freebsd-skq/usr.bin/top/machine.c

1109 lines
26 KiB
C
Raw Normal View History

/*
* top - a top users display for Unix
*
* SYNOPSIS: For FreeBSD-2.x system
*
* DESCRIPTION:
* Originally written for BSD4.4 system by Christos Zoulas.
* Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
* Order support hacked in from top-3.5beta6/machine/m_aix41.c
* by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
*
* This is the machine-dependent module for FreeBSD 2.2
* Works for:
* FreeBSD 2.2, and probably FreeBSD 2.1.x
*
* LIBS: -lkvm
*
* AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
* Steven Wallace <swallace@freebsd.org>
* Wolfram Schneider <wosch@FreeBSD.org>
*
* $Id: machine.c,v 1.13 1998/08/04 14:10:30 des Exp $
*/
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/param.h>
#include "os.h"
#include <stdio.h>
#include <nlist.h>
#include <math.h>
#include <kvm.h>
#include <pwd.h>
#include <sys/errno.h>
#include <sys/sysctl.h>
#include <sys/dkstat.h>
#include <sys/file.h>
#include <sys/time.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/vmmeter.h>
#include <sys/resource.h>
#include <sys/rtprio.h>
/* Swap */
#include <stdlib.h>
#include <sys/rlist.h>
#include <sys/conf.h>
#include <osreldate.h> /* for changes in kernel structures */
#include "top.h"
#include "machine.h"
static int check_nlist __P((struct nlist *));
static int getkval __P((unsigned long, int *, int, char *));
extern char* printable __P((char *));
int swapmode __P((int *retavail, int *retfree));
static int smpmode;
static int namelength;
static int cmdlength;
/* get_process_info passes back a handle. This is what it looks like: */
struct handle
{
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
/* declarations for load_avg */
#include "loadavg.h"
#define PP(pp, field) ((pp)->kp_proc . field)
#define EP(pp, field) ((pp)->kp_eproc . field)
#define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
/* define what weighted cpu is. */
#define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \
((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu))))
/* what we consider to be process size: */
#define PROCSIZE(pp) (VP((pp), vm_map.size) / 1024)
/* definitions for indices in the nlist array */
static struct nlist nlst[] = {
#define X_CCPU 0
{ "_ccpu" }, /* 0 */
#define X_CP_TIME 1
{ "_cp_time" }, /* 1 */
#define X_HZ 2
{ "_hz" }, /* 2 */
#define X_STATHZ 3
{ "_stathz" }, /* 3 */
#define X_AVENRUN 4
{ "_averunnable" }, /* 4 */
/* Swap */
#define VM_SWAPLIST 5
{ "_swaplist" },/* list of free swap areas */
#define VM_SWDEVT 6
{ "_swdevt" }, /* list of swap devices and sizes */
#define VM_NSWAP 7
{ "_nswap" }, /* size of largest swap device */
#define VM_NSWDEV 8
{ "_nswdev" }, /* number of swap devices */
#define VM_DMMAX 9
{ "_dmmax" }, /* maximum size of a swap block */
#define X_BUFSPACE 10
{ "_bufspace" }, /* K in buffer cache */
#define X_CNT 11
{ "_cnt" }, /* struct vmmeter cnt */
/* Last pid */
#define X_LASTPID 12
{ "_nextpid" },
{ 0 }
};
/*
* These definitions control the format of the per-process area
*/
static char smp_header[] =
" PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND";
#define smp_Proc_format \
"%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
static char up_header[] =
" PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
#define up_Proc_format \
"%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
the processor number when needed */
char *state_abbrev[] =
{
"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB",
};
static kvm_t *kd;
/* values that we stash away in _init and use in later routines */
static double logcpu;
/* these are retrieved from the kernel in _init */
static long hz;
static load_avg ccpu;
/* these are offsets obtained via nlist and used in the get_ functions */
static unsigned long cp_time_offset;
static unsigned long avenrun_offset;
static unsigned long lastpid_offset;
