216 lines
5.0 KiB
C
Raw Normal View History

Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
/*-
* Copyright (c) 2013 Neel Natu <neel@freebsd.org>
* Copyright (c) 2013 Tycho Nightingale <tycho.nightingale@pluribusnetworks.com>
Add support for PCI-to-ISA LPC bridge emulation. If the LPC bus is attached to a virtual machine then we implicitly create COM1 and COM2 ISA devices. Prior to this change the only way of attaching a COM port to the virtual machine was by presenting it as a PCI device that is mapped at the legacy I/O address 0x3F8 or 0x2F8. There were some issues with the original approach: - It did not work at all with UEFI because UEFI will reprogram the PCI device BARs and remap the COM1/COM2 ports at non-legacy addresses. - OpenBSD GENERIC kernel does not create a /dev/console because it expects the uart device at the legacy 0x3F8/0x2F8 address to be an ISA device. - It was functional with a FreeBSD guest but caused the console to appear on /dev/ttyu2 which was not intuitive. The uart emulation is now independent of the bus on which it resides. Thus it is possible to have uart devices on the PCI bus in addition to the legacy COM1/COM2 devices behind the LPC bus. The command line option to attach ISA COM1/COM2 ports to a virtual machine is "-s <bus>,lpc -l com1,stdio". The command line option to create a PCI-attached uart device is: "-s <bus>,uart[,stdio]" The command line option to create PCI-attached COM1/COM2 device is: "-S <bus>,uart[,stdio]". This style of creating COM ports is deprecated. Discussed with: grehan Reviewed by: grehan Submitted by: Tycho Nightingale (tycho.nightingale@pluribusnetworks.com) M share/examples/bhyve/vmrun.sh AM usr.sbin/bhyve/legacy_irq.c AM usr.sbin/bhyve/legacy_irq.h M usr.sbin/bhyve/Makefile AM usr.sbin/bhyve/uart_emul.c M usr.sbin/bhyve/bhyverun.c AM usr.sbin/bhyve/uart_emul.h M usr.sbin/bhyve/pci_uart.c M usr.sbin/bhyve/pci_emul.c M usr.sbin/bhyve/inout.c M usr.sbin/bhyve/pci_emul.h M usr.sbin/bhyve/inout.h AM usr.sbin/bhyve/pci_lpc.c AM usr.sbin/bhyve/pci_lpc.h
2013-10-29 00:18:11 +00:00
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "inout.h"
#include "ioapic.h"
#include "pci_emul.h"
#include "uart_emul.h"
static struct pci_devinst *lpc_bridge;
#define LPC_UART_NUM 2
static struct lpc_uart_softc {
struct uart_softc *uart_softc;
const char *opts;
int iobase;
int irq;
} lpc_uart_softc[LPC_UART_NUM];
static const char *lpc_uart_names[LPC_UART_NUM] = { "COM1", "COM2" };
/*
* LPC device configuration is in the following form:
* <lpc_device_name>[,<options>]
* For e.g. "com1,stdio"
*/
int
lpc_device_parse(const char *opts)
{
int unit, error;
char *str, *cpy, *lpcdev;
error = -1;
str = cpy = strdup(opts);
lpcdev = strsep(&str, ",");
if (lpcdev != NULL) {
for (unit = 0; unit < LPC_UART_NUM; unit++) {
if (strcasecmp(lpcdev, lpc_uart_names[unit]) == 0) {
lpc_uart_softc[unit].opts = str;
error = 0;
goto done;
}
}
}
done:
if (error)
free(cpy);
return (error);
}
static void
lpc_uart_intr_assert(void *arg)
{
struct lpc_uart_softc *sc = arg;
assert(sc->irq >= 0);
ioapic_assert_pin(lpc_bridge->pi_vmctx, sc->irq);
}
static void
lpc_uart_intr_deassert(void *arg)
{
struct lpc_uart_softc *sc = arg;
assert(sc->irq >= 0);
ioapic_deassert_pin(lpc_bridge->pi_vmctx, sc->irq);
}
static int
lpc_uart_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
int offset;
struct lpc_uart_softc *sc = arg;
if (bytes != 1)
return (-1);
offset = port - sc->iobase;
if (in)
*eax = uart_read(sc->uart_softc, offset);
else
uart_write(sc->uart_softc, offset, *eax);
return (0);
}
static int
lpc_init(void)
{
struct lpc_uart_softc *sc;
struct inout_port iop;
const char *name;
int unit, error;
/* COM1 and COM2 */
for (unit = 0; unit < LPC_UART_NUM; unit++) {
sc = &lpc_uart_softc[unit];
name = lpc_uart_names[unit];
if (uart_legacy_alloc(unit, &sc->iobase, &sc->irq) != 0) {
fprintf(stderr, "Unable to allocate resources for "
"LPC device %s\n", name);
return (-1);
}
sc->uart_softc = uart_init(lpc_uart_intr_assert,
lpc_uart_intr_deassert, sc);
if (uart_set_backend(sc->uart_softc, sc->opts) != 0) {
fprintf(stderr, "Unable to initialize backend '%s' "
"for LPC device %s\n", sc->opts, name);
return (-1);
}
bzero(&iop, sizeof(struct inout_port));
iop.name = name;
iop.port = sc->iobase;
iop.size = UART_IO_BAR_SIZE;
iop.flags = IOPORT_F_INOUT;
iop.handler = lpc_uart_io_handler;
iop.arg = sc;
error = register_inout(&iop);
assert(error == 0);
}
return (0);
}
static void
pci_lpc_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi,
int baridx, uint64_t offset, int size, uint64_t value)
{
}
uint64_t
pci_lpc_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi,
int baridx, uint64_t offset, int size)
{
return (0);
}
#define LPC_DEV 0x7000
#define LPC_VENDOR 0x8086
static int
pci_lpc_init(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
{
/*
* Do not allow more than one LPC bridge to be configured.
*/
if (lpc_bridge != NULL)
return (-1);
if (lpc_init() != 0)
return (-1);
/* initialize config space */
pci_set_cfgdata16(pi, PCIR_DEVICE, LPC_DEV);
pci_set_cfgdata16(pi, PCIR_VENDOR, LPC_VENDOR);
pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_BRIDGE);
pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_BRIDGE_ISA);
lpc_bridge = pi;
return (0);
}
struct pci_devemu pci_de_lpc = {
.pe_emu = "lpc",
.pe_init = pci_lpc_init,
.pe_barwrite = pci_lpc_write,
.pe_barread = pci_lpc_read
};
PCI_EMUL_SET(pci_de_lpc);