2002-07-30 02:04:05 +00:00
|
|
|
/*-
|
2009-01-24 10:57:32 +00:00
|
|
|
* Copyright (c) 1999-2002, 2006, 2009 Robert N. M. Watson
|
2002-07-30 02:04:05 +00:00
|
|
|
* Copyright (c) 2001 Ilmar S. Habibulin
|
2005-04-16 18:33:13 +00:00
|
|
|
* Copyright (c) 2001-2005 Networks Associates Technology, Inc.
|
2006-10-22 11:52:19 +00:00
|
|
|
* Copyright (c) 2005-2006 SPARTA, Inc.
|
2009-01-10 10:58:41 +00:00
|
|
|
* Copyright (c) 2008-2009 Apple Inc.
|
2002-07-30 02:04:05 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This software was developed by Robert Watson and Ilmar Habibulin for the
|
|
|
|
* TrustedBSD Project.
|
|
|
|
*
|
2002-11-04 01:42:39 +00:00
|
|
|
* This software was developed for the FreeBSD Project in part by Network
|
|
|
|
* Associates Laboratories, the Security Research Division of Network
|
|
|
|
* Associates, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"),
|
|
|
|
* as part of the DARPA CHATS research program.
|
2002-07-30 02:04:05 +00:00
|
|
|
*
|
2005-07-14 10:46:03 +00:00
|
|
|
* This software was enhanced by SPARTA ISSO under SPAWAR contract
|
|
|
|
* N66001-04-C-6019 ("SEFOS").
|
|
|
|
*
|
2009-03-08 10:58:37 +00:00
|
|
|
* This software was developed at the University of Cambridge Computer
|
|
|
|
* Laboratory with support from a grant from Google, Inc.
|
|
|
|
*
|
2002-07-30 02:04:05 +00:00
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
2003-06-11 00:56:59 +00:00
|
|
|
|
2003-11-11 03:40:04 +00:00
|
|
|
/*-
|
2006-12-28 17:25:57 +00:00
|
|
|
* Framework for extensible kernel access control. This file contains core
|
|
|
|
* kernel infrastructure for the TrustedBSD MAC Framework, including policy
|
|
|
|
* registration, versioning, locking, error composition operator, and system
|
|
|
|
* calls.
|
|
|
|
*
|
|
|
|
* The MAC Framework implements three programming interfaces:
|
|
|
|
*
|
|
|
|
* - The kernel MAC interface, defined in mac_framework.h, and invoked
|
|
|
|
* throughout the kernel to request security decisions, notify of security
|
|
|
|
* related events, etc.
|
|
|
|
*
|
|
|
|
* - The MAC policy module interface, defined in mac_policy.h, which is
|
|
|
|
* implemented by MAC policy modules and invoked by the MAC Framework to
|
|
|
|
* forward kernel security requests and notifications to policy modules.
|
|
|
|
*
|
|
|
|
* - The user MAC API, defined in mac.h, which allows user programs to query
|
|
|
|
* and set label state on objects.
|
|
|
|
*
|
|
|
|
* The majority of the MAC Framework implementation may be found in
|
|
|
|
* src/sys/security/mac. Sample policy modules may be found in
|
2005-04-22 19:09:12 +00:00
|
|
|
* src/sys/security/mac_*.
|
2002-07-30 02:04:05 +00:00
|
|
|
*/
|
|
|
|
|
2006-12-29 20:16:29 +00:00
|
|
|
#include "opt_mac.h"
|
|
|
|
|
2003-06-11 00:56:59 +00:00
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
2002-07-30 02:04:05 +00:00
|
|
|
#include <sys/param.h>
|
2011-12-12 10:05:13 +00:00
|
|
|
#include <sys/systm.h>
|
2002-11-13 15:47:09 +00:00
|
|
|
#include <sys/condvar.h>
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/lock.h>
|
|
|
|
#include <sys/mac.h>
|
2002-08-12 02:00:21 +00:00
|
|
|
#include <sys/module.h>
|
2009-05-27 09:41:58 +00:00
|
|
|
#include <sys/rmlock.h>
|
2009-01-24 10:57:32 +00:00
|
|
|
#include <sys/sdt.h>
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
#include <sys/sx.h>
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
#include <sys/sysctl.h>
|
|
|
|
|
2006-10-22 11:52:19 +00:00
|
|
|
#include <security/mac/mac_framework.h>
|
mac_Finish break-out of kern_mac.c into parts:
Include src/sys/security/mac/mac_internal.h in kern_mac.c.
Remove redundant defines from the include: SYSCTL_DECL(), debug macros,
composition macros.
Unstaticize various bits now exposed to the remainder of the kernel:
mac_init_label(), mac_destroy_label().
Remove all the functions now implemented in mac_process/mac_vfs/mac_net/
mac_pipe. Also remove debug counters, sysctls exporting debug
counters, enforcement flags, sysctls exporting enforcement flags.
Leave module declaration, sysctl nodes, mactemp malloc type, system
calls.
This should conclude MAC/LINT/NOTES breakage from the break-out process,
but I'm running builds now to make sure I caught everything.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-10-22 20:59:31 +00:00
|
|
|
#include <security/mac/mac_internal.h>
|
2006-12-22 23:34:47 +00:00
|
|
|
#include <security/mac/mac_policy.h>
|
mac_Finish break-out of kern_mac.c into parts:
Include src/sys/security/mac/mac_internal.h in kern_mac.c.
Remove redundant defines from the include: SYSCTL_DECL(), debug macros,
composition macros.
Unstaticize various bits now exposed to the remainder of the kernel:
mac_init_label(), mac_destroy_label().
Remove all the functions now implemented in mac_process/mac_vfs/mac_net/
mac_pipe. Also remove debug counters, sysctls exporting debug
counters, enforcement flags, sysctls exporting enforcement flags.
Leave module declaration, sysctl nodes, mactemp malloc type, system
calls.
This should conclude MAC/LINT/NOTES breakage from the break-out process,
but I'm running builds now to make sure I caught everything.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-10-22 20:59:31 +00:00
|
|
|
|
2009-01-24 10:57:32 +00:00
|
|
|
/*
|
2009-03-08 00:50:37 +00:00
|
|
|
* DTrace SDT providers for MAC.
|
2009-01-24 10:57:32 +00:00
|
|
|
*/
|
|
|
|
SDT_PROVIDER_DEFINE(mac);
|
2009-03-08 00:50:37 +00:00
|
|
|
SDT_PROVIDER_DEFINE(mac_framework);
|
|
|
|
|
2013-11-26 08:46:27 +00:00
|
|
|
SDT_PROBE_DEFINE2(mac, kernel, policy, modevent, "int",
|
2013-10-01 15:40:27 +00:00
|
|
|
"struct mac_policy_conf *");
|
2013-11-26 08:46:27 +00:00
|
|
|
SDT_PROBE_DEFINE1(mac, kernel, policy, register,
|
2010-08-22 11:18:57 +00:00
|
|
|
"struct mac_policy_conf *");
|
2013-11-26 08:46:27 +00:00
|
|
|
SDT_PROBE_DEFINE1(mac, kernel, policy, unregister,
|
2010-08-22 11:18:57 +00:00
|
|
|
"struct mac_policy_conf *");
|
2009-01-24 10:57:32 +00:00
|
|
|
|
2002-08-12 02:00:21 +00:00
|
|
|
/*
|
2006-12-28 17:25:57 +00:00
|
|
|
* Root sysctl node for all MAC and MAC policy controls.
|
2002-08-12 02:00:21 +00:00
|
|
|
*/
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
SYSCTL_NODE(_security, OID_AUTO, mac, CTLFLAG_RW, 0,
|
|
|
|
"TrustedBSD MAC policy controls");
|
2002-10-05 16:30:53 +00:00
|
|
|
|
2006-12-28 17:25:57 +00:00
|
|
|
/*
|
|
|
|
* Declare that the kernel provides MAC support, version 3 (FreeBSD 7.x).
|
|
|
|
* This permits modules to refuse to be loaded if the necessary support isn't
|
|
|
|
* present, even if it's pre-boot.
|
|
|
|
*/
|
|
|
|
MODULE_VERSION(kernel_mac_support, MAC_VERSION);
|
2006-12-28 21:48:38 +00:00
|
|
|
|
|
|
|
static unsigned int mac_version = MAC_VERSION;
|
2006-12-28 17:25:57 +00:00
|
|
|
SYSCTL_UINT(_security_mac, OID_AUTO, version, CTLFLAG_RD, &mac_version, 0,
|
|
|
|
"");
|
|
|
|
|
2006-12-20 20:38:44 +00:00
|
|
|
/*
|
|
|
|
* Labels consist of a indexed set of "slots", which are allocated policies
|
|
|
|
* as required. The MAC Framework maintains a bitmask of slots allocated so
|
|
|
|
* far to prevent reuse. Slots cannot be reused, as the MAC Framework
|
|
|
|
* guarantees that newly allocated slots in labels will be NULL unless
|
|
|
|
* otherwise initialized, and because we do not have a mechanism to garbage
|
|
|
|
* collect slots on policy unload. As labeled policies tend to be statically
|
|
|
|
* loaded during boot, and not frequently unloaded and reloaded, this is not
|
|
|
|
* generally an issue.
