Add support for reading MAM attributes to camcontrol(8) and libcam(3).
MAM is Medium Auxiliary Memory and is most commonly found as flash
chips on tapes.
This includes support for reading attributes and decoding most
known attributes, but does not yet include support for writing
attributes or reporting attributes in XML format.
libsbuf/Makefile:
Add subr_prf.c for the new sbuf_hexdump() function. This
function is essentially the same function.
libsbuf/Symbol.map:
Add a new shared library minor version, and include the
sbuf_hexdump() function.
libsbuf/Version.def:
Add version 1.4 of the libsbuf library.
libutil/hexdump.3:
Document sbuf_hexdump() alongside hexdump(3), since it is
essentially the same function.
camcontrol/Makefile:
Add attrib.c.
camcontrol/attrib.c:
Implementation of READ ATTRIBUTE support for camcontrol(8).
camcontrol/camcontrol.8:
Document the new 'camcontrol attrib' subcommand.
camcontrol/camcontrol.c:
Add the new 'camcontrol attrib' subcommand.
camcontrol/camcontrol.h:
Add a function prototype for scsiattrib().
share/man/man9/sbuf.9:
Document the existence of sbuf_hexdump() and point users to
the hexdump(3) man page for more details.
sys/cam/scsi/scsi_all.c:
Add a table of known attributes, text descriptions and
handler functions.
Add a new scsi_attrib_sbuf() function along with a number
of other related functions that help decode attributes.
scsi_attrib_ascii_sbuf() decodes ASCII format attributes.
scsi_attrib_int_sbuf() decodes binary format attributes, and
will pass them off to scsi_attrib_hexdump_sbuf() if they're
bigger than 8 bytes.
scsi_attrib_vendser_sbuf() decodes the vendor and drive
serial number attribute.
scsi_attrib_volcoh_sbuf() decodes the Volume Coherency
Information attribute that LTFS writes out.
sys/cam/scsi/scsi_all.h:
Add a number of attribute-related structure definitions and
other defines.
Add function prototypes for all of the functions added in
scsi_all.c.
sys/kern/subr_prf.c:
Add a new function, sbuf_hexdump(). This is the same as
the existing hexdump(9) function, except that it puts the
result in an sbuf.
This also changes subr_prf.c so that it can be compiled in
userland for includsion in libsbuf.
We should work to change this so that the kernel hexdump
implementation is a wrapper around sbuf_hexdump() with a
statically allocated sbuf with a drain. That will require
a drain function that goes to the kernel printf() buffer
that can take a non-NUL terminated string as input.
That is because an sbuf isn't NUL-terminated until it is
finished, and we don't want to finish it while we're still
using it.
We should also work to consolidate the userland hexdump and
kernel hexdump implemenatations, which are currently
separate. This would also mean making applications that
currently link in libutil link in libsbuf.
sys/sys/sbuf.h:
Add the prototype for sbuf_hexdump(), and add another copy
of the hexdump flag values if they aren't already defined.
Ideally the flags should be defined in one place but the
implemenation makes it difficult to do properly. (See
above.)
Sponsored by: Spectra Logic Corporation
MFC after: 1 week
2015-06-09 21:39:38 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 2014 Spectra Logic Corporation
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
|
|
* without modification.
|
|
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
|
|
* substantially similar to the "NO WARRANTY" disclaimer below
|
|
|
|
* ("Disclaimer") and any redistribution must be conditioned upon
|
|
|
|
* including a substantially similar Disclaimer requirement for further
|
|
|
|
* binary redistribution.
|
|
|
|
*
|
|
|
|
* NO WARRANTY
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGES.
|
|
|
|
*
|
|
|
|
* Authors: Ken Merry (Spectra Logic Corporation)
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
* SCSI Read and Write Attribute support for camcontrol(8).