static long lastpid;
static unsigned long cnt_offset;
static unsigned long bufspace_offset;
static long cnt;
/* these are for calculating cpu state percentages */
static long cp_time[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES];
/* these are for detailing the process states */
int process_states[6];
char *procstatenames[] = {
"", " starting, ", " running, ", " sleeping, ", " stopped, ",
" zombie, ",
NULL
};
/* these are for detailing the cpu states */
int cpu_states[CPUSTATES];
char *cpustatenames[] = {
"user", "nice", "system", "interrupt", "idle", NULL
};
/* these are for detailing the memory statistics */
int memory_stats[7];
char *memorynames[] = {
"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
NULL
};
int swap_stats[7];
char *swapnames[] = {
/* 0 1 2 3 4 5 */
"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
NULL
};
/* these are for keeping track of the proc array */
static int nproc;
static int onproc = -1;
static int pref_len;
static struct kinfo_proc *pbase;
static struct kinfo_proc **pref;
/* these are for getting the memory statistics */
static int pageshift; /* log base 2 of the pagesize */
/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)
/* useful externals */
long percentages();
#ifdef ORDER
/* sorting orders. first is default */
char *ordernames[] = {
"cpu", "size", "res", "time", "pri", NULL
};
#endif
int
machine_init(statics)
struct statics *statics;
{
register int i = 0;
register int pagesize;
int modelen;
struct passwd *pw;
modelen = sizeof(smpmode);
1997-08-27 03:48:25 +00:00
if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
modelen != sizeof(smpmode))
smpmode = 0;
while ((pw = getpwent()) != NULL) {
if (strlen(pw->pw_name) > namelength)
namelength = strlen(pw->pw_name);
}
if (namelength < 8)
namelength = 8;
if (namelength > 16)
namelength = 16;
if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
return -1;
/* get the list of symbols we want to access in the kernel */
(void) kvm_nlist(kd, nlst);
if (nlst[0].n_type == 0)
{
fprintf(stderr, "top: nlist failed\n");
return(-1);
}
/* make sure they were all found */
if (i > 0 && check_nlist(nlst) > 0)
{
return(-1);
}
/* get the symbol values out of kmem */
(void) getkval(nlst[X_STATHZ].n_value, (int *)(&hz), sizeof(hz), "!");
if (!hz) {
(void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz),
nlst[X_HZ].n_name);
}
(void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu),
nlst[X_CCPU].n_name);
/* stash away certain offsets for later use */
cp_time_offset = nlst[X_CP_TIME].n_value;
avenrun_offset = nlst[X_AVENRUN].n_value;
lastpid_offset = nlst[X_LASTPID].n_value;
cnt_offset = nlst[X_CNT].n_value;
bufspace_offset = nlst[X_BUFSPACE].n_value;
/* this is used in calculating WCPU -- calculate it ahead of time */
logcpu = log(loaddouble(ccpu));
pbase = NULL;
pref = NULL;
nproc = 0;
onproc = -1;
/* get the page size with "getpagesize" and calculate pageshift from it */
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1)
{
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
statics->swap_names = swapnames;
#ifdef ORDER
statics->order_names = ordernames;
#endif
/* all done! */
return(0);
}
char *format_header(uname_field)
register char *uname_field;
{
register char *ptr;
static char Header[128];
snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
namelength, namelength, uname_field);
cmdlength = 80 - strlen(Header) + 6;
return Header;
}
static int swappgsin = -1;
static int swappgsout = -1;
extern struct timeval timeout;
void
get_system_info(si)
struct system_info *si;
{
long total;
load_avg avenrun[3];
/* get the cp_time array */
(void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
nlst[X_CP_TIME].n_name);
(void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
nlst[X_AVENRUN].n_name);
(void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid),
"!");
/* convert load averages to doubles */
{