|
|
|
|
*/
|
2003-05-08 19:49:42 +00:00
|
|
|
#if MAC_MAX_SLOTS > 32
|
|
|
|
#error "MAC_MAX_SLOTS too large"
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
#endif
|
2002-10-20 03:41:09 +00:00
|
|
|
|
2003-05-08 19:49:42 +00:00
|
|
|
static unsigned int mac_max_slots = MAC_MAX_SLOTS;
|
|
|
|
static unsigned int mac_slot_offsets_free = (1 << MAC_MAX_SLOTS) - 1;
|
2006-12-28 17:25:57 +00:00
|
|
|
SYSCTL_UINT(_security_mac, OID_AUTO, max_slots, CTLFLAG_RD, &mac_max_slots,
|
|
|
|
0, "");
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
|
2002-10-25 20:45:27 +00:00
|
|
|
/*
|
|
|
|
* Has the kernel started generating labeled objects yet? All read/write
|
|
|
|
* access to this variable is serialized during the boot process. Following
|
|
|
|
* the end of serialization, we don't update this flag; no locking.
|
|
|
|
*/
|
2006-12-28 21:48:38 +00:00
|
|
|
static int mac_late = 0;
|
Slightly change the semantics of vnode labels for MAC: rather than
"refreshing" the label on the vnode before use, just get the label
right from inception. For single-label file systems, set the label
in the generic VFS getnewvnode() code; for multi-label file systems,
leave the labeling up to the file system. With UFS1/2, this means
reading the extended attribute during vfs_vget() as the inode is
pulled off disk, rather than hitting the extended attributes
frequently during operations later, improving performance. This
also corrects sematics for shared vnode locks, which were not
previously present in the system. This chances the cache
coherrency properties WRT out-of-band access to label data, but in
an acceptable form. With UFS1, there is a small race condition
during automatic extended attribute start -- this is not present
with UFS2, and occurs because EAs aren't available at vnode
inception. We'll introduce a work around for this shortly.
Approved by: re
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-26 14:38:24 +00:00
|
|
|
|
Move MAC label storage for mbufs into m_tags from the m_pkthdr structure,
returning some additional room in the first mbuf in a chain, and
avoiding feature-specific contents in the mbuf header. To do this:
- Modify mbuf_to_label() to extract the tag, returning NULL if not
found.
- Introduce mac_init_mbuf_tag() which does most of the work
mac_init_mbuf() used to do, except on an m_tag rather than an
mbuf.
- Scale back mac_init_mbuf() to perform m_tag allocation and invoke
mac_init_mbuf_tag().
- Replace mac_destroy_mbuf() with mac_destroy_mbuf_tag(), since
m_tag's are now GC'd deep in the m_tag/mbuf code rather than
at a higher level when mbufs are directly free()'d.
- Add mac_copy_mbuf_tag() to support m_copy_pkthdr() and related
notions.
- Generally change all references to mbuf labels so that they use
mbuf_to_label() rather than &mbuf->m_pkthdr.label. This
required no changes in the MAC policies (yay!).
- Tweak mbuf release routines to not call mac_destroy_mbuf(),
tag destruction takes care of it for us now.
- Remove MAC magic from m_copy_pkthdr() and m_move_pkthdr() --
the existing m_tag support does all this for us. Note that
we can no longer just zero the m_tag list on the target mbuf,
rather, we have to delete the chain because m_tag's will
already be hung off freshly allocated mbuf's.
- Tweak m_tag copying routines so that if we're copying a MAC
m_tag, we don't do a binary copy, rather, we initialize the
new storage and do a deep copy of the label.
- Remove use of MAC_FLAG_INITIALIZED in a few bizarre places
having to do with mbuf header copies previously.
- When an mbuf is copied in ip_input(), we no longer need to
explicitly copy the label because it will get handled by the
m_tag code now.
- No longer any weird handling of MAC labels in if_loop.c during
header copies.
- Add MPC_LOADTIME_FLAG_LABELMBUFS flag to Biba, MLS, mac_test.
In mac_test, handle the label==NULL case, since it can be
dynamically loaded.
In order to improve performance with this change, introduce the notion
of "lazy MAC label allocation" -- only allocate m_tag storage for MAC
labels if we're running with a policy that uses MAC labels on mbufs.
Policies declare this intent by setting the MPC_LOADTIME_FLAG_LABELMBUFS
flag in their load-time flags field during declaration. Note: this
opens up the possibility of post-boot policy modules getting back NULL
slot entries even though they have policy invariants of non-NULL slot
entries, as the policy might have been loaded after the mbuf was
allocated, leaving the mbuf without label storage. Policies that cannot
handle this case must be declared as NOTLATE, or must be modified.
- mac_labelmbufs holds the current cumulative status as to whether
any policies require mbuf labeling or not. This is updated whenever
the active policy set changes by the function mac_policy_updateflags().
The function iterates the list and checks whether any have the
flag set. Write access to this variable is protected by the policy
list; read access is currently not protected for performance reasons.
This might change if it causes problems.
- Add MAC_POLICY_LIST_ASSERT_EXCLUSIVE() to permit the flags update
function to assert appropriate locks.
- This makes allocation in mac_init_mbuf() conditional on the flag.
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-04-14 20:39:06 +00:00
|
|
|
/*
|
Introduce two related changes to the TrustedBSD MAC Framework:
(1) Abstract interpreter vnode labeling in execve(2) and mac_execve(2)
so that the general exec code isn't aware of the details of
allocating, copying, and freeing labels, rather, simply passes in
a void pointer to start and stop functions that will be used by
the framework. This change will be MFC'd.
(2) Introduce a new flags field to the MAC_POLICY_SET(9) interface
allowing policies to declare which types of objects require label
allocation, initialization, and destruction, and define a set of
flags covering various supported object types (MPC_OBJECT_PROC,
MPC_OBJECT_VNODE, MPC_OBJECT_INPCB, ...). This change reduces the
overhead of compiling the MAC Framework into the kernel if policies
aren't loaded, or if policies require labels on only a small number
or even no object types. Each time a policy is loaded or unloaded,
we recalculate a mask of labeled object types across all policies
present in the system. Eliminate MAC_ALWAYS_LABEL_MBUF option as it
is no longer required.
MFC after: 1 week ((1) only)
Reviewed by: csjp
Obtained from: TrustedBSD Project
Sponsored by: Apple, Inc.
2008-08-23 15:26:36 +00:00
|
|
|
* Each policy declares a mask of object types requiring labels to be
|
|
|
|
* allocated for them. For convenience, we combine and cache the bitwise or
|
|
|
|
* of the per-policy object flags to track whether we will allocate a label
|
|
|
|
* for an object type at run-time.
|
Move MAC label storage for mbufs into m_tags from the m_pkthdr structure,
returning some additional room in the first mbuf in a chain, and
avoiding feature-specific contents in the mbuf header. To do this:
- Modify mbuf_to_label() to extract the tag, returning NULL if not
found.
- Introduce mac_init_mbuf_tag() which does most of the work
mac_init_mbuf() used to do, except on an m_tag rather than an
mbuf.
- Scale back mac_init_mbuf() to perform m_tag allocation and invoke
mac_init_mbuf_tag().
- Replace mac_destroy_mbuf() with mac_destroy_mbuf_tag(), since
m_tag's are now GC'd deep in the m_tag/mbuf code rather than
at a higher level when mbufs are directly free()'d.
- Add mac_copy_mbuf_tag() to support m_copy_pkthdr() and related
notions.
- Generally change all references to mbuf labels so that they use
mbuf_to_label() rather than &mbuf->m_pkthdr.label. This
required no changes in the MAC policies (yay!).
- Tweak mbuf release routines to not call mac_destroy_mbuf(),
tag destruction takes care of it for us now.
- Remove MAC magic from m_copy_pkthdr() and m_move_pkthdr() --
the existing m_tag support does all this for us. Note that
we can no longer just zero the m_tag list on the target mbuf,
rather, we have to delete the chain because m_tag's will
already be hung off freshly allocated mbuf's.
- Tweak m_tag copying routines so that if we're copying a MAC
m_tag, we don't do a binary copy, rather, we initialize the
new storage and do a deep copy of the label.
- Remove use of MAC_FLAG_INITIALIZED in a few bizarre places
having to do with mbuf header copies previously.
- When an mbuf is copied in ip_input(), we no longer need to
explicitly copy the label because it will get handled by the
m_tag code now.
- No longer any weird handling of MAC labels in if_loop.c during
header copies.
- Add MPC_LOADTIME_FLAG_LABELMBUFS flag to Biba, MLS, mac_test.
In mac_test, handle the label==NULL case, since it can be
dynamically loaded.
In order to improve performance with this change, introduce the notion
of "lazy MAC label allocation" -- only allocate m_tag storage for MAC
labels if we're running with a policy that uses MAC labels on mbufs.
Policies declare this intent by setting the MPC_LOADTIME_FLAG_LABELMBUFS
flag in their load-time flags field during declaration. Note: this
opens up the possibility of post-boot policy modules getting back NULL
slot entries even though they have policy invariants of non-NULL slot
entries, as the policy might have been loaded after the mbuf was
allocated, leaving the mbuf without label storage. Policies that cannot
handle this case must be declared as NOTLATE, or must be modified.
- mac_labelmbufs holds the current cumulative status as to whether
any policies require mbuf labeling or not. This is updated whenever
the active policy set changes by the function mac_policy_updateflags().
The function iterates the list and checks whether any have the
flag set. Write access to this variable is protected by the policy
list; read access is currently not protected for performance reasons.
This might change if it causes problems.
- Add MAC_POLICY_LIST_ASSERT_EXCLUSIVE() to permit the flags update
function to assert appropriate locks.
- This makes allocation in mac_init_mbuf() conditional on the flag.