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
|
|
|
#include <sys/ioctl.h>
|
|
|
|
#include <sys/stdint.h>
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/endian.h>
|
|
|
|
#include <sys/sbuf.h>
|
|
|
|
#include <sys/queue.h>
|
|
|
|
#include <sys/chio.h>
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <inttypes.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <strings.h>
|
|
|
|
#include <fcntl.h>
|
|
|
|
#include <ctype.h>
|
|
|
|
#include <limits.h>
|
|
|
|
#include <err.h>
|
|
|
|
#include <locale.h>
|
|
|
|
|
|
|
|
#include <cam/cam.h>
|
|
|
|
#include <cam/cam_debug.h>
|
|
|
|
#include <cam/cam_ccb.h>
|
|
|
|
#include <cam/scsi/scsi_all.h>
|
|
|
|
#include <cam/scsi/scsi_pass.h>
|
|
|
|
#include <cam/scsi/scsi_ch.h>
|
|
|
|
#include <cam/scsi/scsi_message.h>
|
|
|
|
#include <camlib.h>
|
|
|
|
#include "camcontrol.h"
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
struct scsi_attr_desc {
|
|
|
|
int attr_id;
|
|
|
|
|
|
|
|
STAILQ_ENTRY(scsi_attr_desc) links;
|
|
|
|
};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static struct scsi_nv elem_type_map[] = {
|
|
|
|
{ "all", ELEMENT_TYPE_ALL },
|
|
|
|
{ "picker", ELEMENT_TYPE_MT },
|
|
|
|
{ "slot", ELEMENT_TYPE_ST },
|
|
|
|
{ "portal", ELEMENT_TYPE_IE },
|
|
|
|
{ "drive", ELEMENT_TYPE_DT },
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct scsi_nv sa_map[] = {
|
|
|
|
{ "attr_values", SRA_SA_ATTR_VALUES },
|
|
|
|
{ "attr_list", SRA_SA_ATTR_LIST },
|
|
|
|
{ "lv_list", SRA_SA_LOG_VOL_LIST },
|
|
|
|
{ "part_list", SRA_SA_PART_LIST },
|
|
|
|
{ "supp_attr", SRA_SA_SUPPORTED_ATTRS }
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct scsi_nv output_format_map[] = {
|
|
|
|
{ "text_esc", SCSI_ATTR_OUTPUT_TEXT_ESC },
|
|
|
|
{ "text_raw", SCSI_ATTR_OUTPUT_TEXT_RAW },
|
|
|
|
{ "nonascii_esc", SCSI_ATTR_OUTPUT_NONASCII_ESC },
|
|
|
|
{ "nonascii_trim", SCSI_ATTR_OUTPUT_NONASCII_TRIM },
|
|
|
|
{ "nonascii_raw", SCSI_ATTR_OUTPUT_NONASCII_RAW },
|
|
|
|
{ "field_all", SCSI_ATTR_OUTPUT_FIELD_ALL },
|
|
|
|
{ "field_none", SCSI_ATTR_OUTPUT_FIELD_NONE },
|
|
|
|
{ "field_desc", SCSI_ATTR_OUTPUT_FIELD_DESC },
|
|
|
|
{ "field_num", SCSI_ATTR_OUTPUT_FIELD_NUM },
|
|
|
|
{ "field_size", SCSI_ATTR_OUTPUT_FIELD_SIZE },
|
|
|
|
{ "field_rw", SCSI_ATTR_OUTPUT_FIELD_RW },
|
|
|
|
};
|
|
|
|
|
|
|
|
int
|
|
|
|
scsiattrib(struct cam_device *device, int argc, char **argv, char *combinedopt,
|
Add task attribute support to camcontrol(8).
Users can use the new generic argument, -Q task_attr, to specify a task
attribute (simple, ordered, head of queue, aca) for the commands issued.
The the default is simple, which works with all SCSI devices that support
tagged queueing.
This will mostly be useful for debugging target behavior in certain
situations.
You can try it out by compiling CTL with CTL_IO_DELAY turned on (in
sys/cam/ctl/ctl_io.h) and then do something like this with one of the CTL
LUNs:
ctladm delay 0:0 -l done -t 10
camcontrol tur da34 -v
And at then before the 10 second timer is up, in another terminal:
camcontrol inquiry da34 -Q ordered -v
The Inquiry should complete just after the TUR completes. Ordinarily
it would complete first because of the delay injection, but because the
task attribute is set to ordered in this case, CTL holds it up until the
previous command has completed.
sbin/camcontrol/camcontrol.c:
Add the new generic argument, -Q, which allows the user to specify
a SCSI task attribute. The user can specify task attributes by
name or numerically.
