freebsd-skq/sys/i386/isa/if_zp.c

2275 lines
55 KiB
C
Raw Normal View History

#define ZP_DEBUG 1
/*
* This code is based on
* (1) FreeBSD implementation on ISA/EISA Ethelink III by Herb Peyerl
* (2) Linux implementation on PCMCIA Etherlink III by Devid Hinds
* (3) FreeBSD implementation on PCMCIA IBM Ethernet Card I/II
* by David Greenman
* (4) RT-Mach implementation on PCMCIA/ISA/EISA Etherlink III
* by Seiji Murata
*
* Copyright (c) by HOSOKAWA, Tatsumi <hosokawa@mt.cs.keio.ac.jp>
* Copyright (c) by Seiji Murata <seiji@mt.cs.keio.ac.jp>
*/
/*
* Copyright (c) 1993 Herb Peyerl <hpeyerl@novatel.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* From: if_ep.c,v 1.9 1994/01/25 10:46:29 deraadt Exp $
* $Id: if_zp.c,v 1.2 1995/02/26 05:14:49 bde Exp $
*/
/*-
* TODO:
* [1] integrate into current if_ed.c
* [2] parse tuples to find out where to map the shared memory buffer,
* and what to write into the configuration register
* [3] move pcic-specific code into a separate module.
*
* Device driver for IBM PCMCIA Credit Card Adapter for Ethernet,
* if_ze.c
*
* Based on the Device driver for National Semiconductor DS8390 ethernet
* adapters by David Greenman. Modifications for PCMCIA by Keith Moore.
* Adapted for FreeBSD 1.1.5 by Jordan Hubbard.
*
* Currently supports only the IBM Credit Card Adapter for Ethernet, but
* could probably work with other PCMCIA cards also, if it were modified
* to get the locations of the PCMCIA configuration option register (COR)
* by parsing the configuration tuples, rather than by hard-coding in
* the value expected by IBM's card.
*
* Sources for data on the PCMCIA/IBM CCAE specific portions of the driver:
*
* [1] _Local Area Network Credit Card Adapters Technical Reference_,
* IBM Corp., SC30-3585-00, part # 33G9243.
* [2] "pre-alpha" PCMCIA support code for Linux by Barry Jaspan.
* [3] Intel 82536SL PC Card Interface Controller Data Sheet, Intel
* Order Number 290423-002
* [4] National Semiconductor DP83902A ST-NIC (tm) Serial Network
* Interface Controller for Twisted Pair data sheet.
*
*
* Copyright (C) 1993, David Greenman. This software may be used, modified,
* copied, distributed, and sold, in both source and binary form provided
* that the above copyright and these terms are retained. Under no
* circumstances is the author responsible for the proper functioning
* of this software, nor does the author assume any responsibility
* for damages incurred with its use.
*/
/*======================================================================
A PCMCIA ethernet driver for the 3com 3c589 card.
Written by David Hinds, dhinds@allegro.stanford.edu
The network driver code is based on Donald Becker's 3c589 code:
Written 1994 by Donald Becker.
Copyright 1993 United States Government as represented by the
Director, National Security Agency. This software may be used and
distributed according to the terms of the GNU Public License,
incorporated herein by reference.
Donald Becker may be reached at becker@cesdis1.gsfc.nasa.gov
======================================================================*/
/*
* I doubled delay loops in this file because it is not enough for some
* laptop machines' PCIC (especially, on my Chaplet ILFA 350 ^^;).
* HOSOKAWA, Tatsumi <hosokawa@mt.cs.keio.ac.jp>
*/
/*
* Very small patch for IBM Ethernet PCMCIA Card II and IBM ThinkPad230Cs.
* ETO, Toshihisa <eto@osl.fujitsu.co.jp>
*/
#include "zp.h"
#if NZP > 0
#ifdef MACH_KERNEL
#define IF_CNTRS MACH
#include <mach_ttd.h>
#include <kern/time_out.h>
#include <device/device_types.h>
#include <device/errno.h>
#include <device/io_req.h>
#include <device/if_hdr.h>
#include <device/if_ether.h>
#include <device/net_status.h>
#include <device/net_io.h>
#include <i386/ipl.h>
#include <chips/busses.h>
#include <i386at/if_zpreg.h>
#define SPLNET spl6
#if MACH_TTD
#include <ttd/ttd_stub.h>
#endif /* MACH_TTD */
#include "i82365.h"
#define MAXSLOT 8
#define SHARED_MEMORY
enum memtype { COMMON, ATTRIBUTE };
#else /* MACH_KERNEL */
#include "bpfilter.h"
#include <sys/param.h>
#if defined(__FreeBSD__)
#include <sys/systm.h>
#include <sys/kernel.h>
#endif
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#if defined(__NetBSD__)
#include <sys/select.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#if defined(__FreeBSD__)
#include <machine/clock.h>
#endif
#if defined(__FreeBSD__) && defined(ZP_DEBUG)
#include <i386/i386/cons.h>
#endif
#include <i386/isa/isa.h>
#include <i386/isa/isa_device.h>
#include <i386/isa/icu.h>
#include <i386/isa/if_zpreg.h>
#include <i386/isa/pcic.h>
#include "apm.h"
#if NAPM > 0
#include <machine/apm_bios.h>
#endif /* NAPM > 0 */
#endif /* MACH_KERNEL */
#define ETHER_MIN_LEN 64
#define ETHER_MAX_LEN 1518
#define ETHER_ADDR_LEN 6
/*****************************************************************************
* Driver for Ethernet Adapter *
*****************************************************************************/
/*
* zp_softc: per line info and status
*/
struct zp_softc {
#ifdef MACH_KERNEL
struct ifnet ds_if; /* generic interface header */
u_char ds_addr[6]; /* Ethernet hardware address */
#else /* MACH_KERNEL */
struct arpcom arpcom; /* Ethernet common part */
#define MAX_MBS 8 /* # of mbufs we keep around */
struct mbuf *mb[MAX_MBS]; /* spare mbuf storage. */
int next_mb; /* Which mbuf to use next. */
int last_mb; /* Last mbuf. */
caddr_t bpf; /* BPF "magic cookie" */
#endif /* MACH_KERNEL */
short ep_io_addr; /* i/o bus address */
char ep_connectors; /* Connectors on this card. */
int tx_start_thresh; /* Current TX_start_thresh. */
char bus32bit; /* 32bit access possible */
#ifdef MACH_KERNEL
u_char attached;
#endif
#ifndef ORIGINAL
u_short if_port;
#endif /* ORIGINAL */
u_char last_alive; /* information for reconfiguration */
u_char last_up; /* information for reconfiguration */
int slot; /* PCMCIA slot */
#if NAPM > 0
struct apmhook s_hook; /* reconfiguration support */
struct apmhook r_hook; /* reconfiguration support */
#endif /* NAPM > 0 */
} zp_softc[NZP];
#ifdef MACH_KERNEL
static int send_ID_sequence(),f_is_eeprom_busy();
static u_short get_eeprom_data();
int zpprobe(),zpopen(),zpoutput(),zpsetinput(),zpgetstat(),
zpsetstat(),zpintr();
void zpattach(),zpinit(),zpstart(),zpread(),zpreset(),
zpwatchdog(),zpstop();
static vm_offset_t zp_std[NZP] = {0};
static struct bus_device *zp_info[NZP];
struct bus_driver zpdriver =
{zpprobe, 0, zpattach, 0, zp_std, "zp", zp_info, 0, 0, 0};
typedef struct zp_softc zp_softc_t;
char *zp_name = "zp";
static unsigned char card_info[256];
#define splnet spl7
#define splimp spl7
#else /* MACH_KERNEL */
int zpprobe __P((struct isa_device *));
int zpattach __P((struct isa_device *));
static int zpioctl __P((struct ifnet * ifp, int, caddr_t));
static u_short read_eeprom_data __P((int, int));
void zpinit __P((int));
void zpintr __P((int));
void zpmbuffill __P((void *));
static void zpmbufempty __P((struct zp_softc *));
void zpread __P((struct zp_softc *));
void zpreset __P((int));
void zpstart __P((struct ifnet *));
void zpstop __P((int));
void zpwatchdog __P((int));
struct isa_driver zpdriver = {
zpprobe,
zpattach,
"zp"
};
static int send_ID_sequence __P((u_short));
static u_short get_eeprom_data __P((int, int));
static int f_is_eeprom_busy __P((struct isa_device *));
#endif /* MACH_KERNEL */
#define CARD_INFO "3Com Corporation~3C589"
static unsigned char card_info[256];
/*
* scan the card information structure looking for the version/product info
* tuple. when we find it, compare it to the string we are looking for.
* return 1 if we find it, 0 otherwise.
