freebsd-skq/sys/dev/em/if_em.c

5068 lines
145 KiB
C
Raw Normal View History

/**************************************************************************
Copyright (c) 2001-2008, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
***************************************************************************/
/* $FreeBSD$ */
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <machine/in_cksum.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include "e1000_api.h"
#include "if_em.h"
/*********************************************************************
* Set this to one to display debug statistics
*********************************************************************/
int em_display_debug_stats = 0;
/*********************************************************************
* Driver version:
*********************************************************************/
char em_driver_version[] = "6.8.4";
/*********************************************************************
* PCI Device ID Table
*
* Used by probe to select devices to load on
* Last field stores an index into e1000_strings
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
*********************************************************************/
static em_vendor_info_t em_vendor_info_array[] =
{
/* Intel(R) PRO/1000 Network Connection */
{ 0x8086, E1000_DEV_ID_82540EM, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82540EM_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82540EP, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82540EP_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82540EP_LP, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82541EI, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82541ER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82541ER_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82541EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82541GI, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82541GI_LF, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82541GI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82542, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82543GC_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82543GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82544EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82544EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82544GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82544GC_LOM, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82545EM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82545EM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82545GM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82545GM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82545GM_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82546EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82546EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82546GB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82546GB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82546GB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82546GB_PCIE, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82547EI, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82547EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82547GI, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82571EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82571EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82571EB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP,
PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82572EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82572EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82572EI_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82572EI, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82573E, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82573E_IAMT, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_82573L, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH8_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH8_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH8_IFE, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH8_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH8_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH8_IGP_M, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH9_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH9_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH9_IFE, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH9_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0},
{ 0x8086, E1000_DEV_ID_ICH9_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0},
/* required last entry */
{ 0, 0, 0, 0, 0}
};
/*********************************************************************
* Table of branding strings for all supported NICs.
*********************************************************************/
static char *em_strings[] = {
"Intel(R) PRO/1000 Network Connection"
};
/*********************************************************************
* Function prototypes
*********************************************************************/
static int em_probe(device_t);
static int em_attach(device_t);
static int em_detach(device_t);
static int em_shutdown(device_t);
static int em_suspend(device_t);
static int em_resume(device_t);
static void em_start(struct ifnet *);
static void em_start_locked(struct ifnet *ifp);
static int em_ioctl(struct ifnet *, u_long, caddr_t);
static void em_watchdog(struct adapter *);
static void em_init(void *);
static void em_init_locked(struct adapter *);
static void em_stop(void *);
static void em_media_status(struct ifnet *, struct ifmediareq *);
static int em_media_change(struct ifnet *);
static void em_identify_hardware(struct adapter *);
static int em_allocate_pci_resources(struct adapter *);
static int em_allocate_legacy(struct adapter *adapter);
static int em_allocate_msix(struct adapter *adapter);
static int em_setup_msix(struct adapter *);
static void em_free_pci_resources(struct adapter *);
static void em_local_timer(void *);
static int em_hardware_init(struct adapter *);
static void em_setup_interface(device_t, struct adapter *);
static void em_setup_transmit_structures(struct adapter *);
static void em_initialize_transmit_unit(struct adapter *);
static int em_setup_receive_structures(struct adapter *);
static void em_initialize_receive_unit(struct adapter *);
static void em_enable_intr(struct adapter *);
static void em_disable_intr(struct adapter *);
static void em_free_transmit_structures(struct adapter *);
static void em_free_receive_structures(struct adapter *);
static void em_update_stats_counters(struct adapter *);
static void em_txeof(struct adapter *);
static void em_tx_purge(struct adapter *);
static int em_allocate_receive_structures(struct adapter *);
static int em_allocate_transmit_structures(struct adapter *);
static int em_rxeof(struct adapter *, int);
#ifndef __NO_STRICT_ALIGNMENT
static int em_fixup_rx(struct adapter *);
#endif
static void em_receive_checksum(struct adapter *, struct e1000_rx_desc *,
struct mbuf *);
static void em_transmit_checksum_setup(struct adapter *, struct mbuf *,
u32 *, u32 *);
#if __FreeBSD_version >= 700000
static bool em_tso_setup(struct adapter *, struct mbuf *,
u32 *, u32 *);
#endif /* FreeBSD_version >= 700000 */
static void em_set_promisc(struct adapter *);
static void em_disable_promisc(struct adapter *);
static void em_set_multi(struct adapter *);
static void em_print_hw_stats(struct adapter *);
static void em_update_link_status(struct adapter *);
static int em_get_buf(struct adapter *, int);
static void em_enable_hw_vlans(struct adapter *);
static int em_xmit(struct adapter *, struct mbuf **);
static void em_smartspeed(struct adapter *);
static int em_82547_fifo_workaround(struct adapter *, int);
static void em_82547_update_fifo_head(struct adapter *, int);
static int em_82547_tx_fifo_reset(struct adapter *);
static void em_82547_move_tail(void *);
static int em_dma_malloc(struct adapter *, bus_size_t,
struct em_dma_alloc *, int);
static void em_dma_free(struct adapter *, struct em_dma_alloc *);
static void em_print_debug_info(struct adapter *);
static void em_print_nvm_info(struct adapter *);
static int em_is_valid_ether_addr(u8 *);
static int em_sysctl_stats(SYSCTL_HANDLER_ARGS);
static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
static u32 em_fill_descriptors (bus_addr_t address, u32 length,
PDESC_ARRAY desc_array);
static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
static void em_add_int_delay_sysctl(struct adapter *, const char *,
const char *, struct em_int_delay_info *, int, int);
/* Management and WOL Support */
static void em_init_manageability(struct adapter *);
static void em_release_manageability(struct adapter *);
static void em_get_hw_control(struct adapter *);
static void em_release_hw_control(struct adapter *);
static void em_enable_wakeup(device_t);
#ifndef EM_FAST_IRQ
static void em_intr(void *);
#else /* FAST IRQ */
#if __FreeBSD_version < 700000
static void em_irq_fast(void *);
#else
static int em_irq_fast(void *);
#endif
static int em_tx_fast(void *);
static int em_rx_fast(void *);
static int em_link_fast(void *);
static void em_add_rx_process_limit(struct adapter *, const char *,
const char *, int *, int);
static void em_handle_rxtx(void *context, int pending);
static void em_handle_rx(void *context, int pending);
static void em_handle_tx(void *context, int pending);
static void em_handle_link(void *context, int pending);
#endif /* EM_FAST_IRQ */
#ifdef DEVICE_POLLING
static poll_handler_t em_poll;
#endif /* POLLING */
/*********************************************************************
* FreeBSD Device Interface Entry Points
*********************************************************************/
static device_method_t em_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, em_probe),
DEVMETHOD(device_attach, em_attach),
DEVMETHOD(device_detach, em_detach),
DEVMETHOD(device_shutdown, em_shutdown),
DEVMETHOD(device_suspend, em_suspend),
DEVMETHOD(device_resume, em_resume),
{0, 0}
};
static driver_t em_driver = {
"em", em_methods, sizeof(struct adapter),
};
static devclass_t em_devclass;
DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
MODULE_DEPEND(em, pci, 1, 1, 1);
MODULE_DEPEND(em, ether, 1, 1, 1);
/*********************************************************************
* Tunable default values.
*********************************************************************/
#define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
#define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
#define M_TSO_LEN 66
/* Allow common code without TSO */
#ifndef CSUM_TSO
#define CSUM_TSO 0
#endif
static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
static int em_rxd = EM_DEFAULT_RXD;
static int em_txd = EM_DEFAULT_TXD;
static int em_smart_pwr_down = FALSE;
TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt);
TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt);
TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt);
TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt);
TUNABLE_INT("hw.em.rxd", &em_rxd);
TUNABLE_INT("hw.em.txd", &em_txd);
TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
#ifdef EM_FAST_IRQ
/* How many packets rxeof tries to clean at a time */
static int em_rx_process_limit = 100;
TUNABLE_INT("hw.em.rx_process_limit", &em_rx_process_limit);
#endif
/* Global used in WOL setup with multiport cards */
static int global_quad_port_a = 0;
/*********************************************************************
* Device identification routine
*
* em_probe determines if the driver should be loaded on
* adapter based on PCI vendor/device id of the adapter.
*
* return BUS_PROBE_DEFAULT on success, positive on failure
*********************************************************************/
static int
em_probe(device_t dev)
{
char adapter_name[60];
u16 pci_vendor_id = 0;
u16 pci_device_id = 0;
u16 pci_subvendor_id = 0;
u16 pci_subdevice_id = 0;
em_vendor_info_t *ent;
INIT_DEBUGOUT("em_probe: begin");
pci_vendor_id = pci_get_vendor(dev);
if (pci_vendor_id != EM_VENDOR_ID)
return (ENXIO);
pci_device_id = pci_get_device(dev);
pci_subvendor_id = pci_get_subvendor(dev);
pci_subdevice_id = pci_get_subdevice(dev);
ent = em_vendor_info_array;
while (ent->vendor_id != 0) {
if ((pci_vendor_id == ent->vendor_id) &&
(pci_device_id == ent->device_id) &&
((pci_subvendor_id == ent->subvendor_id) ||
(ent->subvendor_id == PCI_ANY_ID)) &&
((pci_subdevice_id == ent->subdevice_id) ||
(ent->subdevice_id == PCI_ANY_ID))) {
sprintf(adapter_name, "%s %s",
em_strings[ent->index],
em_driver_version);
device_set_desc_copy(dev, adapter_name);
return (BUS_PROBE_DEFAULT);
}
ent++;
}
return (ENXIO);
}
/*********************************************************************
* Device initialization routine
*
* The attach entry point is called when the driver is being loaded.
* This routine identifies the type of hardware, allocates all resources
* and initializes the hardware.
*
* return 0 on success, positive on failure
*********************************************************************/
static int
em_attach(device_t dev)
{
struct adapter *adapter;
int tsize, rsize;
int error = 0;
u16 eeprom_data, device_id;
INIT_DEBUGOUT("em_attach: begin");
adapter = device_get_softc(dev);
adapter->dev = adapter->osdep.dev = dev;
EM_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
EM_TX_LOCK_INIT(adapter, device_get_nameunit(dev));
/* SYSCTL stuff */
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
em_sysctl_debug_info, "I", "Debug Information");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
em_sysctl_stats, "I", "Statistics");
callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
callout_init_mtx(&adapter->tx_fifo_timer, &adapter->tx_mtx, 0);
/* Determine hardware and mac info */
em_identify_hardware(adapter);
/* Setup PCI resources */
if (em_allocate_pci_resources(adapter)) {
device_printf(dev, "Allocation of PCI resources failed\n");
error = ENXIO;
goto err_pci;
}
/*
** For ICH8 and family we need to
** map the flash memory, and this
** must happen after the MAC is
** identified
*/
if ((adapter->hw.mac.type == e1000_ich8lan) ||
(adapter->hw.mac.type == e1000_ich9lan)) {
int rid = EM_BAR_TYPE_FLASH;
adapter->flash = bus_alloc_resource_any(dev,
SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (adapter->flash == NULL) {
device_printf(dev, "Mapping of Flash failed\n");
error = ENXIO;
goto err_pci;
}
/* This is used in the shared code */
adapter->hw.flash_address = (u8 *)adapter->flash;
adapter->osdep.flash_bus_space_tag =
rman_get_bustag(adapter->flash);
adapter->osdep.flash_bus_space_handle =
rman_get_bushandle(adapter->flash);
}
/* Do Shared Code initialization */
if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
device_printf(dev, "Setup of Shared code failed\n");
error = ENXIO;
goto err_pci;
}
e1000_get_bus_info(&adapter->hw);
/* Set up some sysctls for the tunable interrupt delays */
em_add_int_delay_sysctl(adapter, "rx_int_delay",
"receive interrupt delay in usecs", &adapter->rx_int_delay,
E1000_REGISTER(&adapter->hw, E1000_RDTR), em_rx_int_delay_dflt);
em_add_int_delay_sysctl(adapter, "tx_int_delay",
"transmit interrupt delay in usecs", &adapter->tx_int_delay,
E1000_REGISTER(&adapter->hw, E1000_TIDV), em_tx_int_delay_dflt);
if (adapter->hw.mac.type >= e1000_82540) {
em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
"receive interrupt delay limit in usecs",
&adapter->rx_abs_int_delay,
E1000_REGISTER(&adapter->hw, E1000_RADV),
em_rx_abs_int_delay_dflt);
em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
"transmit interrupt delay limit in usecs",
&adapter->tx_abs_int_delay,
E1000_REGISTER(&adapter->hw, E1000_TADV),
em_tx_abs_int_delay_dflt);
}
#ifdef EM_FAST_IRQ
/* Sysctls for limiting the amount of work done in the taskqueue */
em_add_rx_process_limit(adapter, "rx_processing_limit",
"max number of rx packets to process", &adapter->rx_process_limit,
em_rx_process_limit);
#endif
/*
* Validate number of transmit and receive descriptors. It
* must not exceed hardware maximum, and must be multiple
* of E1000_DBA_ALIGN.
*/
if (((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN) != 0 ||
(adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
(adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
(em_txd < EM_MIN_TXD)) {
device_printf(dev, "Using %d TX descriptors instead of %d!\n",
EM_DEFAULT_TXD, em_txd);
adapter->num_tx_desc = EM_DEFAULT_TXD;
} else
adapter->num_tx_desc = em_txd;
if (((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN) != 0 ||
(adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
(adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
(em_rxd < EM_MIN_RXD)) {
device_printf(dev, "Using %d RX descriptors instead of %d!\n",
EM_DEFAULT_RXD, em_rxd);
adapter->num_rx_desc = EM_DEFAULT_RXD;
} else
adapter->num_rx_desc = em_rxd;
adapter->hw.mac.autoneg = DO_AUTO_NEG;
adapter->hw.phy.autoneg_wait_to_complete = FALSE;
adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
adapter->rx_buffer_len = 2048;
e1000_init_script_state_82541(&adapter->hw, TRUE);
e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
/* Copper options */
if (adapter->hw.phy.media_type == e1000_media_type_copper) {
adapter->hw.phy.mdix = AUTO_ALL_MODES;
adapter->hw.phy.disable_polarity_correction = FALSE;
adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
}
/*
* Set the frame limits assuming
* standard ethernet sized frames.
*/
adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE;
/*
* This controls when hardware reports transmit completion
* status.
*/
adapter->hw.mac.report_tx_early = 1;
tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
EM_DBA_ALIGN);
/* Allocate Transmit Descriptor ring */
if (em_dma_malloc(adapter, tsize, &adapter->txdma, BUS_DMA_NOWAIT)) {
device_printf(dev, "Unable to allocate tx_desc memory\n");
error = ENOMEM;
goto err_tx_desc;
}
adapter->tx_desc_base =
(struct e1000_tx_desc *)adapter->txdma.dma_vaddr;
rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
EM_DBA_ALIGN);
/* Allocate Receive Descriptor ring */
if (em_dma_malloc(adapter, rsize, &adapter->rxdma, BUS_DMA_NOWAIT)) {
device_printf(dev, "Unable to allocate rx_desc memory\n");
error = ENOMEM;
goto err_rx_desc;
}
adapter->rx_desc_base =
(struct e1000_rx_desc *)adapter->rxdma.dma_vaddr;
/* Make sure we have a good EEPROM before we read from it */
if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
/*
** Some PCI-E parts fail the first check due to
** the link being in sleep state, call it again,
** if it fails a second time its a real issue.
*/
if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
device_printf(dev,
"The EEPROM Checksum Is Not Valid\n");
error = EIO;
goto err_hw_init;
}
}
/* Initialize the hardware */
if (em_hardware_init(adapter)) {
device_printf(dev, "Unable to initialize the hardware\n");
error = EIO;
goto err_hw_init;
}
/* Copy the permanent MAC address out of the EEPROM */
if (e1000_read_mac_addr(&adapter->hw) < 0) {
device_printf(dev, "EEPROM read error while reading MAC"
" address\n");
error = EIO;
goto err_hw_init;
}
if (!em_is_valid_ether_addr(adapter->hw.mac.addr)) {
device_printf(dev, "Invalid MAC address\n");
error = EIO;
goto err_hw_init;
}
/* Allocate transmit descriptors and buffers */
if (em_allocate_transmit_structures(adapter)) {
device_printf(dev, "Could not setup transmit structures\n");
error = ENOMEM;
goto err_tx_struct;
}
/* Allocate receive descriptors and buffers */
if (em_allocate_receive_structures(adapter)) {
device_printf(dev, "Could not setup receive structures\n");
error = ENOMEM;
goto err_rx_struct;
}
/*
** Do interrupt configuration
*/
if (adapter->msi > 1) /* Do MSI/X */
error = em_allocate_msix(adapter);
else /* MSI or Legacy */
error = em_allocate_legacy(adapter);
if (error)
goto err_rx_struct;
/* Setup OS specific network interface */
em_setup_interface(dev, adapter);
/* Initialize statistics */
em_update_stats_counters(adapter);
adapter->hw.mac.get_link_status = 1;
em_update_link_status(adapter);
/* Indicate SOL/IDER usage */
if (e1000_check_reset_block(&adapter->hw))
device_printf(dev,
"PHY reset is blocked due to SOL/IDER session.\n");
/* Determine if we have to control management hardware */
adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
/*
* Setup Wake-on-Lan
*/
switch (adapter->hw.mac.type) {
case e1000_82542:
case e1000_82543:
break;
case e1000_82546:
case e1000_82546_rev_3:
case e1000_82571:
case e1000_80003es2lan:
if (adapter->hw.bus.func == 1)
e1000_read_nvm(&adapter->hw,
NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
else
e1000_read_nvm(&adapter->hw,
NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
eeprom_data &= EM_EEPROM_APME;
break;
default:
/* APME bit in EEPROM is mapped to WUC.APME */
eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC) &
E1000_WUC_APME;
break;
}
if (eeprom_data)
adapter->wol = E1000_WUFC_MAG;
/*
* We have the eeprom settings, now apply the special cases
* where the eeprom may be wrong or the board won't support
* wake on lan on a particular port
*/
device_id = pci_get_device(dev);
switch (device_id) {
case E1000_DEV_ID_82546GB_PCIE:
adapter->wol = 0;
break;
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546GB_FIBER:
case E1000_DEV_ID_82571EB_FIBER:
/* Wake events only supported on port A for dual fiber
* regardless of eeprom setting */
if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
E1000_STATUS_FUNC_1)
adapter->wol = 0;
break;
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
case E1000_DEV_ID_82571EB_QUAD_COPPER:
case E1000_DEV_ID_82571EB_QUAD_FIBER:
case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
/* if quad port adapter, disable WoL on all but port A */
if (global_quad_port_a != 0)
adapter->wol = 0;
/* Reset for multiple quad port adapters */
if (++global_quad_port_a == 4)
global_quad_port_a = 0;
break;
}
/* Do we need workaround for 82544 PCI-X adapter? */
if (adapter->hw.bus.type == e1000_bus_type_pcix &&
adapter->hw.mac.type == e1000_82544)
adapter->pcix_82544 = TRUE;
else
adapter->pcix_82544 = FALSE;
/* Tell the stack that the interface is not active */
adapter->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
INIT_DEBUGOUT("em_attach: end");
return (0);
err_rx_struct:
em_free_transmit_structures(adapter);
err_tx_struct:
err_hw_init:
em_release_hw_control(adapter);
e1000_remove_device(&adapter->hw);
em_dma_free(adapter, &adapter->rxdma);
err_rx_desc:
em_dma_free(adapter, &adapter->txdma);
err_tx_desc:
err_pci:
em_free_pci_resources(adapter);
EM_TX_LOCK_DESTROY(adapter);
EM_CORE_LOCK_DESTROY(adapter);
return (error);
}
/*********************************************************************
* Device removal routine
*
* The detach entry point is called when the driver is being removed.