Add a new task_attr arguments to SCSI sub-functions.
sbin/camcontrol/attrib.c,
sbin/camcontrol/camcontrol.h,
sbin/camcontrol/fwdownload.c,
sbin/camcontrol/modeedit.c,
sbin/camcontrol/persist.c,
sbin/camcontrol/timestamp.c,
sbin/camcontrol/zone.c:
Add the new task_attr argument to SCSI sub-functions.
sbin/camcontrol/camcontrol.8:
Document the new -Q option, and add an example.
Sponsored by: Spectra Logic
MFC after: 1 week
2017-02-17 20:04:22 +00:00
|
|
|
int task_attr, int retry_count, int timeout, int verbosemode,
|
|
|
|
int err_recover)
|
Add support for reading MAM attributes to camcontrol(8) and libcam(3).
MAM is Medium Auxiliary Memory and is most commonly found as flash
chips on tapes.
This includes support for reading attributes and decoding most
known attributes, but does not yet include support for writing
attributes or reporting attributes in XML format.
libsbuf/Makefile:
Add subr_prf.c for the new sbuf_hexdump() function. This
function is essentially the same function.
libsbuf/Symbol.map:
Add a new shared library minor version, and include the
sbuf_hexdump() function.
libsbuf/Version.def:
Add version 1.4 of the libsbuf library.
libutil/hexdump.3:
Document sbuf_hexdump() alongside hexdump(3), since it is
essentially the same function.
camcontrol/Makefile:
Add attrib.c.
camcontrol/attrib.c:
Implementation of READ ATTRIBUTE support for camcontrol(8).
camcontrol/camcontrol.8:
Document the new 'camcontrol attrib' subcommand.
camcontrol/camcontrol.c:
Add the new 'camcontrol attrib' subcommand.
camcontrol/camcontrol.h:
Add a function prototype for scsiattrib().
share/man/man9/sbuf.9:
Document the existence of sbuf_hexdump() and point users to
the hexdump(3) man page for more details.
sys/cam/scsi/scsi_all.c:
Add a table of known attributes, text descriptions and
handler functions.
Add a new scsi_attrib_sbuf() function along with a number
of other related functions that help decode attributes.
scsi_attrib_ascii_sbuf() decodes ASCII format attributes.
scsi_attrib_int_sbuf() decodes binary format attributes, and
will pass them off to scsi_attrib_hexdump_sbuf() if they're
bigger than 8 bytes.
scsi_attrib_vendser_sbuf() decodes the vendor and drive
serial number attribute.
scsi_attrib_volcoh_sbuf() decodes the Volume Coherency
Information attribute that LTFS writes out.
sys/cam/scsi/scsi_all.h:
Add a number of attribute-related structure definitions and
other defines.
Add function prototypes for all of the functions added in
scsi_all.c.
sys/kern/subr_prf.c:
Add a new function, sbuf_hexdump(). This is the same as
the existing hexdump(9) function, except that it puts the
result in an sbuf.
This also changes subr_prf.c so that it can be compiled in
userland for includsion in libsbuf.
We should work to change this so that the kernel hexdump
implementation is a wrapper around sbuf_hexdump() with a
statically allocated sbuf with a drain. That will require
a drain function that goes to the kernel printf() buffer
that can take a non-NUL terminated string as input.
That is because an sbuf isn't NUL-terminated until it is
finished, and we don't want to finish it while we're still
using it.
We should also work to consolidate the userland hexdump and
kernel hexdump implemenatations, which are currently
separate. This would also mean making applications that
currently link in libutil link in libsbuf.
sys/sys/sbuf.h:
Add the prototype for sbuf_hexdump(), and add another copy
of the hexdump flag values if they aren't already defined.
Ideally the flags should be defined in one place but the
implemenation makes it difficult to do properly. (See
above.)