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-04-14 20:39:06 +00:00
|
|
|
*/
|
Introduce two related changes to the TrustedBSD MAC Framework:
(1) Abstract interpreter vnode labeling in execve(2) and mac_execve(2)
so that the general exec code isn't aware of the details of
allocating, copying, and freeing labels, rather, simply passes in
a void pointer to start and stop functions that will be used by
the framework. This change will be MFC'd.
(2) Introduce a new flags field to the MAC_POLICY_SET(9) interface
allowing policies to declare which types of objects require label
allocation, initialization, and destruction, and define a set of
flags covering various supported object types (MPC_OBJECT_PROC,
MPC_OBJECT_VNODE, MPC_OBJECT_INPCB, ...). This change reduces the
overhead of compiling the MAC Framework into the kernel if policies
aren't loaded, or if policies require labels on only a small number
or even no object types. Each time a policy is loaded or unloaded,
we recalculate a mask of labeled object types across all policies
present in the system. Eliminate MAC_ALWAYS_LABEL_MBUF option as it
is no longer required.
MFC after: 1 week ((1) only)
Reviewed by: csjp
Obtained from: TrustedBSD Project
Sponsored by: Apple, Inc.
2008-08-23 15:26:36 +00:00
|
|
|
uint64_t mac_labeled;
|
2011-01-12 19:54:14 +00:00
|
|
|
SYSCTL_UQUAD(_security_mac, OID_AUTO, labeled, CTLFLAG_RD, &mac_labeled, 0,
|
Introduce two related changes to the TrustedBSD MAC Framework:
(1) Abstract interpreter vnode labeling in execve(2) and mac_execve(2)
so that the general exec code isn't aware of the details of
allocating, copying, and freeing labels, rather, simply passes in
a void pointer to start and stop functions that will be used by
the framework. This change will be MFC'd.
(2) Introduce a new flags field to the MAC_POLICY_SET(9) interface
allowing policies to declare which types of objects require label
allocation, initialization, and destruction, and define a set of
flags covering various supported object types (MPC_OBJECT_PROC,
MPC_OBJECT_VNODE, MPC_OBJECT_INPCB, ...). This change reduces the
overhead of compiling the MAC Framework into the kernel if policies
aren't loaded, or if policies require labels on only a small number
or even no object types. Each time a policy is loaded or unloaded,
we recalculate a mask of labeled object types across all policies
present in the system. Eliminate MAC_ALWAYS_LABEL_MBUF option as it
is no longer required.
MFC after: 1 week ((1) only)
Reviewed by: csjp
Obtained from: TrustedBSD Project
Sponsored by: Apple, Inc.
2008-08-23 15:26:36 +00:00
|
|
|
"Mask of object types being labeled");
|
Move MAC label storage for mbufs into m_tags from the m_pkthdr structure,
returning some additional room in the first mbuf in a chain, and
avoiding feature-specific contents in the mbuf header. To do this:
- Modify mbuf_to_label() to extract the tag, returning NULL if not
found.
- Introduce mac_init_mbuf_tag() which does most of the work
mac_init_mbuf() used to do, except on an m_tag rather than an
mbuf.
- Scale back mac_init_mbuf() to perform m_tag allocation and invoke
mac_init_mbuf_tag().
- Replace mac_destroy_mbuf() with mac_destroy_mbuf_tag(), since
m_tag's are now GC'd deep in the m_tag/mbuf code rather than
at a higher level when mbufs are directly free()'d.
- Add mac_copy_mbuf_tag() to support m_copy_pkthdr() and related
notions.
- Generally change all references to mbuf labels so that they use
mbuf_to_label() rather than &mbuf->m_pkthdr.label. This
required no changes in the MAC policies (yay!).
- Tweak mbuf release routines to not call mac_destroy_mbuf(),
tag destruction takes care of it for us now.
- Remove MAC magic from m_copy_pkthdr() and m_move_pkthdr() --
the existing m_tag support does all this for us. Note that
we can no longer just zero the m_tag list on the target mbuf,
rather, we have to delete the chain because m_tag's will
already be hung off freshly allocated mbuf's.
- Tweak m_tag copying routines so that if we're copying a MAC
m_tag, we don't do a binary copy, rather, we initialize the
new storage and do a deep copy of the label.
- Remove use of MAC_FLAG_INITIALIZED in a few bizarre places
having to do with mbuf header copies previously.
- When an mbuf is copied in ip_input(), we no longer need to
explicitly copy the label because it will get handled by the
m_tag code now.
- No longer any weird handling of MAC labels in if_loop.c during
header copies.
- Add MPC_LOADTIME_FLAG_LABELMBUFS flag to Biba, MLS, mac_test.
In mac_test, handle the label==NULL case, since it can be
dynamically loaded.
In order to improve performance with this change, introduce the notion
of "lazy MAC label allocation" -- only allocate m_tag storage for MAC
labels if we're running with a policy that uses MAC labels on mbufs.
Policies declare this intent by setting the MPC_LOADTIME_FLAG_LABELMBUFS
flag in their load-time flags field during declaration. Note: this
opens up the possibility of post-boot policy modules getting back NULL
slot entries even though they have policy invariants of non-NULL slot
entries, as the policy might have been loaded after the mbuf was
allocated, leaving the mbuf without label storage. Policies that cannot
handle this case must be declared as NOTLATE, or must be modified.
- mac_labelmbufs holds the current cumulative status as to whether
any policies require mbuf labeling or not. This is updated whenever
the active policy set changes by the function mac_policy_updateflags().
The function iterates the list and checks whether any have the
flag set. Write access to this variable is protected by the policy
list; read access is currently not protected for performance reasons.
This might change if it causes problems.
- Add MAC_POLICY_LIST_ASSERT_EXCLUSIVE() to permit the flags update
function to assert appropriate locks.
- This makes allocation in mac_init_mbuf() conditional on the flag.
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-04-14 20:39:06 +00:00
|
|
|
|
2002-10-22 14:29:47 +00:00
|
|
|
MALLOC_DEFINE(M_MACTEMP, "mactemp", "MAC temporary label storage");
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
|
|
|
|
/*
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
* MAC policy modules are placed in one of two lists: mac_static_policy_list,
|
|
|
|
* for policies that are loaded early and cannot be unloaded, and
|
|
|
|
* mac_policy_list, which holds policies either loaded later in the boot
|
|
|
|
* cycle or that may be unloaded. The static policy list does not require
|
|
|
|
* locks to iterate over, but the dynamic list requires synchronization.
|
|
|
|
* Support for dynamic policy loading can be compiled out using the
|
|
|
|
* MAC_STATIC kernel option.
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
*
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
* The dynamic policy list is protected by two locks: modifying the list
|
|
|
|
* requires both locks to be held exclusively. One of the locks,
|
2009-05-27 09:41:58 +00:00
|
|
|
* mac_policy_rm, is acquired over policy entry points that will never sleep;
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
* the other, mac_policy_sx, is acquire over policy entry points that may
|
|
|
|
* sleep. The former category will be used when kernel locks may be held
|
|
|
|
* over calls to the MAC Framework, during network processing in ithreads,
|
|
|
|
* etc. The latter will tend to involve potentially blocking memory
|
|
|
|
* allocations, extended attribute I/O, etc.
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
*/
|
2004-05-03 20:53:05 +00:00
|
|
|
#ifndef MAC_STATIC
|
2009-05-27 09:41:58 +00:00
|
|
|
static struct rmlock mac_policy_rm; /* Non-sleeping entry points. */
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
static struct sx mac_policy_sx; /* Sleeping entry points. */
|
2004-05-03 20:53:05 +00:00
|
|
|
#endif
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
|
2003-10-22 20:47:41 +00:00
|
|
|
struct mac_policy_list_head mac_policy_list;
|
|
|
|
struct mac_policy_list_head mac_static_policy_list;
|
2009-06-02 18:26:17 +00:00
|
|
|
u_int mac_policy_count; /* Registered policy count. */
|
2002-11-13 15:47:09 +00:00
|
|
|
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
static void mac_policy_xlock(void);
|
|
|
|
static void mac_policy_xlock_assert(void);
|
|
|
|
static void mac_policy_xunlock(void);
|
|
|
|
|
2003-10-22 20:47:41 +00:00
|
|
|
void
|
2009-05-27 09:41:58 +00:00
|
|
|
mac_policy_slock_nosleep(struct rm_priotracker *tracker)
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
{
|
2003-11-11 03:40:04 +00:00
|
|
|
|
2004-05-03 20:53:05 +00:00
|
|
|
#ifndef MAC_STATIC
|
2004-10-30 14:20:59 +00:00
|
|
|
if (!mac_late)
|
|
|
|
return;
|
|
|
|
|
2009-05-27 09:41:58 +00:00
|
|
|
rm_rlock(&mac_policy_rm, tracker);
|
2004-05-03 20:53:05 +00:00
|
|
|
#endif
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
}
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
|
2003-10-22 20:47:41 +00:00
|
|
|
void
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
mac_policy_slock_sleep(void)
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
{
|
2003-11-11 03:40:04 +00:00
|
|
|
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
|
|
|
|
"mac_policy_slock_sleep");
|
|
|
|
|
2004-05-03 20:53:05 +00:00
|
|
|
#ifndef MAC_STATIC
|
2004-10-30 14:20:59 +00:00
|
|
|
if (!mac_late)
|
|
|
|
return;
|
|
|
|
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
sx_slock(&mac_policy_sx);
|
2004-05-03 20:53:05 +00:00
|
|
|
#endif
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
}
|
Move MAC label storage for mbufs into m_tags from the m_pkthdr structure,
returning some additional room in the first mbuf in a chain, and
avoiding feature-specific contents in the mbuf header. To do this:
- Modify mbuf_to_label() to extract the tag, returning NULL if not
found.