* This routine stops the adapter and deallocates all the resources
* that were allocated for driver operation.
*
* return 0 on success, positive on failure
*********************************************************************/
static int
em_detach(device_t dev)
{
struct adapter *adapter = device_get_softc(dev);
struct ifnet *ifp = adapter->ifp;
INIT_DEBUGOUT("em_detach: begin");
/* Make sure VLANS are not using driver */
#if __FreeBSD_version >= 700000
if (adapter->ifp->if_vlantrunk != NULL) {
#else
if (adapter->ifp->if_nvlans != 0) {
#endif
device_printf(dev,"Vlan in use, detach first\n");
return (EBUSY);
}
Big polling(4) cleanup. o Axe poll in trap. o Axe IFF_POLLING flag from if_flags. o Rework revision 1.21 (Giant removal), in such a way that poll_mtx is not dropped during call to polling handler. This fixes problem with idle polling. o Make registration and deregistration from polling in a functional way, insted of next tick/interrupt. o Obsolete kern.polling.enable. Polling is turned on/off with ifconfig. Detailed kern_poll.c changes: - Remove polling handler flags, introduced in 1.21. The are not needed now. - Forget and do not check if_flags, if_capenable and if_drv_flags. - Call all registered polling handlers unconditionally. - Do not drop poll_mtx, when entering polling handlers. - In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx. - In netisr_poll() axe the block, where polling code asks drivers to unregister. - In netisr_poll() and ether_poll() do polling always, if any handlers are present. - In ether_poll_[de]register() remove a lot of error hiding code. Assert that arguments are correct, instead. - In ether_poll_[de]register() use standard return values in case of error or success. - Introduce poll_switch() that is a sysctl handler for kern.polling.enable. poll_switch() goes through interface list and enabled/disables polling. A message that kern.polling.enable is deprecated is printed. Detailed driver changes: - On attach driver announces IFCAP_POLLING in if_capabilities, but not in if_capenable. - On detach driver calls ether_poll_deregister() if polling is enabled. - In polling handler driver obtains its lock and checks IFF_DRV_RUNNING flag. If there is no, then unlocks and returns. - In ioctl handler driver checks for IFCAP_POLLING flag requested to be set or cleared. Driver first calls ether_poll_[de]register(), then obtains driver lock and [dis/en]ables interrupts. - In interrupt handler driver checks IFCAP_POLLING flag in if_capenable. If present, then returns.This is important to protect from spurious interrupts. Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
EM_CORE_LOCK(adapter);
EM_TX_LOCK(adapter);
adapter->in_detach = 1;
em_stop(adapter);
e1000_phy_hw_reset(&adapter->hw);
em_release_manageability(adapter);
if (((adapter->hw.mac.type == e1000_82573) ||
(adapter->hw.mac.type == e1000_ich8lan) ||
(adapter->hw.mac.type == e1000_ich9lan)) &&
e1000_check_mng_mode(&adapter->hw))
em_release_hw_control(adapter);
if (adapter->wol) {
E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
em_enable_wakeup(dev);
}
EM_TX_UNLOCK(adapter);
EM_CORE_UNLOCK(adapter);
2005-10-14 10:34:46 +00:00
ether_ifdetach(adapter->ifp);
callout_drain(&adapter->timer);
callout_drain(&adapter->tx_fifo_timer);
em_free_pci_resources(adapter);
bus_generic_detach(dev);
if_free(ifp);
e1000_remove_device(&adapter->hw);
em_free_transmit_structures(adapter);
em_free_receive_structures(adapter);
/* Free Transmit Descriptor ring */
if (adapter->tx_desc_base) {
em_dma_free(adapter, &adapter->txdma);
adapter->tx_desc_base = NULL;
}
/* Free Receive Descriptor ring */
if (adapter->rx_desc_base) {
em_dma_free(adapter, &adapter->rxdma);
adapter->rx_desc_base = NULL;
}
EM_TX_LOCK_DESTROY(adapter);
EM_CORE_LOCK_DESTROY(adapter);
return (0);
}
/*********************************************************************
*
* Shutdown entry point
*
**********************************************************************/
static int
em_shutdown(device_t dev)
{
return em_suspend(dev);
}
/*
* Suspend/resume device methods.
*/
static int
em_suspend(device_t dev)
{
struct adapter *adapter = device_get_softc(dev);
EM_CORE_LOCK(adapter);
EM_TX_LOCK(adapter);
em_stop(adapter);
EM_TX_UNLOCK(adapter);
em_release_manageability(adapter);
if (((adapter->hw.mac.type == e1000_82573) ||
(adapter->hw.mac.type == e1000_ich8lan) ||
(adapter->hw.mac.type == e1000_ich9lan)) &&
e1000_check_mng_mode(&adapter->hw))
em_release_hw_control(adapter);
if (adapter->wol) {
E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
em_enable_wakeup(dev);
}
EM_CORE_UNLOCK(adapter);
return bus_generic_suspend(dev);
}
static int
em_resume(device_t dev)
{
struct adapter *adapter = device_get_softc(dev);
struct ifnet *ifp = adapter->ifp;
EM_CORE_LOCK(adapter);
em_init_locked(adapter);
em_init_manageability(adapter);
if ((ifp->if_flags & IFF_UP) &&
(ifp->if_drv_flags & IFF_DRV_RUNNING))
2005-12-28 09:37:04 +00:00
em_start_locked(ifp);
EM_CORE_UNLOCK(adapter);
return bus_generic_resume(dev);
}
/*********************************************************************
* Transmit entry point
*
* em_start is called by the stack to initiate a transmit.
* The driver will remain in this routine as long as there are
* packets to transmit and transmit resources are available.
* In case resources are not available stack is notified and
* the packet is requeued.
**********************************************************************/
static void
em_start_locked(struct ifnet *ifp)
{
struct adapter *adapter = ifp->if_softc;
struct mbuf *m_head;
EM_TX_LOCK_ASSERT(adapter);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
if (!adapter->link_active)
return;
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Encapsulation can modify our pointer, and or make it
* NULL on failure. In that event, we can't requeue.
*/
if (em_xmit(adapter, &m_head)) {
if (m_head == NULL)
break;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
break;
}
/* Send a copy of the frame to the BPF listener */
ETHER_BPF_MTAP(ifp, m_head);
/* Set timeout in case hardware has problems transmitting. */
adapter->watchdog_timer = EM_TX_TIMEOUT;
}
}
static void
em_start(struct ifnet *ifp)
{
struct adapter *adapter = ifp->if_softc;
EM_TX_LOCK(adapter);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
em_start_locked(ifp);
EM_TX_UNLOCK(adapter);
}
/*********************************************************************
* Ioctl entry point
*
* em_ioctl is called when the user wants to configure the
* interface.
*
* return 0 on success, positive on failure
**********************************************************************/
static int
em_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct adapter *adapter = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct ifaddr *ifa = (struct ifaddr *)data;
int error = 0;
if (adapter->in_detach)
return (error);
switch (command) {
case SIOCSIFADDR:
if (ifa->ifa_addr->sa_family == AF_INET) {
/*
* XXX
* Since resetting hardware takes a very long time
* and results in link renegotiation we only
* initialize the hardware only when it is absolutely
* required.
*/
ifp->if_flags |= IFF_UP;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
EM_CORE_LOCK(adapter);
em_init_locked(adapter);
EM_CORE_UNLOCK(adapter);
}
arp_ifinit(ifp, ifa);
} else
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFMTU:
{
int max_frame_size;
u16 eeprom_data = 0;
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
EM_CORE_LOCK(adapter);
switch (adapter->hw.mac.type) {
case e1000_82573:
/*
* 82573 only supports jumbo frames
* if ASPM is disabled.
*/
e1000_read_nvm(&adapter->hw,
NVM_INIT_3GIO_3, 1, &eeprom_data);
if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
max_frame_size = ETHER_MAX_LEN;
break;
}
/* Allow Jumbo frames - fall thru */
case e1000_82571:
case e1000_82572:
case e1000_ich9lan:
case e1000_80003es2lan: /* Limit Jumbo Frame size */
max_frame_size = 9234;
break;
/* Adapters that do not support jumbo frames */
case e1000_82542:
case e1000_ich8lan:
max_frame_size = ETHER_MAX_LEN;
break;
default:
max_frame_size = MAX_JUMBO_FRAME_SIZE;
}
if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
ETHER_CRC_LEN) {
EM_CORE_UNLOCK(adapter);
error = EINVAL;
break;
}
ifp->if_mtu = ifr->ifr_mtu;
adapter->max_frame_size =
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
em_init_locked(adapter);
EM_CORE_UNLOCK(adapter);
break;
}
case SIOCSIFFLAGS:
IOCTL_DEBUGOUT("ioctl rcv'd:\
SIOCSIFFLAGS (Set Interface Flags)");
EM_CORE_LOCK(adapter);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
if ((ifp->if_flags ^ adapter->if_flags) &
IFF_PROMISC) {
em_disable_promisc(adapter);
em_set_promisc(adapter);
}
} else
em_init_locked(adapter);
} else
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
EM_TX_LOCK(adapter);
em_stop(adapter);
EM_TX_UNLOCK(adapter);
}
adapter->if_flags = ifp->if_flags;
EM_CORE_UNLOCK(adapter);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
EM_CORE_LOCK(adapter);
em_disable_intr(adapter);
em_set_multi(adapter);
if (adapter->hw.mac.type == e1000_82542 &&
adapter->hw.revision_id == E1000_REVISION_2) {
em_initialize_receive_unit(adapter);
}
#ifdef DEVICE_POLLING
if (!(ifp->if_capenable & IFCAP_POLLING))
#endif
em_enable_intr(adapter);
EM_CORE_UNLOCK(adapter);
}
break;
case SIOCSIFMEDIA:
/* Check SOL/IDER usage */
EM_CORE_LOCK(adapter);
if (e1000_check_reset_block(&adapter->hw)) {
EM_CORE_UNLOCK(adapter);
device_printf(adapter->dev, "Media change is"
" blocked due to SOL/IDER session.\n");
break;
}
EM_CORE_UNLOCK(adapter);
case SIOCGIFMEDIA:
IOCTL_DEBUGOUT("ioctl rcv'd: \
SIOCxIFMEDIA (Get/Set Interface Media)");
error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
break;
case SIOCSIFCAP:
{
int mask, reinit;
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
reinit = 0;
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
Big polling(4) cleanup. o Axe poll in trap. o Axe IFF_POLLING flag from if_flags. o Rework revision 1.21 (Giant removal), in such a way that poll_mtx is not dropped during call to polling handler. This fixes problem with idle polling. o Make registration and deregistration from polling in a functional way, insted of next tick/interrupt. o Obsolete kern.polling.enable. Polling is turned on/off with ifconfig. Detailed kern_poll.c changes: - Remove polling handler flags, introduced in 1.21. The are not needed now. - Forget and do not check if_flags, if_capenable and if_drv_flags. - Call all registered polling handlers unconditionally. - Do not drop poll_mtx, when entering polling handlers. - In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx. - In netisr_poll() axe the block, where polling code asks drivers to unregister. - In netisr_poll() and ether_poll() do polling always, if any handlers are present. - In ether_poll_[de]register() remove a lot of error hiding code. Assert that arguments are correct, instead. - In ether_poll_[de]register() use standard return values in case of error or success. - Introduce poll_switch() that is a sysctl handler for kern.polling.enable. poll_switch() goes through interface list and enabled/disables polling. A message that kern.polling.enable is deprecated is printed. Detailed driver changes: - On attach driver announces IFCAP_POLLING in if_capabilities, but not in if_capenable. - On detach driver calls ether_poll_deregister() if polling is enabled. - In polling handler driver obtains its lock and checks IFF_DRV_RUNNING flag. If there is no, then unlocks and returns. - In ioctl handler driver checks for IFCAP_POLLING flag requested to be set or cleared. Driver first calls ether_poll_[de]register(), then obtains driver lock and [dis/en]ables interrupts. - In interrupt handler driver checks IFCAP_POLLING flag in if_capenable. If present, then returns.This is important to protect from spurious interrupts. Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
error = ether_poll_register(em_poll, ifp);
if (error)
return (error);
EM_CORE_LOCK(adapter);
em_disable_intr(adapter);
Big polling(4) cleanup. o Axe poll in trap. o Axe IFF_POLLING flag from if_flags. o Rework revision 1.21 (Giant removal), in such a way that poll_mtx is not dropped during call to polling handler. This fixes problem with idle polling. o Make registration and deregistration from polling in a functional way, insted of next tick/interrupt. o Obsolete kern.polling.enable. Polling is turned on/off with ifconfig. Detailed kern_poll.c changes: - Remove polling handler flags, introduced in 1.21. The are not needed now. - Forget and do not check if_flags, if_capenable and if_drv_flags. - Call all registered polling handlers unconditionally. - Do not drop poll_mtx, when entering polling handlers. - In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx. - In netisr_poll() axe the block, where polling code asks drivers to unregister. - In netisr_poll() and ether_poll() do polling always, if any handlers are present. - In ether_poll_[de]register() remove a lot of error hiding code. Assert that arguments are correct, instead. - In ether_poll_[de]register() use standard return values in case of error or success. - Introduce poll_switch() that is a sysctl handler for kern.polling.enable. poll_switch() goes through interface list and enabled/disables polling. A message that kern.polling.enable is deprecated is printed. Detailed driver changes: - On attach driver announces IFCAP_POLLING in if_capabilities, but not in if_capenable. - On detach driver calls ether_poll_deregister() if polling is enabled. - In polling handler driver obtains its lock and checks IFF_DRV_RUNNING flag. If there is no, then unlocks and returns. - In ioctl handler driver checks for IFCAP_POLLING flag requested to be set or cleared. Driver first calls ether_poll_[de]register(), then obtains driver lock and [dis/en]ables interrupts. - In interrupt handler driver checks IFCAP_POLLING flag in if_capenable. If present, then returns.This is important to protect from spurious interrupts. Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
ifp->if_capenable |= IFCAP_POLLING;
EM_CORE_UNLOCK(adapter);
Big polling(4) cleanup. o Axe poll in trap. o Axe IFF_POLLING flag from if_flags. o Rework revision 1.21 (Giant removal), in such a way that poll_mtx is not dropped during call to polling handler. This fixes problem with idle polling. o Make registration and deregistration from polling in a functional way, insted of next tick/interrupt. o Obsolete kern.polling.enable. Polling is turned on/off with ifconfig. Detailed kern_poll.c changes: - Remove polling handler flags, introduced in 1.21. The are not needed now. - Forget and do not check if_flags, if_capenable and if_drv_flags. - Call all registered polling handlers unconditionally. - Do not drop poll_mtx, when entering polling handlers. - In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx. - In netisr_poll() axe the block, where polling code asks drivers to unregister. - In netisr_poll() and ether_poll() do polling always, if any handlers are present. - In ether_poll_[de]register() remove a lot of error hiding code. Assert that arguments are correct, instead. - In ether_poll_[de]register() use standard return values in case of error or success. - Introduce poll_switch() that is a sysctl handler for kern.polling.enable. poll_switch() goes through interface list and enabled/disables polling. A message that kern.polling.enable is deprecated is printed. Detailed driver changes: - On attach driver announces IFCAP_POLLING in if_capabilities, but not in if_capenable. - On detach driver calls ether_poll_deregister() if polling is enabled. - In polling handler driver obtains its lock and checks IFF_DRV_RUNNING flag. If there is no, then unlocks and returns. - In ioctl handler driver checks for IFCAP_POLLING flag requested to be set or cleared. Driver first calls ether_poll_[de]register(), then obtains driver lock and [dis/en]ables interrupts. - In interrupt handler driver checks IFCAP_POLLING flag in if_capenable. If present, then returns.This is important to protect from spurious interrupts. Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupt even in error case */
EM_CORE_LOCK(adapter);
em_enable_intr(adapter);
Big polling(4) cleanup. o Axe poll in trap. o Axe IFF_POLLING flag from if_flags. o Rework revision 1.21 (Giant removal), in such a way that poll_mtx is not dropped during call to polling handler. This fixes problem with idle polling. o Make registration and deregistration from polling in a functional way, insted of next tick/interrupt. o Obsolete kern.polling.enable. Polling is turned on/off with ifconfig. Detailed kern_poll.c changes: - Remove polling handler flags, introduced in 1.21. The are not needed now. - Forget and do not check if_flags, if_capenable and if_drv_flags. - Call all registered polling handlers unconditionally. - Do not drop poll_mtx, when entering polling handlers. - In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx. - In netisr_poll() axe the block, where polling code asks drivers to unregister. - In netisr_poll() and ether_poll() do polling always, if any handlers are present. - In ether_poll_[de]register() remove a lot of error hiding code. Assert that arguments are correct, instead. - In ether_poll_[de]register() use standard return values in case of error or success. - Introduce poll_switch() that is a sysctl handler for kern.polling.enable. poll_switch() goes through interface list and enabled/disables polling. A message that kern.polling.enable is deprecated is printed. Detailed driver changes: - On attach driver announces IFCAP_POLLING in if_capabilities, but not in if_capenable. - On detach driver calls ether_poll_deregister() if polling is enabled. - In polling handler driver obtains its lock and checks IFF_DRV_RUNNING flag. If there is no, then unlocks and returns. - In ioctl handler driver checks for IFCAP_POLLING flag requested to be set or cleared. Driver first calls ether_poll_[de]register(), then obtains driver lock and [dis/en]ables interrupts. - In interrupt handler driver checks IFCAP_POLLING flag in if_capenable. If present, then returns.This is important to protect from spurious interrupts. Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
ifp->if_capenable &= ~IFCAP_POLLING;
EM_CORE_UNLOCK(adapter);
Big polling(4) cleanup. o Axe poll in trap. o Axe IFF_POLLING flag from if_flags. o Rework revision 1.21 (Giant removal), in such a way that poll_mtx is not dropped during call to polling handler. This fixes problem with idle polling. o Make registration and deregistration from polling in a functional way, insted of next tick/interrupt. o Obsolete kern.polling.enable. Polling is turned on/off with ifconfig. Detailed kern_poll.c changes: - Remove polling handler flags, introduced in 1.21. The are not needed now. - Forget and do not check if_flags, if_capenable and if_drv_flags. - Call all registered polling handlers unconditionally. - Do not drop poll_mtx, when entering polling handlers. - In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx. - In netisr_poll() axe the block, where polling code asks drivers to unregister. - In netisr_poll() and ether_poll() do polling always, if any handlers are present. - In ether_poll_[de]register() remove a lot of error hiding code. Assert that arguments are correct, instead. - In ether_poll_[de]register() use standard return values in case of error or success. - Introduce poll_switch() that is a sysctl handler for kern.polling.enable. poll_switch() goes through interface list and enabled/disables polling. A message that kern.polling.enable is deprecated is printed. Detailed driver changes: - On attach driver announces IFCAP_POLLING in if_capabilities, but not in if_capenable. - On detach driver calls ether_poll_deregister() if polling is enabled. - In polling handler driver obtains its lock and checks IFF_DRV_RUNNING flag. If there is no, then unlocks and returns. - In ioctl handler driver checks for IFCAP_POLLING flag requested to be set or cleared. Driver first calls ether_poll_[de]register(), then obtains driver lock and [dis/en]ables interrupts. - In interrupt handler driver checks IFCAP_POLLING flag in if_capenable. If present, then returns.This is important to protect from spurious interrupts. Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
}
}
#endif
if (mask & IFCAP_HWCSUM) {
ifp->if_capenable ^= IFCAP_HWCSUM;
reinit = 1;
}
#if __FreeBSD_version >= 700000
if (mask & IFCAP_TSO4) {
ifp->if_capenable ^= IFCAP_TSO4;
reinit = 1;
}
#endif
if (mask & IFCAP_VLAN_HWTAGGING) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
reinit = 1;
}
if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING))
em_init(adapter);
#if __FreeBSD_version >= 700000
VLAN_CAPABILITIES(ifp);
#endif
break;
}
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
/*********************************************************************
* Watchdog timer:
*
* This routine is called from the local timer every second.