Sponsored by: Spectra Logic Corporation
MFC after: 1 week
2015-06-09 21:39:38 +00:00
|
|
|
{
|
|
|
|
union ccb *ccb = NULL;
|
|
|
|
int attr_num = -1;
|
|
|
|
#if 0
|
|
|
|
int num_attrs = 0;
|
|
|
|
#endif
|
|
|
|
int start_attr = 0;
|
|
|
|
int cached_attr = 0;
|
|
|
|
int read_service_action = -1;
|
|
|
|
int read_attr = 0, write_attr = 0;
|
|
|
|
int element_address = 0;
|
|
|
|
int element_type = ELEMENT_TYPE_ALL;
|
|
|
|
int partition = 0;
|
|
|
|
int logical_volume = 0;
|
|
|
|
char *endptr;
|
|
|
|
uint8_t *data_buf = NULL;
|
|
|
|
uint32_t dxfer_len = UINT16_MAX - 1;
|
|
|
|
uint32_t valid_len;
|
|
|
|
uint32_t output_format;
|
|
|
|
STAILQ_HEAD(, scsi_attr_desc) write_attr_list;
|
|
|
|
int error = 0;
|
|
|
|
int c;
|
|
|
|
|
|
|
|
ccb = cam_getccb(device);
|
|
|
|
if (ccb == NULL) {
|
|
|
|
warnx("%s: error allocating CCB", __func__);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
|
Fix multiple Coverity Out-of-bounds access false postive issues in CAM
The currently used idiom for clearing the part of a ccb after its
header generates one or two Coverity errors for each time it is
used. All instances generate an Out-of-bounds access (ARRAY_VS_SINGLETON)
error because of the treatment of the header as a two element array,
with a pointer to the non-existent second element being passed as
the starting address to bzero(). Some instances also alsp generate
Out-of-bounds access (OVERRUN) errors, probably because the space
being cleared is larger than the sizeofstruct ccb_hdr).
In addition, this idiom is difficult for humans to understand and
it is error prone. The user has to chose the proper struct ccb_*
type (which does not appear in the surrounding code) for the sizeof()
in the length calculation. I found several instances where the
length was incorrect, which could cause either an actual out of
bounds write, or incompletely clear the ccb.
A better way is to write the code to clear the ccb itself starting
at sizeof(ccb_hdr) bytes from the start of the ccb, and calculate
the length based on the specific type of struct ccb_* being cleared
as specified by the union ccb member being used. The latter can
normally be seen in the nearby code. This is friendlier for Coverity
and other static analysis tools because they will see that the
intent is to clear the trailing part of the ccb.
Wrap all of the boilerplate code in a convenient macro that only
requires a pointer to the desired union ccb member (or a pointer
to the union ccb itself) as an argument.
Reported by: Coverity
CID: 1007578, 1008684, 1009724, 1009773, 1011304, 1011306
CID: 1011307, 1011308, 1011309, 1011310, 1011311, 1011312
CID: 1011313, 1011314, 1011315, 1011316, 1011317, 1011318
CID: 1011319, 1011320, 1011321, 1011322, 1011324, 1011325
CID: 1011326, 1011327, 1011328, 1011329, 1011330, 1011374
CID: 1011390, 1011391, 1011392, 1011393, 1011394, 1011395
CID: 1011396, 1011397, 1011398, 1011399, 1011400, 1011401
CID: 1011402, 1011403, 1011404, 1011405, 1011406, 1011408
CID: 1011409, 1011410, 1011411, 1011412, 1011413, 1011414
CID: 1017461, 1018387, 1086860, 1086874, 1194257, 1229897
CID: 1229968, 1306229, 1306234, 1331282, 1331283, 1331294
CID: 1331295, 1331535, 1331536, 1331539, 1331540, 1341623
CID: 1341624, 1341637, 1341638, 1355264, 1355324
Reviewed by: scottl, ken, delphij, imp
MFH: 1 month
Differential Revision: https://reviews.freebsd.org/D6496
2016-05-24 00:57:11 +00:00
|
|
|
CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
|
Add support for reading MAM attributes to camcontrol(8) and libcam(3).
MAM is Medium Auxiliary Memory and is most commonly found as flash
chips on tapes.
This includes support for reading attributes and decoding most
known attributes, but does not yet include support for writing
attributes or reporting attributes in XML format.
libsbuf/Makefile:
Add subr_prf.c for the new sbuf_hexdump() function. This
function is essentially the same function.
libsbuf/Symbol.map:
Add a new shared library minor version, and include the
sbuf_hexdump() function.
libsbuf/Version.def:
Add version 1.4 of the libsbuf library.
libutil/hexdump.3:
Document sbuf_hexdump() alongside hexdump(3), since it is
essentially the same function.
camcontrol/Makefile:
Add attrib.c.
camcontrol/attrib.c:
Implementation of READ ATTRIBUTE support for camcontrol(8).
camcontrol/camcontrol.8:
Document the new 'camcontrol attrib' subcommand.
camcontrol/camcontrol.c:
Add the new 'camcontrol attrib' subcommand.
camcontrol/camcontrol.h:
Add a function prototype for scsiattrib().
share/man/man9/sbuf.9:
Document the existence of sbuf_hexdump() and point users to
the hexdump(3) man page for more details.
sys/cam/scsi/scsi_all.c:
Add a table of known attributes, text descriptions and
handler functions.