- Introduce mac_init_mbuf_tag() which does most of the work
mac_init_mbuf() used to do, except on an m_tag rather than an
mbuf.
- Scale back mac_init_mbuf() to perform m_tag allocation and invoke
mac_init_mbuf_tag().
- Replace mac_destroy_mbuf() with mac_destroy_mbuf_tag(), since
m_tag's are now GC'd deep in the m_tag/mbuf code rather than
at a higher level when mbufs are directly free()'d.
- Add mac_copy_mbuf_tag() to support m_copy_pkthdr() and related
notions.
- Generally change all references to mbuf labels so that they use
mbuf_to_label() rather than &mbuf->m_pkthdr.label. This
required no changes in the MAC policies (yay!).
- Tweak mbuf release routines to not call mac_destroy_mbuf(),
tag destruction takes care of it for us now.
- Remove MAC magic from m_copy_pkthdr() and m_move_pkthdr() --
the existing m_tag support does all this for us. Note that
we can no longer just zero the m_tag list on the target mbuf,
rather, we have to delete the chain because m_tag's will
already be hung off freshly allocated mbuf's.
- Tweak m_tag copying routines so that if we're copying a MAC
m_tag, we don't do a binary copy, rather, we initialize the
new storage and do a deep copy of the label.
- Remove use of MAC_FLAG_INITIALIZED in a few bizarre places
having to do with mbuf header copies previously.
- When an mbuf is copied in ip_input(), we no longer need to
explicitly copy the label because it will get handled by the
m_tag code now.
- No longer any weird handling of MAC labels in if_loop.c during
header copies.
- Add MPC_LOADTIME_FLAG_LABELMBUFS flag to Biba, MLS, mac_test.
In mac_test, handle the label==NULL case, since it can be
dynamically loaded.
In order to improve performance with this change, introduce the notion
of "lazy MAC label allocation" -- only allocate m_tag storage for MAC
labels if we're running with a policy that uses MAC labels on mbufs.
Policies declare this intent by setting the MPC_LOADTIME_FLAG_LABELMBUFS
flag in their load-time flags field during declaration. Note: this
opens up the possibility of post-boot policy modules getting back NULL
slot entries even though they have policy invariants of non-NULL slot
entries, as the policy might have been loaded after the mbuf was
allocated, leaving the mbuf without label storage. Policies that cannot
handle this case must be declared as NOTLATE, or must be modified.
- mac_labelmbufs holds the current cumulative status as to whether
any policies require mbuf labeling or not. This is updated whenever
the active policy set changes by the function mac_policy_updateflags().
The function iterates the list and checks whether any have the
flag set. Write access to this variable is protected by the policy
list; read access is currently not protected for performance reasons.
This might change if it causes problems.
- Add MAC_POLICY_LIST_ASSERT_EXCLUSIVE() to permit the flags update
function to assert appropriate locks.
- This makes allocation in mac_init_mbuf() conditional on the flag.
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-04-14 20:39:06 +00:00
|
|
|
|
2003-10-22 20:47:41 +00:00
|
|
|
void
|
2009-05-27 09:41:58 +00:00
|
|
|
mac_policy_sunlock_nosleep(struct rm_priotracker *tracker)
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
{
|
2006-12-31 20:26:20 +00:00
|
|
|
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
#ifndef MAC_STATIC
|
2004-10-30 14:20:59 +00:00
|
|
|
if (!mac_late)
|
|
|
|
return;
|
|
|
|
|
2009-05-27 09:41:58 +00:00
|
|
|
rm_runlock(&mac_policy_rm, tracker);
|
2004-05-03 20:53:05 +00:00
|
|
|
#endif
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
}
|
|
|
|
|
2003-10-22 20:47:41 +00:00
|
|
|
void
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
mac_policy_sunlock_sleep(void)
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
{
|
2003-11-11 03:40:04 +00:00
|
|
|
|
2004-05-03 20:53:05 +00:00
|
|
|
#ifndef MAC_STATIC
|
2004-10-30 14:20:59 +00:00
|
|
|
if (!mac_late)
|
|
|
|
return;
|
|
|
|
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
sx_sunlock(&mac_policy_sx);
|
2004-05-03 20:53:05 +00:00
|
|
|
#endif
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
}
|
|
|
|
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
static void
|
|
|
|
mac_policy_xlock(void)
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
{
|
|
|
|
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
|
|
|
|
"mac_policy_xlock()");
|
|
|
|
|
|
|
|
#ifndef MAC_STATIC
|
2004-10-30 14:20:59 +00:00
|
|
|
if (!mac_late)
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
sx_xlock(&mac_policy_sx);
|
2009-05-27 09:41:58 +00:00
|
|
|
rm_wlock(&mac_policy_rm);
|
2004-05-03 20:53:05 +00:00
|
|
|
#endif
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
}
|
|
|
|
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
static void
|
|
|
|
mac_policy_xunlock(void)
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
{
|
2006-12-31 20:26:20 +00:00
|
|
|
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
#ifndef MAC_STATIC
|
2004-10-30 14:20:59 +00:00
|
|
|
if (!mac_late)
|
|
|
|
return;
|
|
|
|
|
2009-05-27 09:41:58 +00:00
|
|
|
rm_wunlock(&mac_policy_rm);
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
sx_xunlock(&mac_policy_sx);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_policy_xlock_assert(void)
|
|
|
|
{
|
2006-12-31 20:26:20 +00:00
|
|
|
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
#ifndef MAC_STATIC
|
|
|
|
if (!mac_late)
|
|
|
|
return;
|
|
|
|
|
2009-05-27 09:41:58 +00:00
|
|
|
/* XXXRW: rm_assert(&mac_policy_rm, RA_WLOCKED); */
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
sx_assert(&mac_policy_sx, SA_XLOCKED);
|
2004-05-03 20:53:05 +00:00
|
|
|
#endif
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
}
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize the MAC subsystem, including appropriate SMP locks.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_init(void)
|
|
|
|
{
|
|
|
|
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
LIST_INIT(&mac_static_policy_list);
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
LIST_INIT(&mac_policy_list);
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
mac_labelzone_init();
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
|
2004-05-03 20:53:05 +00:00
|
|
|
#ifndef MAC_STATIC
|
2013-09-29 20:21:34 +00:00
|
|
|
rm_init_flags(&mac_policy_rm, "mac_policy_rm", RM_NOWITNESS |
|
|
|
|
RM_RECURSE);
|
2009-06-02 22:22:09 +00:00
|
|
|
sx_init_flags(&mac_policy_sx, "mac_policy_sx", SX_NOWITNESS);
|
2004-05-03 20:53:05 +00:00
|
|
|
#endif
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2006-12-20 20:38:44 +00:00
|
|
|
* For the purposes of modules that want to know if they were loaded "early",
|
|
|
|
* set the mac_late flag once we've processed modules either linked into the
|
|
|
|
* kernel, or loaded before the kernel startup.
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_late_init(void)
|
|
|
|
{
|
|
|
|
|
|
|
|
mac_late = 1;
|
|
|
|
}
|
|
|
|
|
Move MAC label storage for mbufs into m_tags from the m_pkthdr structure,
returning some additional room in the first mbuf in a chain, and
avoiding feature-specific contents in the mbuf header. To do this:
- Modify mbuf_to_label() to extract the tag, returning NULL if not
found.
- Introduce mac_init_mbuf_tag() which does most of the work
mac_init_mbuf() used to do, except on an m_tag rather than an
mbuf.
- Scale back mac_init_mbuf() to perform m_tag allocation and invoke
mac_init_mbuf_tag().
- Replace mac_destroy_mbuf() with mac_destroy_mbuf_tag(), since
m_tag's are now GC'd deep in the m_tag/mbuf code rather than
at a higher level when mbufs are directly free()'d.
- Add mac_copy_mbuf_tag() to support m_copy_pkthdr() and related
notions.
- Generally change all references to mbuf labels so that they use
mbuf_to_label() rather than &mbuf->m_pkthdr.label. This
required no changes in the MAC policies (yay!).
- Tweak mbuf release routines to not call mac_destroy_mbuf(),
tag destruction takes care of it for us now.
- Remove MAC magic from m_copy_pkthdr() and m_move_pkthdr() --
the existing m_tag support does all this for us. Note that
we can no longer just zero the m_tag list on the target mbuf,
rather, we have to delete the chain because m_tag's will
already be hung off freshly allocated mbuf's.
- Tweak m_tag copying routines so that if we're copying a MAC
m_tag, we don't do a binary copy, rather, we initialize the
new storage and do a deep copy of the label.
- Remove use of MAC_FLAG_INITIALIZED in a few bizarre places
having to do with mbuf header copies previously.
- When an mbuf is copied in ip_input(), we no longer need to
explicitly copy the label because it will get handled by the
m_tag code now.
- No longer any weird handling of MAC labels in if_loop.c during
header copies.
- Add MPC_LOADTIME_FLAG_LABELMBUFS flag to Biba, MLS, mac_test.
In mac_test, handle the label==NULL case, since it can be
dynamically loaded.
In order to improve performance with this change, introduce the notion
of "lazy MAC label allocation" -- only allocate m_tag storage for MAC
labels if we're running with a policy that uses MAC labels on mbufs.
