freebsd-skq/sys/gnu/ext2fs/ext2_ihash.c

170 lines
4.5 KiB
C
Raw Normal View History

1994-05-24 10:09:53 +00:00
/*
* Copyright (c) 1982, 1986, 1989, 1991, 1993, 1995
1994-05-24 10:09:53 +00:00
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ufs_ihash.c 8.7 (Berkeley) 5/17/95
1999-08-28 01:08:13 +00:00
* $FreeBSD$
1994-05-24 10:09:53 +00:00
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
1994-05-24 10:09:53 +00:00
#include <sys/vnode.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/mutex.h>
#include <gnu/ext2fs/inode.h>
#include <gnu/ext2fs/ext2_extern.h>
1994-05-24 10:09:53 +00:00
static MALLOC_DEFINE(M_EXT2IHASH, "EXT2 ihash", "EXT2 Inode hash tables");
1994-05-24 10:09:53 +00:00
/*
* Structures associated with inode cacheing.
*/
static LIST_HEAD(ihashhead, inode) *ihashtbl;
1998-02-09 06:11:36 +00:00
static u_long ihash; /* size of hash table - 1 */
Divorce "dev_t" from the "major|minor" bitmap, which is now called udev_t in the kernel but still called dev_t in userland. Provide functions to manipulate both types: major() umajor() minor() uminor() makedev() umakedev() dev2udev() udev2dev() For now they're functions, they will become in-line functions after one of the next two steps in this process. Return major/minor/makedev to macro-hood for userland. Register a name in cdevsw[] for the "filedescriptor" driver. In the kernel the udev_t appears in places where we have the major/minor number combination, (ie: a potential device: we may not have the driver nor the device), like in inodes, vattr, cdevsw registration and so on, whereas the dev_t appears where we carry around a reference to a actual device. In the future the cdevsw and the aliased-from vnode will be hung directly from the dev_t, along with up to two softc pointers for the device driver and a few houskeeping bits. This will essentially replace the current "alias" check code (same buck, bigger bang). A little stunt has been provided to try to catch places where the wrong type is being used (dev_t vs udev_t), if you see something not working, #undef DEVT_FASCIST in kern/kern_conf.c and see if it makes a difference. If it does, please try to track it down (many hands make light work) or at least try to reproduce it as simply as possible, and describe how to do that. Without DEVT_FASCIST I belive this patch is a no-op. Stylistic/posixoid comments about the userland view of the <sys/*.h> files welcome now, from userland they now contain the end result. Next planned step: make all dev_t's refer to the same devsw[] which means convert BLK's to CHR's at the perimeter of the vnodes and other places where they enter the game (bootdev, mknod, sysctl).
1999-05-11 19:55:07 +00:00
#define INOHASH(device, inum) (&ihashtbl[(minor(device) + (inum)) & ihash])
static struct mtx ext2_ihash_mtx;
1994-05-24 10:09:53 +00:00
/*
* Initialize inode hash table.
*/
void
ext2_ihashinit()
1994-05-24 10:09:53 +00:00
{
KASSERT(ihashtbl == NULL, ("ext2_ihashinit called twice"));
ihashtbl = hashinit(desiredvnodes, M_EXT2IHASH, &ihash);
mtx_init(&ext2_ihash_mtx, "ext2 ihash", NULL, MTX_DEF);
1994-05-24 10:09:53 +00:00
}
/*
* Destroy the inode hash table.
*/
void
ext2_ihashuninit()
{
2002-06-30 03:01:44 +00:00
hashdestroy(ihashtbl, M_EXT2IHASH, ihash);
mtx_destroy(&ext2_ihash_mtx);
}
1994-05-24 10:09:53 +00:00
/*
* Use the device/inum pair to find the incore inode, and return a pointer
* to it. If it is in core, return it, even if it is locked.
*/
struct vnode *
ext2_ihashlookup(dev, inum)
struct cdev *dev;
1994-05-24 10:09:53 +00:00
ino_t inum;
{
struct inode *ip;
1994-05-24 10:09:53 +00:00
mtx_lock(&ext2_ihash_mtx);
2001-02-04 12:37:48 +00:00
LIST_FOREACH(ip, INOHASH(dev, inum), i_hash)
if (inum == ip->i_number && dev == ip->i_dev)
break;
mtx_unlock(&ext2_ihash_mtx);
if (ip)
return (ITOV(ip));
return (NULLVP);
1994-05-24 10:09:53 +00:00
}
/*
* Use the device/inum pair to find the incore inode, and return a pointer
* to it. If it is in core, but locked, wait for it.
*/
int
ext2_ihashget(dev, inum, flags, vpp)
struct cdev *dev;
1994-05-24 10:09:53 +00:00
ino_t inum;
int flags;
struct vnode **vpp;
1994-05-24 10:09:53 +00:00
{
struct thread *td = curthread; /* XXX */
struct inode *ip;
1994-05-24 10:09:53 +00:00
struct vnode *vp;
int error;
1994-05-24 10:09:53 +00:00
*vpp = NULL;
loop:
mtx_lock(&ext2_ihash_mtx);
2001-02-04 12:37:48 +00:00
LIST_FOREACH(ip, INOHASH(dev, inum), i_hash) {
if (inum == ip->i_number && dev == ip->i_dev) {
vp = ITOV(ip);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&vp->v_interlock);
mtx_unlock(&ext2_ihash_mtx);
error = vget(vp, flags | LK_INTERLOCK, td);
if (error == ENOENT)
goto loop;
if (error)
return (error);
*vpp = vp;
return (0);
1994-05-24 10:09:53 +00:00
}
}
mtx_unlock(&ext2_ihash_mtx);
return (0);
1994-05-24 10:09:53 +00:00
}
/*
* Insert the inode into the hash table, and return it locked.
*/
void
ext2_ihashins(ip)
1994-05-24 10:09:53 +00:00
struct inode *ip;
{
struct thread *td = curthread; /* XXX */
struct ihashhead *ipp;
1994-05-24 10:09:53 +00:00
/* lock the inode, then put it on the appropriate hash list */
vn_lock(ITOV(ip), LK_EXCLUSIVE | LK_RETRY, td);
mtx_lock(&ext2_ihash_mtx);
ipp = INOHASH(ip->i_dev, ip->i_number);
LIST_INSERT_HEAD(ipp, ip, i_hash);
ip->i_flag |= IN_HASHED;
mtx_unlock(&ext2_ihash_mtx);
1994-05-24 10:09:53 +00:00
}
/*
* Remove the inode from the hash table.
*/
void
ext2_ihashrem(ip)
struct inode *ip;
1994-05-24 10:09:53 +00:00
{
mtx_lock(&ext2_ihash_mtx);
if (ip->i_flag & IN_HASHED) {
ip->i_flag &= ~IN_HASHED;
LIST_REMOVE(ip, i_hash);
}
mtx_unlock(&ext2_ihash_mtx);
1994-05-24 10:09:53 +00:00
}