Add a new scsi_attrib_sbuf() function along with a number
of other related functions that help decode attributes.
scsi_attrib_ascii_sbuf() decodes ASCII format attributes.
scsi_attrib_int_sbuf() decodes binary format attributes, and
will pass them off to scsi_attrib_hexdump_sbuf() if they're
bigger than 8 bytes.
scsi_attrib_vendser_sbuf() decodes the vendor and drive
serial number attribute.
scsi_attrib_volcoh_sbuf() decodes the Volume Coherency
Information attribute that LTFS writes out.
sys/cam/scsi/scsi_all.h:
Add a number of attribute-related structure definitions and
other defines.
Add function prototypes for all of the functions added in
scsi_all.c.
sys/kern/subr_prf.c:
Add a new function, sbuf_hexdump(). This is the same as
the existing hexdump(9) function, except that it puts the
result in an sbuf.
This also changes subr_prf.c so that it can be compiled in
userland for includsion in libsbuf.
We should work to change this so that the kernel hexdump
implementation is a wrapper around sbuf_hexdump() with a
statically allocated sbuf with a drain. That will require
a drain function that goes to the kernel printf() buffer
that can take a non-NUL terminated string as input.
That is because an sbuf isn't NUL-terminated until it is
finished, and we don't want to finish it while we're still
using it.
We should also work to consolidate the userland hexdump and
kernel hexdump implemenatations, which are currently
separate. This would also mean making applications that
currently link in libutil link in libsbuf.
sys/sys/sbuf.h:
Add the prototype for sbuf_hexdump(), and add another copy
of the hexdump flag values if they aren't already defined.
Ideally the flags should be defined in one place but the
implemenation makes it difficult to do properly. (See
above.)
Sponsored by: Spectra Logic Corporation
MFC after: 1 week
2015-06-09 21:39:38 +00:00
|
|
|
|
|
|
|
STAILQ_INIT(&write_attr_list);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* By default, when displaying attribute values, we trim out
|
|
|
|
* non-ASCII characters in ASCII fields. We display all fields
|
|
|
|
* (description, attribute number, attribute size, and readonly
|
|
|
|
* status). We default to displaying raw text.
|
|
|
|
*
|
|
|
|
* XXX KDM need to port this to stable/10 and newer FreeBSD
|
|
|
|
* versions that have iconv built in and can convert codesets.
|
|
|
|
*/
|
|
|
|
output_format = SCSI_ATTR_OUTPUT_NONASCII_TRIM |
|
|
|
|
SCSI_ATTR_OUTPUT_FIELD_ALL |
|
|
|
|
SCSI_ATTR_OUTPUT_TEXT_RAW;
|
|
|
|
|
|
|
|
data_buf = malloc(dxfer_len);
|
|
|
|
if (data_buf == NULL) {
|
|
|
|
warn("%s: error allocating %u bytes", __func__, dxfer_len);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
|
|
|
|
while ((c = getopt(argc, argv, combinedopt)) != -1) {
|
|
|
|
switch (c) {
|
|
|
|
case 'a':
|
|
|
|
attr_num = strtol(optarg, &endptr, 0);
|
|
|
|
if (*endptr != '\0') {
|
|
|
|
warnx("%s: invalid attribute number %s",
|
|
|
|
__func__, optarg);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
start_attr = attr_num;
|
|
|
|
break;
|
|
|
|
case 'c':
|
|
|
|
cached_attr = 1;
|
|
|
|
break;
|
|
|
|
case 'e':
|
|
|
|
element_address = strtol(optarg, &endptr, 0);
|
|
|
|
if (*endptr != '\0') {
|
|
|
|
warnx("%s: invalid element address %s",
|
|
|
|
__func__, optarg);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'F': {
|
|
|
|
scsi_nv_status status;
|
|
|
|