Policies declare this intent by setting the MPC_LOADTIME_FLAG_LABELMBUFS
flag in their load-time flags field during declaration. Note: this
opens up the possibility of post-boot policy modules getting back NULL
slot entries even though they have policy invariants of non-NULL slot
entries, as the policy might have been loaded after the mbuf was
allocated, leaving the mbuf without label storage. Policies that cannot
handle this case must be declared as NOTLATE, or must be modified.
- mac_labelmbufs holds the current cumulative status as to whether
any policies require mbuf labeling or not. This is updated whenever
the active policy set changes by the function mac_policy_updateflags().
The function iterates the list and checks whether any have the
flag set. Write access to this variable is protected by the policy
list; read access is currently not protected for performance reasons.
This might change if it causes problems.
- Add MAC_POLICY_LIST_ASSERT_EXCLUSIVE() to permit the flags update
function to assert appropriate locks.
- This makes allocation in mac_init_mbuf() conditional on the flag.
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-04-14 20:39:06 +00:00
|
|
|
/*
|
2009-01-10 10:58:41 +00:00
|
|
|
* Given a policy, derive from its set of non-NULL label init methods what
|
|
|
|
* object types the policy is interested in.
|
|
|
|
*/
|
|
|
|
static uint64_t
|
|
|
|
mac_policy_getlabeled(struct mac_policy_conf *mpc)
|
|
|
|
{
|
|
|
|
uint64_t labeled;
|
|
|
|
|
|
|
|
#define MPC_FLAG(method, flag) \
|
|
|
|
if (mpc->mpc_ops->mpo_ ## method != NULL) \
|
|
|
|
labeled |= (flag); \
|
|
|
|
|
|
|
|
labeled = 0;
|
|
|
|
MPC_FLAG(cred_init_label, MPC_OBJECT_CRED);
|
|
|
|
MPC_FLAG(proc_init_label, MPC_OBJECT_PROC);
|
|
|
|
MPC_FLAG(vnode_init_label, MPC_OBJECT_VNODE);
|
|
|
|
MPC_FLAG(inpcb_init_label, MPC_OBJECT_INPCB);
|
|
|
|
MPC_FLAG(socket_init_label, MPC_OBJECT_SOCKET);
|
|
|
|
MPC_FLAG(devfs_init_label, MPC_OBJECT_DEVFS);
|
|
|
|
MPC_FLAG(mbuf_init_label, MPC_OBJECT_MBUF);
|
|
|
|
MPC_FLAG(ipq_init_label, MPC_OBJECT_IPQ);
|
|
|
|
MPC_FLAG(ifnet_init_label, MPC_OBJECT_IFNET);
|
|
|
|
MPC_FLAG(bpfdesc_init_label, MPC_OBJECT_BPFDESC);
|
|
|
|
MPC_FLAG(pipe_init_label, MPC_OBJECT_PIPE);
|
|
|
|
MPC_FLAG(mount_init_label, MPC_OBJECT_MOUNT);
|
|
|
|
MPC_FLAG(posixsem_init_label, MPC_OBJECT_POSIXSEM);
|
|
|
|
MPC_FLAG(posixshm_init_label, MPC_OBJECT_POSIXSHM);
|
|
|
|
MPC_FLAG(sysvmsg_init_label, MPC_OBJECT_SYSVMSG);
|
|
|
|
MPC_FLAG(sysvmsq_init_label, MPC_OBJECT_SYSVMSQ);
|
|
|
|
MPC_FLAG(sysvsem_init_label, MPC_OBJECT_SYSVSEM);
|
|
|
|
MPC_FLAG(sysvshm_init_label, MPC_OBJECT_SYSVSHM);
|
|
|
|
MPC_FLAG(syncache_init_label, MPC_OBJECT_SYNCACHE);
|
|
|
|
MPC_FLAG(ip6q_init_label, MPC_OBJECT_IP6Q);
|
|
|
|
|
|
|
|
#undef MPC_FLAG
|
|
|
|
return (labeled);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When policies are loaded or unloaded, walk the list of registered policies
|
|
|
|
* and built mac_labeled, a bitmask representing the union of all objects
|
|
|
|
* requiring labels across all policies.
|
Move MAC label storage for mbufs into m_tags from the m_pkthdr structure,
returning some additional room in the first mbuf in a chain, and
avoiding feature-specific contents in the mbuf header. To do this:
- Modify mbuf_to_label() to extract the tag, returning NULL if not
found.
- Introduce mac_init_mbuf_tag() which does most of the work
mac_init_mbuf() used to do, except on an m_tag rather than an
mbuf.
- Scale back mac_init_mbuf() to perform m_tag allocation and invoke
mac_init_mbuf_tag().
- Replace mac_destroy_mbuf() with mac_destroy_mbuf_tag(), since
m_tag's are now GC'd deep in the m_tag/mbuf code rather than
at a higher level when mbufs are directly free()'d.
- Add mac_copy_mbuf_tag() to support m_copy_pkthdr() and related
notions.
- Generally change all references to mbuf labels so that they use
mbuf_to_label() rather than &mbuf->m_pkthdr.label. This
required no changes in the MAC policies (yay!).
- Tweak mbuf release routines to not call mac_destroy_mbuf(),
tag destruction takes care of it for us now.
- Remove MAC magic from m_copy_pkthdr() and m_move_pkthdr() --
the existing m_tag support does all this for us. Note that
we can no longer just zero the m_tag list on the target mbuf,
rather, we have to delete the chain because m_tag's will
already be hung off freshly allocated mbuf's.
- Tweak m_tag copying routines so that if we're copying a MAC
m_tag, we don't do a binary copy, rather, we initialize the
new storage and do a deep copy of the label.
- Remove use of MAC_FLAG_INITIALIZED in a few bizarre places
having to do with mbuf header copies previously.
- When an mbuf is copied in ip_input(), we no longer need to
explicitly copy the label because it will get handled by the
m_tag code now.
- No longer any weird handling of MAC labels in if_loop.c during
header copies.
- Add MPC_LOADTIME_FLAG_LABELMBUFS flag to Biba, MLS, mac_test.
In mac_test, handle the label==NULL case, since it can be
dynamically loaded.
In order to improve performance with this change, introduce the notion
of "lazy MAC label allocation" -- only allocate m_tag storage for MAC
labels if we're running with a policy that uses MAC labels on mbufs.
Policies declare this intent by setting the MPC_LOADTIME_FLAG_LABELMBUFS
flag in their load-time flags field during declaration. Note: this
opens up the possibility of post-boot policy modules getting back NULL
slot entries even though they have policy invariants of non-NULL slot
entries, as the policy might have been loaded after the mbuf was
allocated, leaving the mbuf without label storage. Policies that cannot
handle this case must be declared as NOTLATE, or must be modified.
- mac_labelmbufs holds the current cumulative status as to whether
any policies require mbuf labeling or not. This is updated whenever
the active policy set changes by the function mac_policy_updateflags().
The function iterates the list and checks whether any have the
flag set. Write access to this variable is protected by the policy
list; read access is currently not protected for performance reasons.
This might change if it causes problems.
- Add MAC_POLICY_LIST_ASSERT_EXCLUSIVE() to permit the flags update
function to assert appropriate locks.
- This makes allocation in mac_init_mbuf() conditional on the flag.
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-04-14 20:39:06 +00:00
|
|
|
*/
|
|
|
|
static void
|
2009-06-02 18:26:17 +00:00
|
|
|
mac_policy_update(void)
|
Move MAC label storage for mbufs into m_tags from the m_pkthdr structure,
returning some additional room in the first mbuf in a chain, and
avoiding feature-specific contents in the mbuf header. To do this:
- Modify mbuf_to_label() to extract the tag, returning NULL if not
found.
- Introduce mac_init_mbuf_tag() which does most of the work
mac_init_mbuf() used to do, except on an m_tag rather than an
mbuf.
- Scale back mac_init_mbuf() to perform m_tag allocation and invoke
mac_init_mbuf_tag().
- Replace mac_destroy_mbuf() with mac_destroy_mbuf_tag(), since
m_tag's are now GC'd deep in the m_tag/mbuf code rather than
at a higher level when mbufs are directly free()'d.
- Add mac_copy_mbuf_tag() to support m_copy_pkthdr() and related
notions.
- Generally change all references to mbuf labels so that they use
mbuf_to_label() rather than &mbuf->m_pkthdr.label. This
required no changes in the MAC policies (yay!).
- Tweak mbuf release routines to not call mac_destroy_mbuf(),
tag destruction takes care of it for us now.
- Remove MAC magic from m_copy_pkthdr() and m_move_pkthdr() --
the existing m_tag support does all this for us. Note that
we can no longer just zero the m_tag list on the target mbuf,
rather, we have to delete the chain because m_tag's will
already be hung off freshly allocated mbuf's.
- Tweak m_tag copying routines so that if we're copying a MAC
m_tag, we don't do a binary copy, rather, we initialize the
new storage and do a deep copy of the label.
- Remove use of MAC_FLAG_INITIALIZED in a few bizarre places
having to do with mbuf header copies previously.
- When an mbuf is copied in ip_input(), we no longer need to
explicitly copy the label because it will get handled by the
m_tag code now.
- No longer any weird handling of MAC labels in if_loop.c during
header copies.
- Add MPC_LOADTIME_FLAG_LABELMBUFS flag to Biba, MLS, mac_test.
In mac_test, handle the label==NULL case, since it can be
dynamically loaded.