*/
static int
zp_check_cis (unsigned char *scratch)
{
int i,j,k;
card_info[0] = '\0';
i = 0;
while (scratch[i] != 0xff && i < 1024) {
unsigned char link = scratch[i+2];
#if 0
printf ("[%02x] %02x ", i, link);
for (j = 4; j < 2 * link + 4 && j < 32; j += 2)
printf ("%02x ", scratch[j + i]);
printf ("\n");
#endif
if (scratch[i] == 0x15) {
/*
* level 1 version/product info
* copy to card_info, translating '\0' to '~'
*/
k = 0;
for (j = i+8; scratch[j] != 0xff; j += 2)
card_info[k++] = scratch[j] == '\0' ? '~' : scratch[j];
card_info[k++] = '\0';
#ifdef ZP_DEBUG
printf("card info = %s\n", card_info);
printf("result = %d\n", memcmp (card_info, CARD_INFO, sizeof(CARD_INFO)-1) == 0);
#endif
return (memcmp (card_info, CARD_INFO, sizeof(CARD_INFO)-1) == 0);
}
i += 4 + 2 * link;
}
return 0;
}
/*
* Probe each slot looking for an IBM Credit Card Adapter for Ethernet
* For each card that we find, map its card information structure
* into system memory at 'scratch' and see whether it's one of ours.
* Return the slot number if we find a card, or -1 otherwise.
*
* Side effects:
* + On success, leaves CIS mapped into memory at 'scratch';
* caller must free it.
* + On success, leaves ethernet address in enet_addr.
* + Leaves product/vendor id of last card probed in 'card_info'
*/
int prev_slot = 0;
static int
zp_find_adapter (unsigned char *scratch, int reconfig)
{
int slot;
for (slot = prev_slot; slot < MAXSLOT; ++slot) {
/*
* see if there's a PCMCIA controller here
* Intel PCMCIA controllers use 0x82 and 0x83
* IBM clone chips use 0x88 and 0x89, apparently
*/
/*
* IBM ThinkPad230Cs use 0x84.
*/
unsigned char idbyte = pcic_getb (slot, PCIC_ID_REV);
if (idbyte != 0x82 && idbyte != 0x83 &&
idbyte != 0x84 && /* for IBM ThinkPad 230Cs */
idbyte != 0x88 && idbyte != 0x89) {
#if 0
printf ("ibmccae: pcic slot %d: wierd id/rev code 0x%02x\n",
slot, idbyte);
#endif
continue;
}
if ((pcic_getb (slot, PCIC_STATUS) & PCIC_CD) != PCIC_CD) {
if (!reconfig) {
printf ("zp: slot %d: no card in slot\n", slot);
}
else {
log (LOG_NOTICE, "zp: slot %d: no card in slot\n", slot);
}
/* no card in slot */
continue;
}
pcic_power_on (slot);
pcic_reset (slot);
/*
* map the card's attribute memory and examine its
* card information structure tuples for something
* we recognize.
*/
#ifdef MACH_KERNEL
pcic_map_memory (slot, 0, scratch, 0L,
0xFFFL, ATTRIBUTE, 1);
#else /* MACH_KERNEL */
pcic_map_memory (slot, 0, kvtop (scratch), 0L,
0xFFFL, ATTRIBUTE, 1);
#endif /* MACH_KERNEL */
if ((zp_check_cis (scratch)) > 0) {
/* found it */
if (!reconfig) {
printf ("zp: found card in slot %d\n", slot);
}
else {
log (LOG_NOTICE, "zp: found card in slot %d\n", slot);
}
prev_slot = (prev_slot == MAXSLOT - 1) ? 0 : prev_slot+1;
return slot;
}
else {
if (!reconfig) {
printf ("zp: pcmcia slot %d: %s\n", slot, card_info);
}
else {
log (LOG_NOTICE, "zp: pcmcia slot %d: %s\n", slot, card_info);
}
}
pcic_unmap_memory (slot, 0);
}
prev_slot = 0;
return -1;
}
/*
* macros to handle casting unsigned long to (char *) so we can
* read/write into physical memory space.
*/
#define PEEK(addr) (*((unsigned char *)(addr)))
#define POKE(addr,val) do { PEEK(addr) = (val); } while (0)
/*
* Determine if the device is present
*
* on entry:
* a pointer to an isa_device struct
* on exit:
* NULL if device not found
* or # of i/o addresses used (if found)
*/
#ifdef MACH_KERNEL
int zpprobe(port,dev)
struct bus_device *dev;
#else /* MACH_KERNEL */
int
zpprobe(struct isa_device *isa_dev)
#endif /* MACH_KERNEL */
{
#ifdef MACH_KERNEL
zp_softc_t *sc = &zp_softc[dev->unit];
#else /* MACH_KERNEL */
struct zp_softc *sc = &zp_softc[isa_dev->id_unit];
#endif /* MACH_KERNEL */
int i, x;
u_int memsize;
u_char iptr, memwidth, sum, tmp;
int slot;
u_short k;
int id_port = 0x100; /* XXX */
int re_init_flag;
#ifdef ZP_DEBUG
printf("### zpprobe ####\n");
#ifdef MACH_KERNEL
cngetc();
#endif /* MACH_KERNEL */
#endif /* ZP_DEBUG */
#ifdef MACH_KERNEL
#define DELAY(x) delay(x * 10)
sc->attached = 0;
BASE = dev->address;
#endif /* MACH_KERNEL */
if ((slot = zp_find_adapter (isa_dev->id_maddr, isa_dev->id_reconfig)) < 0)
return NULL;
/*
* okay, we found a card, so set it up
*/
/*
* Inhibit 16 bit memory delay.
* POINTETH.SYS apparently does this, for what reason I don't know.
*/
pcic_putb (slot, PCIC_CDGC,
pcic_getb (slot, PCIC_CDGC) | PCIC_16_DL_INH);
/*
* things to map
* (1) card's EEPROM is already mapped by the find_adapter routine
* but we still need to get the card's ethernet address.
* after that we unmap that part of attribute memory.
* (2) card configuration registers need to be mapped in so we
* can set the configuration and socket # registers.
* (3) shared memory packet buffer
* (4) i/o ports
* (5) IRQ
*/
#ifdef notdef
/*
* Sigh. Location of the ethernet address isn't documented in [1].
* It was derived by doing a hex dump of all of attribute memory
* and looking for the IBM vendor prefix.
*/
enet_addr[0] = PEEK(isa_dev->id_maddr+0xff0);
enet_addr[1] = PEEK(isa_dev->id_maddr+0xff2);
enet_addr[2] = PEEK(isa_dev->id_maddr+0xff4);
enet_addr[3] = PEEK(isa_dev->id_maddr+0xff6);
enet_addr[4] = PEEK(isa_dev->id_maddr+0xff8);
enet_addr[5] = PEEK(isa_dev->id_maddr+0xffa);
#endif
#if 0
pcic_unmap_memory (slot, 0);
#endif
re_init_flag = 0;
re_init:
/*
* (2) map card configuration registers. these are offset
* in card memory space by 0x20000. normally we could get
* this offset from the card information structure, but I'm
* too lazy and am not quite sure if I understand the CIS anyway.
*
* XXX IF YOU'RE TRYING TO PORT THIS DRIVER FOR A DIFFERENT
* PCMCIA CARD, the most likely thing to change is the constant
* 0x20000 in the next statement. Oh yes, also change the
* card id string that we probe for.
*/
#ifdef MACH_KERNEL
pcic_map_memory (slot, 0, dev->phys_address, 0x10000, 8L,
ATTRIBUTE, 1);
POKE(phystokv(dev->phys_address), 0x80); /* reset the card (how long?) */
DELAY (10000);
#else
pcic_map_memory (slot, 0, kvtop (isa_dev->id_maddr), 0x10000, 8L,
ATTRIBUTE, 1);
POKE(isa_dev->id_maddr, 0x80); /* reset the card (how long?) */
DELAY (40000);
#endif
/*
* Set the configuration index. According to [1], the adapter won't
* respond to any i/o signals until we do this; it uses the
* Memory Only interface (whatever that is; it's not documented).
* Also turn on "level" (not pulse) interrupts.
*
* XXX probably should init the socket and copy register also,
* so that we can deal with multiple instances of the same card.
*/
#ifdef MACH_KERNEL
POKE(phystokv(dev->phys_address), 0x41);
pcic_unmap_memory (slot, 0);
#else /* MACH_KERNEL */
POKE(isa_dev->id_maddr, 0x41);
pcic_unmap_memory (slot, 0);
#endif /* MACH_KERNEL*/
#ifdef notdef
/*
* (3) now map in the shared memory buffer. This has to be mapped
* as words, not bytes, and on a 16k boundary. The offset value
* was derived by installing IBM's POINTETH.SYS under DOS and
* looking at the PCIC registers; it's not documented in IBM's
* tech ref manual ([1]).
