freebsd-skq/sys/kern/kern_priv.c

212 lines
6.0 KiB
C
Raw Normal View History

Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
* Copyright (c) 2006 nCircle Network Security, Inc.
* Copyright (c) 2009 Robert N. M. Watson
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
* All rights reserved.
*
* This software was developed by Robert N. M. Watson for the TrustedBSD
* Project under contract to nCircle Network Security, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR, NCIRCLE NETWORK SECURITY,
* INC., OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
#include <sys/param.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/sdt.h>
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <security/mac/mac_framework.h>
/*
* `suser_enabled' (which can be set by the security.bsd.suser_enabled
* sysctl) determines whether the system 'super-user' policy is in effect. If
* it is nonzero, an effective uid of 0 connotes special privilege,
* overriding many mandatory and discretionary protections. If it is zero,
* uid 0 is offered no special privilege in the kernel security policy.
* Setting it to zero may seriously impact the functionality of many existing
* userland programs, and should not be done without careful consideration of
2013-05-19 23:30:24 +00:00
* the consequences.
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
*/
static int suser_enabled = 1;
SYSCTL_INT(_security_bsd, OID_AUTO, suser_enabled, CTLFLAG_RWTUN,
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
&suser_enabled, 0, "processes with uid 0 have privilege");
static int unprivileged_mlock = 1;
SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_mlock, CTLFLAG_RWTUN,
&unprivileged_mlock, 0, "Allow non-root users to call mlock(2)");
static int unprivileged_read_msgbuf = 1;
SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_read_msgbuf,
CTLFLAG_RW, &unprivileged_read_msgbuf, 0,
"Unprivileged processes may read the kernel message buffer");
SDT_PROVIDER_DEFINE(priv);
SDT_PROBE_DEFINE1(priv, kernel, priv_check, priv__ok, "int");
SDT_PROBE_DEFINE1(priv, kernel, priv_check, priv__err, "int");
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
/*
* Check a credential for privilege. Lots of good reasons to deny privilege;
* only a few to grant it.
*/
int
priv_check_cred(struct ucred *cred, int priv, int flags)
{
int error;
KASSERT(PRIV_VALID(priv), ("priv_check_cred: invalid privilege %d",
priv));
/*
* We first evaluate policies that may deny the granting of
* privilege unilaterally.
*/
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
#ifdef MAC
error = mac_priv_check(cred, priv);
if (error)
goto out;
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
#endif
/*
* Jail policy will restrict certain privileges that may otherwise be
* be granted.
*/
error = prison_priv_check(cred, priv);
if (error)
goto out;
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
if (unprivileged_mlock) {
/*
* Allow unprivileged users to call mlock(2)/munlock(2) and
* mlockall(2)/munlockall(2).
*/
switch (priv) {
2013-05-19 23:30:24 +00:00
case PRIV_VM_MLOCK:
case PRIV_VM_MUNLOCK:
error = 0;
goto out;
}
}
if (unprivileged_read_msgbuf) {
/*
* Allow an unprivileged user to read the kernel message
* buffer.
*/
if (priv == PRIV_MSGBUF) {
error = 0;
goto out;
}
}
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
/*
* Having determined if privilege is restricted by various policies,
* now determine if privilege is granted. At this point, any policy
* may grant privilege. For now, we allow short-circuit boolean
* evaluation, so may not call all policies. Perhaps we should.
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
*
* Superuser policy grants privilege based on the effective (or in
* the case of specific privileges, real) uid being 0. We allow the
* superuser policy to be globally disabled, although this is
* currenty of limited utility.
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
*/
if (suser_enabled) {
switch (priv) {
case PRIV_MAXFILES:
case PRIV_MAXPROC:
case PRIV_PROC_LIMIT:
if (cred->cr_ruid == 0) {
error = 0;
goto out;
}
break;
default:
if (cred->cr_uid == 0) {
error = 0;
goto out;
}
break;
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
}
}
/*
* Writes to kernel/physical memory are a typical root-only operation,
* but non-root users are expected to be able to read it (provided they
* have permission to access /dev/[k]mem).
*/
if (priv == PRIV_KMEM_READ) {
error = 0;
goto out;
}
2018-11-27 17:51:50 +00:00
/*
* Allow unprivileged process debugging on a per-jail basis.
* Do this here instead of prison_priv_check(), so it can also
* apply to prison0.
*/
if (priv == PRIV_DEBUG_UNPRIV) {
if (prison_allow(cred, PR_ALLOW_UNPRIV_DEBUG)) {
error = 0;
goto out;
}
}
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
/*
* Now check with MAC, if enabled, to see if a policy module grants
* privilege.
*/
#ifdef MAC
if (mac_priv_grant(cred, priv) == 0) {
error = 0;
goto out;
}
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
#endif
/*
* The default is deny, so if no policies have granted it, reject
* with a privilege error here.
*/
error = EPERM;
out:
if (error)
SDT_PROBE1(priv, kernel, priv_check, priv__err, priv);
else
SDT_PROBE1(priv, kernel, priv_check, priv__ok, priv);
return (error);
Add a new priv(9) kernel interface for checking the availability of privilege for threads and credentials. Unlike the existing suser(9) interface, priv(9) exposes a named privilege identifier to the privilege checking code, allowing more complex policies regarding the granting of privilege to be expressed. Two interfaces are provided, replacing the existing suser(9) interface: suser(td) -> priv_check(td, priv) suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags) A comprehensive list of currently available kernel privileges may be found in priv.h. New privileges are easily added as required, but the comments on adding privileges found in priv.h and priv(9) should be read before doing so. The new privilege interface exposed sufficient information to the privilege checking routine that it will now be possible for jail to determine whether a particular privilege is granted in the check routine, rather than relying on hints from the calling context via the SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail check function, prison_priv_check(), is exposed from kern_jail.c and used by the privilege check routine to determine if the privilege is permitted in jail. As a result, a centralized list of privileges permitted in jail is now present in kern_jail.c. The MAC Framework is now also able to instrument privilege checks, both to deny privileges otherwise granted (mac_priv_check()), and to grant privileges otherwise denied (mac_priv_grant()), permitting MAC Policy modules to implement privilege models, as well as control a much broader range of system behavior in order to constrain processes running with root privilege. The suser() and suser_cred() functions remain implemented, now in terms of priv_check() and the PRIV_ROOT privilege, for use during the transition and possibly continuing use by third party kernel modules that have not been updated. The PRIV_DRIVER privilege exists to allow device drivers to check privilege without adopting a more specific privilege identifier. This change does not modify the actual security policy, rather, it modifies the interface for privilege checks so changes to the security policy become more feasible. Sponsored by: nCircle Network Security, Inc. Obtained from: TrustedBSD Project Discussed on: arch@ Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri, Alex Lyashkov <umka at sevcity dot net>, Skip Ford <skip dot ford at verizon dot net>, Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:37:19 +00:00
}
int
priv_check(struct thread *td, int priv)
{
KASSERT(td == curthread, ("priv_check: td != curthread"));
return (priv_check_cred(td->td_ucred, priv, 0));
}