In order to improve performance with this change, introduce the notion
of "lazy MAC label allocation" -- only allocate m_tag storage for MAC
labels if we're running with a policy that uses MAC labels on mbufs.
Policies declare this intent by setting the MPC_LOADTIME_FLAG_LABELMBUFS
flag in their load-time flags field during declaration. Note: this
opens up the possibility of post-boot policy modules getting back NULL
slot entries even though they have policy invariants of non-NULL slot
entries, as the policy might have been loaded after the mbuf was
allocated, leaving the mbuf without label storage. Policies that cannot
handle this case must be declared as NOTLATE, or must be modified.
- mac_labelmbufs holds the current cumulative status as to whether
any policies require mbuf labeling or not. This is updated whenever
the active policy set changes by the function mac_policy_updateflags().
The function iterates the list and checks whether any have the
flag set. Write access to this variable is protected by the policy
list; read access is currently not protected for performance reasons.
This might change if it causes problems.
- Add MAC_POLICY_LIST_ASSERT_EXCLUSIVE() to permit the flags update
function to assert appropriate locks.
- This makes allocation in mac_init_mbuf() conditional on the flag.
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-04-14 20:39:06 +00:00
|
|
|
{
|
Introduce two related changes to the TrustedBSD MAC Framework:
(1) Abstract interpreter vnode labeling in execve(2) and mac_execve(2)
so that the general exec code isn't aware of the details of
allocating, copying, and freeing labels, rather, simply passes in
a void pointer to start and stop functions that will be used by
the framework. This change will be MFC'd.
(2) Introduce a new flags field to the MAC_POLICY_SET(9) interface
allowing policies to declare which types of objects require label
allocation, initialization, and destruction, and define a set of
flags covering various supported object types (MPC_OBJECT_PROC,
MPC_OBJECT_VNODE, MPC_OBJECT_INPCB, ...). This change reduces the
overhead of compiling the MAC Framework into the kernel if policies
aren't loaded, or if policies require labels on only a small number
or even no object types. Each time a policy is loaded or unloaded,
we recalculate a mask of labeled object types across all policies
present in the system. Eliminate MAC_ALWAYS_LABEL_MBUF option as it
is no longer required.
MFC after: 1 week ((1) only)
Reviewed by: csjp
Obtained from: TrustedBSD Project
Sponsored by: Apple, Inc.
2008-08-23 15:26:36 +00:00
|
|
|
struct mac_policy_conf *mpc;
|
Move MAC label storage for mbufs into m_tags from the m_pkthdr structure,
returning some additional room in the first mbuf in a chain, and
avoiding feature-specific contents in the mbuf header. To do this:
- Modify mbuf_to_label() to extract the tag, returning NULL if not
found.
- Introduce mac_init_mbuf_tag() which does most of the work
mac_init_mbuf() used to do, except on an m_tag rather than an
mbuf.
- Scale back mac_init_mbuf() to perform m_tag allocation and invoke
mac_init_mbuf_tag().
- Replace mac_destroy_mbuf() with mac_destroy_mbuf_tag(), since
m_tag's are now GC'd deep in the m_tag/mbuf code rather than
at a higher level when mbufs are directly free()'d.
- Add mac_copy_mbuf_tag() to support m_copy_pkthdr() and related
notions.
- Generally change all references to mbuf labels so that they use
mbuf_to_label() rather than &mbuf->m_pkthdr.label. This
required no changes in the MAC policies (yay!).
- Tweak mbuf release routines to not call mac_destroy_mbuf(),
tag destruction takes care of it for us now.
- Remove MAC magic from m_copy_pkthdr() and m_move_pkthdr() --
the existing m_tag support does all this for us. Note that
we can no longer just zero the m_tag list on the target mbuf,
rather, we have to delete the chain because m_tag's will
already be hung off freshly allocated mbuf's.
- Tweak m_tag copying routines so that if we're copying a MAC
m_tag, we don't do a binary copy, rather, we initialize the
new storage and do a deep copy of the label.
- Remove use of MAC_FLAG_INITIALIZED in a few bizarre places
having to do with mbuf header copies previously.
- When an mbuf is copied in ip_input(), we no longer need to
explicitly copy the label because it will get handled by the
m_tag code now.
- No longer any weird handling of MAC labels in if_loop.c during
header copies.
- Add MPC_LOADTIME_FLAG_LABELMBUFS flag to Biba, MLS, mac_test.
In mac_test, handle the label==NULL case, since it can be
dynamically loaded.
In order to improve performance with this change, introduce the notion
of "lazy MAC label allocation" -- only allocate m_tag storage for MAC
labels if we're running with a policy that uses MAC labels on mbufs.
Policies declare this intent by setting the MPC_LOADTIME_FLAG_LABELMBUFS
flag in their load-time flags field during declaration. Note: this
opens up the possibility of post-boot policy modules getting back NULL
slot entries even though they have policy invariants of non-NULL slot
entries, as the policy might have been loaded after the mbuf was
allocated, leaving the mbuf without label storage. Policies that cannot
handle this case must be declared as NOTLATE, or must be modified.
- mac_labelmbufs holds the current cumulative status as to whether
any policies require mbuf labeling or not. This is updated whenever
the active policy set changes by the function mac_policy_updateflags().
The function iterates the list and checks whether any have the
flag set. Write access to this variable is protected by the policy
list; read access is currently not protected for performance reasons.
This might change if it causes problems.
- Add MAC_POLICY_LIST_ASSERT_EXCLUSIVE() to permit the flags update
function to assert appropriate locks.
- This makes allocation in mac_init_mbuf() conditional on the flag.
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-04-14 20:39:06 +00:00
|
|
|
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
mac_policy_xlock_assert();
|
Move MAC label storage for mbufs into m_tags from the m_pkthdr structure,
returning some additional room in the first mbuf in a chain, and
avoiding feature-specific contents in the mbuf header. To do this:
- Modify mbuf_to_label() to extract the tag, returning NULL if not
found.
- Introduce mac_init_mbuf_tag() which does most of the work
mac_init_mbuf() used to do, except on an m_tag rather than an
mbuf.
- Scale back mac_init_mbuf() to perform m_tag allocation and invoke
mac_init_mbuf_tag().
- Replace mac_destroy_mbuf() with mac_destroy_mbuf_tag(), since
m_tag's are now GC'd deep in the m_tag/mbuf code rather than
at a higher level when mbufs are directly free()'d.
- Add mac_copy_mbuf_tag() to support m_copy_pkthdr() and related
notions.
- Generally change all references to mbuf labels so that they use
mbuf_to_label() rather than &mbuf->m_pkthdr.label. This
required no changes in the MAC policies (yay!).
- Tweak mbuf release routines to not call mac_destroy_mbuf(),
tag destruction takes care of it for us now.
- Remove MAC magic from m_copy_pkthdr() and m_move_pkthdr() --
the existing m_tag support does all this for us. Note that
we can no longer just zero the m_tag list on the target mbuf,
rather, we have to delete the chain because m_tag's will
already be hung off freshly allocated mbuf's.
- Tweak m_tag copying routines so that if we're copying a MAC
m_tag, we don't do a binary copy, rather, we initialize the
new storage and do a deep copy of the label.
- Remove use of MAC_FLAG_INITIALIZED in a few bizarre places
having to do with mbuf header copies previously.
- When an mbuf is copied in ip_input(), we no longer need to
explicitly copy the label because it will get handled by the
m_tag code now.
- No longer any weird handling of MAC labels in if_loop.c during
header copies.
- Add MPC_LOADTIME_FLAG_LABELMBUFS flag to Biba, MLS, mac_test.
In mac_test, handle the label==NULL case, since it can be
dynamically loaded.
In order to improve performance with this change, introduce the notion
of "lazy MAC label allocation" -- only allocate m_tag storage for MAC
labels if we're running with a policy that uses MAC labels on mbufs.
Policies declare this intent by setting the MPC_LOADTIME_FLAG_LABELMBUFS
flag in their load-time flags field during declaration. Note: this
opens up the possibility of post-boot policy modules getting back NULL
slot entries even though they have policy invariants of non-NULL slot
entries, as the policy might have been loaded after the mbuf was
allocated, leaving the mbuf without label storage. Policies that cannot
handle this case must be declared as NOTLATE, or must be modified.
- mac_labelmbufs holds the current cumulative status as to whether
any policies require mbuf labeling or not. This is updated whenever
the active policy set changes by the function mac_policy_updateflags().
The function iterates the list and checks whether any have the
flag set. Write access to this variable is protected by the policy
list; read access is currently not protected for performance reasons.
This might change if it causes problems.
- Add MAC_POLICY_LIST_ASSERT_EXCLUSIVE() to permit the flags update
function to assert appropriate locks.
- This makes allocation in mac_init_mbuf() conditional on the flag.
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-04-14 20:39:06 +00:00
|
|
|
|
Introduce two related changes to the TrustedBSD MAC Framework:
(1) Abstract interpreter vnode labeling in execve(2) and mac_execve(2)
so that the general exec code isn't aware of the details of
allocating, copying, and freeing labels, rather, simply passes in
a void pointer to start and stop functions that will be used by
the framework. This change will be MFC'd.
(2) Introduce a new flags field to the MAC_POLICY_SET(9) interface
allowing policies to declare which types of objects require label
allocation, initialization, and destruction, and define a set of
flags covering various supported object types (MPC_OBJECT_PROC,
MPC_OBJECT_VNODE, MPC_OBJECT_INPCB, ...). This change reduces the
overhead of compiling the MAC Framework into the kernel if policies
aren't loaded, or if policies require labels on only a small number
or even no object types. Each time a policy is loaded or unloaded,
we recalculate a mask of labeled object types across all policies
present in the system. Eliminate MAC_ALWAYS_LABEL_MBUF option as it
is no longer required.