*/
pcic_map_memory (slot, 0, kvtop (isa_dev->id_maddr), 0x4000L, 0x4000L,
COMMON, 2);
#endif
/*
* (4) map i/o ports.
*
* XXX is it possible that the config file leaves this unspecified,
* in which case we have to pick one?
*
* At least one PCMCIA device driver I'v seen maps a block
* of 32 consecutive i/o ports as two windows of 16 ports each.
* Maybe some other pcic chips are restricted to 16-port windows;
* the 82365SL doesn't seem to have that problem. But since
* we have an extra window anyway...
*/
#ifdef MACH_KERNEL
pcic_map_io (slot, 0, dev->address, 16, 2);
#else
#if 1
pcic_map_io (slot, 0, isa_dev->id_iobase, 16, 2);
#else
pcic_map_io (slot, 0, isa_dev->id_iobase, 16, 1);
pcic_map_io (slot, 1, isa_dev->id_iobase + 16, 16, 1);
#endif
#endif
/*
* (5) configure the card for the desired interrupt
*
* XXX is it possible that the config file leaves this unspecified?
*/
pcic_map_irq (slot, ffs (isa_dev->id_irq) - 1);
/* tell the PCIC that this is an I/O card (not memory) */
pcic_putb (slot, PCIC_INT_GEN,
pcic_getb (slot, PCIC_INT_GEN) | PCIC_CARDTYPE);
#if 0
/* tell the PCIC to use level-mode interrupts */
/* XXX this register may not be present on all controllers */
pcic_putb (slot, PCIC_GLO_CTRL,
pcic_getb (slot, PCIC_GLO_CTRL) | PCIC_LVL_MODE);
#endif
#ifdef ZP_DEBUG
pcic_print_regs (slot);
#endif
#ifdef notdef
/* I couldn't find the following part in linux. seiji */
/*
* Setup i/o addresses
*/
sc->nic_addr = isa_dev->id_iobase;
#if 0
sc->vector = isa_dev->id_irq;
#endif
sc->smem_start = (caddr_t)isa_dev->id_maddr;
#if 0
sc->vendor = ZE_VENDOR_IBM;
sc->type = xxx;
#endif
/* reset card to force it into a known state */
tmp = inb (isa_dev->id_iobase + ZE_RESET);
DELAY(20000);
outb (isa_dev->id_iobase + ZE_RESET, tmp);
DELAY(20000);
/*
* query MAM bit in misc register for 10base2
*/
tmp = inb (isa_dev->id_iobase + ZE_MISC);
if (!tmp && !re_init_flag) {
re_init_flag++;
goto re_init;
}
sc->mau = tmp & 0x09 ? "10base2" : "10baseT";
#endif
#ifdef MACH_KERNEL
sc->ep_io_addr = dev->address;
#else /* MACH_KERNEL */
sc->ep_io_addr = isa_dev->id_iobase;
#endif /* MACH_KERNEL */
GO_WINDOW(0);
#if 0
k = get_eeprom_data(BASE, EEPROM_ADDR_CFG); /* get addr cfg */
#endif
k = read_eeprom_data(BASE, EEPROM_ADDR_CFG); /* get addr cfg */
#ifndef ORIGINAL
sc->if_port = k >> 14;
#endif /* ORIGINAL */
#ifdef ZP_DEBUG
printf("EEPROM data = 0x%x\n", k);
#endif
k = (k & 0x1f) * 0x10 + 0x200; /* decode base addr. */
#ifdef MACH_KERNEL
if (k != (u_short)dev->address)
#else /* MACH_KERNEL */
if (k != (u_short)isa_dev->id_iobase)
#endif /* MACH_KERNEL */
{
if (!re_init_flag) {
re_init_flag++;
goto re_init;
}
return(0);
}
k = read_eeprom_data(BASE, EEPROM_RESOURCE_CFG);
k >>= 12;
#ifdef MACH_KERNEL
#ifdef ZP_DEBUG
printf("!!!IRQ Mach config: %d, board config: %d!!!\n",
dev->sysdep1, (k == 2) ? 9 : k);
#ifdef MACH_KERNEL
cngetc();
#endif /* MACH_KERNEL */
#endif /* ZP_DEBUG */
if (dev->sysdep1 != ((k == 2) ? 9 : k))
#else /* MACH_KERNEL */
if (isa_dev->id_irq != (1 << ((k == 2) ? 9 : k)))
#endif /* MACH_KERNEL */
#ifdef ZP_DEBUG
{
printf("Unmatched !!!!!!\n");
return(0);
}
#else /* ZP_DEBUG */
return (0);
#endif /* ZP_DEBUG */
#if 0
outb(id_port, ACTIVATE_ADAPTER_TO_CONFIG);
#else
outb(BASE, ACTIVATE_ADAPTER_TO_CONFIG);
#endif
#ifdef MACH_KERNEL
dev->name = zp_name;
return (1);
#else /* MACH_KERNEL */
/* information for reconfiguration */
sc->last_alive = 0;
sc->last_up = 0;
sc->slot = slot;
return (0x10); /* 16 bytes of I/O space used. */
#endif /* MACH_KERNEL */
}
#if NAPM > 0
static int
zp_suspend(isa_dev)
struct isa_device *isa_dev;
{
struct zp_softc *sc = &zp_softc[isa_dev->id_unit];
pcic_power_off(sc->slot);
return 0;
}
static int
zp_resume(isa_dev)
struct isa_device *isa_dev;
{
prev_slot = 0;
reconfig_isadev(isa_dev, &net_imask);
return 0;
}
#endif /* NAPM > 0 */
/*
* Install interface into kernel networking data structures
*/
#ifdef MACH_KERNEL
void zpattach(dev)
struct bus_device *dev;
#else /* MACH_KERNEL */
int
zpattach(isa_dev)
struct isa_device *isa_dev;
#endif /* MACH_KERNEL */
{
#ifdef MACH_KERNEL
zp_softc_t *sc = &zp_softc[dev->unit];
struct ifnet *ifp = &(sc->ds_if);
#else /* MACH_KERNEL */
struct zp_softc *sc = &zp_softc[isa_dev->id_unit];
struct ifnet *ifp = &sc->arpcom.ac_if;
#endif /* MACH_KERNEL */
u_short i;
struct ifaddr *ifa;
struct sockaddr_dl *sdl;
int pl;
#ifdef ZP_DEBUG
printf("### zpattach ####\n");
cngetc();
#endif /* ZP_DEBUG */
/* PCMCIA card can be offlined. Reconfiguration is required */
if (isa_dev->id_reconfig) {
zpreset(isa_dev->id_unit);
if (!isa_dev->id_alive && sc->last_alive) {
pl = splimp();
sc->last_up = (ifp->if_flags & IFF_UP);
if_down(ifp);
splx(pl);
sc->last_alive = 0;
}
if (isa_dev->id_alive && !sc->last_alive) {
if (sc->last_up) {
pl = splimp();
if_up(ifp);
splx(pl);
}
sc->last_alive = 1;
}
return 1;
}
else {
sc->last_alive = 1;
}
#ifdef MACH_KERNEL
printf(", port = %x, spl = %d, pic = %d. ",
dev->address, dev->sysdep, dev->sysdep1);
take_dev_irq(dev);
sc->ep_io_addr = dev->address;
#else /* MACH_KERNEL */
sc->ep_io_addr = isa_dev->id_iobase;
printf("zp%d: ", isa_dev->id_unit);
#endif /* MACH_KERNEL */
sc->ep_connectors = 0;
#ifdef MACH_KERNEL
i = inw(sc->ep_io_addr + EP_W0_CONFIG_CTRL);
#else /* MACH_KERNEL */
i = inw(isa_dev->id_iobase + EP_W0_CONFIG_CTRL);
#endif /* MACH_KERNEL */
#ifdef ZP_DEBUG
{
short if_port;
if_port = read_eeprom_data(BASE, 8) >> 14;
sc->if_port = if_port;
printf("Linux select:%x\n",if_port);
cngetc();
}
printf("SELECT connectors:%x\n",i);
#endif /* ZP_DEBUG */
if (i & IS_AUI) {
printf("aui");
sc->ep_connectors |= AUI;
}
if (i & IS_BNC) {
if (sc->ep_connectors)
printf("/");
printf("bnc");
sc->ep_connectors |= BNC;
}
if (i & IS_UTP) {
if (sc->ep_connectors)
printf("/");
printf("utp");
sc->ep_connectors |= UTP;
}
if (!sc->ep_connectors)
printf("no connectors!");
#ifdef MACH_KERNEL
#ifndef ORIGINAL
printf(":%s was selected.\n",if_names[sc->if_port]);
#ifdef ZP_DEBUG
cngetc();
#endif /* EP_DEBUG */
#endif /* ORIGINAL */
#endif /* MACH_KERNEL */
GO_WINDOW(0);
{
short tmp_addr[3];
int i;
for (i = 0;i < 3;i++) {
tmp_addr[i] = htons(read_eeprom_data(BASE, i));
}
#ifdef MACH_KERNEL
bcopy(tmp_addr, sc->ds_addr, 6);
#else /* MACH_KERNEL */
bcopy(tmp_addr, sc->arpcom.ac_enaddr, 6);
#endif /* MACH_KERNEL */
}
#ifdef MACH_KERNEL
printf("id [%x:%x:%x:%x:%x:%x]",
sc->ds_addr[0],sc->ds_addr[1],sc->ds_addr[2],
sc->ds_addr[3],sc->ds_addr[4],sc->ds_addr[5]);
printf(" address %s\n", ether_sprintf(sc->ds_addr));
#ifdef ZP_DEBUG
cngetc();
#endif /* ZP_DEBUG */
#else /* MACH_KERNEL */
printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
#endif /* MACH_KERNEL */
ifp->if_mtu = ETHERMTU;
#ifdef MACH_KERNEL
ifp->if_flags = IFF_BROADCAST;
ifp->if_unit = dev->unit;
ifp->if_header_size = sizeof(struct ether_header);
ifp->if_header_format = HDR_ETHERNET;
ifp->if_address_size = 6;
ifp->if_address = (char *)&sc->ds_addr[0];
#define IFF_ALTPHYS 0x8000
#ifdef ORIGINAL
/*
* This is a temporary.