* As long as transmit descriptors are being cleaned the value
* is non-zero and we do nothing. Reaching 0 indicates a tx hang
* and we then reset the device.
*
**********************************************************************/
static void
em_watchdog(struct adapter *adapter)
{
EM_CORE_LOCK_ASSERT(adapter);
/*
** The timer is set to 5 every time start queues a packet.
** Then txeof keeps resetting it as long as it cleans at
** least one descriptor.
** Finally, anytime all descriptors are clean the timer is
** set to 0.
*/
if ((adapter->watchdog_timer == 0) || (--adapter->watchdog_timer))
return;
/* If we are in this routine because of pause frames, then
* don't reset the hardware.
*/
if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
E1000_STATUS_TXOFF) {
adapter->watchdog_timer = EM_TX_TIMEOUT;
return;
}
if (e1000_check_for_link(&adapter->hw) == 0)
device_printf(adapter->dev, "watchdog timeout -- resetting\n");
adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
adapter->watchdog_events++;
em_init_locked(adapter);
}
/*********************************************************************
* Init entry point
*
* This routine is used in two ways. It is used by the stack as
* init entry point in network interface structure. It is also used
* by the driver as a hw/sw initialization routine to get to a
* consistent state.
*
* return 0 on success, positive on failure
**********************************************************************/
static void
em_init_locked(struct adapter *adapter)
{
struct ifnet *ifp = adapter->ifp;
device_t dev = adapter->dev;
u32 pba;
INIT_DEBUGOUT("em_init: begin");
EM_CORE_LOCK_ASSERT(adapter);
EM_TX_LOCK(adapter);
em_stop(adapter);
EM_TX_UNLOCK(adapter);
/*
* Packet Buffer Allocation (PBA)
* Writing PBA sets the receive portion of the buffer
* the remainder is used for the transmit buffer.
*
* Devices before the 82547 had a Packet Buffer of 64K.
* Default allocation: PBA=48K for Rx, leaving 16K for Tx.
* After the 82547 the buffer was reduced to 40K.
* Default allocation: PBA=30K for Rx, leaving 10K for Tx.
* Note: default does not leave enough room for Jumbo Frame >10k.
*/
switch (adapter->hw.mac.type) {
case e1000_82547:
case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
if (adapter->max_frame_size > 8192)
pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
else
pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
adapter->tx_fifo_head = 0;
adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
adapter->tx_fifo_size =
(E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
break;
/* Total Packet Buffer on these is 48K */
case e1000_82571:
case e1000_82572:
case e1000_80003es2lan:
pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
break;
case e1000_82573: /* 82573: Total Packet Buffer is 32K */
pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
break;
case e1000_ich9lan:
#define E1000_PBA_10K 0x000A
pba = E1000_PBA_10K;
break;
case e1000_ich8lan:
pba = E1000_PBA_8K;
break;
default:
/* Devices before 82547 had a Packet Buffer of 64K. */
if (adapter->max_frame_size > 8192)
pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
else
pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
}
INIT_DEBUGOUT1("em_init: pba=%dK",pba);
E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
/* Get the latest mac address, User can use a LAA */
bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr,
ETHER_ADDR_LEN);
/* Put the address into the Receive Address Array */
e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
/*
* With the 82571 adapter, RAR[0] may be overwritten
* when the other port is reset, we make a duplicate
* in RAR[14] for that eventuality, this assures
* the interface continues to function.
*/
if (adapter->hw.mac.type == e1000_82571) {
e1000_set_laa_state_82571(&adapter->hw, TRUE);
e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
E1000_RAR_ENTRIES - 1);
}
/* Initialize the hardware */
if (em_hardware_init(adapter)) {
device_printf(dev, "Unable to initialize the hardware\n");
return;
}
em_update_link_status(adapter);
/* Setup VLAN support, basic and offload if available */
E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
em_enable_hw_vlans(adapter);
/* Set hardware offload abilities */
ifp->if_hwassist = 0;
if (adapter->hw.mac.type >= e1000_82543) {
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
#if __FreeBSD_version >= 700000
if (ifp->if_capenable & IFCAP_TSO4)
ifp->if_hwassist |= CSUM_TSO;
#endif
}
/* Configure for OS presence */
em_init_manageability(adapter);
/* Prepare transmit descriptors and buffers */
em_setup_transmit_structures(adapter);
em_initialize_transmit_unit(adapter);
/* Setup Multicast table */
em_set_multi(adapter);
/* Prepare receive descriptors and buffers */
if (em_setup_receive_structures(adapter)) {
device_printf(dev, "Could not setup receive structures\n");
EM_TX_LOCK(adapter);
em_stop(adapter);
EM_TX_UNLOCK(adapter);
return;
}
em_initialize_receive_unit(adapter);
/* Don't lose promiscuous settings */
em_set_promisc(adapter);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&adapter->timer, hz, em_local_timer, adapter);
e1000_clear_hw_cntrs_base_generic(&adapter->hw);
#ifdef DEVICE_POLLING
/*
* Only enable interrupts if we are not polling, make sure
* they are off otherwise.
*/
if (ifp->if_capenable & IFCAP_POLLING)
em_disable_intr(adapter);
else
#endif /* DEVICE_POLLING */
em_enable_intr(adapter);
/* Don't reset the phy next time init gets called */
adapter->hw.phy.reset_disable = TRUE;
}
static void
em_init(void *arg)
{
struct adapter *adapter = arg;
EM_CORE_LOCK(adapter);
em_init_locked(adapter);
EM_CORE_UNLOCK(adapter);
}
#ifdef DEVICE_POLLING
/*********************************************************************
*
* Legacy polling routine
*
*********************************************************************/
static void
em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct adapter *adapter = ifp->if_softc;
u32 reg_icr;
EM_CORE_LOCK(adapter);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
EM_CORE_UNLOCK(adapter);
return;
}
if (cmd == POLL_AND_CHECK_STATUS) {
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
callout_stop(&adapter->timer);
adapter->hw.mac.get_link_status = 1;
e1000_check_for_link(&adapter->hw);
em_update_link_status(adapter);
callout_reset(&adapter->timer, hz,
em_local_timer, adapter);
}
}
em_rxeof(adapter, count);
EM_CORE_UNLOCK(adapter);
EM_TX_LOCK(adapter);
em_txeof(adapter);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
em_start_locked(ifp);
EM_TX_UNLOCK(adapter);
}
#endif /* DEVICE_POLLING */
#ifndef EM_FAST_IRQ
/*********************************************************************
*
* Legacy Interrupt Service routine
*
*********************************************************************/
static void
em_intr(void *arg)
{
struct adapter *adapter = arg;
struct ifnet *ifp;
u32 reg_icr;
EM_CORE_LOCK(adapter);
ifp = adapter->ifp;
if (ifp->if_capenable & IFCAP_POLLING) {
EM_CORE_UNLOCK(adapter);
return;
}
for (;;) {
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
if (adapter->hw.mac.type >= e1000_82571 &&
(reg_icr & E1000_ICR_INT_ASSERTED) == 0)
break;
else if (reg_icr == 0)
break;
/*
* XXX: some laptops trigger several spurious interrupts
* on em(4) when in the resume cycle. The ICR register
* reports all-ones value in this case. Processing such
* interrupts would lead to a freeze. I don't know why.
*/
if (reg_icr == 0xffffffff)
break;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
em_rxeof(adapter, -1);
EM_TX_LOCK(adapter);
em_txeof(adapter);
EM_TX_UNLOCK(adapter);
}
/* Link status change */
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
callout_stop(&adapter->timer);
adapter->hw.mac.get_link_status = 1;
e1000_check_for_link(&adapter->hw);
em_update_link_status(adapter);
/* Deal with TX cruft when link lost */
em_tx_purge(adapter);
callout_reset(&adapter->timer, hz,
em_local_timer, adapter);
}
if (reg_icr & E1000_ICR_RXO)
adapter->rx_overruns++;
}
EM_CORE_UNLOCK(adapter);
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
em_start(ifp);
}
#else /* EM_FAST_IRQ, then fast interrupt routines only */
static void
em_handle_link(void *context, int pending)
{
struct adapter *adapter = context;
struct ifnet *ifp;
ifp = adapter->ifp;
EM_CORE_LOCK(adapter);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
EM_CORE_UNLOCK(adapter);
return;
}
callout_stop(&adapter->timer);
adapter->hw.mac.get_link_status = 1;
e1000_check_for_link(&adapter->hw);
em_update_link_status(adapter);
/* Deal with TX cruft when link lost */
em_tx_purge(adapter);
callout_reset(&adapter->timer, hz, em_local_timer, adapter);
EM_CORE_UNLOCK(adapter);
}
#if __FreeBSD_version >= 700000
#if !defined(NET_LOCK_GIANT)
#define NET_LOCK_GIANT()
#define NET_UNLOCK_GIANT()
#endif
#endif
/* Combined RX/TX handler, used by Legacy and MSI */
static void
em_handle_rxtx(void *context, int pending)
{
struct adapter *adapter = context;
struct ifnet *ifp = adapter->ifp;
NET_LOCK_GIANT();
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if (em_rxeof(adapter, adapter->rx_process_limit) != 0)
taskqueue_enqueue(adapter->tq, &adapter->rxtx_task);
EM_TX_LOCK(adapter);
em_txeof(adapter);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
em_start_locked(ifp);
EM_TX_UNLOCK(adapter);
}
em_enable_intr(adapter);
}
/* RX deferred handler: used with MSIX */
static void
em_handle_rx(void *context, int pending)
{
struct adapter *adapter = context;
struct ifnet *ifp = adapter->ifp;
++adapter->rx_irq;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) &&
(em_rxeof(adapter, adapter->rx_process_limit) != 0))
taskqueue_enqueue(adapter->tq, &adapter->rx_task);
em_enable_intr(adapter);
}
static void
em_handle_tx(void *context, int pending)
{
struct adapter *adapter = context;
struct ifnet *ifp = adapter->ifp;
++adapter->tx_irq;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
EM_TX_LOCK(adapter);
em_txeof(adapter);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
em_start_locked(ifp);
EM_TX_UNLOCK(adapter);
}
em_enable_intr(adapter);
}
/*********************************************************************
*
* Fast Legacy/MSI Combined Interrupt Service routine
*
*********************************************************************/
#if __FreeBSD_version < 700000
#define FILTER_STRAY
#define FILTER_HANDLED
static void
#else
static int
#endif
em_irq_fast(void *arg)
{
struct adapter *adapter = arg;
struct ifnet *ifp;
u32 reg_icr;
ifp = adapter->ifp;
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
/* Hot eject? */
if (reg_icr == 0xffffffff)
return FILTER_STRAY;
/* Definitely not our interrupt. */
if (reg_icr == 0x0)
return FILTER_STRAY;
/*
* Starting with the 82571 chip, bit 31 should be used to
* determine whether the interrupt belongs to us.
*/
if (adapter->hw.mac.type >= e1000_82571 &&
(reg_icr & E1000_ICR_INT_ASSERTED) == 0)
return FILTER_STRAY;
/*
* Mask interrupts until the taskqueue is finished running. This is
* cheap, just assume that it is needed. This also works around the
* MSI message reordering errata on certain systems.
*/
em_disable_intr(adapter);
taskqueue_enqueue(adapter->tq, &adapter->rxtx_task);
/* Link status change */
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
taskqueue_enqueue(taskqueue_fast, &adapter->link_task);
if (reg_icr & E1000_ICR_RXO)
adapter->rx_overruns++;
return FILTER_HANDLED;
}
/*********************************************************************
*
* MSIX TX Fast Interrupt Service routine
*
**********************************************************************/
static int
em_tx_fast(void *arg)
{
struct adapter *adapter = arg;
u32 reg_icr;
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
/*
* Mask interrupts until the taskqueue is finished running. This is
* cheap, just assume that it is needed. This also works around the
* MSI message reordering errata on certain systems.
*/
em_disable_intr(adapter);
taskqueue_enqueue(adapter->tq, &adapter->tx_task);
return FILTER_HANDLED;
}
/*********************************************************************
*
* MSIX RX Fast Interrupt Service routine
*
**********************************************************************/
static int
em_rx_fast(void *arg)
{
struct adapter *adapter = arg;
u32 reg_icr;
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
/*
* Mask interrupts until the taskqueue is finished running. This is
* cheap, just assume that it is needed. This also works around the
* MSI message reordering errata on certain systems.
*/
em_disable_intr(adapter);
taskqueue_enqueue(adapter->tq, &adapter->rx_task);
if (reg_icr & E1000_ICR_RXO)
adapter->rx_overruns++;
return FILTER_HANDLED;
}
/*********************************************************************
*
* MSIX Link Fast Interrupt Service routine
*
**********************************************************************/
static int
em_link_fast(void *arg)
{
struct adapter *adapter = arg;
u32 reg_eicr;
reg_eicr = E1000_READ_REG(&adapter->hw, E1000_ICR);
if (reg_eicr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
taskqueue_enqueue(taskqueue_fast, &adapter->link_task);
E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
return FILTER_HANDLED;
}
#endif /* EM_FAST_IRQ */
/*********************************************************************
*
* Media Ioctl callback
*
* This routine is called whenever the user queries the status of
* the interface using ifconfig.
*
**********************************************************************/
static void
em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct adapter *adapter = ifp->if_softc;
u_char fiber_type = IFM_1000_SX;
INIT_DEBUGOUT("em_media_status: begin");
EM_CORE_LOCK(adapter);
e1000_check_for_link(&adapter->hw);
em_update_link_status(adapter);
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (!adapter->link_active) {
EM_CORE_UNLOCK(adapter);
return;
}
ifmr->ifm_status |= IFM_ACTIVE;
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
(adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
if (adapter->hw.mac.type == e1000_82545)
fiber_type = IFM_1000_LX;
ifmr->ifm_active |= fiber_type | IFM_FDX;
} else {
switch (adapter->link_speed) {
case 10:
ifmr->ifm_active |= IFM_10_T;
break;
case 100:
ifmr->ifm_active |= IFM_100_TX;
break;
case 1000:
ifmr->ifm_active |= IFM_1000_T;
break;
}
if (adapter->link_duplex == FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
}
EM_CORE_UNLOCK(adapter);
}
/*********************************************************************
*
* Media Ioctl callback
*
* This routine is called when the user changes speed/duplex using
* media/mediopt option with ifconfig.
*
**********************************************************************/
static int
em_media_change(struct ifnet *ifp)
{
struct adapter *adapter = ifp->if_softc;
struct ifmedia *ifm = &adapter->media;
INIT_DEBUGOUT("em_media_change: begin");
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
EM_CORE_LOCK(adapter);
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
adapter->hw.mac.autoneg = DO_AUTO_NEG;
adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
break;
case IFM_1000_LX:
case IFM_1000_SX:
case IFM_1000_T:
adapter->hw.mac.autoneg = DO_AUTO_NEG;
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
break;
case IFM_100_TX:
adapter->hw.mac.autoneg = FALSE;
adapter->hw.phy.autoneg_advertised = 0;
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
else
adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
break;
case IFM_10_T:
adapter->hw.mac.autoneg = FALSE;
adapter->hw.phy.autoneg_advertised = 0;
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
else
adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
break;
default:
device_printf(adapter->dev, "Unsupported media type\n");
}
/* As the speed/duplex settings my have changed we need to
* reset the PHY.
*/
adapter->hw.phy.reset_disable = FALSE;
em_init_locked(adapter);
EM_CORE_UNLOCK(adapter);
return (0);
}
/*********************************************************************
*
* This routine maps the mbufs to tx descriptors.
*
* return 0 on success, positive on failure
**********************************************************************/
static int
em_xmit(struct adapter *adapter, struct mbuf **m_headp)
{
bus_dma_segment_t segs[EM_MAX_SCATTER];
bus_dmamap_t map;
struct em_buffer *tx_buffer, *tx_buffer_mapped;
struct e1000_tx_desc *ctxd = NULL;
struct mbuf *m_head;
u32 txd_upper, txd_lower, txd_used, txd_saved;
int nsegs, i, j, first, last = 0;
int error, do_tso, tso_desc = 0;
#if __FreeBSD_version < 700000
struct m_tag *mtag;
#endif
m_head = *m_headp;
txd_upper = txd_lower = txd_used = txd_saved = 0;
#if __FreeBSD_version >= 700000
do_tso = ((m_head->m_pkthdr.csum_flags & CSUM_TSO) != 0);
#else
do_tso = 0;
#endif
/*
* Force a cleanup if number of TX descriptors
* available hits the threshold
*/
if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
em_txeof(adapter);
/* Now do we at least have a minimal? */
if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD) {
adapter->no_tx_desc_avail1++;
return (ENOBUFS);
}
}
/*
* TSO workaround:
* If an mbuf is only header we need
* to pull 4 bytes of data into it.
