|
|
|
else
|
|
|
|
|
from = NULL_TREE;
|
|
|
|
|
|
|
|
|
|
if (from_array == 2)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
elt_init = build_modify_expr (to, NOP_EXPR, from);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
else if (TYPE_NEEDS_CONSTRUCTING (type))
|
2002-02-01 18:16:02 +00:00
|
|
|
|
elt_init = build_aggr_init (to, from, 0);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
else if (from)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
elt_init = build_modify_expr (to, NOP_EXPR, from);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
else
|
2002-02-01 18:16:02 +00:00
|
|
|
|
abort ();
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
|
|
|
|
{
|
|
|
|
|
if (init != 0)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
sorry
|
|
|
|
|
("cannot initialize multi-dimensional array with initializer");
|
|
|
|
|
elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
|
2003-07-11 03:40:53 +00:00
|
|
|
|
0, 0, 0);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
elt_init = build_aggr_init (build1 (INDIRECT_REF, type, base),
|
|
|
|
|
init, 0);
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = 1;
|
|
|
|
|
finish_expr_stmt (elt_init);
|
|
|
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
if (base2)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
finish_compound_stmt (for_body);
|
|
|
|
|
finish_for_stmt (for_stmt);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
1999-10-16 06:09:09 +00:00
|
|
|
|
|
|
|
|
|
/* Make sure to cleanup any partially constructed elements. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
|
|
|
|
|
&& from_array != 2)
|
1999-10-16 06:09:09 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree e;
|
2002-09-01 20:38:57 +00:00
|
|
|
|
tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
|
|
|
|
|
|
|
|
|
|
/* Flatten multi-dimensional array since build_vec_delete only
|
|
|
|
|
expects one-dimensional array. */
|
|
|
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
|
|
|
|
{
|
|
|
|
|
m = cp_build_binary_op (MULT_EXPR, m,
|
|
|
|
|
array_type_nelts_total (type));
|
|
|
|
|
type = strip_array_types (type);
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
finish_compound_stmt (try_body);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
finish_cleanup_try_block (try_block);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
e = build_vec_delete_1 (rval, m, type, sfk_base_destructor,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/*use_global_delete=*/0);
|
|
|
|
|
finish_cleanup (e, try_block);
|
1999-10-16 06:09:09 +00:00
|
|
|
|
}
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* The value of the array initialization is the array itself, RVAL
|
|
|
|
|
is a pointer to the first element. */
|
|
|
|
|
finish_stmt_expr_expr (rval);
|
|
|
|
|
|
|
|
|
|
stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Now convert make the result have the correct type. */
|
|
|
|
|
atype = build_pointer_type (atype);
|
|
|
|
|
stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
|
|
|
|
|
stmt_expr = build_indirect_ref (stmt_expr, NULL);
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
|
|
|
|
|
return stmt_expr;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Free up storage of type TYPE, at address ADDR.
|
|
|
|
|
|
|
|
|
|
TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
|
|
|
|
|
of pointer.
|
|
|
|
|
|
|
|
|
|
VIRTUAL_SIZE is the amount of storage that was allocated, and is
|
|
|
|
|
used as the second argument to operator delete. It can include
|
|
|
|
|
things like padding and magic size cookies. It has virtual in it,
|
|
|
|
|
because if you have a base pointer and you delete through a virtual
|
|
|
|
|
destructor, it should be the size of the dynamic object, not the
|
2002-02-01 18:16:02 +00:00
|
|
|
|
static object, see Free Store 12.5 ISO C++.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
This does not call any destructors. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_x_delete (tree addr, int which_delete, tree virtual_size)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
int use_global_delete = which_delete & 1;
|
|
|
|
|
int use_vec_delete = !!(which_delete & 2);
|
|
|
|
|
enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
int flags = LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
return build_op_delete_call (code, addr, virtual_size, flags, NULL_TREE);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Call the DTOR_KIND destructor for EXP. FLAGS are as for
|
|
|
|
|
build_delete. */
|
|
|
|
|
|
|
|
|
|
static tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
tree name;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree fn;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
switch (dtor_kind)
|
|
|
|
|
{
|
|
|
|
|
case sfk_complete_destructor:
|
|
|
|
|
name = complete_dtor_identifier;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case sfk_base_destructor:
|
|
|
|
|
name = base_dtor_identifier;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case sfk_deleting_destructor:
|
|
|
|
|
name = deleting_dtor_identifier;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
|
|
|
|
exp = convert_from_reference (exp);
|
|
|
|
|
fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
|
|
|
|
|
return build_new_method_call (exp, fn,
|
|
|
|
|
/*args=*/NULL_TREE,
|
|
|
|
|
/*conversion_path=*/NULL_TREE,
|
|
|
|
|
flags);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
/* Generate a call to a destructor. TYPE is the type to cast ADDR to.