* Mach can not select link with ifconfig,
* so I select AUI statically.
*/
ifp->if_flags |= IFF_ALTPHYS;
#else ORIGINAL
/*
* Select connector according to board setting.
*/
if (sc->if_port != 3) {
ifp->if_flags |= IFF_ALTPHYS;
}
#endif ORIGINAL
if_init_queues(ifp);
sc->attached = 1;
#else /* MACH_KERNEL */
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS;
ifp->if_unit = isa_dev->id_unit;
ifp->if_name = "zp";
ifp->if_init = zpinit;
ifp->if_output = ether_output;
ifp->if_start = zpstart;
ifp->if_ioctl = zpioctl;
ifp->if_watchdog = zpwatchdog;
/*
* Select connector according to board setting.
*/
#if defined(__NetBSD__) || defined(__FreeBSD__)
#if 0
if (sc->if_port != 3) {
ifp->if_flags |= IFF_LINK0;
}
#else
ifp->if_flags |= IFF_LINK0;
#endif
#endif /* __NetBSD__ || __FreeBSD__ */
if_attach(ifp);
#endif /* MACH_KERNEL */
#ifndef MACH_KERNEL
/*
* Fill the hardware address into ifa_addr if we find an
* AF_LINK entry. We need to do this so bpf's can get the hardware
* addr of this card. netstat likes this too!
*/
ifa = ifp->if_addrlist;
while ((ifa != 0) && (ifa->ifa_addr != 0) &&
(ifa->ifa_addr->sa_family != AF_LINK))
ifa = ifa->ifa_next;
if ((ifa != 0) && (ifa->ifa_addr != 0)) {
sdl = (struct sockaddr_dl *) ifa->ifa_addr;
sdl->sdl_type = IFT_ETHER;
sdl->sdl_alen = ETHER_ADDR_LEN;
sdl->sdl_slen = 0;
bcopy(sc->arpcom.ac_enaddr, LLADDR(sdl), ETHER_ADDR_LEN);
}
#if NBPFILTER > 0
bpfattach(&sc->bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
#if NAPM > 0
sc->s_hook.ah_fun = zp_suspend;
sc->s_hook.ah_arg = (void *)isa_dev;
sc->s_hook.ah_name = "3Com PCMCIA Etherlink III 3C589";
sc->s_hook.ah_order = APM_MID_ORDER;
apm_hook_establish(APM_HOOK_SUSPEND , &sc->s_hook);
sc->r_hook.ah_fun = zp_resume;
sc->r_hook.ah_arg = (void *)isa_dev;
sc->r_hook.ah_name = "3Com PCMCIA Etherlink III 3C589";
sc->r_hook.ah_order = APM_MID_ORDER;
apm_hook_establish(APM_HOOK_RESUME , &sc->r_hook);
#endif /* NAPM > 0 */
return 1;
#endif /* MACH_KERNEL */
}
/*
* The order in here seems important. Otherwise we may not receive
* interrupts. ?!
*/
void
zpinit(unit)
int unit;
{
register struct zp_softc *sc = &zp_softc[unit];
#ifdef MACH_KERNEL
register struct ifnet *ifp = &sc->ds_if;
#else /* MACH_KERNEL */
register struct ifnet *ifp = &sc->arpcom.ac_if;
#endif /* MACH_KERNEL */
int s, i;
#ifdef ZP_DEBUG
printf("### zpinit ####\n");
#endif /* ZP_DEBUG */
#ifndef MACH_KERNEL
if (ifp->if_addrlist == (struct ifaddr *) 0)
return;
#endif /* MACH_KERNEL */
s = splimp();
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS)
;
GO_WINDOW(0);
/* Disable the card */
outw(BASE + EP_W0_CONFIG_CTRL, 0);
/* Enable the card */
outw(BASE + EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
GO_WINDOW(2);
/* Reload the ether_addr. */
for (i = 0; i < 6; i++)
#ifdef MACH_KERNEL
outb(BASE + EP_W2_ADDR_0 + i, sc->ds_addr[i]);
#else /* MACH_KERNEL */
outb(BASE + EP_W2_ADDR_0 + i, sc->arpcom.ac_enaddr[i]);
#endif /* MACH_KERNEL */
outw(BASE + EP_COMMAND, RX_RESET);
outw(BASE + EP_COMMAND, TX_RESET);
/* Window 1 is operating window */
GO_WINDOW(1);
for (i = 0; i < 31; i++)
inb(BASE + EP_W1_TX_STATUS);
/* get rid of stray intr's */
outw(BASE + EP_COMMAND, ACK_INTR | 0xff);
outw(BASE + EP_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE | S_RX_COMPLETE |
S_TX_COMPLETE | S_TX_AVAIL);
outw(BASE + EP_COMMAND, SET_INTR_MASK | S_CARD_FAILURE | S_RX_COMPLETE |
S_TX_COMPLETE | S_TX_AVAIL);
#ifndef ORIGINAL
#ifndef IFF_MULTICAST
#define IFF_MULTICAST 0x10000
#endif
#ifdef MACH_KERNEL
outw(BASE + EP_COMMAND, SET_RX_FILTER | FIL_INDIVIDUAL |
((sc->ds_if.if_flags & IFF_MULTICAST) ? FIL_GROUP : 0) |
FIL_BRDCST |
((sc->ds_if.if_flags & IFF_PROMISC) ? FIL_ALL : 0));
#else
outw(BASE + EP_COMMAND, SET_RX_FILTER | FIL_INDIVIDUAL |
((sc->arpcom.ac_if.if_flags & IFF_MULTICAST) ? FIL_GROUP : 0) |
FIL_BRDCST |
((sc->arpcom.ac_if.if_flags & IFF_PROMISC) ? FIL_ALL : 0));
#endif MACH_KERNEL
#else /* ORIGINAL */
outw(BASE + EP_COMMAND, SET_RX_FILTER | FIL_INDIVIDUAL |
FIL_GROUP | FIL_BRDCST);
#endif /* ORIGINAL */
/*
* you can `ifconfig (link0|-link0) ep0' to get the following
* behaviour:
* -link0 disable AUI/UTP. enable BNC.
* link0 disable BNC. enable AUI. if the card has a UTP
* connector, that is enabled too. not sure, but it
* seems you have to be careful to not plug things
* into both AUI & UTP.
*/
#if defined(__NetBSD__) || defined(__FreeBSD__)
if (!(ifp->if_flags & IFF_LINK0) && (sc->ep_connectors & BNC)) {
#else
if (!(ifp->if_flags & IFF_ALTPHYS) && (sc->ep_connectors & BNC)) {
#endif
#ifdef ZP_DEBUG
printf("START TRANCEIVER");
#endif /* ZP_DEBUG */
outw(BASE + EP_COMMAND, START_TRANSCEIVER);
DELAY(1000);
}
#if defined(__NetBSD__) || defined(__FreeBSD__)
if ((ifp->if_flags & IFF_LINK0) && (sc->ep_connectors & UTP)) {
#else
if ((ifp->if_flags & IFF_ALTPHYS) && (sc->ep_connectors & UTP)) {
#endif
#ifdef ZP_DEBUG
printf("ENABLE UTP");
#endif /* ZP_DEBUG */
GO_WINDOW(4);
outw(BASE + EP_W4_MEDIA_TYPE, ENABLE_UTP);
GO_WINDOW(1);
}
outw(BASE + EP_COMMAND, RX_ENABLE);
outw(BASE + EP_COMMAND, TX_ENABLE);
ifp->if_flags |= IFF_RUNNING;
#ifndef MACH_KERNEL
ifp->if_flags &= ~IFF_OACTIVE; /* just in case */
#endif /* MACH_KERNEL */
sc->tx_start_thresh = 20; /* probably a good starting point. */
#ifndef MACH_KERNEL
/*
* Store up a bunch of mbuf's for use later. (MAX_MBS). First we
* free up any that we had in case we're being called from intr or
* somewhere else.