register int i;
register double *infoloadp;
load_avg *avenrunp;
#ifdef notyet
struct loadavg sysload;
int size;
getkerninfo(KINFO_LOADAVG, &sysload, &size, 0);
#endif
infoloadp = si->load_avg;
avenrunp = avenrun;
for (i = 0; i < 3; i++)
{
#ifdef notyet
*infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
#endif
*infoloadp++ = loaddouble(*avenrunp++);
}
}
/* convert cp_time counts to percentages */
total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
/* sum memory & swap statistics */
{
struct vmmeter sum;
static unsigned int swap_delay = 0;
static int swapavail = 0;
static int swapfree = 0;
static int bufspace = 0;
(void) getkval(cnt_offset, (int *)(&sum), sizeof(sum),
"_cnt");
(void) getkval(bufspace_offset, (int *)(&bufspace), sizeof(bufspace),
"_bufspace");
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(sum.v_active_count);
memory_stats[1] = pagetok(sum.v_inactive_count);
memory_stats[2] = pagetok(sum.v_wire_count);
memory_stats[3] = pagetok(sum.v_cache_count);
memory_stats[4] = bufspace / 1024;
memory_stats[5] = pagetok(sum.v_free_count);
memory_stats[6] = -1;
/* first interval */
if (swappgsin < 0) {
swap_stats[4] = 0;
swap_stats[5] = 0;
}
/* compute differences between old and new swap statistic */
else {
swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin)));
swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout)));
}
swappgsin = sum.v_swappgsin;
swappgsout = sum.v_swappgsout;
/* call CPU heavy swapmode() only for changes */
if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
swap_stats[3] = swapmode(&swapavail, &swapfree);
swap_stats[0] = swapavail;
swap_stats[1] = swapavail - swapfree;
swap_stats[2] = swapfree;
}
swap_delay = 1;
swap_stats[6] = -1;
}
/* set arrays and strings */
si->cpustates = cpu_states;
si->memory = memory_stats;
si->swap = swap_stats;
if(lastpid > 0) {
si->last_pid = lastpid;
} else {
si->last_pid = -1;
}
}
static struct handle handle;
caddr_t get_process_info(si, sel, compare)
struct system_info *si;
struct process_select *sel;
int (*compare)();
{
register int i;
register int total_procs;
register int active_procs;
register struct kinfo_proc **prefp;
register struct kinfo_proc *pp;
/* these are copied out of sel for speed */
int show_idle;
int show_self;
int show_system;
int show_uid;
int show_command;
pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
if (nproc > onproc)
pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
* (onproc = nproc));
if (pref == NULL || pbase == NULL) {
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_self = sel->self;
show_system = sel->system;
show_uid = sel->uid != -1;
show_command = sel->command != NULL;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
memset((char *)process_states, 0, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++)
{
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field. Processes with P_SYSTEM set are system
* processes---these get ignored unless show_sysprocs is set.
*/
if (PP(pp, p_stat) != 0 &&
(show_self != PP(pp, p_pid)) &&
(show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0)))
{
total_procs++;
process_states[(unsigned char) PP(pp, p_stat)]++;
if ((PP(pp, p_stat) != SZOMB) &&
(show_idle || (PP(pp, p_pctcpu) != 0) ||
(PP(pp, p_stat) == SRUN)) &&
(!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
{
*prefp++ = pp;
active_procs++;
}
}
}
/* if requested, sort the "interesting" processes */
if (compare != NULL)
{
qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
}
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return((caddr_t)&handle);
}
char fmt[128]; /* static area where result is built */
char *format_next_process(handle, get_userid)
caddr_t handle;
char *(*get_userid)();
{
register struct kinfo_proc *pp;
register long cputime;
register double pct;
struct handle *hp;
char status[16];
/* find and remember the next proc structure */
hp = (struct handle *)handle;