MFC after: 1 week ((1) only)
Reviewed by: csjp
Obtained from: TrustedBSD Project
Sponsored by: Apple, Inc.
2008-08-23 15:26:36 +00:00
|
|
|
mac_labeled = 0;
|
2009-06-02 18:26:17 +00:00
|
|
|
mac_policy_count = 0;
|
|
|
|
LIST_FOREACH(mpc, &mac_static_policy_list, mpc_list) {
|
2009-01-10 10:58:41 +00:00
|
|
|
mac_labeled |= mac_policy_getlabeled(mpc);
|
2009-06-02 18:26:17 +00:00
|
|
|
mac_policy_count++;
|
|
|
|
}
|
|
|
|
LIST_FOREACH(mpc, &mac_policy_list, mpc_list) {
|
2009-01-10 10:58:41 +00:00
|
|
|
mac_labeled |= mac_policy_getlabeled(mpc);
|
2009-06-02 18:26:17 +00:00
|
|
|
mac_policy_count++;
|
|
|
|
}
|
Move MAC label storage for mbufs into m_tags from the m_pkthdr structure,
returning some additional room in the first mbuf in a chain, and
avoiding feature-specific contents in the mbuf header. To do this:
- Modify mbuf_to_label() to extract the tag, returning NULL if not
found.
- Introduce mac_init_mbuf_tag() which does most of the work
mac_init_mbuf() used to do, except on an m_tag rather than an
mbuf.
- Scale back mac_init_mbuf() to perform m_tag allocation and invoke
mac_init_mbuf_tag().
- Replace mac_destroy_mbuf() with mac_destroy_mbuf_tag(), since
m_tag's are now GC'd deep in the m_tag/mbuf code rather than
at a higher level when mbufs are directly free()'d.
- Add mac_copy_mbuf_tag() to support m_copy_pkthdr() and related
notions.
- Generally change all references to mbuf labels so that they use
mbuf_to_label() rather than &mbuf->m_pkthdr.label. This
required no changes in the MAC policies (yay!).
- Tweak mbuf release routines to not call mac_destroy_mbuf(),
tag destruction takes care of it for us now.
- Remove MAC magic from m_copy_pkthdr() and m_move_pkthdr() --
the existing m_tag support does all this for us. Note that
we can no longer just zero the m_tag list on the target mbuf,
rather, we have to delete the chain because m_tag's will
already be hung off freshly allocated mbuf's.
- Tweak m_tag copying routines so that if we're copying a MAC
m_tag, we don't do a binary copy, rather, we initialize the
new storage and do a deep copy of the label.
- Remove use of MAC_FLAG_INITIALIZED in a few bizarre places
having to do with mbuf header copies previously.
- When an mbuf is copied in ip_input(), we no longer need to
explicitly copy the label because it will get handled by the
m_tag code now.
- No longer any weird handling of MAC labels in if_loop.c during
header copies.
- Add MPC_LOADTIME_FLAG_LABELMBUFS flag to Biba, MLS, mac_test.
In mac_test, handle the label==NULL case, since it can be
dynamically loaded.
In order to improve performance with this change, introduce the notion
of "lazy MAC label allocation" -- only allocate m_tag storage for MAC
labels if we're running with a policy that uses MAC labels on mbufs.
Policies declare this intent by setting the MPC_LOADTIME_FLAG_LABELMBUFS
flag in their load-time flags field during declaration. Note: this
opens up the possibility of post-boot policy modules getting back NULL
slot entries even though they have policy invariants of non-NULL slot
entries, as the policy might have been loaded after the mbuf was
allocated, leaving the mbuf without label storage. Policies that cannot
handle this case must be declared as NOTLATE, or must be modified.
- mac_labelmbufs holds the current cumulative status as to whether
any policies require mbuf labeling or not. This is updated whenever
the active policy set changes by the function mac_policy_updateflags().
The function iterates the list and checks whether any have the
flag set. Write access to this variable is protected by the policy
list; read access is currently not protected for performance reasons.
This might change if it causes problems.
- Add MAC_POLICY_LIST_ASSERT_EXCLUSIVE() to permit the flags update
function to assert appropriate locks.
- This makes allocation in mac_init_mbuf() conditional on the flag.
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-04-14 20:39:06 +00:00
|
|
|
}
|
|
|
|
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
static int
|
|
|
|
mac_policy_register(struct mac_policy_conf *mpc)
|
|
|
|
{
|
|
|
|
struct mac_policy_conf *tmpc;
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
int error, slot, static_entry;
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
error = 0;
|
|
|
|
|
|
|
|
/*
|
2006-12-20 20:38:44 +00:00
|
|
|
* We don't technically need exclusive access while !mac_late, but
|
|
|
|
* hold it for assertion consistency.
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
*/
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
mac_policy_xlock();
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
|
|
|
|
/*
|
2006-12-20 20:38:44 +00:00
|
|
|
* If the module can potentially be unloaded, or we're loading late,
|
|
|
|
* we have to stick it in the non-static list and pay an extra
|
|
|
|
* performance overhead. Otherwise, we can pay a light locking cost
|
|
|
|
* and stick it in the static list.
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
*/
|
|
|
|
static_entry = (!mac_late &&
|
|
|
|
!(mpc->mpc_loadtime_flags & MPC_LOADTIME_FLAG_UNLOADOK));
|
|
|
|
|
|
|
|
if (static_entry) {
|
|
|
|
LIST_FOREACH(tmpc, &mac_static_policy_list, mpc_list) {
|
|
|
|
if (strcmp(tmpc->mpc_name, mpc->mpc_name) == 0) {
|
|
|
|
error = EEXIST;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
LIST_FOREACH(tmpc, &mac_policy_list, mpc_list) {
|
|
|
|
if (strcmp(tmpc->mpc_name, mpc->mpc_name) == 0) {
|
|
|
|
error = EEXIST;
|
|
|
|
goto out;
|
|
|
|
}
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
if (mpc->mpc_field_off != NULL) {
|
2003-05-08 19:49:42 +00:00
|
|
|
slot = ffs(mac_slot_offsets_free);
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
if (slot == 0) {
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
error = ENOMEM;
|
|
|
|
goto out;
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
}
|
|
|
|
slot--;
|
2003-05-08 19:49:42 +00:00
|
|
|
mac_slot_offsets_free &= ~(1 << slot);
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
*mpc->mpc_field_off = slot;
|
|
|
|
}
|
|
|
|
mpc->mpc_runtime_flags |= MPC_RUNTIME_FLAG_REGISTERED;
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
|
|
|
|
/*
|
2006-12-20 20:38:44 +00:00
|
|
|
* If we're loading a MAC module after the framework has initialized,
|
|
|
|
* it has to go into the dynamic list. If we're loading it before
|
|
|
|
* we've finished initializing, it can go into the static list with
|
|
|
|
* weaker locker requirements.
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
*/
|
|
|
|
if (static_entry)
|
|
|
|
LIST_INSERT_HEAD(&mac_static_policy_list, mpc, mpc_list);
|
|
|
|
else
|
|
|
|
LIST_INSERT_HEAD(&mac_policy_list, mpc, mpc_list);
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
|
2006-12-20 20:38:44 +00:00
|
|
|
/*
|
|
|
|
* Per-policy initialization. Currently, this takes place under the
|
|
|
|
* exclusive lock, so policies must not sleep in their init method.
|
|
|
|
* In the future, we may want to separate "init" from "start", with
|
|
|
|
* "init" occuring without the lock held. Likewise, on tear-down,
|
|
|
|
* breaking out "stop" from "destroy".
|
|
|
|
*/
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
if (mpc->mpc_ops->mpo_init != NULL)
|
|
|
|
(*(mpc->mpc_ops->mpo_init))(mpc);
|
2009-06-02 18:26:17 +00:00
|
|
|
mac_policy_update();
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
|
2009-01-24 10:57:32 +00:00
|
|
|
SDT_PROBE(mac, kernel, policy, register, mpc, 0, 0, 0, 0);
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
printf("Security policy loaded: %s (%s)\n", mpc->mpc_fullname,
|
|
|
|
mpc->mpc_name);
|
|
|
|
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
out:
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
mac_policy_xunlock();
|
Clean up locking for the MAC Framework:
(1) Accept that we're now going to use mutexes, so don't attempt
to avoid treating them as mutexes. This cleans up locking
accessor function names some.
(2) Rename variables to _mtx, _cv, _count, simplifying the naming.
(3) Add a new form of the _busy() primitive that conditionally
makes the list busy: if there are entries on the list, bump
the busy count. If there are no entries, don't bump the busy
count. Return a boolean indicating whether or not the busy
count was bumped.
(4) Break mac_policy_list into two lists: one with the same name
holding dynamic policies, and a new list, mac_static_policy_list,
which holds policies loaded before mac_late and without the
unload flag set. The static list may be accessed without
holding the busy count, since it can't change at run-time.
(5) In general, prefer making the list busy conditionally, meaning
we pay only one mutex lock per entry point if all modules are
on the static list, rather than two (since we don't have to
lower the busy count when we're done with the framework). For
systems running just Biba or MLS, this will halve the mutex
accesses in the network stack, and may offer a substantial
performance benefits.
(6) Lay the groundwork for a dynamic-free kernel option which
eliminates all locking associated with dynamically loaded or
unloaded policies, for pre-configured systems requiring
maximum performance but less run-time flexibility.