*/
sc->last_mb = 0;
sc->next_mb = 0;
zpmbuffill(sc);
#endif /* MACH_KERNEL */
#ifdef MACH_KERNEL
#if 0 /* seiji */
sc->tbusy = 0;
#endif
zpstart(unit);
#else /* MACH_KERNEL */
zpstart(ifp);
#endif /* MACH_KERNEL */
splx(s);
#ifdef ZP_DEBUG
printf("### zpinit done ####\n");
#endif /* ZP_DEBUG */
}
static const char padmap[] = {0, 3, 2, 1};
#ifdef MACH_KERNEL
void
zpstart(unit)
int unit;
#else /* MACH_KERNEL */
void
zpstart(ifp)
struct ifnet *ifp;
#endif /* MACH_KERNEL */
{
#ifdef MACH_KERNEL
register struct zp_softc *sc = &zp_softc[unit];
struct ifnet *ifp = &sc->ds_if;
io_req_t m;
#else /* MACH_KERNEL */
register struct zp_softc *sc = &zp_softc[ifp->if_unit];
struct mbuf *m, *top;
#endif /* MACH_KERNEL */
int s, len, pad;
#ifdef ZP_DEBUG
printf("### zpstart ####\n");
#endif /* ZP_DEBUG */
#ifdef ZP_DEBUG
printf("head1 = 0x%x\n", sc->arpcom.ac_if.if_snd.ifq_head);
printf("BASE = 0x%x\n", BASE);
#endif
s = splimp();
#ifndef MACH_KERNEL
if (sc->arpcom.ac_if.if_flags & IFF_OACTIVE) {
splx(s);
#ifdef ZP_DEBUG
printf("### zpstart oactive ####\n");
#endif /* ZP_DEBUG */
return;
}
#endif /* MACH_KERNEL */
startagain:
#ifdef MACH_KERNEL
#if 0 /* seiji */
if (sc->tbusy) {
return;
}
#endif
/* Sneak a peek at the next packet */
m = (io_req_t)
((ifp->if_snd.ifq_head.next == (queue_t)&(ifp->if_snd.ifq_head)) ?
0 : ifp->if_snd.ifq_head.next);
if (m == 0) {
splx(s);
#ifdef ZP_DEBUG
printf("### zpstart none data 1 ####\n");
#endif /* ZP_DEBUG */
return;
}
#if 0
IF_DEQUEUE(&ifp->if_snd, m);
if (NULL == m) {
return;
}
#endif
#if 0 /* seiji */
sc->tbusy++;
zp_cntrs[unit].xmt++;
#endif
len = m->io_count;
#else /* MACH_KERNEL */
/* Sneak a peek at the next packet */
m = sc->arpcom.ac_if.if_snd.ifq_head;
#ifdef ZP_DEBUG
printf("head2 = 0x%x\n", sc->arpcom.ac_if.if_snd.ifq_head);
#endif
if (m == 0) {
splx(s);
#ifdef ZP_DEBUG
printf("### zpstart none data 2 ####\n");
#endif /* EP_DEBUG */
return;
}
#if 0
len = m->m_pkthdr.len;
#else
for (len = 0, top = m; m; m = m->m_next)
len += m->m_len;
#endif
#endif /* MACH_KERNEL */
pad = padmap[len & 3];
/*
* The 3c509 automatically pads short packets to minimum ethernet
* length, but we drop packets that are too large. Perhaps we should
* truncate them instead?
*/
if (len + pad > ETHER_MAX_LEN) {
/* packet is obviously too large: toss it */
#ifdef MACH_KERNEL
++(ifp->if_oerrors);
IF_DEQUEUE(&(ifp->if_snd), m);
iodone(m);
#else /* MACH_KERNEL */
++sc->arpcom.ac_if.if_oerrors;
IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
m_freem(m);
#endif /* MACH_KERNEL */
goto readcheck;
}
#if 1
if (inw(BASE + EP_W1_FREE_TX) < len + pad + 4) {
/* no room in FIFO */
outw(BASE + EP_COMMAND, SET_TX_AVAIL_THRESH | (len + pad + 4));
#ifndef MACH_KERNEL
sc->arpcom.ac_if.if_flags |= IFF_OACTIVE;
#endif /* MACH_KERNEL */
splx(s);
#ifdef ZP_DEBUG
printf("### zpstart no room ####\n");
#endif /* EP_DEBUG */
return;
}
#else
{int i;
if ((i = inw(BASE + EP_W1_FREE_TX)) < len + pad + 4) {
printf("BASE + EP_W1_FREE_TX = 0x%x\n", i);
/* no room in FIFO */
outw(BASE + EP_COMMAND, SET_TX_AVAIL_THRESH | (len + pad + 4));
#ifndef MACH_KERNEL
sc->arpcom.ac_if.if_flags |= IFF_OACTIVE;
#endif /* MACH_KERNEL */
splx(s);
printf("### zpstart no room ####\n");
return;
}
printf("BASE + EP_W1_FREE_TX = 0x%x\n", i);
}
#endif
#ifdef MACH_KERNEL
IF_DEQUEUE(&(ifp->if_snd), m);
#else /* MACH_KERNEL */
IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
#endif /* MACH_KERNEL */
if (m == 0) { /* not really needed */
splx(s);
#ifdef ZP_DEBUG
printf("### zpstart ??? ####\n");
#endif /* ZP_DEBUG */
return;
}
outw(BASE + EP_COMMAND, SET_TX_START_THRESH |
(len / 4 + sc->tx_start_thresh));
outw(BASE + EP_W1_TX_PIO_WR_1, len);
outw(BASE + EP_W1_TX_PIO_WR_1, 0xffff); /* Second dword meaningless */
#ifdef MACH_KERNEL
if (sc->bus32bit) {
loutl(BASE + EP_W1_TX_PIO_WR_1, m->io_data,len/4);
if (len & 3)
loutb(BASE + EP_W1_TX_PIO_WR_1,
m->io_data + (len & ~3), len & 3);
} else {
loutw(BASE + EP_W1_TX_PIO_WR_1, m->io_data, len/2);
if (len & 1)
outb(BASE + EP_W1_TX_PIO_WR_1, *(m->io_data + len - 1));
}
#else /* MACH_KERNEL */
for (top = m; m != 0; m = m->m_next) {
if (sc->bus32bit) {
outsl(BASE + EP_W1_TX_PIO_WR_1, mtod(m, caddr_t),
m->m_len/4);
if (m->m_len & 3)
outsb(BASE + EP_W1_TX_PIO_WR_1,
mtod(m, caddr_t) + m->m_len/4,
m->m_len & 3);
} else {
#ifdef ZP_DEBUG
printf("Output len = %d\n", m->m_len);
#endif /* ZP_DEBUG */
outsw(BASE + EP_W1_TX_PIO_WR_1, mtod(m, caddr_t), m->m_len/2);
if (m->m_len & 1)
outb(BASE + EP_W1_TX_PIO_WR_1,
*(mtod(m, caddr_t) + m->m_len - 1));
}
}
#endif /* MACH_KERNEL */
while (pad--)
outb(BASE + EP_W1_TX_PIO_WR_1, 0); /* Padding */
#ifndef MACH_KERNEL
#if NBPFILTER > 0
if (sc->bpf) {
#if 0
u_short etype;
int off, datasize, resid;
struct ether_header *eh;
struct trailer_header {
u_short ether_type;
u_short ether_residual;
} trailer_header;
char ether_packet[ETHER_MAX_LEN];
char *ep;
ep = ether_packet;
/*
* We handle trailers below:
* Copy ether header first, then residual data,
* then data. Put all this in a temporary buffer
* 'ether_packet' and send off to bpf. Since the
* system has generated this packet, we assume
* that all of the offsets in the packet are
* correct; if they're not, the system will almost
* certainly crash in m_copydata.
* We make no assumptions about how the data is
* arranged in the mbuf chain (i.e. how much
* data is in each mbuf, if mbuf clusters are
* used, etc.), which is why we use m_copydata
* to get the ether header rather than assume
* that this is located in the first mbuf.