*/
if (do_tso && (m_head->m_len <= M_TSO_LEN)) {
m_head = m_pullup(m_head, M_TSO_LEN + 4);
*m_headp = m_head;
if (m_head == NULL)
return (ENOBUFS);
}
/*
* Map the packet for DMA
*
* Capture the first descriptor index,
* this descriptor will have the index
* of the EOP which is the only one that
* now gets a DONE bit writeback.
*/
first = adapter->next_avail_tx_desc;
tx_buffer = &adapter->tx_buffer_area[first];
tx_buffer_mapped = tx_buffer;
map = tx_buffer->map;
error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
/*
* There are two types of errors we can (try) to handle:
* - EFBIG means the mbuf chain was too long and bus_dma ran
* out of segments. Defragment the mbuf chain and try again.
* - ENOMEM means bus_dma could not obtain enough bounce buffers
* at this point in time. Defer sending and try again later.
* All other errors, in particular EINVAL, are fatal and prevent the
* mbuf chain from ever going through. Drop it and report error.
*/
if (error == EFBIG) {
struct mbuf *m;
m = m_defrag(*m_headp, M_DONTWAIT);
if (m == NULL) {
adapter->mbuf_alloc_failed++;
m_freem(*m_headp);
*m_headp = NULL;
return (ENOBUFS);
}
*m_headp = m;
/* Try it again */
error = bus_dmamap_load_mbuf_sg(adapter->txtag, map,
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
if (error == ENOMEM) {
adapter->no_tx_dma_setup++;
return (error);
} else if (error != 0) {
adapter->no_tx_dma_setup++;
m_freem(*m_headp);
*m_headp = NULL;
return (error);
}
} else if (error == ENOMEM) {
adapter->no_tx_dma_setup++;
return (error);
} else if (error != 0) {
adapter->no_tx_dma_setup++;
m_freem(*m_headp);
*m_headp = NULL;
return (error);
}
/*
* TSO Hardware workaround, if this packet is not
* TSO, and is only a single descriptor long, and
* it follows a TSO burst, then we need to add a
* sentinel descriptor to prevent premature writeback.
*/
if ((do_tso == 0) && (adapter->tx_tso == TRUE)) {
if (nsegs == 1)
tso_desc = TRUE;
adapter->tx_tso = FALSE;
}
if (nsegs > (adapter->num_tx_desc_avail - 2)) {
adapter->no_tx_desc_avail2++;
bus_dmamap_unload(adapter->txtag, map);
return (ENOBUFS);
}
m_head = *m_headp;
/* Do hardware assists */
#if __FreeBSD_version >= 700000
if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
error = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
if (error != TRUE)
return (ENXIO); /* something foobar */
/* we need to make a final sentinel transmit desc */
tso_desc = TRUE;
} else
#endif
if (m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD)
em_transmit_checksum_setup(adapter, m_head,
&txd_upper, &txd_lower);
i = adapter->next_avail_tx_desc;
if (adapter->pcix_82544)
txd_saved = i;
/* Set up our transmit descriptors */
for (j = 0; j < nsegs; j++) {
bus_size_t seg_len;
bus_addr_t seg_addr;
/* If adapter is 82544 and on PCIX bus */
if(adapter->pcix_82544) {
DESC_ARRAY desc_array;
u32 array_elements, counter;
/*
* Check the Address and Length combination and
* split the data accordingly
*/
array_elements = em_fill_descriptors(segs[j].ds_addr,
segs[j].ds_len, &desc_array);
for (counter = 0; counter < array_elements; counter++) {
if (txd_used == adapter->num_tx_desc_avail) {
adapter->next_avail_tx_desc = txd_saved;
adapter->no_tx_desc_avail2++;
bus_dmamap_unload(adapter->txtag, map);
return (ENOBUFS);
}
tx_buffer = &adapter->tx_buffer_area[i];
ctxd = &adapter->tx_desc_base[i];
ctxd->buffer_addr = htole64(
desc_array.descriptor[counter].address);
ctxd->lower.data = htole32(
(adapter->txd_cmd | txd_lower | (u16)
desc_array.descriptor[counter].length));
ctxd->upper.data =
htole32((txd_upper));
last = i;
if (++i == adapter->num_tx_desc)
i = 0;
tx_buffer->m_head = NULL;
tx_buffer->next_eop = -1;
txd_used++;
}
} else {
tx_buffer = &adapter->tx_buffer_area[i];
ctxd = &adapter->tx_desc_base[i];
seg_addr = segs[j].ds_addr;
seg_len = segs[j].ds_len;
/*
** TSO Workaround:
** If this is the last descriptor, we want to
** split it so we have a small final sentinel
*/
if (tso_desc && (j == (nsegs -1)) && (seg_len > 8)) {
seg_len -= 4;
ctxd->buffer_addr = htole64(seg_addr);
ctxd->lower.data = htole32(
adapter->txd_cmd | txd_lower | seg_len);
ctxd->upper.data =
htole32(txd_upper);
if (++i == adapter->num_tx_desc)
i = 0;
/* Now make the sentinel */
++txd_used; /* using an extra txd */
ctxd = &adapter->tx_desc_base[i];
tx_buffer = &adapter->tx_buffer_area[i];
ctxd->buffer_addr =
htole64(seg_addr + seg_len);
ctxd->lower.data = htole32(
adapter->txd_cmd | txd_lower | 4);
ctxd->upper.data =
htole32(txd_upper);
last = i;
if (++i == adapter->num_tx_desc)
i = 0;
} else {
ctxd->buffer_addr = htole64(seg_addr);
ctxd->lower.data = htole32(
adapter->txd_cmd | txd_lower | seg_len);
ctxd->upper.data =
htole32(txd_upper);
last = i;
if (++i == adapter->num_tx_desc)
i = 0;
}
tx_buffer->m_head = NULL;
tx_buffer->next_eop = -1;
}
}
adapter->next_avail_tx_desc = i;
if (adapter->pcix_82544)
adapter->num_tx_desc_avail -= txd_used;
else {
adapter->num_tx_desc_avail -= nsegs;
if (tso_desc) /* TSO used an extra for sentinel */
adapter->num_tx_desc_avail -= txd_used;
}
/*
** Handle VLAN tag, this is the
** biggest difference between
** 6.x and 7
*/
#if __FreeBSD_version < 700000
/* Find out if we are in vlan mode. */
mtag = VLAN_OUTPUT_TAG(ifp, m_head);
if (mtag != NULL) {
ctxd->upper.fields.special =
htole16(VLAN_TAG_VALUE(mtag));
#else /* FreeBSD 7 */
if (m_head->m_flags & M_VLANTAG) {
/* Set the vlan id. */
ctxd->upper.fields.special =
htole16(m_head->m_pkthdr.ether_vtag);
#endif
/* Tell hardware to add tag */
ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
}
tx_buffer->m_head = m_head;
tx_buffer_mapped->map = tx_buffer->map;
tx_buffer->map = map;
bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
/*
* Last Descriptor of Packet
* needs End Of Packet (EOP)
* and Report Status (RS)
*/
ctxd->lower.data |=
htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
/*
* Keep track in the first buffer which
* descriptor will be written back
*/
tx_buffer = &adapter->tx_buffer_area[first];
tx_buffer->next_eop = last;
/*
* Advance the Transmit Descriptor Tail (TDT), this tells the E1000
* that this frame is available to transmit.
*/
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (adapter->hw.mac.type == e1000_82547 &&
adapter->link_duplex == HALF_DUPLEX)
em_82547_move_tail(adapter);
else {
E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
if (adapter->hw.mac.type == e1000_82547)
em_82547_update_fifo_head(adapter,
m_head->m_pkthdr.len);
}
return (0);
}
/*********************************************************************
*
* 82547 workaround to avoid controller hang in half-duplex environment.
* The workaround is to avoid queuing a large packet that would span
* the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
* in this case. We do that only when FIFO is quiescent.
*
**********************************************************************/
static void
em_82547_move_tail(void *arg)
{
struct adapter *adapter = arg;
struct e1000_tx_desc *tx_desc;
u16 hw_tdt, sw_tdt, length = 0;
bool eop = 0;
EM_TX_LOCK_ASSERT(adapter);
hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
sw_tdt = adapter->next_avail_tx_desc;
while (hw_tdt != sw_tdt) {
tx_desc = &adapter->tx_desc_base[hw_tdt];
length += tx_desc->lower.flags.length;
eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
if (++hw_tdt == adapter->num_tx_desc)
hw_tdt = 0;
if (eop) {
if (em_82547_fifo_workaround(adapter, length)) {
adapter->tx_fifo_wrk_cnt++;
callout_reset(&adapter->tx_fifo_timer, 1,
em_82547_move_tail, adapter);
break;
}
E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
em_82547_update_fifo_head(adapter, length);
length = 0;
}
}
}
static int
em_82547_fifo_workaround(struct adapter *adapter, int len)
{
int fifo_space, fifo_pkt_len;
fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
if (adapter->link_duplex == HALF_DUPLEX) {
fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
if (em_82547_tx_fifo_reset(adapter))
return (0);
else
return (1);
}
}
return (0);
}
static void
em_82547_update_fifo_head(struct adapter *adapter, int len)
{
int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
/* tx_fifo_head is always 16 byte aligned */
adapter->tx_fifo_head += fifo_pkt_len;
if (adapter->tx_fifo_head >= adapter->tx_fifo_size) {
adapter->tx_fifo_head -= adapter->tx_fifo_size;
}
}
static int
em_82547_tx_fifo_reset(struct adapter *adapter)
{
u32 tctl;
if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
(E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
(E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
(E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
/* Disable TX unit */
tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
tctl & ~E1000_TCTL_EN);
/* Reset FIFO pointers */
E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
adapter->tx_head_addr);
E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
adapter->tx_head_addr);
E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
adapter->tx_head_addr);
E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
adapter->tx_head_addr);
/* Re-enable TX unit */
E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
E1000_WRITE_FLUSH(&adapter->hw);
adapter->tx_fifo_head = 0;
adapter->tx_fifo_reset_cnt++;
return (TRUE);
}
else {
return (FALSE);
}
}
static void
em_set_promisc(struct adapter *adapter)
{
struct ifnet *ifp = adapter->ifp;
u32 reg_rctl;
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
if (ifp->if_flags & IFF_PROMISC) {
reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
} else if (ifp->if_flags & IFF_ALLMULTI) {
reg_rctl |= E1000_RCTL_MPE;
reg_rctl &= ~E1000_RCTL_UPE;
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
}
}
static void
em_disable_promisc(struct adapter *adapter)
{
u32 reg_rctl;
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
reg_rctl &= (~E1000_RCTL_UPE);
reg_rctl &= (~E1000_RCTL_MPE);
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
}
/*********************************************************************
* Multicast Update
*
* This routine is called whenever multicast address list is updated.
*
**********************************************************************/
static void
em_set_multi(struct adapter *adapter)
{
struct ifnet *ifp = adapter->ifp;
struct ifmultiaddr *ifma;
u32 reg_rctl = 0;
u8 mta[512]; /* Largest MTS is 4096 bits */
int mcnt = 0;
IOCTL_DEBUGOUT("em_set_multi: begin");
if (adapter->hw.mac.type == e1000_82542 &&
adapter->hw.revision_id == E1000_REVISION_2) {
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
e1000_pci_clear_mwi(&adapter->hw);
reg_rctl |= E1000_RCTL_RST;
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
msec_delay(5);
}
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
break;
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
&mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
mcnt++;
}
IF_ADDR_UNLOCK(ifp);
if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
reg_rctl |= E1000_RCTL_MPE;
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
} else
e1000_update_mc_addr_list(&adapter->hw, mta,
mcnt, 1, adapter->hw.mac.rar_entry_count);
if (adapter->hw.mac.type == e1000_82542 &&
adapter->hw.revision_id == E1000_REVISION_2) {
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
reg_rctl &= ~E1000_RCTL_RST;
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
msec_delay(5);
if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
e1000_pci_set_mwi(&adapter->hw);
}
}
/*********************************************************************
* Timer routine
*
* This routine checks for link status and updates statistics.
*
**********************************************************************/
static void
em_local_timer(void *arg)
{
struct adapter *adapter = arg;
struct ifnet *ifp = adapter->ifp;
EM_CORE_LOCK_ASSERT(adapter);
e1000_check_for_link(&adapter->hw);
em_update_link_status(adapter);
em_update_stats_counters(adapter);
/* Reset LAA into RAR[0] on 82571 */
if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
if (em_display_debug_stats && ifp->if_drv_flags & IFF_DRV_RUNNING)
em_print_hw_stats(adapter);
em_smartspeed(adapter);
/*
* Each second we check the watchdog to
* protect against hardware hangs.
*/
em_watchdog(adapter);
callout_reset(&adapter->timer, hz, em_local_timer, adapter);
}
static void
em_update_link_status(struct adapter *adapter)
{
struct ifnet *ifp = adapter->ifp;
device_t dev = adapter->dev;
if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
E1000_STATUS_LU) {
if (adapter->link_active == 0) {
e1000_get_speed_and_duplex(&adapter->hw,
&adapter->link_speed, &adapter->link_duplex);
/* Check if we must disable SPEED_MODE bit on PCI-E */
if ((adapter->link_speed != SPEED_1000) &&
((adapter->hw.mac.type == e1000_82571) ||
(adapter->hw.mac.type == e1000_82572))) {
int tarc0;
tarc0 = E1000_READ_REG(&adapter->hw,
E1000_TARC(0));
tarc0 &= ~SPEED_MODE_BIT;
E1000_WRITE_REG(&adapter->hw,
E1000_TARC(0), tarc0);
}
if (bootverbose)
device_printf(dev, "Link is up %d Mbps %s\n",
adapter->link_speed,
((adapter->link_duplex == FULL_DUPLEX) ?
"Full Duplex" : "Half Duplex"));
adapter->link_active = 1;
adapter->smartspeed = 0;
ifp->if_baudrate = adapter->link_speed * 1000000;
if_link_state_change(ifp, LINK_STATE_UP);
}
} else {
if (adapter->link_active == 1) {
ifp->if_baudrate = adapter->link_speed = 0;
adapter->link_duplex = 0;
if (bootverbose)
device_printf(dev, "Link is Down\n");
adapter->link_active = 0;
if_link_state_change(ifp, LINK_STATE_DOWN);
}
}
}
/*********************************************************************
*
* This routine disables all traffic on the adapter by issuing a
* global reset on the MAC and deallocates TX/RX buffers.
*
* This routine should always be called with BOTH the CORE
* and TX locks.
**********************************************************************/
static void
em_stop(void *arg)
{
struct adapter *adapter = arg;
struct ifnet *ifp = adapter->ifp;
EM_CORE_LOCK_ASSERT(adapter);
EM_TX_LOCK_ASSERT(adapter);
INIT_DEBUGOUT("em_stop: begin");
Big polling(4) cleanup. o Axe poll in trap. o Axe IFF_POLLING flag from if_flags. o Rework revision 1.21 (Giant removal), in such a way that poll_mtx is not dropped during call to polling handler. This fixes problem with idle polling. o Make registration and deregistration from polling in a functional way, insted of next tick/interrupt. o Obsolete kern.polling.enable. Polling is turned on/off with ifconfig. Detailed kern_poll.c changes: - Remove polling handler flags, introduced in 1.21. The are not needed now. - Forget and do not check if_flags, if_capenable and if_drv_flags. - Call all registered polling handlers unconditionally. - Do not drop poll_mtx, when entering polling handlers. - In ether_poll() NET_LOCK_GIANT prior to locking poll_mtx. - In netisr_poll() axe the block, where polling code asks drivers to unregister. - In netisr_poll() and ether_poll() do polling always, if any handlers are present. - In ether_poll_[de]register() remove a lot of error hiding code. Assert that arguments are correct, instead. - In ether_poll_[de]register() use standard return values in case of error or success. - Introduce poll_switch() that is a sysctl handler for kern.polling.enable. poll_switch() goes through interface list and enabled/disables polling. A message that kern.polling.enable is deprecated is printed. Detailed driver changes: - On attach driver announces IFCAP_POLLING in if_capabilities, but not in if_capenable. - On detach driver calls ether_poll_deregister() if polling is enabled. - In polling handler driver obtains its lock and checks IFF_DRV_RUNNING flag. If there is no, then unlocks and returns. - In ioctl handler driver checks for IFCAP_POLLING flag requested to be set or cleared. Driver first calls ether_poll_[de]register(), then obtains driver lock and [dis/en]ables interrupts. - In interrupt handler driver checks IFCAP_POLLING flag in if_capenable. If present, then returns.This is important to protect from spurious interrupts. Reviewed by: ru, sam, jhb
2005-10-01 18:56:19 +00:00
em_disable_intr(adapter);
callout_stop(&adapter->timer);
callout_stop(&adapter->tx_fifo_timer);
/* Tell the stack that the interface is no longer active */
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
e1000_reset_hw(&adapter->hw);
if (adapter->hw.mac.type >= e1000_82544)
E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
}
/*********************************************************************
*
* Determine hardware revision.