These changes have been running for a few weeks on MAC development
branch systems.
Approved by: re (jhb)
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-05-07 17:49:24 +00:00
|
|
|
return (error);
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_policy_unregister(struct mac_policy_conf *mpc)
|
|
|
|
{
|
|
|
|
|
2002-10-05 16:46:03 +00:00
|
|
|
/*
|
2006-12-20 20:38:44 +00:00
|
|
|
* If we fail the load, we may get a request to unload. Check to see
|
|
|
|
* if we did the run-time registration, and if not, silently succeed.
|
2002-10-05 16:46:03 +00:00
|
|
|
*/
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
mac_policy_xlock();
|
2002-10-05 16:46:03 +00:00
|
|
|
if ((mpc->mpc_runtime_flags & MPC_RUNTIME_FLAG_REGISTERED) == 0) {
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
mac_policy_xunlock();
|
2002-10-05 16:46:03 +00:00
|
|
|
return (0);
|
|
|
|
}
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
#if 0
|
|
|
|
/*
|
|
|
|
* Don't allow unloading modules with private data.
|
|
|
|
*/
|
2002-10-05 16:46:03 +00:00
|
|
|
if (mpc->mpc_field_off != NULL) {
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
mac_policy_xunlock();
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
return (EBUSY);
|
2002-10-05 16:46:03 +00:00
|
|
|
}
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
#endif
|
2002-10-05 16:46:03 +00:00
|
|
|
/*
|
2006-12-20 20:38:44 +00:00
|
|
|
* Only allow the unload to proceed if the module is unloadable by
|
|
|
|
* its own definition.
|
2002-10-05 16:46:03 +00:00
|
|
|
*/
|
|
|
|
if ((mpc->mpc_loadtime_flags & MPC_LOADTIME_FLAG_UNLOADOK) == 0) {
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
mac_policy_xunlock();
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
return (EBUSY);
|
2002-10-05 16:46:03 +00:00
|
|
|
}
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
if (mpc->mpc_ops->mpo_destroy != NULL)
|
|
|
|
(*(mpc->mpc_ops->mpo_destroy))(mpc);
|
|
|
|
|
|
|
|
LIST_REMOVE(mpc, mpc_list);
|
2002-10-19 20:30:12 +00:00
|
|
|
mpc->mpc_runtime_flags &= ~MPC_RUNTIME_FLAG_REGISTERED;
|
2009-06-02 18:26:17 +00:00
|
|
|
mac_policy_update();
|
Rework MAC Framework synchronization in a number of ways in order to
improve performance:
- Eliminate custom reference count and condition variable to monitor
threads entering the framework, as this had both significant overhead
and behaved badly in the face of contention.
- Replace reference count with two locks: an rwlock and an sx lock,
which will be read-acquired by threads entering the framework
depending on whether a give policy entry point is permitted to sleep
or not.
- Replace previous mutex locking of the reference count for exclusive
access with write acquiring of both the policy list sx and rw locks,
which occurs only when policies are attached or detached.
- Do a lockless read of the dynamic policy list head before acquiring
any locks in order to reduce overhead when no dynamic policies are
loaded; this a race we can afford to lose.
- For every policy entry point invocation, decide whether sleeping is
permitted, and if not, use a _NOSLEEP() variant of the composition
macros, which will use the rwlock instead of the sxlock. In some
cases, we decide which to use based on allocation flags passed to the
MAC Framework entry point.
As with the move to rwlocks/rmlocks in pfil, this may trigger witness
warnings, but these should (generally) be false positives as all
acquisition of the locks is for read with two very narrow exceptions
for policy load/unload, and those code blocks should never acquire
other locks.
Sponsored by: Google, Inc.
Obtained from: TrustedBSD Project
Discussed with: csjp (idea, not specific patch)
2009-03-14 16:06:06 +00:00
|
|
|
mac_policy_xunlock();
|
2002-11-13 15:47:09 +00:00
|
|
|
|
2009-01-24 10:57:32 +00:00
|
|
|
SDT_PROBE(mac, kernel, policy, unregister, mpc, 0, 0, 0, 0);
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
printf("Security policy unload: %s (%s)\n", mpc->mpc_fullname,
|
|
|
|
mpc->mpc_name);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2006-12-29 20:21:21 +00:00
|
|
|
/*
|
|
|
|
* Allow MAC policy modules to register during boot, etc.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
mac_policy_modevent(module_t mod, int type, void *data)
|
|
|
|
{
|
|
|
|
struct mac_policy_conf *mpc;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
error = 0;
|
|
|
|
mpc = (struct mac_policy_conf *) data;
|
|
|
|
|
|
|
|
#ifdef MAC_STATIC
|
|
|
|
if (mac_late) {
|
|
|
|
printf("mac_policy_modevent: MAC_STATIC and late\n");
|
|
|
|
return (EBUSY);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2009-01-24 10:57:32 +00:00
|
|
|
SDT_PROBE(mac, kernel, policy, modevent, type, mpc, 0, 0, 0);
|
2006-12-29 20:21:21 +00:00
|
|
|
switch (type) {
|
|
|
|
case MOD_LOAD:
|
|
|
|
if (mpc->mpc_loadtime_flags & MPC_LOADTIME_FLAG_NOTLATE &&
|
|
|
|
mac_late) {
|
|
|
|
printf("mac_policy_modevent: can't load %s policy "
|
|
|
|
"after booting\n", mpc->mpc_name);
|
|
|
|
error = EBUSY;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
error = mac_policy_register(mpc);
|
|
|
|
break;
|
|
|
|
case MOD_UNLOAD:
|
|
|
|
/* Don't unregister the module if it was never registered. */
|
|
|
|
if ((mpc->mpc_runtime_flags & MPC_RUNTIME_FLAG_REGISTERED)
|
|
|
|
!= 0)
|
|
|
|
error = mac_policy_unregister(mpc);
|
|
|
|
else
|
|
|
|
error = 0;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
error = EOPNOTSUPP;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
/*
|
|
|
|
* Define an error value precedence, and given two arguments, selects the
|
|
|
|
* value with the higher precedence.
|
|
|
|
*/
|
2003-10-22 20:42:22 +00:00
|
|
|
int
|
|
|
|
mac_error_select(int error1, int error2)
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
/* Certain decision-making errors take top priority. */
|
|
|
|
if (error1 == EDEADLK || error2 == EDEADLK)
|
|
|
|
return (EDEADLK);
|
|
|
|
|
|
|
|
/* Invalid arguments should be reported where possible. */
|
|
|
|
if (error1 == EINVAL || error2 == EINVAL)
|
|
|
|
return (EINVAL);
|
|
|
|
|
|
|
|
/* Precedence goes to "visibility", with both process and file. */
|
|
|
|
if (error1 == ESRCH || error2 == ESRCH)
|
|
|
|
return (ESRCH);
|
|
|
|
|
|
|
|
if (error1 == ENOENT || error2 == ENOENT)
|
|
|
|
return (ENOENT);
|
|
|
|
|
|
|
|
/* Precedence goes to DAC/MAC protections. */
|
|
|
|
if (error1 == EACCES || error2 == EACCES)
|
|
|
|
return (EACCES);
|
|
|
|
|
|
|
|
/* Precedence goes to privilege. */
|
|
|
|
if (error1 == EPERM || error2 == EPERM)
|
|
|
|
return (EPERM);
|
|
|
|
|
|
|
|
/* Precedence goes to error over success; otherwise, arbitrary. */
|
|
|
|
if (error1 != 0)
|
|
|
|
return (error1);
|
|
|
|
return (error2);
|
|
|
|
}
|
|
|
|
|
2002-10-05 21:23:47 +00:00
|
|
|
int
|
mac_Finish break-out of kern_mac.c into parts:
Include src/sys/security/mac/mac_internal.h in kern_mac.c.
Remove redundant defines from the include: SYSCTL_DECL(), debug macros,
composition macros.
Unstaticize various bits now exposed to the remainder of the kernel:
mac_init_label(), mac_destroy_label().
Remove all the functions now implemented in mac_process/mac_vfs/mac_net/
mac_pipe. Also remove debug counters, sysctls exporting debug
counters, enforcement flags, sysctls exporting enforcement flags.
Leave module declaration, sysctl nodes, mactemp malloc type, system
calls.
This should conclude MAC/LINT/NOTES breakage from the break-out process,
but I'm running builds now to make sure I caught everything.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-10-22 20:59:31 +00:00
|
|
|
mac_check_structmac_consistent(struct mac *mac)
|
2002-10-22 14:29:47 +00:00
|
|
|
{
|
|
|
|
|
2013-12-25 20:10:17 +00:00
|
|
|
if (mac->m_buflen > MAC_MAX_LABEL_BUF_LEN)
|
2002-10-22 14:29:47 +00:00
|
|
|
return (EINVAL);
|
|
|
|
|
|
|
|
return (0);
|
Begin committing support for Mandatory Access Control and extensible
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the oeprating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
kern_mac.c contains the body of the MAC framework. Kernel and
user APIs defined in mac.h are implemented here, providing a front end
to loaded security modules. This code implements a module registration
service, state (label) management, security configuration and policy
composition.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-30 21:36:05 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
SYSINIT(mac, SI_SUB_MAC, SI_ORDER_FIRST, mac_init, NULL);
|
|
|
|
SYSINIT(mac_late, SI_SUB_MAC_LATE, SI_ORDER_FIRST, mac_late_init, NULL);
|