*/
/* copy ether header */
m_copydata(top, 0, sizeof(struct ether_header), ep);
eh = (struct ether_header *) ep;
ep += sizeof(struct ether_header);
eh->ether_type = etype = ntohs(eh->ether_type);
if (etype >= ETHERTYPE_TRAIL &&
etype < ETHERTYPE_TRAIL + ETHERTYPE_NTRAILER) {
datasize = ((etype - ETHERTYPE_TRAIL) << 9);
off = datasize + sizeof(struct ether_header);
/* copy trailer_header into a data structure */
m_copydata(top, off, sizeof(struct trailer_header),
(caddr_t)&trailer_header.ether_type);
/* copy residual data */
resid = trailer_header.ether_residual -
sizeof(struct trailer_header);
resid = ntohs(resid);
m_copydata(top, off + sizeof(struct trailer_header),
resid, ep);
ep += resid;
/* copy data */
m_copydata(top, sizeof(struct ether_header),
datasize, ep);
ep += datasize;
/* restore original ether packet type */
eh->ether_type = trailer_header.ether_type;
bpf_tap(sc->bpf, ether_packet, ep - ether_packet);
} else
bpf_mtap(sc->bpf, top);
#endif
bpf_mtap(sc->bpf, top);
}
#endif
#endif /* MACH_KERNEL */
#ifdef MACH_KERNEL
++(ifp->if_opackets);
iodone(m);
#else /* MACH_KERNEL */
m_freem(top);
++sc->arpcom.ac_if.if_opackets;
#endif /* MACH_KERNEL */
/*
* Is another packet coming in? We don't want to overflow the
* tiny RX fifo.
*/
readcheck:
if (inw(BASE + EP_W1_RX_STATUS) & RX_BYTES_MASK) {
splx(s);
#ifdef ZP_DEBUG
printf("### zpstart done ####\n");
#endif /* ZP_DEBUG */
return;
}
#ifdef ZP_DEBUG2
printf("### zpstart startagain ####\n");
#endif /* ZP_DEBUG */
goto startagain;
}
#ifdef MACH_KERNEL
int zpopen(dev, flag)
dev_t dev;
int flag;
{
register int unit = minor(dev);
#ifdef ZP_DEBUG
printf("### zpopen ####\n");
#endif /* ZP_DEBUG */
if (unit < 0 || unit >= NZP || zp_softc[unit].attached == 0) {
return (ENXIO);
}
zp_softc[unit].ds_if.if_flags |= IFF_UP;
zpinit(unit);
return (0);
}
int zpoutput(dev, ior)
dev_t dev;
io_req_t ior;
{
register int unit = minor(dev);
io_return_t result;
#ifdef ZP_DEBUG
printf("### zpoutput ####\n");
#endif /* ZP_DEBUG */
if (unit < 0 || unit >= NZP || zp_softc[unit].attached == 0) {
return (ENXIO);
}
result = net_write(&zp_softc[unit].ds_if, zpstart, ior);
#ifdef ZP_DEBUG
printf("### zpoutput done ####\n");
#endif /* ZP_DEBUG */
return (result);
}
int zpsetinput(dev, receive_port, priority, filter, filter_count)
dev_t dev;
mach_port_t receive_port;
int priority;
filter_t filter[];
unsigned int filter_count;
{
register int unit = minor(dev);
#ifdef ZP_DEBUG
printf("### zpsetinput ####\n");
#endif /* ZP_DEBUG */
if (unit < 0 || unit >= NZP || zp_softc[unit].attached == 0) {
return (ENXIO);
}
return (net_set_filter(&zp_softc[unit].ds_if,
receive_port, priority, filter,
filter_count));
}
#endif /* MACH_KERNEL */
#ifdef MACH_KERNEL
int
#else /* MACH_KERNEL */
void
#endif /* MACH_KERNEL */
zpintr(unit)
int unit;
{
int status, i;
register struct zp_softc *sc = &zp_softc[unit];
#ifdef MACH_KERNEL
struct ifnet *ifp = &sc->ds_if;
#else /* MACH_KERNEL */
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mbuf *m;
#endif /* MACH_KERNEL */
#ifdef ZP_DEBUG
printf("### zpintr ####\n");
#endif /* ZP_DEBUG */
status = 0;
checkintr:
status = inw(BASE + EP_STATUS) &
(S_TX_COMPLETE | S_TX_AVAIL | S_RX_COMPLETE | S_CARD_FAILURE);
#ifndef ORIGINAL
checkintr2:
#endif /* ORIGINAL */
if (status == 0) {
/* No interrupts. */
outw(BASE + EP_COMMAND, C_INTR_LATCH);
#ifdef ZP_DEBUG
printf("### zpintr done ####\n");
#endif /* ZP_DEBUG */
#ifndef ORIGINAL
if (status = inw(BASE + EP_STATUS) &
(S_TX_COMPLETE | S_TX_AVAIL | S_RX_COMPLETE |
S_CARD_FAILURE)) {
goto checkintr2;
}
#endif /* ORIGINAL */
#ifdef MACH_KERNEL
return (0);
#else /* MACH_KERNEL */
return;
#endif /* MACH_KERNEL */
}
/* important that we do this first. */
outw(BASE + EP_COMMAND, ACK_INTR | status);
if (status & S_TX_AVAIL) {
status &= ~S_TX_AVAIL;
inw(BASE + EP_W1_FREE_TX);
#ifdef MACH_KERNEL
zpstart(unit);
#else /* MACH_KERNEL */
sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
zpstart(&sc->arpcom.ac_if);
#endif /* MACH_KERNEL */
}
if (status & S_RX_COMPLETE) {
status &= ~S_RX_COMPLETE;
zpread(sc);
}
if (status & S_CARD_FAILURE) {
printf("zp%d: reset (status: %x)\n", unit, status);
outw(BASE + EP_COMMAND, C_INTR_LATCH);
zpinit(unit);
#ifdef ZP_DEBUG
printf("### zpintr error ####\n");
#endif /* ZP_DEBUG */
#ifdef MACH_KERNEL
return (0);
#else /* MACH_KERNEL */
return;
#endif /* MACH_KERNEL */
}
if (status & S_TX_COMPLETE) {
status &= ~S_TX_COMPLETE;
/*
* We need to read TX_STATUS until we get a 0 status in
* order to turn off the interrupt flag.
*/
while ((i = inb(BASE + EP_W1_TX_STATUS)) & TXS_COMPLETE) {
outw(BASE + EP_W1_TX_STATUS, 0x0);
#if ZE_DEBUG
printf("EP_W1_TX_STATUS = 0x%x\n", i);
#endif
if (i & (TXS_MAX_COLLISION | TXS_JABBER | TXS_UNDERRUN)) {
if (i & TXS_MAX_COLLISION)
#ifdef MACH_KERNEL
++(ifp->if_collisions);
#else /* MACH_KERNEL */
++sc->arpcom.ac_if.if_collisions;
#endif /* MACH_KERNEL */
if (i & (TXS_JABBER | TXS_UNDERRUN)) {
outw(BASE + EP_COMMAND, TX_RESET);
if (i & TXS_UNDERRUN) {
if (sc->tx_start_thresh < ETHER_MAX_LEN) {
sc->tx_start_thresh += 20;
outw(BASE + EP_COMMAND,
SET_TX_START_THRESH |
sc->tx_start_thresh);
}
}
}
outw(BASE + EP_COMMAND, TX_ENABLE);
#ifdef MACH_KERNEL
++(ifp->if_oerrors);
#else /* MACH_KERNEL */
++sc->arpcom.ac_if.if_oerrors;
#endif /* MACH_KERNEL */
}
}
#ifdef MACH_KERNEL
zpstart(unit);
#else /* MACH_KERNEL */
zpstart(ifp);
#endif /* MACH_KERNEL */
}
goto checkintr;
}
void
zpread(sc)
register struct zp_softc *sc;
{
struct ether_header *eh;
#ifdef MACH_KERNEL
struct ether_header eth;
ipc_kmsg_t new_kmsg;
struct packet_header *pkt;
int totlen;
#else /* MACH_KERNEL */
struct mbuf *mcur, *m, *m0, *top;
int totlen, lenthisone;
int save_totlen;
u_short etype;
int off, resid;
int count, spinwait;
#endif /* MACH_KERNEL */
int i;
#ifdef ZP_DEBUG
printf("### zpread ####\n");
#endif /* ZP_DEBUG */
totlen = inw(BASE + EP_W1_RX_STATUS);
#ifndef MACH_KERNEL
off = 0;
top = 0;
#endif /* MACH_KERNEL */
if (totlen & ERR_RX) {
#ifdef MACH_KERNEL
++(sc->ds_if.if_ierrors);
#else /* MACH_KERNEL */
++sc->arpcom.ac_if.if_ierrors;
#endif /* MACH_KERNEL */
goto out;
}
#ifdef MACH_KERNEL
totlen &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
#else /* MACH_KERNEL */
save_totlen = totlen &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
#endif /* MACH_KERNEL */
#ifdef MACH_KERNEL
/* Get Etherheader */
linw(BASE + EP_W1_RX_PIO_RD_1,
(char *)&eth, sizeof(struct ether_header) / 2);
totlen -= sizeof(struct ether_header);
new_kmsg = net_kmsg_get();
if (new_kmsg == IKM_NULL) {
/* Drop the packet */
++(sc->ds_if.if_rcvdrops);
/*
* Is this true ?
