2010-01-20 21:30:52 +00:00
|
|
|
/* $FreeBSD$ */
|
|
|
|
/* $OpenBSD: bc.library,v 1.3 2007/02/03 21:15:06 otto Exp $ */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copyright (C) Caldera International Inc. 2001-2002.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code and documentation must retain the above
|
|
|
|
* copyright notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed or owned by Caldera
|
|
|
|
* International, Inc.
|
|
|
|
* 4. Neither the name of Caldera International, Inc. nor the names of other
|
|
|
|
* contributors may be used to endorse or promote products derived from
|
|
|
|
* this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* USE OF THE SOFTWARE PROVIDED FOR UNDER THIS LICENSE BY CALDERA
|
|
|
|
* INTERNATIONAL, INC. AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
|
|
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
|
|
* IN NO EVENT SHALL CALDERA INTERNATIONAL, INC. BE LIABLE FOR ANY DIRECT,
|
|
|
|
* INDIRECT INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* @(#)bc.library 5.1 (Berkeley) 4/17/91
|
|
|
|
*/
|
|
|
|
|
|
|
|
scale = 20
|
|
|
|
define e(x) {
|
|
|
|
auto a, b, c, d, e, g, t, w, y, r
|
|
|
|
|
|
|
|
r = ibase
|
|
|
|
ibase = A
|
|
|
|
t = scale
|
2012-03-15 01:43:44 +00:00
|
|
|
scale = 0
|
|
|
|
if (x > 0) scale = (0.435*x)/1
|
2012-03-18 15:34:39 +00:00
|
|
|
scale = scale + t + length(scale + t) + 1
|
2010-01-20 21:30:52 +00:00
|
|
|
|
|
|
|
w = 0
|
|
|
|
if (x < 0) {
|
|
|
|
x = -x
|
|
|
|
w = 1
|
|
|
|
}
|
|
|
|
y = 0
|
|
|
|
while (x > 2) {
|
|
|
|
x = x/2
|
|
|
|
y = y + 1
|
|
|
|
}
|
|
|
|
|
|
|
|
a = 1
|
|
|
|
b = 1
|
|
|
|
c = b
|
|
|
|
d = 1
|
|
|
|
e = 1
|
|
|
|
for (a = 1; 1 == 1; a++) {
|
|
|
|
b = b*x
|
|
|
|
c = c*a + b
|
|
|
|
d = d*a
|
|
|
|
g = c/d
|
|
|
|
if (g == e) {
|
|
|
|
g = g/1
|
|
|
|
while (y--) {
|
|
|
|
g = g*g
|
|
|
|
}
|
|
|
|
scale = t
|
|
|
|
ibase = r
|
|
|
|
if (w == 1) return (1/g)
|
|
|
|
return (g/1)
|
|
|
|
}
|
|
|
|
e = g
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
define l(x) {
|
|
|
|
auto a, b, c, d, e, f, g, u, s, t, r
|
|
|
|
r = ibase
|
|
|
|
ibase = A
|
|
|
|
if (x <= 0) {
|
|
|
|
a = (1 - 10^scale)
|
|
|
|
ibase = r
|
|
|
|
return (a)
|
|
|
|
}
|
|
|
|
t = scale
|
|
|
|
|
|
|
|
f = 1
|
2012-03-15 01:43:44 +00:00
|
|
|
if (x < 1) {
|
|
|
|
s = scale(x)
|
|
|
|
} else {
|
|
|
|
s = length(x) - scale(x)
|
|
|
|
}
|
|
|
|
scale = 0
|
|
|
|
a = (2.31*s)/1 /* estimated integer part of the answer */
|
|
|
|
s = t + length(a) + 2 /* estimated length of the answer */
|
2010-01-20 21:30:52 +00:00
|
|
|
while (x > 2) {
|
2012-03-15 01:43:44 +00:00
|
|
|
scale=0
|
|
|
|
scale = (length(x) + scale(x))/2 + 1
|
|
|
|
if (scale < s) scale = s
|
2010-01-20 21:30:52 +00:00
|
|
|
x = sqrt(x)
|
|
|
|
f = f*2
|
|
|
|
}
|
|
|
|
while (x < .5) {
|
2012-03-15 01:43:44 +00:00
|
|
|
scale = 0
|
|
|
|
scale = scale(x)/2 + 1
|
|
|
|
if (scale < s) scale = s
|
2010-01-20 21:30:52 +00:00
|
|
|
x = sqrt(x)
|
|
|
|
f = f*2
|
|
|
|
}
|
|
|
|
|
2012-03-18 15:34:39 +00:00
|
|
|
scale = 0
|
|
|
|
scale = t + length(f) + length((1.05*(t+length(f))/1)) + 1
|
2010-01-20 21:30:52 +00:00