scsi_attrib_output_flags new_outflags;
|
|
|
|
int entry_num = 0;
|
|
|
|
char *tmpstr;
|
|
|
|
|
|
|
|
if (isdigit(optarg[0])) {
|
|
|
|
output_format = strtoul(optarg, &endptr, 0);
|
|
|
|
if (*endptr != '\0') {
|
|
|
|
warnx("%s: invalid numeric output "
|
|
|
|
"format argument %s", __func__,
|
|
|
|
optarg);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
new_outflags = SCSI_ATTR_OUTPUT_NONE;
|
|
|
|
|
|
|
|
while ((tmpstr = strsep(&optarg, ",")) != NULL) {
|
|
|
|
status = scsi_get_nv(output_format_map,
|
|
|
|
sizeof(output_format_map) /
|
|
|
|
sizeof(output_format_map[0]), tmpstr,
|
|
|
|
&entry_num, SCSI_NV_FLAG_IG_CASE);
|
|
|
|
|
|
|
|
if (status == SCSI_NV_FOUND)
|
|
|
|
new_outflags |=
|
|
|
|
output_format_map[entry_num].value;
|
|
|
|
else {
|
|
|
|
warnx("%s: %s format option %s",
|
|
|
|
__func__,
|
|
|
|
(status == SCSI_NV_AMBIGUOUS) ?
|
|
|
|
"ambiguous" : "invalid", tmpstr);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
output_format = new_outflags;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 'p':
|
|
|
|
partition = strtol(optarg, &endptr, 0);
|
|
|
|
if (*endptr != '\0') {
|
|
|
|
warnx("%s: invalid partition number %s",
|
|
|
|
__func__, optarg);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'r': {
|
|
|
|
scsi_nv_status status;
|
|
|
|
int entry_num = 0;
|
|
|
|
|
|
|
|
status = scsi_get_nv(sa_map, sizeof(sa_map) /
|
|
|
|
sizeof(sa_map[0]), optarg, &entry_num,
|
|
|
|
SCSI_NV_FLAG_IG_CASE);
|
|
|
|
if (status == SCSI_NV_FOUND)
|
|
|
|
read_service_action = sa_map[entry_num].value;
|
|
|
|
else {
|
|
|
|
warnx("%s: %s %s option %s", __func__,
|
|
|
|
(status == SCSI_NV_AMBIGUOUS) ?
|
|
|
|
"ambiguous" : "invalid", "service action",
|
|
|
|
optarg);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
read_attr = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 's':
|
|
|
|
start_attr = strtol(optarg, &endptr, 0);
|
|
|
|
if (*endptr != '\0') {
|
|
|
|
warnx("%s: invalid starting attr argument %s",
|
|
|
|
__func__, optarg);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'T': {
|
|
|
|
scsi_nv_status status;
|
|
|
|
int entry_num = 0;
|
|
|
|
|
|
|
|
status = scsi_get_nv(elem_type_map,
|
|
|
|
sizeof(elem_type_map) / sizeof(elem_type_map[0]),
|
|
|
|
optarg, &entry_num, SCSI_NV_FLAG_IG_CASE);
|
|
|
|
if (status == SCSI_NV_FOUND)
|
|
|
|
element_type = elem_type_map[entry_num].value;
|
|
|
|
else {
|
|
|
|
warnx("%s: %s %s option %s", __func__,
|
|
|
|
(status == SCSI_NV_AMBIGUOUS) ?
|
|
|
|
"ambiguous" : "invalid", "element type",
|
|
|
|
optarg);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 'w':
|
|
|
|
warnx("%s: writing attributes is not implemented yet",
|
|
|
|
__func__);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
break;
|
|
|
|
case 'V':
|
|
|
|
logical_volume = strtol(optarg, &endptr, 0);
|
|
|
|
|
|
|
|
if (*endptr != '\0') {
|
|
|
|
warnx("%s: invalid logical volume argument %s",
|
|
|
|
__func__, optarg);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Default to reading attributes
|
|
|
|
*/
|
|
|
|
if (((read_attr == 0) && (write_attr == 0))
|
|
|
|
|| ((read_attr != 0) && (write_attr != 0))) {
|
|
|
|
warnx("%s: Must specify either -r or -w", __func__);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (read_attr != 0) {
|
|
|
|
scsi_read_attribute(&ccb->csio,
|
|
|
|
/*retries*/ retry_count,
|
|
|
|
/*cbfcnp*/ NULL,
|
Add task attribute support to camcontrol(8).