|
|
|
|
|
ADDR is an expression which yields the store to be destroyed.
|
2002-02-01 18:16:02 +00:00
|
|
|
|
AUTO_DELETE is the name of the destructor to call, i.e., either
|
|
|
|
|
sfk_complete_destructor, sfk_base_destructor, or
|
|
|
|
|
sfk_deleting_destructor.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
FLAGS is the logical disjunction of zero or more LOOKUP_
|
2002-02-01 18:16:02 +00:00
|
|
|
|
flags. See cp-tree.h for more info. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_delete (tree type, tree addr, special_function_kind auto_delete,
|
|
|
|
|
int flags, int use_global_delete)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
tree expr;
|
|
|
|
|
|
|
|
|
|
if (addr == error_mark_node)
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
|
|
|
|
|
/* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
|
|
|
|
|
set to `error_mark_node' before it gets properly cleaned up. */
|
|
|
|
|
if (type == error_mark_node)
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
|
|
|
|
|
type = TYPE_MAIN_VARIANT (type);
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (type) == POINTER_TYPE)
|
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
bool complete_p = true;
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
|
|
|
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
|
|
|
|
goto handle_array;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* We don't want to warn about delete of void*, only other
|
|
|
|
|
incomplete types. Deleting other incomplete types
|
|
|
|
|
invokes undefined behavior, but it is not ill-formed, so
|
|
|
|
|
compile to something that would even do The Right Thing
|
|
|
|
|
(TM) should the type have a trivial dtor and no delete
|
|
|
|
|
operator. */
|
|
|
|
|
if (!VOID_TYPE_P (type))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
complete_type (type);
|
|
|
|
|
if (!COMPLETE_TYPE_P (type))
|
|
|
|
|
{
|
|
|
|
|
warning ("possible problem detected in invocation of "
|
|
|
|
|
"delete operator:");
|
|
|
|
|
cxx_incomplete_type_diagnostic (addr, type, 1);
|
|
|
|
|
inform ("neither the destructor nor the class-specific "
|
|
|
|
|
"operator delete will be called, even if they are "
|
|
|
|
|
"declared when the class is defined.");
|
|
|
|
|
complete_p = false;
|
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
|
|
|
|
|
/* Call the builtin operator delete. */
|
|
|
|
|
return build_builtin_delete_call (addr);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
if (TREE_SIDE_EFFECTS (addr))
|
|
|
|
|
addr = save_expr (addr);
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Throw away const and volatile on target type of addr. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
addr = convert_force (build_pointer_type (type), addr, 0);
|
|
|
|
|
}
|
|
|
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
|
|
|
|
{
|
|
|
|
|
handle_array:
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
if (TYPE_DOMAIN (type) == NULL_TREE)
|
|
|
|
|
{
|
|
|
|
|
error ("unknown array size in delete");
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
return build_vec_delete (addr, array_type_nelts (type),
|
2002-02-01 18:16:02 +00:00
|
|
|
|
auto_delete, use_global_delete);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Don't check PROTECT here; leave that decision to the
|
|
|
|
|
destructor. If the destructor is accessible, call it,
|
|
|
|
|
else report error. */
|
|
|
|
|
addr = build_unary_op (ADDR_EXPR, addr, 0);
|
|
|
|
|
if (TREE_SIDE_EFFECTS (addr))
|
|
|
|
|
addr = save_expr (addr);
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
addr = convert_force (build_pointer_type (type), addr, 0);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
my_friendly_assert (IS_AGGR_TYPE (type), 220);