* Do I have to remove the packet ?
* Maybe out discard incoming packet.
*/
goto out;
}
eh = (struct ether_header *)(&net_kmsg(new_kmsg)->header[0]);
pkt = (struct packet_header *)(&net_kmsg(new_kmsg)->packet[0]);
*eh = eth; /* Is this true ? */
if (sc->bus32bit) {
linl(BASE + EP_W1_RX_PIO_RD_1, (char *)(pkt + 1), totlen/4);
if (totlen & 3)
linb(BASE + EP_W1_RX_PIO_RD_1,
(char *)(pkt + 1) + (totlen & ~3), totlen & 3);
} else {
linw(BASE + EP_W1_RX_PIO_RD_1,
(char *)(pkt + 1),totlen/2);
if (totlen & 1)
*((char *)(pkt + 1) + totlen - 1) =
inb(BASE + EP_W1_RX_PIO_RD_1);
}
outw(BASE + EP_COMMAND, RX_DISCARD_TOP_PACK);
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS)
;
++(sc->ds_if.if_ipackets);
pkt->type = eh->ether_type;
pkt->length = totlen + sizeof(struct packet_header);
net_packet(&(sc->ds_if), new_kmsg, pkt->length,
ethernet_priority(new_kmsg, pkt->type));
#ifdef ZP_DEBUG
printf("### zpread done ####\n");
#endif /* ZP_DEBUG */
return;
#else /* MACH_KERNEL */
m = sc->mb[sc->next_mb];
sc->mb[sc->next_mb] = 0;
if (m == 0) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
goto out;
} else {
/* Convert one of our saved mbuf's */
sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
m->m_data = m->m_pktdat;
m->m_flags = M_PKTHDR;
}
top = m0 = m; /* We assign top so we can "goto out" */
#define EROUND ((sizeof(struct ether_header) + 3) & ~3)
#define EOFF (EROUND - sizeof(struct ether_header))
m0->m_data += EOFF;
/* Read what should be the header. */
insw(BASE + EP_W1_RX_PIO_RD_1,
mtod(m0, caddr_t), sizeof(struct ether_header) / 2);
m->m_len = sizeof(struct ether_header);
totlen -= sizeof(struct ether_header);
/*
* mostly deal with trailer here. (untested)
* We do this in a couple of parts. First we check for a trailer, if
* we have one we convert the mbuf back to a regular mbuf and set the offset and
* subtract sizeof(struct ether_header) from the pktlen.
* After we've read the packet off the interface (all except for the trailer
* header, we then get a header mbuf, read the trailer into it, and fix up
* the mbuf pointer chain.
*/
eh = mtod(m, struct ether_header *);
eh->ether_type = etype = ntohs((u_short) eh->ether_type);
if (etype >= ETHERTYPE_TRAIL &&
etype < ETHERTYPE_TRAIL + ETHERTYPE_NTRAILER) {
m->m_data = m->m_dat; /* Convert back to regular mbuf. */
m->m_flags = 0; /* This sucks but non-trailers are the norm */
off = (etype - ETHERTYPE_TRAIL) * 512;
if (off >= ETHERMTU) {
m_freem(m);
return; /* sanity */
}
totlen -= sizeof(struct ether_header); /* We don't read the trailer */
m->m_data += 2 * sizeof(u_short); /* Get rid of type & len */
}
while (totlen > 0) {
lenthisone = min(totlen, M_TRAILINGSPACE(m));
if (lenthisone == 0) { /* no room in this one */
mcur = m;
m = sc->mb[sc->next_mb];
sc->mb[sc->next_mb] = 0;
if (!m) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0)
goto out;
} else {
timeout(zpmbuffill, sc, 0);
sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
}
if (totlen >= MINCLSIZE)
MCLGET(m, M_DONTWAIT);
m->m_len = 0;
mcur->m_next = m;
lenthisone = min(totlen, M_TRAILINGSPACE(m));
}
if (sc->bus32bit) {
insl(BASE + EP_W1_RX_PIO_RD_1, mtod(m, caddr_t) + m->m_len,
lenthisone / 4);
m->m_len += (lenthisone & ~3);
if (lenthisone & 3)
insb(BASE + EP_W1_RX_PIO_RD_1,
mtod(m, caddr_t) + m->m_len,
lenthisone & 3);
m->m_len += (lenthisone & 3);
} else {
insw(BASE + EP_W1_RX_PIO_RD_1, mtod(m, caddr_t) + m->m_len,
lenthisone / 2);
m->m_len += lenthisone;
if (lenthisone & 1)
*(mtod(m, caddr_t) + m->m_len - 1) = inb(BASE + EP_W1_RX_PIO_RD_1);
}
totlen -= lenthisone;
}
if (off) {
top = sc->mb[sc->next_mb];
sc->mb[sc->next_mb] = 0;
if (top == 0) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (top == 0) {
top = m0;
goto out;
}
} else {
/* Convert one of our saved mbuf's */
sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
top->m_data = top->m_pktdat;
top->m_flags = M_PKTHDR;
}
insw(BASE + EP_W1_RX_PIO_RD_1, mtod(top, caddr_t),
sizeof(struct ether_header));
top->m_next = m0;
top->m_len = sizeof(struct ether_header);
/* XXX Accomodate for type and len from beginning of trailer */
top->m_pkthdr.len = save_totlen - (2 * sizeof(u_short));
} else {
top = m0;
top->m_pkthdr.len = save_totlen;
}
top->m_pkthdr.rcvif = &sc->arpcom.ac_if;
outw(BASE + EP_COMMAND, RX_DISCARD_TOP_PACK);
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS)
;
++sc->arpcom.ac_if.if_ipackets;
#if NBPFILTER > 0
if (sc->bpf) {
bpf_mtap(sc->bpf, top);
/*
* Note that the interface cannot be in promiscuous mode if
* there are no BPF listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
if ((sc->arpcom.ac_if.if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 &&
bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
sizeof(eh->ether_dhost)) != 0 &&
bcmp(eh->ether_dhost, etherbroadcastaddr,
sizeof(eh->ether_dhost)) != 0) {
m_freem(top);
return;
}
}
#endif
m_adj(top, sizeof(struct ether_header));
ether_input(&sc->arpcom.ac_if, eh, top);
return;
#endif /* MACH_KERNEL */
out: outw(BASE + EP_COMMAND, RX_DISCARD_TOP_PACK);
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS)
;
#ifndef MACH_KERNEL
if (top)
m_freem(top);
#endif /* MACH_KERNEL */
#ifdef ZP_DEBUG
printf("### zpread Error ####\n");
#endif /* ZP_DEBUG */
}
#ifdef MACH_KERNEL
int zpgetstat(dev, flavor, status, count)
dev_t dev;
int flavor;
dev_status_t status;
unsigned int *count;
{
register int unit = minor(dev);
#ifdef ZP_DEBUG
printf("### zpgetstat ####\n");
#endif /* ZP_DEBUG */
if (unit < 0 || unit >= NZP || zp_softc[unit].attached == 0) {
return (ENXIO);
}
return (net_getstat(&zp_softc[unit].ds_if,flavor,status,count));
}
int zpsetstat(dev, flavor, status, count)
dev_t dev;
int flavor;
dev_status_t status;
unsigned int count;
{
register int unit = minor(dev);
register zp_softc_t *sc;
#ifdef ZP_DEBUG
printf("### zpsetstat ####\n");
#endif /* ZP_DEBUG */
if (unit < 0 || unit >= NZP || zp_softc[unit].attached == 0) {
return (ENXIO);
}
sc = &zp_softc[unit];
switch (flavor) {
case NET_STATUS:
{
register struct net_status *ns =
(struct net_status *)status;
if (count < NET_STATUS_COUNT) {
return (D_INVALID_SIZE);
}
if (sc->ds_if.if_flags != ns->flags) {
sc->ds_if.if_flags = ns->flags;
if (sc->ds_if.if_flags & IFF_RUNNING) {
zpinit(sc->ds_if.if_unit);
}
}
}
break;
default:
return (D_INVALID_OPERATION);
}
return (D_SUCCESS);
}
#else /* MACH_KERNEL */
/*
* Look familiar?