|
|
|
u = (x - 1)/(x + 1)
|
|
|
|
s = u*u
|
2012-03-15 01:43:44 +00:00
|
|
|
scale = t + 2
|
2010-01-20 21:30:52 +00:00
|
|
|
b = 2*f
|
|
|
|
c = b
|
|
|
|
d = 1
|
|
|
|
e = 1
|
|
|
|
for (a = 3; 1 == 1 ; a = a + 2) {
|
|
|
|
b = b*s
|
|
|
|
c = c*a + d*b
|
|
|
|
d = d*a
|
|
|
|
g = c/d
|
|
|
|
if (g == e) {
|
|
|
|
scale = t
|
|
|
|
ibase = r
|
|
|
|
return (u*c/d)
|
|
|
|
}
|
|
|
|
e = g
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
define s(x) {
|
|
|
|
auto a, b, c, s, t, y, p, n, i, r
|
|
|
|
r = ibase
|
|
|
|
ibase = A
|
|
|
|
t = scale
|
|
|
|
y = x/.7853
|
|
|
|
s = t + length(y) - scale(y)
|
|
|
|
if (s < t) s = t
|
|
|
|
scale = s
|
|
|
|
p = a(1)
|
|
|
|
|
|
|
|
scale = 0
|
|
|
|
if (x >= 0) n = (x/(2*p) + 1)/2
|
|
|
|
if (x < 0) n = (x/(2*p) - 1)/2
|
|
|
|
x = x - 4*n*p
|
|
|
|
if (n % 2 != 0) x = -x
|
|
|
|
|
|
|
|
scale = t + length(1.2*t) - scale(1.2*t)
|
|
|
|
y = -x*x
|
|
|
|
a = x
|
|
|
|
b = 1
|
|
|
|
s = x
|
|
|
|
for (i =3 ; 1 == 1; i = i + 2) {
|
|
|
|
a = a*y
|
|
|
|
b = b*i*(i - 1)
|
|
|
|
c = a/b
|
|
|
|
if (c == 0) {
|
|
|
|
scale = t
|
|
|
|
ibase = r
|
|
|
|
return (s/1)
|
|
|
|
}
|
|
|
|
s = s + c
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
define c(x) {
|
|
|
|
auto t, r
|
|
|
|
r = ibase
|
|
|
|
ibase = A
|
|
|
|
t = scale
|
|
|
|
scale = scale + 1
|
|
|
|
x = s(x + 2*a(1))
|
|
|
|
scale = t
|
|
|
|
ibase = r
|
|
|
|
return (x/1)
|
|
|
|
}
|
|
|
|
|
|
|
|
define a(x) {
|
|
|
|
auto a, b, c, d, e, f, g, s, t, r
|
|
|
|
if (x == 0) return(0)
|
|
|
|
|
|
|
|
r = ibase
|
|
|
|
ibase = A
|
|
|
|
if (x == 1) {
|
|
|
|
if (scale < 52) {
|
|
|
|
a = .7853981633974483096156608458198757210492923498437764/1
|
|
|
|
ibase = r
|
|
|
|
return (a)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
t = scale
|
|
|
|
f = 1
|
|
|
|
while (x > .5) {
|
|
|
|
scale = scale + 1
|
|
|
|
x = -(1 - sqrt(1. + x*x))/x
|
|
|
|
f = f*2
|
|
|
|
}
|
|
|
|
while (x < -.5) {
|
|
|
|
scale = scale + 1
|
|
|
|
x = -(1 - sqrt(1. + x*x))/x
|
|
|
|
f = f*2
|
|
|
|
}
|
|
|
|
s = -x*x
|
|
|
|
b = f
|
|
|
|
c = f
|
|
|
|
d = 1
|
|
|
|
e = 1
|
|
|
|
for (a = 3; 1 == 1; a = a + 2) {
|
|
|
|
b = b*s
|
|
|
|
c = c*a + d*b
|
|
|
|
d = d*a
|
|
|
|
g = c/d
|
|
|
|
if (g == e) {
|
|
|
|
ibase = r
|
|
|
|
scale = t
|
|
|
|
return (x*c/d)
|
|
|
|
}
|
|
|
|
e = g
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
define j(n,x) {
|
|
|
|
auto a, b, c, d, e, g, i, s, k, t, r
|
|
|
|
|
|
|
|
r = ibase
|
|
|
|
ibase = A
|
|
|
|
t = scale
|
|
|
|
k = 1.36*x + 1.16*t - n
|
|
|
|
k = length(k) - scale(k)
|
|
|
|
if (k > 0) scale = scale + k
|
|
|
|
|
|
|
|
s = -x*x/4
|
|
|
|
if (n < 0) {
|
|
|
|
n = -n
|
|
|
|
x = -x
|
|
|
|
}
|
|
|
|
a = 1
|
|
|
|
c = 1
|
|
|
|
for (i = 1; i <= n; i++) {
|
|
|
|
a = a*x
|
|
|
|
c = c*2*i
|
|
|
|
}
|
|
|
|
b = a
|
|
|
|
d = 1
|
|
|
|
e = 1
|
|
|
|
for (i = 1; 1; i++) {
|
|
|
|
a = a*s
|
|
|
|
b = b*i*(n + i) + a
|
|
|
|
c = c*i*(n + i)
|
|
|
|
g = b/c
|
|
|
|
if (g == e) {
|
|
|
|
ibase = r
|
|
|
|
scale = t
|
|
|
|
return (g/1)
|
|
|
|
}
|
|
|
|
e = g
|
|
|
|
}
|
|
|
|
}
|
2012-03-15 01:43:44 +00:00
|
|
|
/* vim: set filetype=bc shiftwidth=8 noexpandtab: */
|