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (auto_delete != sfk_deleting_destructor)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
return void_zero_node;
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
return build_op_delete_call
|
2003-07-11 03:40:53 +00:00
|
|
|
|
(DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
|
1999-08-26 09:30:50 +00:00
|
|
|
|
LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL),
|
|
|
|
|
NULL_TREE);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
else
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
tree do_delete = NULL_TREE;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
tree ifexp;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
my_friendly_assert (TYPE_HAS_DESTRUCTOR (type), 20011213);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* For `::delete x', we must not use the deleting destructor
|
|
|
|
|
since then we would not be sure to get the global `operator
|
|
|
|
|
delete'. */
|
|
|
|
|
if (use_global_delete && auto_delete == sfk_deleting_destructor)
|
|
|
|
|
{
|
|
|
|
|
/* We will use ADDR multiple times so we must save it. */
|
|
|
|
|
addr = save_expr (addr);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Delete the object. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
do_delete = build_builtin_delete_call (addr);
|
|
|
|
|
/* Otherwise, treat this like a complete object destructor
|
|
|
|
|
call. */
|
|
|
|
|
auto_delete = sfk_complete_destructor;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* If the destructor is non-virtual, there is no deleting
|
|
|
|
|
variant. Instead, we must explicitly call the appropriate
|
|
|
|
|
`operator delete' here. */
|
|
|
|
|
else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
|
|
|
|
|
&& auto_delete == sfk_deleting_destructor)
|
2000-05-27 02:25:28 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* We will use ADDR multiple times so we must save it. */
|
|
|
|
|
addr = save_expr (addr);
|
|
|
|
|
/* Build the call. */
|
|
|
|
|
do_delete = build_op_delete_call (DELETE_EXPR,
|
|
|
|
|
addr,
|
2003-07-11 03:40:53 +00:00
|
|
|
|
cxx_sizeof_nowarn (type),
|
2002-02-01 18:16:02 +00:00
|
|
|
|
LOOKUP_NORMAL,
|
|
|
|
|
NULL_TREE);
|
|
|
|
|
/* Call the complete object destructor. */
|
|
|
|
|
auto_delete = sfk_complete_destructor;
|
2000-05-27 02:25:28 +00:00
|
|
|
|
}
|
2002-05-09 20:02:13 +00:00
|
|
|
|
else if (auto_delete == sfk_deleting_destructor
|
|
|
|
|
&& TYPE_GETS_REG_DELETE (type))
|
|
|
|
|
{
|
|
|
|
|
/* Make sure we have access to the member op delete, even though
|
|
|
|
|
we'll actually be calling it from the destructor. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
|
2002-05-09 20:02:13 +00:00
|
|
|
|
LOOKUP_NORMAL, NULL_TREE);
|
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
expr = build_dtor_call (build_indirect_ref (addr, NULL),
|
|
|
|
|
auto_delete, flags);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
if (do_delete)
|
|
|
|
|
expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
if (flags & LOOKUP_DESTRUCTOR)
|
|
|
|
|
/* Explicit destructor call; don't check for null pointer. */
|
|
|
|
|
ifexp = integer_one_node;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
else
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* Handle deleting a null pointer. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
if (ifexp != integer_one_node)
|
|
|
|
|
expr = build (COND_EXPR, void_type_node,
|
|
|
|
|
ifexp, expr, void_zero_node);
|
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
return expr;
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* At the beginning of a destructor, push cleanups that will call the
|
|
|
|
|
destructors for our base classes and members.