*
**********************************************************************/
static void
em_identify_hardware(struct adapter *adapter)
{
device_t dev = adapter->dev;
/* Make sure our PCI config space has the necessary stuff set */
adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
if (!((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
(adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN))) {
device_printf(dev, "Memory Access and/or Bus Master bits "
"were not set!\n");
adapter->hw.bus.pci_cmd_word |=
(PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN);
pci_write_config(dev, PCIR_COMMAND,
adapter->hw.bus.pci_cmd_word, 2);
}
/* Save off the information about this board */
adapter->hw.vendor_id = pci_get_vendor(dev);
adapter->hw.device_id = pci_get_device(dev);
adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
adapter->hw.subsystem_vendor_id =
pci_read_config(dev, PCIR_SUBVEND_0, 2);
adapter->hw.subsystem_device_id =
pci_read_config(dev, PCIR_SUBDEV_0, 2);
/* Do Shared Code Init and Setup */
if (e1000_set_mac_type(&adapter->hw)) {
device_printf(dev, "Setup init failure\n");
return;
}
}
static int
em_allocate_pci_resources(struct adapter *adapter)
{
device_t dev = adapter->dev;
int val, rid, error = E1000_SUCCESS;
rid = PCIR_BAR(0);
adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE);
if (adapter->memory == NULL) {
device_printf(dev, "Unable to allocate bus resource: memory\n");
return (ENXIO);
}
adapter->osdep.mem_bus_space_tag =
rman_get_bustag(adapter->memory);
adapter->osdep.mem_bus_space_handle =
rman_get_bushandle(adapter->memory);
adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
/* Only older adapters use IO mapping */
if ((adapter->hw.mac.type > e1000_82543) &&
(adapter->hw.mac.type < e1000_82571)) {
/* Figure our where our IO BAR is ? */
for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
val = pci_read_config(dev, rid, 4);
if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
adapter->io_rid = rid;
break;
}
rid += 4;
/* check for 64bit BAR */
if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
rid += 4;
}
if (rid >= PCIR_CIS) {
device_printf(dev, "Unable to locate IO BAR\n");
return (ENXIO);
}
adapter->ioport = bus_alloc_resource_any(dev,
SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
if (adapter->ioport == NULL) {
device_printf(dev, "Unable to allocate bus resource: "
"ioport\n");
return (ENXIO);
}
adapter->hw.io_base = 0;
adapter->osdep.io_bus_space_tag =
rman_get_bustag(adapter->ioport);
adapter->osdep.io_bus_space_handle =
rman_get_bushandle(adapter->ioport);
}
/*
** Init the resource arrays
** used by MSIX setup
*/
for (int i = 0; i < 3; i++) {
adapter->rid[i] = i + 1; /* MSI/X RID starts at 1 */
adapter->tag[i] = NULL;
adapter->res[i] = NULL;
}
/*
* Setup MSI/X or MSI if PCI Express
*/
adapter->msi = em_setup_msix(adapter);
Significant performance improvements for the if_em driver: - Only update the rx ring consumer pointer after running through the rx loop, not with each iteration through the loop. - If possible, use a fast interupt handler instead of an ithread handler. Use the interrupt handler to check and squelch the interrupt, then schedule a taskqueue to do the actual work. This has three benefits: - Eliminates the 'interrupt aliasing' problem found in many chipsets by allowing the driver to mask the interrupt in the NIC instead of the OS masking the interrupt in the APIC. - Allows the driver to control the amount of work done in the interrupt handler. This results in what I call 'adaptive polling', where you get the latency benefits of a quick response to interrupts with the interrupt mitigation and work partitioning of polling. Polling is still an option in the driver, but I consider it orthogonal to this work. - Don't hold the driver lock in the RX handler. The handler and all data associated is effectively serialized already. This eliminates the cost of dropping and reaquiring the lock for every receieved packet. The result is much lower contention for the driver lock, resulting in lower CPU usage and lower latency for interactive workloads. The amount of work done in the taskqueue is controlled by the sysctl dev.em.N.rx_processing_limit and tunable hw.em.rx_process_limit Setting these to -1 effectively removes the limit. The fast interrupt and taskqueue can be disabled by defining NO_EM_FASTINTR. This work has been shown to increase fast-forwarding from ~570 kpps to ~750 kpps (note that the same NIC hardware seems unable to transmit more than 800 kpps, so this increase appears to be limited almost solely by the hardware). Gains have been shown in other workloads, ranging from better performance to elimination of over-saturation livelocks. Thanks to Andre Opperman for his time and resources from his network performance project in performing much of the testing. Thanks to Gleb Smirnoff and Danny Braniss for their help in testing also.
2006-01-11 00:30:25 +00:00
adapter->hw.back = &adapter->osdep;
return (error);
}
/*********************************************************************
*
* Setup the Legacy or MSI Interrupt handler
*
**********************************************************************/
int
em_allocate_legacy(struct adapter *adapter)
{
device_t dev = adapter->dev;
int error;
/* Manually turn off all interrupts */
E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
/* Legacy RID is 0 */
if (adapter->msi == 0)
adapter->rid[0] = 0;
/* We allocate a single interrupt resource */
adapter->res[0] = bus_alloc_resource_any(dev,
SYS_RES_IRQ, &adapter->rid[0], RF_SHAREABLE | RF_ACTIVE);
if (adapter->res[0] == NULL) {
device_printf(dev, "Unable to allocate bus resource: "
"interrupt\n");
return (ENXIO);
}
#ifndef EM_FAST_IRQ
/* We do Legacy setup */
if ((error = bus_setup_intr(dev, adapter->res[0],
#if __FreeBSD_version > 700000
INTR_TYPE_NET | INTR_MPSAFE, NULL, em_intr, adapter,
#else /* 6.X */
INTR_TYPE_NET | INTR_MPSAFE, em_intr, adapter,
#endif
&adapter->tag[0])) != 0) {
device_printf(dev, "Failed to register interrupt handler");
return (error);
}
#else /* FAST_IRQ */
/*
* Try allocating a fast interrupt and the associated deferred
* processing contexts.
*/
TASK_INIT(&adapter->rxtx_task, 0, em_handle_rxtx, adapter);
TASK_INIT(&adapter->link_task, 0, em_handle_link, adapter);
adapter->tq = taskqueue_create_fast("em_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &adapter->tq);
taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq",
device_get_nameunit(adapter->dev));
#if __FreeBSD_version < 700000
if ((error = bus_setup_intr(dev, adapter->res[0],
INTR_TYPE_NET | INTR_FAST, em_irq_fast, adapter,
#else
if ((error = bus_setup_intr(dev, adapter->res[0],
INTR_TYPE_NET, em_irq_fast, NULL, adapter,
#endif
&adapter->tag[0])) != 0) {
device_printf(dev, "Failed to register fast interrupt "
"handler: %d\n", error);
taskqueue_free(adapter->tq);
adapter->tq = NULL;
return (error);
}
#endif /* EM_FAST_IRQ */
return (0);
}
/*********************************************************************
*
* Setup the MSIX Interrupt handlers
* This is not really Multiqueue, rather
* its just multiple interrupt vectors.
*
**********************************************************************/
int
em_allocate_msix(struct adapter *adapter)
{
device_t dev = adapter->dev;
int error;
/* Make sure all interrupts are disabled */
E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
/* First get the resources */
for (int i = 0; i < adapter->msi; i++) {
adapter->res[i] = bus_alloc_resource_any(dev,
SYS_RES_IRQ, &adapter->rid[i], RF_ACTIVE);
if (adapter->res[i] == NULL) {
device_printf(dev,
"Unable to allocate bus resource: "
"MSIX Interrupt\n");
return (ENXIO);
}
}
/*
* Now allocate deferred processing contexts.
*/
TASK_INIT(&adapter->rx_task, 0, em_handle_rx, adapter);
TASK_INIT(&adapter->tx_task, 0, em_handle_tx, adapter);
TASK_INIT(&adapter->link_task, 0, em_handle_link, adapter);
adapter->tq = taskqueue_create_fast("em_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &adapter->tq);
taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq",
device_get_nameunit(adapter->dev));
/*
* And setup the interrupt handlers
*/
/* First slot to RX */
if ((error = bus_setup_intr(dev, adapter->res[0],
INTR_TYPE_NET, em_rx_fast, NULL, adapter,
&adapter->tag[0])) != 0) {
device_printf(dev, "Failed to register RX handler");
return (error);
}
/* Next TX */
if ((error = bus_setup_intr(dev, adapter->res[1],
INTR_TYPE_NET, em_tx_fast, NULL, adapter,
&adapter->tag[1])) != 0) {
device_printf(dev, "Failed to register TX handler");
return (error);
}
/* And Link */
if ((error = bus_setup_intr(dev, adapter->res[2],
INTR_TYPE_NET, em_link_fast, NULL, adapter,
&adapter->tag[2])) != 0) {
device_printf(dev, "Failed to register TX handler");
return (error);
}
return (0);
}
static void
em_free_pci_resources(struct adapter *adapter)
{
device_t dev = adapter->dev;
/* Make sure the for loop below runs once */
if (adapter->msi == 0)
adapter->msi = 1;
/*
* First release all the interrupt resources:
* notice that since these are just kept
* in an array we can do the same logic
* whether its MSIX or just legacy.
*/
for (int i = 0; i < adapter->msi; i++) {
if (adapter->tag[i] != NULL) {
bus_teardown_intr(dev, adapter->res[i],
adapter->tag[i]);
adapter->tag[i] = NULL;
}
if (adapter->res[i] != NULL) {
bus_release_resource(dev, SYS_RES_IRQ,
adapter->rid[i], adapter->res[i]);
}
}
if (adapter->msi)
pci_release_msi(dev);
if (adapter->msix != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
PCIR_BAR(EM_MSIX_BAR), adapter->msix);
if (adapter->memory != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
PCIR_BAR(0), adapter->memory);
if (adapter->flash != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
EM_FLASH, adapter->flash);
if (adapter->ioport != NULL)
bus_release_resource(dev, SYS_RES_IOPORT,
adapter->io_rid, adapter->ioport);
}
/*
* Setup MSI/X
*/
static int
em_setup_msix(struct adapter *adapter)
{
device_t dev = adapter->dev;
int val = 0;
if (adapter->hw.mac.type < e1000_82571)
return (0);
val = pci_msi_count(dev);
if (val == 1 && pci_alloc_msi(dev, &val) == 0) {
adapter->msi = 1;
device_printf(adapter->dev,"Using MSI interrupt\n");
return (val);
}
return (0);
}
/*********************************************************************
*
* Initialize the hardware to a configuration
* as specified by the adapter structure.
*
**********************************************************************/
static int
em_hardware_init(struct adapter *adapter)
{
device_t dev = adapter->dev;
u16 rx_buffer_size;
INIT_DEBUGOUT("em_hardware_init: begin");
/* Issue a global reset */
e1000_reset_hw(&adapter->hw);
/* Get control from any management/hw control */
if (((adapter->hw.mac.type == e1000_82573) ||
(adapter->hw.mac.type == e1000_ich8lan) ||
(adapter->hw.mac.type == e1000_ich9lan)) &&
e1000_check_mng_mode(&adapter->hw))
em_get_hw_control(adapter);
/* When hardware is reset, fifo_head is also reset */
adapter->tx_fifo_head = 0;
/* Set up smart power down as default off on newer adapters. */
if (!em_smart_pwr_down && (adapter->hw.mac.type == e1000_82571 ||
adapter->hw.mac.type == e1000_82572)) {
u16 phy_tmp = 0;
/* Speed up time to link by disabling smart power down. */
e1000_read_phy_reg(&adapter->hw,
IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
phy_tmp &= ~IGP02E1000_PM_SPD;
e1000_write_phy_reg(&adapter->hw,
IGP02E1000_PHY_POWER_MGMT, phy_tmp);
}
/*
* These parameters control the automatic generation (Tx) and
* response (Rx) to Ethernet PAUSE frames.
* - High water mark should allow for at least two frames to be
* received after sending an XOFF.
* - Low water mark works best when it is very near the high water mark.
* This allows the receiver to restart by sending XON when it has
* drained a bit. Here we use an arbitary value of 1500 which will
* restart after one full frame is pulled from the buffer. There
* could be several smaller frames in the buffer and if so they will
* not trigger the XON until their total number reduces the buffer
* by 1500.
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
*/
rx_buffer_size = ((E1000_READ_REG(&adapter->hw, E1000_PBA) &
0xffff) << 10 );
adapter->hw.fc.high_water = rx_buffer_size -
roundup2(adapter->max_frame_size, 1024);
adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
if (adapter->hw.mac.type == e1000_80003es2lan)
adapter->hw.fc.pause_time = 0xFFFF;
else
adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
adapter->hw.fc.send_xon = TRUE;
adapter->hw.fc.type = e1000_fc_full;
if (e1000_init_hw(&adapter->hw) < 0) {
device_printf(dev, "Hardware Initialization Failed\n");
return (EIO);
}
e1000_check_for_link(&adapter->hw);
return (0);
}
/*********************************************************************
*
* Setup networking device structure and register an interface.
*
**********************************************************************/
static void
em_setup_interface(device_t dev, struct adapter *adapter)
{
struct ifnet *ifp;
INIT_DEBUGOUT("em_setup_interface: begin");
ifp = adapter->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL)
panic("%s: can not if_alloc()", device_get_nameunit(dev));
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_init = em_init;
ifp->if_softc = adapter;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = em_ioctl;
ifp->if_start = em_start;
IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
IFQ_SET_READY(&ifp->if_snd);
ether_ifattach(ifp, adapter->hw.mac.addr);
ifp->if_capabilities = ifp->if_capenable = 0;
if (adapter->hw.mac.type >= e1000_82543) {
int version_cap;
#if __FreeBSD_version < 700000
version_cap = IFCAP_HWCSUM;
#else
version_cap = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
#endif
ifp->if_capabilities |= version_cap;
ifp->if_capenable |= version_cap;
}
#if __FreeBSD_version >= 700000
/* Identify TSO capable adapters */
if ((adapter->hw.mac.type > e1000_82544) &&
(adapter->hw.mac.type != e1000_82547))
ifp->if_capabilities |= IFCAP_TSO4;
/*
* By default only enable on PCI-E, this
* can be overriden by ifconfig.
*/
if (adapter->hw.mac.type >= e1000_82571)
ifp->if_capenable |= IFCAP_TSO4;
#endif
/*
* Tell the upper layer(s) we support long frames.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/*
* Specify the media types supported by this adapter and register
* callbacks to update media and link information
*/
ifmedia_init(&adapter->media, IFM_IMASK,
em_media_change, em_media_status);
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
(adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
u_char fiber_type = IFM_1000_SX; /* default type */
if (adapter->hw.mac.type == e1000_82545)
fiber_type = IFM_1000_LX;
ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
0, NULL);
ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
} else {
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
0, NULL);
ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
0, NULL);
ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
0, NULL);
if (adapter->hw.phy.type != e1000_phy_ife) {
ifmedia_add(&adapter->media,
IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
ifmedia_add(&adapter->media,
IFM_ETHER | IFM_1000_T, 0, NULL);
}
}
ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
}
/*********************************************************************
*
* Workaround for SmartSpeed on 82541 and 82547 controllers
*
**********************************************************************/
static void
em_smartspeed(struct adapter *adapter)
{
u16 phy_tmp;
if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
adapter->hw.mac.autoneg == 0 ||
(adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
return;
if (adapter->smartspeed == 0) {
/* If Master/Slave config fault is asserted twice,
* we assume back-to-back */
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
return;
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
e1000_read_phy_reg(&adapter->hw,
PHY_1000T_CTRL, &phy_tmp);
if(phy_tmp & CR_1000T_MS_ENABLE) {
phy_tmp &= ~CR_1000T_MS_ENABLE;
e1000_write_phy_reg(&adapter->hw,
PHY_1000T_CTRL, phy_tmp);
adapter->smartspeed++;
if(adapter->hw.mac.autoneg &&
!e1000_phy_setup_autoneg(&adapter->hw) &&
!e1000_read_phy_reg(&adapter->hw,
PHY_CONTROL, &phy_tmp)) {
phy_tmp |= (MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
e1000_write_phy_reg(&adapter->hw,
PHY_CONTROL, phy_tmp);
}
}
}
return;
} else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
/* If still no link, perhaps using 2/3 pair cable */
e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
phy_tmp |= CR_1000T_MS_ENABLE;
e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
if(adapter->hw.mac.autoneg &&
!e1000_phy_setup_autoneg(&adapter->hw) &&
!e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
phy_tmp |= (MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
}
}
/* Restart process after EM_SMARTSPEED_MAX iterations */
if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
adapter->smartspeed = 0;
}
/*
* Manage DMA'able memory.
*/
static void
em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error)
return;
*(bus_addr_t *) arg = segs[0].ds_addr;
}
static int
em_dma_malloc(struct adapter *adapter, bus_size_t size,
struct em_dma_alloc *dma, int mapflags)
{
int error;
#if __FreeBSD_version >= 700000
error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */
#else
error = bus_dma_tag_create(NULL, /* parent */
#endif
EM_DBA_ALIGN, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
size, /* maxsize */
1, /* nsegments */
size, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&dma->dma_tag);
if (error) {
device_printf(adapter->dev,
"%s: bus_dma_tag_create failed: %d\n",
__func__, error);
goto fail_0;
}
error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dma->dma_map);
if (error) {
device_printf(adapter->dev,
"%s: bus_dmamem_alloc(%ju) failed: %d\n",
__func__, (uintmax_t)size, error);
goto fail_2;
}
dma->dma_paddr = 0;
error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
size, em_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT);
if (error || dma->dma_paddr == 0) {
device_printf(adapter->dev,
"%s: bus_dmamap_load failed: %d\n",
__func__, error);
goto fail_3;
}
return (0);
fail_3:
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
fail_2:
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
bus_dma_tag_destroy(dma->dma_tag);
fail_0:
dma->dma_map = NULL;
dma->dma_tag = NULL;
return (error);
}
static void
em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
{
if (dma->dma_tag == NULL)
return;
if (dma->dma_map != NULL) {
bus_dmamap_sync(dma->dma_tag, dma->dma_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
dma->dma_map = NULL;
}
bus_dma_tag_destroy(dma->dma_tag);
dma->dma_tag = NULL;
}
/*********************************************************************
*
* Allocate memory for tx_buffer structures. The tx_buffer stores all
* the information needed to transmit a packet on the wire.
*
**********************************************************************/
static int
em_allocate_transmit_structures(struct adapter *adapter)
{
device_t dev = adapter->dev;
struct em_buffer *tx_buffer;
int error;
/*
* Create DMA tags for tx descriptors
*/
#if __FreeBSD_version >= 700000
if ((error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
#else
if ((error = bus_dma_tag_create(NULL, /* parent */
#endif
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
EM_TSO_SIZE, /* maxsize */
EM_MAX_SCATTER, /* nsegments */
EM_TSO_SEG_SIZE, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&adapter->txtag)) != 0) {
device_printf(dev, "Unable to allocate TX DMA tag\n");
goto fail;
}
adapter->tx_buffer_area = malloc(sizeof(struct em_buffer) *
adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO);
if (adapter->tx_buffer_area == NULL) {
device_printf(dev, "Unable to allocate tx_buffer memory\n");
error = ENOMEM;
goto fail;
}
/* Create the descriptor buffer dma maps */
for (int i = 0; i < adapter->num_tx_desc; i++) {
tx_buffer = &adapter->tx_buffer_area[i];
error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map);
if (error != 0) {
device_printf(dev, "Unable to create TX DMA map\n");
goto fail;
}
tx_buffer->next_eop = -1;
}
return (0);
fail:
em_free_transmit_structures(adapter);
return (error);
}
/*********************************************************************
*
* (Re)Initialize transmit structures.