pp = *(hp->next_proc++);
hp->remaining--;
/* get the process's user struct and set cputime */
if ((PP(pp, p_flag) & P_INMEM) == 0) {
/*
* Print swapped processes as <pname>
*/
char *comm = PP(pp, p_comm);
#define COMSIZ sizeof(PP(pp, p_comm))
char buf[COMSIZ];
(void) strncpy(buf, comm, COMSIZ);
comm[0] = '<';
(void) strncpy(&comm[1], buf, COMSIZ - 2);
comm[COMSIZ - 2] = '\0';
(void) strncat(comm, ">", COMSIZ - 1);
comm[COMSIZ - 1] = '\0';
}
#if 0
/* This does not produce the correct results */
cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks);
#endif
1998-07-27 12:21:58 +00:00
/* This does not count interrupts */
cputime = (PP(pp, p_runtime) / 1000 + 500) / 1000;
/* calculate the base for cpu percentages */
pct = pctdouble(PP(pp, p_pctcpu));
/* generate "STATE" field */
switch (PP(pp, p_stat)) {
case SRUN:
if (smpmode && PP(pp, p_oncpu) >= 0)
sprintf(status, "CPU%d", PP(pp, p_oncpu));
else
strcpy(status, "RUN");
break;
case SSLEEP:
if (PP(pp, p_wmesg) != NULL) {
sprintf(status, "%.6s", EP(pp, e_wmesg));
break;
}
/* fall through */
default:
sprintf(status, "%.6s", state_abbrev[(unsigned char) PP(pp, p_stat)]);
break;
}
/* format this entry */
sprintf(fmt,
smpmode ? smp_Proc_format : up_Proc_format,
PP(pp, p_pid),
namelength, namelength,
(*get_userid)(EP(pp, e_pcred.p_ruid)),
PP(pp, p_priority) - PZERO,
/*
* normal time -> nice value -20 - +20
* real time 0 - 31 -> nice value -52 - -21
* idle time 0 - 31 -> nice value +21 - +52
*/
(PP(pp, p_rtprio.type) == RTP_PRIO_NORMAL ?
PP(pp, p_nice) - NZERO :
(PP(pp, p_rtprio.type) == RTP_PRIO_REALTIME ?
(PRIO_MIN - 1 - RTP_PRIO_MAX + PP(pp, p_rtprio.prio)) :
(PRIO_MAX + 1 + PP(pp, p_rtprio.prio)))),
format_k2(PROCSIZE(pp)),
format_k2(pagetok(VP(pp, vm_rssize))),
status,
smpmode ? PP(pp, p_lastcpu) : 0,
format_time(cputime),
10000.0 * weighted_cpu(pct, pp) / hz,
10000.0 * pct / hz,
cmdlength,
printable(PP(pp, p_comm)));
/* return the result */
return(fmt);
}
/*
* check_nlist(nlst) - checks the nlist to see if any symbols were not
* found. For every symbol that was not found, a one-line
* message is printed to stderr. The routine returns the
* number of symbols NOT found.
*/
static int check_nlist(nlst)
register struct nlist *nlst;
{
register int i;
/* check to see if we got ALL the symbols we requested */
/* this will write one line to stderr for every symbol not found */
i = 0;
while (nlst->n_name != NULL)
{
if (nlst->n_type == 0)
{
/* this one wasn't found */
(void) fprintf(stderr, "kernel: no symbol named `%s'\n",
nlst->n_name);
i = 1;
}
nlst++;
}
return(i);
}
/*
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
* "offset" is the byte offset into the kernel for the desired value,
* "ptr" points to a buffer into which the value is retrieved,
* "size" is the size of the buffer (and the object to retrieve),
* "refstr" is a reference string used when printing error meessages,
* if "refstr" starts with a '!', then a failure on read will not
* be fatal (this may seem like a silly way to do things, but I
* really didn't want the overhead of another argument).
*
*/
static int getkval(offset, ptr, size, refstr)
unsigned long offset;
int *ptr;
int size;
char *refstr;
{
if (kvm_read(kd, offset, (char *) ptr, size) != size)
{
if (*refstr == '!')
{
return(0);
}
else
{
fprintf(stderr, "top: kvm_read for %s: %s\n",
refstr, strerror(errno));
quit(23);
}
}
return(1);
}
/* comparison routines for qsort */
/*
* proc_compare - comparison function for "qsort"
* Compares the resource consumption of two processes using five
* distinct keys. The keys (in descending order of importance) are:
* percent cpu, cpu ticks, state, resident set size, total virtual
* memory usage. The process states are ordered as follows (from least
* to most important): WAIT, zombie, sleep, stop, start, run. The
* array declaration below maps a process state index into a number
* that reflects this ordering.