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
Called from begin_destructor_body. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
void
|
2004-07-28 03:11:36 +00:00
|
|
|
|
push_base_cleanups (void)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
tree binfos;
|
|
|
|
|
int i, n_baseclasses;
|
|
|
|
|
tree member;
|
|
|
|
|
tree expr;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Run destructors for all virtual baseclasses. */
|
|
|
|
|
if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
|
|
|
|
|
{
|
|
|
|
|
tree vbases;
|
|
|
|
|
tree cond = (condition_conversion
|
|
|
|
|
(build (BIT_AND_EXPR, integer_type_node,
|
|
|
|
|
current_in_charge_parm,
|
|
|
|
|
integer_two_node)));
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
vbases = CLASSTYPE_VBASECLASSES (current_class_type);
|
|
|
|
|
/* The CLASSTYPE_VBASECLASSES list is in initialization
|
|
|
|
|
order, which is also the right order for pushing cleanups. */
|
|
|
|
|
for (; vbases;
|
|
|
|
|
vbases = TREE_CHAIN (vbases))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree vbase = TREE_VALUE (vbases);
|
|
|
|
|
tree base_type = BINFO_TYPE (vbase);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (base_type))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
expr = build_special_member_call (current_class_ref,
|
|
|
|
|
base_dtor_identifier,
|
|
|
|
|
NULL_TREE,
|
|
|
|
|
vbase,
|
|
|
|
|
(LOOKUP_NORMAL
|
|
|
|
|
| LOOKUP_NONVIRTUAL));
|
2002-02-01 18:16:02 +00:00
|
|
|
|
expr = build (COND_EXPR, void_type_node, cond,
|
|
|
|
|
expr, void_zero_node);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
finish_decl_cleanup (NULL_TREE, expr);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
|
|
|
|
binfos = BINFO_BASETYPES (TYPE_BINFO (current_class_type));
|
|
|
|
|
n_baseclasses = CLASSTYPE_N_BASECLASSES (current_class_type);
|
|
|
|
|
|
|
|
|
|
/* Take care of the remaining baseclasses. */
|
|
|
|
|
for (i = 0; i < n_baseclasses; i++)
|
|
|
|
|
{
|
|
|
|
|
tree base_binfo = TREE_VEC_ELT (binfos, i);
|
|
|
|
|
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
|
|
|
|
|
|| TREE_VIA_VIRTUAL (base_binfo))
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
expr = build_special_member_call (current_class_ref,
|
|
|
|
|
base_dtor_identifier,
|
|
|
|
|
NULL_TREE, base_binfo,
|
|
|
|
|
LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
|
|
|
|
|
finish_decl_cleanup (NULL_TREE, expr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (member = TYPE_FIELDS (current_class_type); member;
|
|
|
|
|
member = TREE_CHAIN (member))
|
|
|
|
|
{
|
|
|
|
|
if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
|
|
|
|
|
continue;
|
|
|
|
|
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
|
|
|
|
|
{
|
|
|
|
|
tree this_member = (build_class_member_access_expr
|
|
|
|
|
(current_class_ref, member,
|
|
|
|
|
/*access_path=*/NULL_TREE,
|
|
|
|
|
/*preserve_reference=*/false));
|
|
|
|
|
tree this_type = TREE_TYPE (member);
|
|
|
|
|
expr = build_delete (this_type, this_member,
|
|
|
|
|
sfk_complete_destructor,
|
|
|
|
|
LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
|
|
|
|
|
0);
|
|
|
|
|
finish_decl_cleanup (NULL_TREE, expr);
|
|
|
|
|
}
|
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* For type TYPE, delete the virtual baseclass objects of DECL. */
|
|
|
|
|
|
|
|
|
|
tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_vbase_delete (tree type, tree decl)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
tree vbases = CLASSTYPE_VBASECLASSES (type);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree result;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
tree addr = build_unary_op (ADDR_EXPR, decl, 0);
|
|
|
|
|
|
|
|
|
|
my_friendly_assert (addr != error_mark_node, 222);
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
for (result = convert_to_void (integer_zero_node, NULL);
|
|
|
|
|
vbases; vbases = TREE_CHAIN (vbases))
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree base_addr = convert_force
|
|
|
|
|
(build_pointer_type (BINFO_TYPE (TREE_VALUE (vbases))), addr, 0);
|
|
|
|
|
tree base_delete = build_delete
|
|
|
|
|
(TREE_TYPE (base_addr), base_addr, sfk_base_destructor,
|
|
|
|
|
LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0);
|
|
|
|
|
|
|
|
|
|
result = build_compound_expr (result, base_delete);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
return result;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Build a C++ vector delete expression.