*
**********************************************************************/
static void
em_setup_transmit_structures(struct adapter *adapter)
{
struct em_buffer *tx_buffer;
/* Clear the old ring contents */
bzero(adapter->tx_desc_base,
(sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
/* Free any existing TX buffers */
for (int i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
tx_buffer = &adapter->tx_buffer_area[i];
bus_dmamap_sync(adapter->txtag, tx_buffer->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(adapter->txtag, tx_buffer->map);
m_freem(tx_buffer->m_head);
tx_buffer->m_head = NULL;
tx_buffer->next_eop = -1;
}
/* Reset state */
adapter->next_avail_tx_desc = 0;
adapter->next_tx_to_clean = 0;
adapter->num_tx_desc_avail = adapter->num_tx_desc;
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return;
}
/*********************************************************************
*
* Enable transmit unit.
*
**********************************************************************/
static void
em_initialize_transmit_unit(struct adapter *adapter)
{
u32 tctl, tarc, tipg = 0;
u64 bus_addr;
INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
/* Setup the Base and Length of the Tx Descriptor Ring */
bus_addr = adapter->txdma.dma_paddr;
E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
(u32)(bus_addr >> 32));
E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
(u32)bus_addr);
/* Setup the HW Tx Head and Tail descriptor pointers */
E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
HW_DEBUGOUT2("Base = %x, Length = %x\n",
E1000_READ_REG(&adapter->hw, E1000_TDBAL(0)),
E1000_READ_REG(&adapter->hw, E1000_TDLEN(0)));
/* Set the default values for the Tx Inter Packet Gap timer */
switch (adapter->hw.mac.type) {
case e1000_82542:
tipg = DEFAULT_82542_TIPG_IPGT;
tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
break;
case e1000_80003es2lan:
tipg = DEFAULT_82543_TIPG_IPGR1;
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
E1000_TIPG_IPGR2_SHIFT;
break;
default:
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
(adapter->hw.phy.media_type ==
e1000_media_type_internal_serdes))
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
else
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
}
E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
if(adapter->hw.mac.type >= e1000_82540)
E1000_WRITE_REG(&adapter->hw, E1000_TADV,
adapter->tx_abs_int_delay.value);
if ((adapter->hw.mac.type == e1000_82571) ||
(adapter->hw.mac.type == e1000_82572)) {
tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
tarc |= SPEED_MODE_BIT;
E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
} else if (adapter->hw.mac.type == e1000_80003es2lan) {
tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
tarc |= 1;
E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
tarc |= 1;
E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
}
/* Program the Transmit Control Register */
tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
if (adapter->hw.mac.type >= e1000_82571)
tctl |= E1000_TCTL_MULR;
/* This write will effectively turn on the transmit unit. */
E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
/* Setup Transmit Descriptor Base Settings */
adapter->txd_cmd = E1000_TXD_CMD_IFCS;
if (adapter->tx_int_delay.value > 0)
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
}
/*********************************************************************
*
* Free all transmit related data structures.
*
**********************************************************************/
static void
em_free_transmit_structures(struct adapter *adapter)
{
struct em_buffer *tx_buffer;
INIT_DEBUGOUT("free_transmit_structures: begin");
if (adapter->tx_buffer_area != NULL) {
for (int i = 0; i < adapter->num_tx_desc; i++) {
tx_buffer = &adapter->tx_buffer_area[i];
if (tx_buffer->m_head != NULL) {
bus_dmamap_sync(adapter->txtag, tx_buffer->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(adapter->txtag,
tx_buffer->map);
m_freem(tx_buffer->m_head);
tx_buffer->m_head = NULL;
} else if (tx_buffer->map != NULL)
bus_dmamap_unload(adapter->txtag,
tx_buffer->map);
if (tx_buffer->map != NULL) {
bus_dmamap_destroy(adapter->txtag,
tx_buffer->map);
tx_buffer->map = NULL;
}
}
}
if (adapter->tx_buffer_area != NULL) {
free(adapter->tx_buffer_area, M_DEVBUF);
adapter->tx_buffer_area = NULL;
}
if (adapter->txtag != NULL) {
bus_dma_tag_destroy(adapter->txtag);
adapter->txtag = NULL;
}
}
/*********************************************************************
*
* The offload context needs to be set when we transfer the first
* packet of a particular protocol (TCP/UDP). This routine has been
* enhanced to deal with inserted VLAN headers, and IPV6 (not complete)
*
**********************************************************************/
static void
em_transmit_checksum_setup(struct adapter *adapter, struct mbuf *mp,
u32 *txd_upper, u32 *txd_lower)
{
struct e1000_context_desc *TXD;
struct em_buffer *tx_buffer;
struct ether_vlan_header *eh;
struct ip *ip = NULL;
struct ip6_hdr *ip6;
struct tcp_hdr *th;
int curr_txd, ehdrlen;
u32 cmd, hdr_len, ip_hlen;
u16 etype;
u8 ipproto;
cmd = hdr_len = ipproto = 0;
/* Setup checksum offload context. */
curr_txd = adapter->next_avail_tx_desc;
tx_buffer = &adapter->tx_buffer_area[curr_txd];
TXD = (struct e1000_context_desc *) &adapter->tx_desc_base[curr_txd];
*txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */
E1000_TXD_DTYP_D; /* Data descr */
/*
* Determine where frame payload starts.
* Jump over vlan headers if already present,
* helpful for QinQ too.
*/
eh = mtod(mp, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
etype = ntohs(eh->evl_proto);
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
} else {
etype = ntohs(eh->evl_encap_proto);
ehdrlen = ETHER_HDR_LEN;
}
/*
* We only support TCP/UDP for IPv4 and IPv6 for the moment.
* TODO: Support SCTP too when it hits the tree.
*/
switch (etype) {
case ETHERTYPE_IP:
ip = (struct ip *)(mp->m_data + ehdrlen);
ip_hlen = ip->ip_hl << 2;
/* Setup of IP header checksum. */
if (mp->m_pkthdr.csum_flags & CSUM_IP) {
/*
* Start offset for header checksum calculation.
* End offset for header checksum calculation.
* Offset of place to put the checksum.
*/
TXD->lower_setup.ip_fields.ipcss = ehdrlen;
TXD->lower_setup.ip_fields.ipcse =
htole16(ehdrlen + ip_hlen);
TXD->lower_setup.ip_fields.ipcso =
ehdrlen + offsetof(struct ip, ip_sum);
cmd |= E1000_TXD_CMD_IP;
*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
}
if (mp->m_len < ehdrlen + ip_hlen)
return; /* failure */
hdr_len = ehdrlen + ip_hlen;
ipproto = ip->ip_p;
break;
case ETHERTYPE_IPV6:
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
ip_hlen = sizeof(struct ip6_hdr); /* XXX: No header stacking. */
if (mp->m_len < ehdrlen + ip_hlen)
return; /* failure */
/* IPv6 doesn't have a header checksum. */
hdr_len = ehdrlen + ip_hlen;
ipproto = ip6->ip6_nxt;
break;
default:
*txd_upper = 0;
*txd_lower = 0;
return;
}
switch (ipproto) {
case IPPROTO_TCP:
if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
/*
* Start offset for payload checksum calculation.
* End offset for payload checksum calculation.
* Offset of place to put the checksum.
*/
th = (struct tcp_hdr *)(mp->m_data + hdr_len);
TXD->upper_setup.tcp_fields.tucss = hdr_len;
TXD->upper_setup.tcp_fields.tucse = htole16(0);
TXD->upper_setup.tcp_fields.tucso =
hdr_len + offsetof(struct tcphdr, th_sum);
cmd |= E1000_TXD_CMD_TCP;
*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
}
break;
case IPPROTO_UDP:
{
if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
/*
* Start offset for header checksum calculation.
* End offset for header checksum calculation.
* Offset of place to put the checksum.
*/
TXD->upper_setup.tcp_fields.tucss = hdr_len;
TXD->upper_setup.tcp_fields.tucse = htole16(0);
TXD->upper_setup.tcp_fields.tucso =
hdr_len + offsetof(struct udphdr, uh_sum);
*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
}
/* Fall Thru */
}
default:
break;
}
TXD->tcp_seg_setup.data = htole32(0);
TXD->cmd_and_length =
htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT | cmd);
tx_buffer->m_head = NULL;
tx_buffer->next_eop = -1;
if (++curr_txd == adapter->num_tx_desc)
curr_txd = 0;
adapter->num_tx_desc_avail--;
adapter->next_avail_tx_desc = curr_txd;
}
#if __FreeBSD_version >= 700000
/**********************************************************************
*
* Setup work for hardware segmentation offload (TSO)
*
**********************************************************************/
static bool
em_tso_setup(struct adapter *adapter, struct mbuf *mp, u32 *txd_upper,
u32 *txd_lower)
{
struct e1000_context_desc *TXD;
struct em_buffer *tx_buffer;
struct ether_vlan_header *eh;
struct ip *ip;
struct ip6_hdr *ip6;
struct tcphdr *th;
int curr_txd, ehdrlen, hdr_len, ip_hlen, isip6;
u16 etype;
/*
* This function could/should be extended to support IP/IPv6
* fragmentation as well. But as they say, one step at a time.
*/
/*
* Determine where frame payload starts.
* Jump over vlan headers if already present,
* helpful for QinQ too.
*/
eh = mtod(mp, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
etype = ntohs(eh->evl_proto);
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
} else {
etype = ntohs(eh->evl_encap_proto);
ehdrlen = ETHER_HDR_LEN;
}
/* Ensure we have at least the IP+TCP header in the first mbuf. */
if (mp->m_len < ehdrlen + sizeof(struct ip) + sizeof(struct tcphdr))
return FALSE; /* -1 */
/*
* We only support TCP for IPv4 and IPv6 (notyet) for the moment.
* TODO: Support SCTP too when it hits the tree.
*/
switch (etype) {
case ETHERTYPE_IP:
isip6 = 0;
ip = (struct ip *)(mp->m_data + ehdrlen);
if (ip->ip_p != IPPROTO_TCP)
return FALSE; /* 0 */
ip->ip_len = 0;
ip->ip_sum = 0;
ip_hlen = ip->ip_hl << 2;
if (mp->m_len < ehdrlen + ip_hlen + sizeof(struct tcphdr))
return FALSE; /* -1 */
th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
#if 1
th->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
#else
th->th_sum = mp->m_pkthdr.csum_data;
#endif
break;
case ETHERTYPE_IPV6:
isip6 = 1;
return FALSE; /* Not supported yet. */
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
if (ip6->ip6_nxt != IPPROTO_TCP)
return FALSE; /* 0 */
ip6->ip6_plen = 0;
ip_hlen = sizeof(struct ip6_hdr); /* XXX: no header stacking. */
if (mp->m_len < ehdrlen + ip_hlen + sizeof(struct tcphdr))
return FALSE; /* -1 */
th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen);
#if 0
th->th_sum = in6_pseudo(ip6->ip6_src, ip->ip6_dst,
htons(IPPROTO_TCP)); /* XXX: function notyet. */
#else
th->th_sum = mp->m_pkthdr.csum_data;
#endif
break;
default:
return FALSE;
}
hdr_len = ehdrlen + ip_hlen + (th->th_off << 2);
*txd_lower = (E1000_TXD_CMD_DEXT | /* Extended descr type */
E1000_TXD_DTYP_D | /* Data descr type */
E1000_TXD_CMD_TSE); /* Do TSE on this packet */
/* IP and/or TCP header checksum calculation and insertion. */
*txd_upper = ((isip6 ? 0 : E1000_TXD_POPTS_IXSM) |
E1000_TXD_POPTS_TXSM) << 8;
curr_txd = adapter->next_avail_tx_desc;
tx_buffer = &adapter->tx_buffer_area[curr_txd];
TXD = (struct e1000_context_desc *) &adapter->tx_desc_base[curr_txd];
/* IPv6 doesn't have a header checksum. */
if (!isip6) {
/*
* Start offset for header checksum calculation.
* End offset for header checksum calculation.
* Offset of place put the checksum.
*/
TXD->lower_setup.ip_fields.ipcss = ehdrlen;
TXD->lower_setup.ip_fields.ipcse =
htole16(ehdrlen + ip_hlen - 1);
TXD->lower_setup.ip_fields.ipcso =
ehdrlen + offsetof(struct ip, ip_sum);
}
/*
* Start offset for payload checksum calculation.
* End offset for payload checksum calculation.
* Offset of place to put the checksum.
*/
TXD->upper_setup.tcp_fields.tucss =
ehdrlen + ip_hlen;
TXD->upper_setup.tcp_fields.tucse = 0;
TXD->upper_setup.tcp_fields.tucso =
ehdrlen + ip_hlen + offsetof(struct tcphdr, th_sum);
/*
* Payload size per packet w/o any headers.
* Length of all headers up to payload.
*/
TXD->tcp_seg_setup.fields.mss = htole16(mp->m_pkthdr.tso_segsz);
TXD->tcp_seg_setup.fields.hdr_len = hdr_len;
TXD->cmd_and_length = htole32(adapter->txd_cmd |
E1000_TXD_CMD_DEXT | /* Extended descr */
E1000_TXD_CMD_TSE | /* TSE context */
(isip6 ? 0 : E1000_TXD_CMD_IP) | /* Do IP csum */
E1000_TXD_CMD_TCP | /* Do TCP checksum */
(mp->m_pkthdr.len - (hdr_len))); /* Total len */
tx_buffer->m_head = NULL;
tx_buffer->next_eop = -1;
if (++curr_txd == adapter->num_tx_desc)
curr_txd = 0;
adapter->num_tx_desc_avail--;
adapter->next_avail_tx_desc = curr_txd;
adapter->tx_tso = TRUE;
return TRUE;
}
#endif /* __FreeBSD_version >= 700000 */
/**********************************************************************
*
* Examine each tx_buffer in the used queue. If the hardware is done
* processing the packet then free associated resources. The
* tx_buffer is put back on the free queue.
*
**********************************************************************/
static void
em_txeof(struct adapter *adapter)
{
int first, last, done, num_avail;
struct em_buffer *tx_buffer;
struct e1000_tx_desc *tx_desc, *eop_desc;
struct ifnet *ifp = adapter->ifp;
EM_TX_LOCK_ASSERT(adapter);
if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
return;
num_avail = adapter->num_tx_desc_avail;
first = adapter->next_tx_to_clean;
tx_desc = &adapter->tx_desc_base[first];
tx_buffer = &adapter->tx_buffer_area[first];
last = tx_buffer->next_eop;
eop_desc = &adapter->tx_desc_base[last];
/*
* What this does is get the index of the
* first descriptor AFTER the EOP of the
* first packet, that way we can do the
* simple comparison on the inner while loop.
*/
if (++last == adapter->num_tx_desc)
last = 0;
done = last;
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
BUS_DMASYNC_POSTREAD);
while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
/* We clean the range of the packet */
while (first != done) {
tx_desc->upper.data = 0;
tx_desc->lower.data = 0;
tx_desc->buffer_addr = 0;
num_avail++;
if (tx_buffer->m_head) {
ifp->if_opackets++;
bus_dmamap_sync(adapter->txtag,
tx_buffer->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(adapter->txtag,
tx_buffer->map);
m_freem(tx_buffer->m_head);
tx_buffer->m_head = NULL;
}
tx_buffer->next_eop = -1;
if (++first == adapter->num_tx_desc)
first = 0;
tx_buffer = &adapter->tx_buffer_area[first];
tx_desc = &adapter->tx_desc_base[first];
}
/* See if we can continue to the next packet */
last = tx_buffer->next_eop;
if (last != -1) {
eop_desc = &adapter->tx_desc_base[last];
/* Get new done point */
if (++last == adapter->num_tx_desc) last = 0;
done = last;
} else
break;
}
bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
adapter->next_tx_to_clean = first;
/*
* If we have enough room, clear IFF_DRV_OACTIVE to tell the stack
* that it is OK to send packets.
* If there are no pending descriptors, clear the timeout. Otherwise,
* if some descriptors have been freed, restart the timeout.
*/
if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/* All clean, turn off the timer */
if (num_avail == adapter->num_tx_desc) {
adapter->watchdog_timer = 0;
} else
/* Some cleaned, reset the timer */
if (num_avail != adapter->num_tx_desc_avail)
adapter->watchdog_timer = EM_TX_TIMEOUT;
}
adapter->num_tx_desc_avail = num_avail;
return;
}
/*********************************************************************
*
* When Link is lost sometimes there is work still in the TX ring
* which will result in a watchdog, rather than allow that do an
* attempted cleanup and then reinit here. Note that this has been
* seens mostly with fiber adapters.
*
**********************************************************************/
static void
em_tx_purge(struct adapter *adapter)
{
if ((!adapter->link_active) && (adapter->watchdog_timer)) {
EM_TX_LOCK(adapter);
em_txeof(adapter);
EM_TX_UNLOCK(adapter);
if (adapter->watchdog_timer) { /* Still not clean? */
adapter->watchdog_timer = 0;
em_init_locked(adapter);
}
}
}
/*********************************************************************
*
* Get a buffer from system mbuf buffer pool.
*
**********************************************************************/
static int
em_get_buf(struct adapter *adapter, int i)
{
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
struct em_buffer *rx_buffer;
int error, nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
adapter->mbuf_cluster_failed++;
return (ENOBUFS);
}
m->m_len = m->m_pkthdr.len = MCLBYTES;
if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
m_adj(m, ETHER_ALIGN);
/*
* Using memory from the mbuf cluster pool, invoke the
* bus_dma machinery to arrange the memory mapping.
*/
error = bus_dmamap_load_mbuf_sg(adapter->rxtag,
adapter->rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_free(m);
return (error);
}
/* If nsegs is wrong then the stack is corrupt. */
KASSERT(nsegs == 1, ("Too many segments returned!"));
rx_buffer = &adapter->rx_buffer_area[i];
if (rx_buffer->m_head != NULL)
bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
map = rx_buffer->map;
rx_buffer->map = adapter->rx_sparemap;
adapter->rx_sparemap = map;
bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD);
rx_buffer->m_head = m;
adapter->rx_desc_base[i].buffer_addr = htole64(segs[0].ds_addr);
return (0);
}
/*********************************************************************
*
* Allocate memory for rx_buffer structures. Since we use one
* rx_buffer per received packet, the maximum number of rx_buffer's
* that we'll need is equal to the number of receive descriptors
* that we've allocated.