*/
static unsigned char sorted_state[] =
{
0, /* not used */
3, /* sleep */
1, /* ABANDONED (WAIT) */
6, /* run */
5, /* start */
2, /* zombie */
4 /* stop */
};
#define ORDERKEY_PCTCPU \
if (lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu), \
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
#define ORDERKEY_CPTICKS \
if ((result = PP(p2, p_runtime) - PP(p1, p_runtime)) == 0)
#define ORDERKEY_STATE \
if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - \
sorted_state[(unsigned char) PP(p1, p_stat)]) == 0)
#define ORDERKEY_PRIO \
if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
#define ORDERKEY_RSSIZE \
if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
#define ORDERKEY_MEM \
if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
/* compare_cpu - the comparison function for sorting by cpu percentage */
int
#ifdef ORDER
compare_cpu(pp1, pp2)
#else
proc_compare(pp1, pp2)
#endif
struct proc **pp1;
struct proc **pp2;
{
register struct kinfo_proc *p1;
register struct kinfo_proc *p2;
register int result;
register pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return(result);
}
#ifdef ORDER
/* compare routines */
int compare_size(), compare_res(), compare_time(), compare_prio();
int (*proc_compares[])() = {
compare_cpu,
compare_size,
compare_res,
compare_time,
compare_prio,
NULL
};
/* compare_size - the comparison function for sorting by total memory usage */
int
compare_size(pp1, pp2)
struct proc **pp1;
struct proc **pp2;
{
register struct kinfo_proc *p1;
register struct kinfo_proc *p2;
register int result;
register pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_MEM
ORDERKEY_RSSIZE
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
;
return(result);
}
/* compare_res - the comparison function for sorting by resident set size */
int
compare_res(pp1, pp2)
struct proc **pp1;
struct proc **pp2;
{
register struct kinfo_proc *p1;
register struct kinfo_proc *p2;
register int result;
register pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_RSSIZE
ORDERKEY_MEM
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
;
return(result);
}
/* compare_time - the comparison function for sorting by total cpu time */
int
compare_time(pp1, pp2)
struct proc **pp1;
struct proc **pp2;
{
register struct kinfo_proc *p1;
register struct kinfo_proc *p2;
register int result;
register pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_CPTICKS
ORDERKEY_PCTCPU
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return(result);
}
/* compare_prio - the comparison function for sorting by cpu percentage */
int
compare_prio(pp1, pp2)
struct proc **pp1;
struct proc **pp2;
{
register struct kinfo_proc *p1;
register struct kinfo_proc *p2;
register int result;
register pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_PRIO
ORDERKEY_CPTICKS
ORDERKEY_PCTCPU
ORDERKEY_STATE
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return(result);
}
#endif
/*
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
* the process does not exist.
* It is EXTREMLY IMPORTANT that this function work correctly.
* If top runs setuid root (as in SVR4), then this function
* is the only thing that stands in the way of a serious
* security problem. It validates requests for the "kill"
* and "renice" commands.
*/
int proc_owner(pid)
int pid;
{
register int cnt;
register struct kinfo_proc **prefp;
register struct kinfo_proc *pp;
prefp = pref;
cnt = pref_len;
while (--cnt >= 0)
{
pp = *prefp++;
if (PP(pp, p_pid) == (pid_t)pid)
{
return((int)EP(pp, e_pcred.p_ruid));
}
}
return(-1);
}
/*
* swapmode is based on a program called swapinfo written
* by Kevin Lahey <kml@rokkaku.atl.ga.us>.