|
|
|
|
|
MAXINDEX is the number of elements to be deleted.
|
|
|
|
|
ELT_SIZE is the nominal size of each element in the vector.
|
|
|
|
|
BASE is the expression that should yield the store to be deleted.
|
|
|
|
|
This function expands (or synthesizes) these calls itself.
|
|
|
|
|
AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
|
|
|
|
|
|
|
|
|
|
This also calls delete for virtual baseclasses of elements of the vector.
|
|
|
|
|
|
|
|
|
|
Update: MAXINDEX is no longer needed. The size can be extracted from the
|
|
|
|
|
start of the vector for pointers, and from the type for arrays. We still
|
|
|
|
|
use MAXINDEX for arrays because it happens to already have one of the
|
|
|
|
|
values we'd have to extract. (We could use MAXINDEX with pointers to
|
|
|
|
|
confirm the size, and trap if the numbers differ; not clear that it'd
|
|
|
|
|
be worth bothering.) */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
1996-09-18 05:35:50 +00:00
|
|
|
|
tree
|
2004-07-28 03:11:36 +00:00
|
|
|
|
build_vec_delete (tree base, tree maxindex,
|
|
|
|
|
special_function_kind auto_delete_vec, int use_global_delete)
|
1996-09-18 05:35:50 +00:00
|
|
|
|
{
|
|
|
|
|
tree type;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
tree rval;
|
|
|
|
|
tree base_init = NULL_TREE;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
|
|
|
|
|
type = TREE_TYPE (base);
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (type) == POINTER_TYPE)
|
|
|
|
|
{
|
|
|
|
|
/* Step back one from start of vector, and read dimension. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
tree cookie_addr;
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (TREE_SIDE_EFFECTS (base))
|
2004-07-28 03:11:36 +00:00
|
|
|
|
{
|
|
|
|
|
base_init = get_target_expr (base);
|
|
|
|
|
base = TARGET_EXPR_SLOT (base_init);
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
type = strip_array_types (TREE_TYPE (type));
|
|
|
|
|
cookie_addr = build (MINUS_EXPR,
|
|
|
|
|
build_pointer_type (sizetype),
|
|
|
|
|
base,
|
|
|
|
|
TYPE_SIZE_UNIT (sizetype));
|
|
|
|
|
maxindex = build_indirect_ref (cookie_addr, NULL);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Get the total number of things in the array, maxindex is a
|
|
|
|
|
bad name. */
|
1996-09-18 05:35:50 +00:00
|
|
|
|
maxindex = array_type_nelts_total (type);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
type = strip_array_types (type);
|
1996-09-18 05:35:50 +00:00
|
|
|
|
base = build_unary_op (ADDR_EXPR, base, 1);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (TREE_SIDE_EFFECTS (base))
|
2004-07-28 03:11:36 +00:00
|
|
|
|
{
|
|
|
|
|
base_init = get_target_expr (base);
|
|
|
|
|
base = TARGET_EXPR_SLOT (base_init);
|
|
|
|
|
}
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
1999-08-26 09:30:50 +00:00
|
|
|
|
if (base != error_mark_node)
|
|
|
|
|
error ("type to vector delete is neither pointer or array type");
|
1996-09-18 05:35:50 +00:00
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
|
1996-09-18 05:35:50 +00:00
|
|
|
|
use_global_delete);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (base_init)
|
|
|
|
|
rval = build (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
|
|
|
|
|
|
|
|
|
|
return rval;
|
1996-09-18 05:35:50 +00:00
|
|
|
|
}
|