*
**********************************************************************/
static int
em_allocate_receive_structures(struct adapter *adapter)
{
device_t dev = adapter->dev;
struct em_buffer *rx_buffer;
int i, error;
adapter->rx_buffer_area = malloc(sizeof(struct em_buffer) *
adapter->num_rx_desc, M_DEVBUF, M_NOWAIT | M_ZERO);
if (adapter->rx_buffer_area == NULL) {
device_printf(dev, "Unable to allocate rx_buffer memory\n");
return (ENOMEM);
}
#if __FreeBSD_version >= 700000
error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
#else
error = bus_dma_tag_create(NULL, /* parent */
#endif
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
2006-07-27 00:29:44 +00:00
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&adapter->rxtag);
if (error) {
device_printf(dev, "%s: bus_dma_tag_create failed %d\n",
__func__, error);
goto fail;
}
/* Create the spare map (used by getbuf) */
error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
&adapter->rx_sparemap);
if (error) {
device_printf(dev, "%s: bus_dmamap_create failed: %d\n",
__func__, error);
goto fail;
}
rx_buffer = adapter->rx_buffer_area;
for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
&rx_buffer->map);
if (error) {
device_printf(dev, "%s: bus_dmamap_create failed: %d\n",
__func__, error);
goto fail;
}
}
return (0);
fail:
em_free_receive_structures(adapter);
return (error);
}
/*********************************************************************
*
* (Re)initialize receive structures.
*
**********************************************************************/
static int
em_setup_receive_structures(struct adapter *adapter)
{
struct em_buffer *rx_buffer;
int i, error;
/* Reset descriptor ring */
bzero(adapter->rx_desc_base,
(sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
/* Free current RX buffers. */
rx_buffer = adapter->rx_buffer_area;
for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
if (rx_buffer->m_head != NULL) {
bus_dmamap_sync(adapter->rxtag, rx_buffer->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
m_freem(rx_buffer->m_head);
rx_buffer->m_head = NULL;
}
}
/* Allocate new ones. */
for (i = 0; i < adapter->num_rx_desc; i++) {
error = em_get_buf(adapter, i);
if (error)
return (error);
}
/* Setup our descriptor pointers */
adapter->next_rx_desc_to_check = 0;
bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*********************************************************************
*
* Enable receive unit.
*
**********************************************************************/
static void
em_initialize_receive_unit(struct adapter *adapter)
{
struct ifnet *ifp = adapter->ifp;
u64 bus_addr;
u32 rctl, rxcsum;
INIT_DEBUGOUT("em_initialize_receive_unit: begin");
/*
* Make sure receives are disabled while setting
* up the descriptor ring
*/
rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
if(adapter->hw.mac.type >= e1000_82540) {
E1000_WRITE_REG(&adapter->hw, E1000_RADV,
adapter->rx_abs_int_delay.value);
/*
* Set the interrupt throttling rate. Value is calculated
* as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
*/
#define MAX_INTS_PER_SEC 8000
#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
E1000_WRITE_REG(&adapter->hw, E1000_ITR, DEFAULT_ITR);
}
/* Setup the Base and Length of the Rx Descriptor Ring */
bus_addr = adapter->rxdma.dma_paddr;
E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
(u32)(bus_addr >> 32));
E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
(u32)bus_addr);
/* Setup the Receive Control Register */
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
E1000_RCTL_RDMTS_HALF |
(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
/* Make sure VLAN Filters are off */
rctl &= ~E1000_RCTL_VFE;
if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
rctl |= E1000_RCTL_SBP;
else
rctl &= ~E1000_RCTL_SBP;
switch (adapter->rx_buffer_len) {
default:
case 2048:
rctl |= E1000_RCTL_SZ_2048;
break;
case 4096:
rctl |= E1000_RCTL_SZ_4096 |
E1000_RCTL_BSEX | E1000_RCTL_LPE;
break;
case 8192:
rctl |= E1000_RCTL_SZ_8192 |
E1000_RCTL_BSEX | E1000_RCTL_LPE;
break;
case 16384:
rctl |= E1000_RCTL_SZ_16384 |
E1000_RCTL_BSEX | E1000_RCTL_LPE;
break;
}
if (ifp->if_mtu > ETHERMTU)
rctl |= E1000_RCTL_LPE;
else
rctl &= ~E1000_RCTL_LPE;
/* Enable 82543 Receive Checksum Offload for TCP and UDP */
if ((adapter->hw.mac.type >= e1000_82543) &&
(ifp->if_capenable & IFCAP_RXCSUM)) {
rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
}
/*
** XXX TEMPORARY WORKAROUND: on some systems with 82573
** long latencies are observed, like Lenovo X60. This
** change eliminates the problem, but since having positive
** values in RDTR is a known source of problems on other
** platforms another solution is being sought.
*/
if (adapter->hw.mac.type == e1000_82573)
E1000_WRITE_REG(&adapter->hw, E1000_RDTR, 0x20);
/* Enable Receives */
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
/*
* Setup the HW Rx Head and
* Tail Descriptor Pointers
*/
E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
return;
}
/*********************************************************************
*
* Free receive related data structures.
*
**********************************************************************/
static void
em_free_receive_structures(struct adapter *adapter)
{
struct em_buffer *rx_buffer;
int i;
INIT_DEBUGOUT("free_receive_structures: begin");
if (adapter->rx_sparemap) {
bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
adapter->rx_sparemap = NULL;
}
/* Cleanup any existing buffers */
if (adapter->rx_buffer_area != NULL) {
rx_buffer = adapter->rx_buffer_area;
for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
if (rx_buffer->m_head != NULL) {
bus_dmamap_sync(adapter->rxtag, rx_buffer->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(adapter->rxtag,
rx_buffer->map);
m_freem(rx_buffer->m_head);
rx_buffer->m_head = NULL;
} else if (rx_buffer->map != NULL)
bus_dmamap_unload(adapter->rxtag,
rx_buffer->map);
if (rx_buffer->map != NULL) {
bus_dmamap_destroy(adapter->rxtag,
rx_buffer->map);
rx_buffer->map = NULL;
}
}
}
if (adapter->rx_buffer_area != NULL) {
free(adapter->rx_buffer_area, M_DEVBUF);
adapter->rx_buffer_area = NULL;
}
if (adapter->rxtag != NULL) {
bus_dma_tag_destroy(adapter->rxtag);
adapter->rxtag = NULL;
}
}
/*********************************************************************
*
* This routine executes in interrupt context. It replenishes
* the mbufs in the descriptor and sends data which has been
* dma'ed into host memory to upper layer.
*
* We loop at most count times if count is > 0, or until done if
* count < 0.
*
*********************************************************************/
Significant performance improvements for the if_em driver: - Only update the rx ring consumer pointer after running through the rx loop, not with each iteration through the loop. - If possible, use a fast interupt handler instead of an ithread handler. Use the interrupt handler to check and squelch the interrupt, then schedule a taskqueue to do the actual work. This has three benefits: - Eliminates the 'interrupt aliasing' problem found in many chipsets by allowing the driver to mask the interrupt in the NIC instead of the OS masking the interrupt in the APIC. - Allows the driver to control the amount of work done in the interrupt handler. This results in what I call 'adaptive polling', where you get the latency benefits of a quick response to interrupts with the interrupt mitigation and work partitioning of polling. Polling is still an option in the driver, but I consider it orthogonal to this work. - Don't hold the driver lock in the RX handler. The handler and all data associated is effectively serialized already. This eliminates the cost of dropping and reaquiring the lock for every receieved packet. The result is much lower contention for the driver lock, resulting in lower CPU usage and lower latency for interactive workloads. The amount of work done in the taskqueue is controlled by the sysctl dev.em.N.rx_processing_limit and tunable hw.em.rx_process_limit Setting these to -1 effectively removes the limit. The fast interrupt and taskqueue can be disabled by defining NO_EM_FASTINTR. This work has been shown to increase fast-forwarding from ~570 kpps to ~750 kpps (note that the same NIC hardware seems unable to transmit more than 800 kpps, so this increase appears to be limited almost solely by the hardware). Gains have been shown in other workloads, ranging from better performance to elimination of over-saturation livelocks. Thanks to Andre Opperman for his time and resources from his network performance project in performing much of the testing. Thanks to Gleb Smirnoff and Danny Braniss for their help in testing also.
2006-01-11 00:30:25 +00:00
static int
em_rxeof(struct adapter *adapter, int count)
{
struct ifnet *ifp;
struct mbuf *mp;
u8 status, accept_frame = 0, eop = 0;
u16 len, desc_len, prev_len_adj;
int i;
struct e1000_rx_desc *current_desc;
ifp = adapter->ifp;
i = adapter->next_rx_desc_to_check;
current_desc = &adapter->rx_desc_base[i];
bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
BUS_DMASYNC_POSTREAD);
if (!((current_desc->status) & E1000_RXD_STAT_DD))
Significant performance improvements for the if_em driver: - Only update the rx ring consumer pointer after running through the rx loop, not with each iteration through the loop. - If possible, use a fast interupt handler instead of an ithread handler. Use the interrupt handler to check and squelch the interrupt, then schedule a taskqueue to do the actual work. This has three benefits: - Eliminates the 'interrupt aliasing' problem found in many chipsets by allowing the driver to mask the interrupt in the NIC instead of the OS masking the interrupt in the APIC. - Allows the driver to control the amount of work done in the interrupt handler. This results in what I call 'adaptive polling', where you get the latency benefits of a quick response to interrupts with the interrupt mitigation and work partitioning of polling. Polling is still an option in the driver, but I consider it orthogonal to this work. - Don't hold the driver lock in the RX handler. The handler and all data associated is effectively serialized already. This eliminates the cost of dropping and reaquiring the lock for every receieved packet. The result is much lower contention for the driver lock, resulting in lower CPU usage and lower latency for interactive workloads. The amount of work done in the taskqueue is controlled by the sysctl dev.em.N.rx_processing_limit and tunable hw.em.rx_process_limit Setting these to -1 effectively removes the limit. The fast interrupt and taskqueue can be disabled by defining NO_EM_FASTINTR. This work has been shown to increase fast-forwarding from ~570 kpps to ~750 kpps (note that the same NIC hardware seems unable to transmit more than 800 kpps, so this increase appears to be limited almost solely by the hardware). Gains have been shown in other workloads, ranging from better performance to elimination of over-saturation livelocks. Thanks to Andre Opperman for his time and resources from his network performance project in performing much of the testing. Thanks to Gleb Smirnoff and Danny Braniss for their help in testing also.
2006-01-11 00:30:25 +00:00
return (0);
while ((current_desc->status & E1000_RXD_STAT_DD) &&
(count != 0) &&
(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
struct mbuf *m = NULL;
mp = adapter->rx_buffer_area[i].m_head;
/*
* Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
* needs to access the last received byte in the mbuf.
*/
bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
BUS_DMASYNC_POSTREAD);
accept_frame = 1;
prev_len_adj = 0;
desc_len = le16toh(current_desc->length);
status = current_desc->status;
if (status & E1000_RXD_STAT_EOP) {
count--;
eop = 1;
if (desc_len < ETHER_CRC_LEN) {
len = 0;
prev_len_adj = ETHER_CRC_LEN - desc_len;
} else
len = desc_len - ETHER_CRC_LEN;
} else {
eop = 0;
len = desc_len;
}
if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
u8 last_byte;
u32 pkt_len = desc_len;
if (adapter->fmp != NULL)
pkt_len += adapter->fmp->m_pkthdr.len;
last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
if (TBI_ACCEPT(&adapter->hw, status,
current_desc->errors, pkt_len, last_byte,
adapter->min_frame_size, adapter->max_frame_size)) {
e1000_tbi_adjust_stats_82543(&adapter->hw,
&adapter->stats, pkt_len,
adapter->hw.mac.addr,
adapter->max_frame_size);
if (len > 0)
len--;
} else
accept_frame = 0;
}
if (accept_frame) {
if (em_get_buf(adapter, i) != 0) {
ifp->if_iqdrops++;
goto discard;
}
/* Assign correct length to the current fragment */
mp->m_len = len;
if (adapter->fmp == NULL) {
mp->m_pkthdr.len = len;
adapter->fmp = mp; /* Store the first mbuf */
adapter->lmp = mp;
} else {
/* Chain mbuf's together */
mp->m_flags &= ~M_PKTHDR;
/*
* Adjust length of previous mbuf in chain if
* we received less than 4 bytes in the last
* descriptor.
*/
if (prev_len_adj > 0) {
adapter->lmp->m_len -= prev_len_adj;
adapter->fmp->m_pkthdr.len -=
prev_len_adj;
}
adapter->lmp->m_next = mp;
adapter->lmp = adapter->lmp->m_next;
adapter->fmp->m_pkthdr.len += len;
}
if (eop) {
adapter->fmp->m_pkthdr.rcvif = ifp;
2005-10-14 10:34:46 +00:00
ifp->if_ipackets++;
em_receive_checksum(adapter, current_desc,
adapter->fmp);
#ifndef __NO_STRICT_ALIGNMENT
if (adapter->max_frame_size >
(MCLBYTES - ETHER_ALIGN) &&
em_fixup_rx(adapter) != 0)
goto skip;
#endif
if (status & E1000_RXD_STAT_VP) {
#if __FreeBSD_version < 700000
VLAN_INPUT_TAG_NEW(ifp, adapter->fmp,
(le16toh(current_desc->special) &
E1000_RXD_SPC_VLAN_MASK));
#else
adapter->fmp->m_pkthdr.ether_vtag =
(le16toh(current_desc->special) &
E1000_RXD_SPC_VLAN_MASK);
adapter->fmp->m_flags |= M_VLANTAG;
#endif
}
#ifndef __NO_STRICT_ALIGNMENT
skip:
#endif
m = adapter->fmp;
adapter->fmp = NULL;
adapter->lmp = NULL;
}
} else {
ifp->if_ierrors++;
discard:
/* Reuse loaded DMA map and just update mbuf chain */
mp = adapter->rx_buffer_area[i].m_head;
mp->m_len = mp->m_pkthdr.len = MCLBYTES;
mp->m_data = mp->m_ext.ext_buf;
mp->m_next = NULL;
if (adapter->max_frame_size <=
(MCLBYTES - ETHER_ALIGN))
m_adj(mp, ETHER_ALIGN);
if (adapter->fmp != NULL) {
m_freem(adapter->fmp);
adapter->fmp = NULL;
adapter->lmp = NULL;
}
m = NULL;
}
/* Zero out the receive descriptors status. */
current_desc->status = 0;
bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Advance our pointers to the next descriptor. */
if (++i == adapter->num_rx_desc)
i = 0;
if (m != NULL) {
adapter->next_rx_desc_to_check = i;
#ifndef EM_FAST_IRQ
EM_CORE_UNLOCK(adapter);
(*ifp->if_input)(ifp, m);
EM_CORE_LOCK(adapter);
#else
/* Already running unlocked */
(*ifp->if_input)(ifp, m);
#endif
i = adapter->next_rx_desc_to_check;
}
current_desc = &adapter->rx_desc_base[i];
}
adapter->next_rx_desc_to_check = i;
Significant performance improvements for the if_em driver: - Only update the rx ring consumer pointer after running through the rx loop, not with each iteration through the loop. - If possible, use a fast interupt handler instead of an ithread handler. Use the interrupt handler to check and squelch the interrupt, then schedule a taskqueue to do the actual work. This has three benefits: - Eliminates the 'interrupt aliasing' problem found in many chipsets by allowing the driver to mask the interrupt in the NIC instead of the OS masking the interrupt in the APIC. - Allows the driver to control the amount of work done in the interrupt handler. This results in what I call 'adaptive polling', where you get the latency benefits of a quick response to interrupts with the interrupt mitigation and work partitioning of polling. Polling is still an option in the driver, but I consider it orthogonal to this work. - Don't hold the driver lock in the RX handler. The handler and all data associated is effectively serialized already. This eliminates the cost of dropping and reaquiring the lock for every receieved packet. The result is much lower contention for the driver lock, resulting in lower CPU usage and lower latency for interactive workloads. The amount of work done in the taskqueue is controlled by the sysctl dev.em.N.rx_processing_limit and tunable hw.em.rx_process_limit Setting these to -1 effectively removes the limit. The fast interrupt and taskqueue can be disabled by defining NO_EM_FASTINTR. This work has been shown to increase fast-forwarding from ~570 kpps to ~750 kpps (note that the same NIC hardware seems unable to transmit more than 800 kpps, so this increase appears to be limited almost solely by the hardware). Gains have been shown in other workloads, ranging from better performance to elimination of over-saturation livelocks. Thanks to Andre Opperman for his time and resources from his network performance project in performing much of the testing. Thanks to Gleb Smirnoff and Danny Braniss for their help in testing also.
2006-01-11 00:30:25 +00:00
/* Advance the E1000's Receive Queue #0 "Tail Pointer". */
if (--i < 0)
i = adapter->num_rx_desc - 1;
E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
if (!((current_desc->status) & E1000_RXD_STAT_DD))
Significant performance improvements for the if_em driver: - Only update the rx ring consumer pointer after running through the rx loop, not with each iteration through the loop. - If possible, use a fast interupt handler instead of an ithread handler. Use the interrupt handler to check and squelch the interrupt, then schedule a taskqueue to do the actual work. This has three benefits: - Eliminates the 'interrupt aliasing' problem found in many chipsets by allowing the driver to mask the interrupt in the NIC instead of the OS masking the interrupt in the APIC. - Allows the driver to control the amount of work done in the interrupt handler. This results in what I call 'adaptive polling', where you get the latency benefits of a quick response to interrupts with the interrupt mitigation and work partitioning of polling. Polling is still an option in the driver, but I consider it orthogonal to this work. - Don't hold the driver lock in the RX handler. The handler and all data associated is effectively serialized already. This eliminates the cost of dropping and reaquiring the lock for every receieved packet. The result is much lower contention for the driver lock, resulting in lower CPU usage and lower latency for interactive workloads. The amount of work done in the taskqueue is controlled by the sysctl dev.em.N.rx_processing_limit and tunable hw.em.rx_process_limit Setting these to -1 effectively removes the limit. The fast interrupt and taskqueue can be disabled by defining NO_EM_FASTINTR. This work has been shown to increase fast-forwarding from ~570 kpps to ~750 kpps (note that the same NIC hardware seems unable to transmit more than 800 kpps, so this increase appears to be limited almost solely by the hardware). Gains have been shown in other workloads, ranging from better performance to elimination of over-saturation livelocks. Thanks to Andre Opperman for his time and resources from his network performance project in performing much of the testing. Thanks to Gleb Smirnoff and Danny Braniss for their help in testing also.