*/
static int
zpioctl(ifp, cmd, data)
register struct ifnet *ifp;
int cmd;
caddr_t data;
{
register struct ifaddr *ifa = (struct ifaddr *) data;
struct zp_softc *sc = &zp_softc[ifp->if_unit];
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
#ifdef ZP_DEBUG
printf("### zpioctl ####\n");
#endif /* ZP_DEBUG */
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
zpinit(ifp->if_unit); /* before arpwhohas */
#if 1
arp_ifinit((struct arpcom *)ifp, ifa);
#else
((struct arpcom *) ifp)->ac_ipaddr = IA_SIN(ifa)->sin_addr;
arpwhohas((struct arpcom *) ifp, &IA_SIN(ifa)->sin_addr);
#endif
break;
#endif
#ifdef NS
case AF_NS:
{
register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *)(sc->arpcom.ac_enaddr);
else {
ifp->if_flags &= ~IFF_RUNNING;
bcopy((caddr_t) ina->x_host.c_host,
(caddr_t)sc->arpcom.ac_enaddr,
sizeof(sc->arpcom.ac_enaddr));
}
zpinit(ifp->if_unit);
break;
}
#endif
default:
zpinit(ifp->if_unit);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 && ifp->if_flags & IFF_RUNNING) {
ifp->if_flags &= ~IFF_RUNNING;
zpstop(ifp->if_unit);
zpmbufempty(sc);
break;
}
if (ifp->if_flags & IFF_UP && (ifp->if_flags & IFF_RUNNING) == 0)
zpinit(ifp->if_unit);
break;
#ifdef notdef
case SIOCGHWADDR:
bcopy((caddr_t) sc->sc_addr, (caddr_t) &ifr->ifr_data,
sizeof(sc->sc_addr));
break;
#endif
default:
error = EINVAL;
}
return (error);
}
#endif /* MACH_KERNEL */
void
zpreset(unit)
int unit;
{
int s = splimp();
#ifdef ZP_DEBUG
printf("### zpreset ####\n");
#endif /* ZP_DEBUG */
zpstop(unit);
zpinit(unit);
splx(s);
}
void
zpwatchdog(unit)
int unit;
{
struct zp_softc *sc = &zp_softc[unit];
#ifdef ZP_DEBUG
printf("### zpwatchdog ####\n");
#endif /* ZP_DEBUG */
#ifdef MACH_KERNEL
++sc->ds_if.if_oerrors;
#else /* MACH_KERNEL */
log(LOG_ERR, "zp%d: watchdog\n", unit);
++sc->arpcom.ac_if.if_oerrors;
#endif /* MACH_KERNEL */
zpreset(unit);
}
void
zpstop(unit)
int unit;
{
struct zp_softc *sc = &zp_softc[unit];
#ifdef ZP_DEBUG
printf("### zpstop ####\n");
#endif /* ZP_DEBUG */
outw(BASE + EP_COMMAND, RX_DISABLE);
outw(BASE + EP_COMMAND, RX_DISCARD_TOP_PACK);
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS)
;
outw(BASE + EP_COMMAND, TX_DISABLE);
outw(BASE + EP_COMMAND, STOP_TRANSCEIVER);
outw(BASE + EP_COMMAND, RX_RESET);
outw(BASE + EP_COMMAND, TX_RESET);
outw(BASE + EP_COMMAND, C_INTR_LATCH);
outw(BASE + EP_COMMAND, SET_RD_0_MASK);
outw(BASE + EP_COMMAND, SET_INTR_MASK);
outw(BASE + EP_COMMAND, SET_RX_FILTER);
}
/*
* This is adapted straight from the book. There's probably a better way.
*/
static int
send_ID_sequence(port)
u_short port;
{
char cx, al;
#ifdef ZP_DEBUG2
printf("### send_ID_sequence ####\n");
#ifdef MACH_KERNEL
cngetc();
#endif /* MACH_KERNEL */
#endif /* ZP_DEBUG */
cx = 0x0ff;
al = 0x0ff;
outb(port, 0x0);
DELAY(1000);
outb(port, 0x0);
DELAY(1000);
loop1: cx--;
outb(port, al);
if (!(al & 0x80)) {
al = al << 1;
goto loop1;
}
al = al << 1;
al ^= 0xcf;
if (cx)
goto loop1;
return(1);
}
/*
* We get eeprom data from the id_port given an offset into the
* eeprom. Basically; after the ID_sequence is sent to all of
* the cards; they enter the ID_CMD state where they will accept
* command requests. 0x80-0xbf loads the eeprom data. We then
* read the port 16 times and with every read; the cards check
* for contention (ie: if one card writes a 0 bit and another
* writes a 1 bit then the host sees a 0. At the end of the cycle;
* each card compares the data on the bus; if there is a difference
* then that card goes into ID_WAIT state again). In the meantime;
* one bit of data is returned in the AX register which is conveniently
* returned to us by inb(). Hence; we read 16 times getting one
* bit of data with each read.
*/
static u_short
get_eeprom_data(id_port, offset)
int id_port;
int offset;
{
int i, data = 0;
#ifdef ZP_DEBUG2
printf("### get_eeprom_data ####\n");
#ifdef MACH_KERNEL
cngetc();
#endif /* MACH_KERNEL */
#endif /* ZP_DEBUG */
outb(id_port, 0x80 + offset);
DELAY(1000);
for (i = 0; i < 16; i++)
data = (data << 1) | (inw(id_port) & 1);
return (data);
}
static u_short
read_eeprom_data(id_port, offset)
int id_port;
int offset;
{
int i, data = 0;
#ifdef ZP_DEBUG
printf("### read_eeprom_data ####\n");
#ifdef MACH_KERNEL
cngetc();
#endif /* MACH_KERNEL */
#endif /* ZP_DEBUG */
outb(id_port + 10, 0x80 + offset);
DELAY(1000);
return inw(id_port + 12);
}
static int
#ifdef MACH_KERNEL
f_is_eeprom_busy(dev)
struct bus_device *dev;
#else /* MACH_KERNEL */
f_is_eeprom_busy(is)
struct isa_device *is;
#endif /* MACH_KERNEL */
{
int i = 0, j;
#ifdef MACH_KERNEL
register struct zp_softc *sc = &zp_softc[dev->unit];
#else /* MACH_KERNEL */
register struct zp_softc *sc = &zp_softc[is->id_unit];
#endif /* MACH_KERNEL */
#ifdef ZP_DEBUG
printf("### f_is_eeprom_busy ####\n");
printf("BASE: %x\n", BASE);
#ifdef MACH_KERNEL
cngetc();
#endif /* MACH_KERNEL */
#endif /* ZP_DEBUG */
while (i++ < 100) {
j = inw(BASE + EP_W0_EEPROM_COMMAND);
if (j & EEPROM_BUSY)
DELAY(100);
else
break;
}
if (i >= 100) {
#ifdef MACH_KERNEL
printf("\nzp%d: eeprom failed to come ready.\n", dev->unit);
#else /* MACH_KERNEL */
printf("\nzp%d: eeprom failed to come ready.\n", is->id_unit);
#endif /* MACH_KERNEL */
return (1);
}
if (j & EEPROM_TST_MODE) {
#ifdef MACH_KERNEL
printf("\nzp%d: 3c589 in test mode. Erase pencil mark!\n", dev->unit);
#else /* MACH_KERNEL */
printf("\nzp%d: 3c589 in test mode. Erase pencil mark!\n", is->id_unit);
#endif /* MACH_KERNEL */
return (1);
}
return (0);
}
#ifndef MACH_KERNEL
void
zpmbuffill(sp)
void *sp;
{
struct zp_softc *sc = (struct zp_softc *)sp;
int s, i;
#ifdef ZP_DEBUG
printf("### zpmbuffill ####\n");
#endif /* ZP_DEBUG */
s = splimp();
i = sc->last_mb;
do {
if(sc->mb[i] == NULL)
MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
if(sc->mb[i] == NULL)
break;
i = (i + 1) % MAX_MBS;
} while (i != sc->next_mb);
sc->last_mb = i;
splx(s);
}
static void
zpmbufempty(sc)
struct zp_softc *sc;
{
int s, i;
#ifdef ZP_DEBUG
printf("### zpmbufempty ####\n");
#endif /* ZP_DEBUG */
s = splimp();
for (i = 0; i<MAX_MBS; i++) {
if (sc->mb[i]) {
m_freem(sc->mb[i]);
sc->mb[i] = NULL;
}
}
sc->last_mb = sc->next_mb = 0;
untimeout(zpmbuffill, sc);
splx(s);
}
#endif /* MACH_KERNEL */
#endif /* NZP > 0 */