*/
#define SVAR(var) __STRING(var) /* to force expansion */
#define KGET(idx, var) \
KGET1(idx, &var, sizeof(var), SVAR(var))
#define KGET1(idx, p, s, msg) \
KGET2(nlst[idx].n_value, p, s, msg)
#define KGET2(addr, p, s, msg) \
if (kvm_read(kd, (u_long)(addr), p, s) != s) { \
warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \
return (0); \
}
#define KGETRET(addr, p, s, msg) \
if (kvm_read(kd, (u_long)(addr), p, s) != s) { \
warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \
return (0); \
}
int
swapmode(retavail, retfree)
int *retavail;
int *retfree;
{
char *header;
int hlen, nswap, nswdev, dmmax;
int i, div, avail, nfree, npfree, used;
struct swdevt *sw;
long blocksize, *perdev;
u_long ptr;
struct rlist head;
#if __FreeBSD_version >= 220000
struct rlisthdr swaplist;
#else
struct rlist *swaplist;
#endif
struct rlist *swapptr;
/*
* Counter for error messages. If we reach the limit,
* stop reading information from swap devices and
* return zero. This prevent endless 'bad address'
* messages.
*/
static warning = 10;
if (warning <= 0) {
/* a single warning */
if (!warning) {
warning--;
fprintf(stderr,
"Too much errors, stop reading swap devices ...\n");
(void)sleep(3);
}
return(0);
}
warning--; /* decrease counter, see end of function */
KGET(VM_NSWAP, nswap);
if (!nswap) {
fprintf(stderr, "No swap space available\n");
return(0);
}
KGET(VM_NSWDEV, nswdev);
KGET(VM_DMMAX, dmmax);
KGET1(VM_SWAPLIST, &swaplist, sizeof(swaplist), "swaplist");
if ((sw = (struct swdevt *)malloc(nswdev * sizeof(*sw))) == NULL ||
(perdev = (long *)malloc(nswdev * sizeof(*perdev))) == NULL)
err(1, "malloc");
KGET1(VM_SWDEVT, &ptr, sizeof ptr, "swdevt");
KGET2(ptr, sw, nswdev * sizeof(*sw), "*swdevt");
/* Count up swap space. */
nfree = 0;
memset(perdev, 0, nswdev * sizeof(*perdev));
#if __FreeBSD_version >= 220000
swapptr = swaplist.rlh_list;
while (swapptr) {
#else
while (swaplist) {
#endif
int top, bottom, next_block;
#if __FreeBSD_version >= 220000
KGET2(swapptr, &head, sizeof(struct rlist), "swapptr");
#else
KGET2(swaplist, &head, sizeof(struct rlist), "swaplist");
#endif
top = head.rl_end;
bottom = head.rl_start;
nfree += top - bottom + 1;
/*
* Swap space is split up among the configured disks.
*
* For interleaved swap devices, the first dmmax blocks
* of swap space some from the first disk, the next dmmax
* blocks from the next, and so on up to nswap blocks.
*
* The list of free space joins adjacent free blocks,
* ignoring device boundries. If we want to keep track
* of this information per device, we'll just have to
* extract it ourselves.
*/
while (top / dmmax != bottom / dmmax) {
next_block = ((bottom + dmmax) / dmmax);
perdev[(bottom / dmmax) % nswdev] +=
next_block * dmmax - bottom;
bottom = next_block * dmmax;
}
perdev[(bottom / dmmax) % nswdev] +=
top - bottom + 1;
#if __FreeBSD_version >= 220000
swapptr = head.rl_next;
#else
swaplist = head.rl_next;
#endif
}
header = getbsize(&hlen, &blocksize);
div = blocksize / 512;
avail = npfree = 0;
for (i = 0; i < nswdev; i++) {
int xsize, xfree;
/*
* Don't report statistics for partitions which have not
* yet been activated via swapon(8).
*/
xsize = sw[i].sw_nblks;
xfree = perdev[i];
used = xsize - xfree;
npfree++;
avail += xsize;
}
/*
* If only one partition has been set up via swapon(8), we don't
* need to bother with totals.
*/
*retavail = avail / 2;
*retfree = nfree / 2;
used = avail - nfree;
free(sw); free(perdev);
/* increase counter, no errors occurs */
warning++;
return (int)(((double)used / (double)avail * 100.0) + 0.5);
}