2006-01-11 00:30:25 +00:00
return (0);
Significant performance improvements for the if_em driver: - Only update the rx ring consumer pointer after running through the rx loop, not with each iteration through the loop. - If possible, use a fast interupt handler instead of an ithread handler. Use the interrupt handler to check and squelch the interrupt, then schedule a taskqueue to do the actual work. This has three benefits: - Eliminates the 'interrupt aliasing' problem found in many chipsets by allowing the driver to mask the interrupt in the NIC instead of the OS masking the interrupt in the APIC. - Allows the driver to control the amount of work done in the interrupt handler. This results in what I call 'adaptive polling', where you get the latency benefits of a quick response to interrupts with the interrupt mitigation and work partitioning of polling. Polling is still an option in the driver, but I consider it orthogonal to this work. - Don't hold the driver lock in the RX handler. The handler and all data associated is effectively serialized already. This eliminates the cost of dropping and reaquiring the lock for every receieved packet. The result is much lower contention for the driver lock, resulting in lower CPU usage and lower latency for interactive workloads. The amount of work done in the taskqueue is controlled by the sysctl dev.em.N.rx_processing_limit and tunable hw.em.rx_process_limit Setting these to -1 effectively removes the limit. The fast interrupt and taskqueue can be disabled by defining NO_EM_FASTINTR. This work has been shown to increase fast-forwarding from ~570 kpps to ~750 kpps (note that the same NIC hardware seems unable to transmit more than 800 kpps, so this increase appears to be limited almost solely by the hardware). Gains have been shown in other workloads, ranging from better performance to elimination of over-saturation livelocks. Thanks to Andre Opperman for his time and resources from his network performance project in performing much of the testing. Thanks to Gleb Smirnoff and Danny Braniss for their help in testing also.
2006-01-11 00:30:25 +00:00
return (1);
}
#ifndef __NO_STRICT_ALIGNMENT
/*
* When jumbo frames are enabled we should realign entire payload on
* architecures with strict alignment. This is serious design mistake of 8254x
* as it nullifies DMA operations. 8254x just allows RX buffer size to be
* 2048/4096/8192/16384. What we really want is 2048 - ETHER_ALIGN to align its
* payload. On architecures without strict alignment restrictions 8254x still
* performs unaligned memory access which would reduce the performance too.
* To avoid copying over an entire frame to align, we allocate a new mbuf and
* copy ethernet header to the new mbuf. The new mbuf is prepended into the
* existing mbuf chain.
*
* Be aware, best performance of the 8254x is achived only when jumbo frame is
* not used at all on architectures with strict alignment.
*/
static int
em_fixup_rx(struct adapter *adapter)
{
struct mbuf *m, *n;
int error;
error = 0;
m = adapter->fmp;
if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
m->m_data += ETHER_HDR_LEN;
} else {
MGETHDR(n, M_DONTWAIT, MT_DATA);
if (n != NULL) {
bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
m->m_data += ETHER_HDR_LEN;
m->m_len -= ETHER_HDR_LEN;
n->m_len = ETHER_HDR_LEN;
M_MOVE_PKTHDR(n, m);
n->m_next = m;
adapter->fmp = n;
} else {
adapter->dropped_pkts++;
m_freem(adapter->fmp);
adapter->fmp = NULL;
error = ENOMEM;
}
}
return (error);
}
#endif
/*********************************************************************
*
* Verify that the hardware indicated that the checksum is valid.
* Inform the stack about the status of checksum so that stack
* doesn't spend time verifying the checksum.
*
*********************************************************************/
static void
em_receive_checksum(struct adapter *adapter,
struct e1000_rx_desc *rx_desc, struct mbuf *mp)
{
/* 82543 or newer only */
if ((adapter->hw.mac.type < e1000_82543) ||
/* Ignore Checksum bit is set */
(rx_desc->status & E1000_RXD_STAT_IXSM)) {
mp->m_pkthdr.csum_flags = 0;
return;
}
if (rx_desc->status & E1000_RXD_STAT_IPCS) {
/* Did it pass? */
if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
/* IP Checksum Good */
mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
} else {
mp->m_pkthdr.csum_flags = 0;
}
}
if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
/* Did it pass? */
if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
mp->m_pkthdr.csum_flags |=
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
mp->m_pkthdr.csum_data = htons(0xffff);
}
}
}
/*
* This turns on the hardware offload of the VLAN
* tag insertion and strip
*/
static void
em_enable_hw_vlans(struct adapter *adapter)
{
u32 ctrl;
ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
ctrl |= E1000_CTRL_VME;
E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
}
#define QUEUE_MASK 0x01500000
static void
em_enable_intr(struct adapter *adapter)
{
u32 ims_mask = IMS_ENABLE_MASK;
if (adapter->msix) {
E1000_WRITE_REG(&adapter->hw, E1000_EIMS, QUEUE_MASK);
E1000_WRITE_REG(&adapter->hw, E1000_EIAC, QUEUE_MASK);
ims_mask |= QUEUE_MASK;
}
E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
}
static void
em_disable_intr(struct adapter *adapter)
{
if (adapter->msix) {
E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0);
E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0);
}
E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
}
/*
* Bit of a misnomer, what this really means is
* to enable OS management of the system... aka
* to disable special hardware management features
*/
static void
em_init_manageability(struct adapter *adapter)
{
/* A shared code workaround */
#define E1000_82542_MANC2H E1000_MANC2H
if (adapter->has_manage) {
int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
/* disable hardware interception of ARP */
manc &= ~(E1000_MANC_ARP_EN);
/* enable receiving management packets to the host */
if (adapter->hw.mac.type >= e1000_82571) {
manc |= E1000_MANC_EN_MNG2HOST;
#define E1000_MNG2HOST_PORT_623 (1 << 5)
#define E1000_MNG2HOST_PORT_664 (1 << 6)
manc2h |= E1000_MNG2HOST_PORT_623;
manc2h |= E1000_MNG2HOST_PORT_664;
E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
}
E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
}
}
/*
* Give control back to hardware management
* controller if there is one.
*/
static void
em_release_manageability(struct adapter *adapter)
{
if (adapter->has_manage) {
int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
/* re-enable hardware interception of ARP */
manc |= E1000_MANC_ARP_EN;
if (adapter->hw.mac.type >= e1000_82571)
manc &= ~E1000_MANC_EN_MNG2HOST;
E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
}
}
/*
* em_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is loaded. For AMT version (only with 82573)
* of the f/w this means that the network i/f is open.
*
*/
static void
em_get_hw_control(struct adapter *adapter)
{
u32 ctrl_ext, swsm;
/* Let firmware know the driver has taken over */
switch (adapter->hw.mac.type) {
case e1000_82573:
swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
swsm | E1000_SWSM_DRV_LOAD);
break;
case e1000_82571:
case e1000_82572:
case e1000_80003es2lan:
case e1000_ich8lan:
case e1000_ich9lan:
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
break;
default:
break;
}
}
/*
* em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded. For AMT version (only with 82573) i
* of the f/w this means that the network i/f is closed.
*
*/
static void
em_release_hw_control(struct adapter *adapter)
{
u32 ctrl_ext, swsm;
/* Let firmware taken over control of h/w */
switch (adapter->hw.mac.type) {
case e1000_82573:
swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
swsm & ~E1000_SWSM_DRV_LOAD);
break;
case e1000_82571:
case e1000_82572:
case e1000_80003es2lan:
case e1000_ich8lan:
case e1000_ich9lan:
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
break;
default:
break;
}
}
static int
em_is_valid_ether_addr(u8 *addr)
{
char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
return (FALSE);
}
return (TRUE);
}
/*
* NOTE: the following routines using the e1000
* naming style are provided to the shared
* code which expects that rather than 'em'
*/
void
e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
{
pci_write_config(((struct e1000_osdep *)hw->back)->dev, reg, *value, 2);
}
void
e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
{
*value = pci_read_config(((struct e1000_osdep *)hw->back)->dev, reg, 2);
}
void
e1000_pci_set_mwi(struct e1000_hw *hw)
{
pci_write_config(((struct e1000_osdep *)hw->back)->dev, PCIR_COMMAND,
(hw->bus.pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
}
void
e1000_pci_clear_mwi(struct e1000_hw *hw)
{
pci_write_config(((struct e1000_osdep *)hw->back)->dev, PCIR_COMMAND,
(hw->bus.pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
}
/*
* Read the PCI Express capabilities
*/
int
e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
int error = E1000_SUCCESS;
u16 cap_off;
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
case e1000_82573:
case e1000_80003es2lan:
cap_off = 0xE0;
e1000_read_pci_cfg(hw, cap_off + reg, value);
break;
default:
error = ~E1000_NOT_IMPLEMENTED;
break;
}
return (error);
}
int
e1000_alloc_zeroed_dev_spec_struct(struct e1000_hw *hw, u32 size)
{
int32_t error = 0;
hw->dev_spec = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
if (hw->dev_spec == NULL)
error = ENOMEM;
return (error);
}
void
e1000_free_dev_spec_struct(struct e1000_hw *hw)
{
if (hw->dev_spec != NULL)
free(hw->dev_spec, M_DEVBUF);
return;
}
/*
* Enable PCI Wake On Lan capability
*/
void
em_enable_wakeup(device_t dev)
{
u16 cap, status;
u8 id;
/* First find the capabilities pointer*/
cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
/* Read the PM Capabilities */
id = pci_read_config(dev, cap, 1);
if (id != PCIY_PMG) /* Something wrong */
return;
/* OK, we have the power capabilities, so
now get the status register */
cap += PCIR_POWER_STATUS;
status = pci_read_config(dev, cap, 2);
status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(dev, cap, status, 2);
return;
}
/*********************************************************************
* 82544 Coexistence issue workaround.
* There are 2 issues.
* 1. Transmit Hang issue.
* To detect this issue, following equation can be used...
* SIZE[3:0] + ADDR[2:0] = SUM[3:0].
* If SUM[3:0] is in between 1 to 4, we will have this issue.
*
* 2. DAC issue.
* To detect this issue, following equation can be used...
* SIZE[3:0] + ADDR[2:0] = SUM[3:0].
* If SUM[3:0] is in between 9 to c, we will have this issue.
*
*
* WORKAROUND:
* Make sure we do not have ending address
* as 1,2,3,4(Hang) or 9,a,b,c (DAC)
*
*************************************************************************/
static u32
em_fill_descriptors (bus_addr_t address, u32 length,
PDESC_ARRAY desc_array)
{
u32 safe_terminator;
/* Since issue is sensitive to length and address.*/
/* Let us first check the address...*/
if (length <= 4) {
desc_array->descriptor[0].address = address;
desc_array->descriptor[0].length = length;
desc_array->elements = 1;
return (desc_array->elements);
}
safe_terminator = (u32)((((u32)address & 0x7) +
(length & 0xF)) & 0xF);
/* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
if (safe_terminator == 0 ||
(safe_terminator > 4 &&
safe_terminator < 9) ||
(safe_terminator > 0xC &&
safe_terminator <= 0xF)) {
desc_array->descriptor[0].address = address;
desc_array->descriptor[0].length = length;
desc_array->elements = 1;
return (desc_array->elements);
}
desc_array->descriptor[0].address = address;
desc_array->descriptor[0].length = length - 4;
desc_array->descriptor[1].address = address + (length - 4);
desc_array->descriptor[1].length = 4;
desc_array->elements = 2;
return (desc_array->elements);
}
/**********************************************************************
*
* Update the board statistics counters.
*
**********************************************************************/
static void
em_update_stats_counters(struct adapter *adapter)
{
struct ifnet *ifp;
if(adapter->hw.phy.media_type == e1000_media_type_copper ||
(E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
}
adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
/* For the 64-bit byte counters the low dword must be read first. */
/* Both registers clear on the read of the high dword */
adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
if (adapter->hw.mac.type >= e1000_82543) {
adapter->stats.algnerrc +=
E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
adapter->stats.rxerrc +=
E1000_READ_REG(&adapter->hw, E1000_RXERRC);
adapter->stats.tncrs +=
E1000_READ_REG(&adapter->hw, E1000_TNCRS);
adapter->stats.cexterr +=
E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
adapter->stats.tsctc +=
E1000_READ_REG(&adapter->hw, E1000_TSCTC);
adapter->stats.tsctfc +=
E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
}
ifp = adapter->ifp;
ifp->if_collisions = adapter->stats.colc;
/* Rx Errors */
ifp->if_ierrors = adapter->dropped_pkts + adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.mpc + adapter->stats.cexterr;
/* Tx Errors */
ifp->if_oerrors = adapter->stats.ecol +
adapter->stats.latecol + adapter->watchdog_events;
}
/**********************************************************************
*
* This routine is called only when em_display_debug_stats is enabled.
* This routine provides a way to take a look at important statistics
* maintained by the driver and hardware.
*
**********************************************************************/
static void
em_print_debug_info(struct adapter *adapter)
{
device_t dev = adapter->dev;
u8 *hw_addr = adapter->hw.hw_addr;
device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
E1000_READ_REG(&adapter->hw, E1000_CTRL),
E1000_READ_REG(&adapter->hw, E1000_RCTL));
device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
device_printf(dev, "Flow control watermarks high = %d low = %d\n",
adapter->hw.fc.high_water,
adapter->hw.fc.low_water);
device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
E1000_READ_REG(&adapter->hw, E1000_TIDV),
E1000_READ_REG(&adapter->hw, E1000_TADV));
device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
E1000_READ_REG(&adapter->hw, E1000_RDTR),
E1000_READ_REG(&adapter->hw, E1000_RADV));
device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
(long long)adapter->tx_fifo_wrk_cnt,
(long long)adapter->tx_fifo_reset_cnt);
device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
device_printf(dev, "Num Tx descriptors avail = %d\n",
adapter->num_tx_desc_avail);
device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
adapter->no_tx_desc_avail1);
device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
adapter->no_tx_desc_avail2);
device_printf(dev, "Std mbuf failed = %ld\n",
adapter->mbuf_alloc_failed);
device_printf(dev, "Std mbuf cluster failed = %ld\n",
adapter->mbuf_cluster_failed);
device_printf(dev, "Driver dropped packets = %ld\n",
adapter->dropped_pkts);
device_printf(dev, "Driver tx dma failure in encap = %ld\n",
adapter->no_tx_dma_setup);
}
static void
em_print_hw_stats(struct adapter *adapter)
{
device_t dev = adapter->dev;
device_printf(dev, "Excessive collisions = %lld\n",
(long long)adapter->stats.ecol);
#if (DEBUG_HW > 0) /* Dont output these errors normally */
device_printf(dev, "Symbol errors = %lld\n",
(long long)adapter->stats.symerrs);
#endif
device_printf(dev, "Sequence errors = %lld\n",
(long long)adapter->stats.sec);
device_printf(dev, "Defer count = %lld\n",
(long long)adapter->stats.dc);
device_printf(dev, "Missed Packets = %lld\n",
(long long)adapter->stats.mpc);
device_printf(dev, "Receive No Buffers = %lld\n",
(long long)adapter->stats.rnbc);
/* RLEC is inaccurate on some hardware, calculate our own. */
device_printf(dev, "Receive Length Errors = %lld\n",
((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
device_printf(dev, "Receive errors = %lld\n",
(long long)adapter->stats.rxerrc);
device_printf(dev, "Crc errors = %lld\n",
(long long)adapter->stats.crcerrs);
device_printf(dev, "Alignment errors = %lld\n",
(long long)adapter->stats.algnerrc);
device_printf(dev, "Collision/Carrier extension errors = %lld\n",
(long long)adapter->stats.cexterr);
device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
device_printf(dev, "watchdog timeouts = %ld\n",
adapter->watchdog_events);
device_printf(dev, "TX Interrupts = %ld ", adapter->tx_irq);
device_printf(dev, "RX Interrupts = %ld\n", adapter->rx_irq);
device_printf(dev, "XON Rcvd = %lld\n",
(long long)adapter->stats.xonrxc);
device_printf(dev, "XON Xmtd = %lld\n",
(long long)adapter->stats.xontxc);
device_printf(dev, "XOFF Rcvd = %lld\n",
(long long)adapter->stats.xoffrxc);
device_printf(dev, "XOFF Xmtd = %lld\n",
(long long)adapter->stats.xofftxc);
device_printf(dev, "Good Packets Rcvd = %lld\n",
(long long)adapter->stats.gprc);
device_printf(dev, "Good Packets Xmtd = %lld\n",
(long long)adapter->stats.gptc);
device_printf(dev, "TSO Contexts Xmtd = %lld\n",
(long long)adapter->stats.tsctc);
device_printf(dev, "TSO Contexts Failed = %lld\n",
(long long)adapter->stats.tsctfc);
}
/**********************************************************************
*
* This routine provides a way to dump out the adapter eeprom,
* often a useful debug/service tool. This only dumps the first
* 32 words, stuff that matters is in that extent.
*
**********************************************************************/
static void
em_print_nvm_info(struct adapter *adapter)
{
u16 eeprom_data;
int i, j, row = 0;
/* Its a bit crude, but it gets the job done */
printf("\nInterface EEPROM Dump:\n");
printf("Offset\n0x0000 ");
for (i = 0, j = 0; i < 32; i++, j++) {
if (j == 8) { /* Make the offset block */
j = 0; ++row;
printf("\n0x00%x0 ",row);
}
e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
printf("%04x ", eeprom_data);
}
printf("\n");
}
static int
em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter;
int error;
int result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
adapter = (struct adapter *)arg1;
em_print_debug_info(adapter);
}
/*
* This value will cause a hex dump of the
* first 32 16-bit words of the EEPROM to
* the screen.
*/
if (result == 2) {
adapter = (struct adapter *)arg1;
em_print_nvm_info(adapter);
}
return (error);
}
static int
em_sysctl_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter;
int error;
int result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
adapter = (struct adapter *)arg1;
em_print_hw_stats(adapter);
}
return (error);
}
static int
em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
{
struct em_int_delay_info *info;
struct adapter *adapter;
u32 regval;
int error;
int usecs;
int ticks;
info = (struct em_int_delay_info *)arg1;
usecs = info->value;
error = sysctl_handle_int(oidp, &usecs, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
return (EINVAL);
info->value = usecs;
ticks = EM_USECS_TO_TICKS(usecs);
adapter = info->adapter;
EM_CORE_LOCK(adapter);
regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
regval = (regval & ~0xffff) | (ticks & 0xffff);
/* Handle a few special cases. */
switch (info->offset) {
case E1000_RDTR:
break;
case E1000_TIDV:
if (ticks == 0) {
adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
/* Don't write 0 into the TIDV register. */
regval++;
} else
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
break;
}
E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
EM_CORE_UNLOCK(adapter);
return (0);
}
static void
em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
const char *description, struct em_int_delay_info *info,
int offset, int value)
{
info->adapter = adapter;
info->offset = offset;
info->value = value;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
info, 0, em_sysctl_int_delay, "I", description);
}
#ifdef EM_FAST_IRQ
static void
em_add_rx_process_limit(struct adapter *adapter, const char *name,
const char *description, int *limit, int value)
{
*limit = value;
SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
}
#endif