Users can use the new generic argument, -Q task_attr, to specify a task
attribute (simple, ordered, head of queue, aca) for the commands issued.
The the default is simple, which works with all SCSI devices that support
tagged queueing.
This will mostly be useful for debugging target behavior in certain
situations.
You can try it out by compiling CTL with CTL_IO_DELAY turned on (in
sys/cam/ctl/ctl_io.h) and then do something like this with one of the CTL
LUNs:
ctladm delay 0:0 -l done -t 10
camcontrol tur da34 -v
And at then before the 10 second timer is up, in another terminal:
camcontrol inquiry da34 -Q ordered -v
The Inquiry should complete just after the TUR completes. Ordinarily
it would complete first because of the delay injection, but because the
task attribute is set to ordered in this case, CTL holds it up until the
previous command has completed.
sbin/camcontrol/camcontrol.c:
Add the new generic argument, -Q, which allows the user to specify
a SCSI task attribute. The user can specify task attributes by
name or numerically.
Add a new task_attr arguments to SCSI sub-functions.
sbin/camcontrol/attrib.c,
sbin/camcontrol/camcontrol.h,
sbin/camcontrol/fwdownload.c,
sbin/camcontrol/modeedit.c,
sbin/camcontrol/persist.c,
sbin/camcontrol/timestamp.c,
sbin/camcontrol/zone.c:
Add the new task_attr argument to SCSI sub-functions.
sbin/camcontrol/camcontrol.8:
Document the new -Q option, and add an example.
Sponsored by: Spectra Logic
MFC after: 1 week
2017-02-17 20:04:22 +00:00
|
|
|
/*tag_action*/ task_attr,
|
Add support for reading MAM attributes to camcontrol(8) and libcam(3).
MAM is Medium Auxiliary Memory and is most commonly found as flash
chips on tapes.
This includes support for reading attributes and decoding most
known attributes, but does not yet include support for writing
attributes or reporting attributes in XML format.
libsbuf/Makefile:
Add subr_prf.c for the new sbuf_hexdump() function. This
function is essentially the same function.
libsbuf/Symbol.map:
Add a new shared library minor version, and include the
sbuf_hexdump() function.
libsbuf/Version.def:
Add version 1.4 of the libsbuf library.
libutil/hexdump.3:
Document sbuf_hexdump() alongside hexdump(3), since it is
essentially the same function.
camcontrol/Makefile:
Add attrib.c.
camcontrol/attrib.c:
Implementation of READ ATTRIBUTE support for camcontrol(8).
camcontrol/camcontrol.8:
Document the new 'camcontrol attrib' subcommand.
camcontrol/camcontrol.c:
Add the new 'camcontrol attrib' subcommand.
camcontrol/camcontrol.h:
Add a function prototype for scsiattrib().
share/man/man9/sbuf.9:
Document the existence of sbuf_hexdump() and point users to
the hexdump(3) man page for more details.
sys/cam/scsi/scsi_all.c:
Add a table of known attributes, text descriptions and
handler functions.
Add a new scsi_attrib_sbuf() function along with a number
of other related functions that help decode attributes.
scsi_attrib_ascii_sbuf() decodes ASCII format attributes.
scsi_attrib_int_sbuf() decodes binary format attributes, and
will pass them off to scsi_attrib_hexdump_sbuf() if they're
bigger than 8 bytes.
scsi_attrib_vendser_sbuf() decodes the vendor and drive
serial number attribute.
scsi_attrib_volcoh_sbuf() decodes the Volume Coherency
Information attribute that LTFS writes out.
sys/cam/scsi/scsi_all.h:
Add a number of attribute-related structure definitions and
other defines.
Add function prototypes for all of the functions added in
scsi_all.c.
sys/kern/subr_prf.c:
Add a new function, sbuf_hexdump(). This is the same as
the existing hexdump(9) function, except that it puts the
result in an sbuf.
This also changes subr_prf.c so that it can be compiled in
userland for includsion in libsbuf.
We should work to change this so that the kernel hexdump
implementation is a wrapper around sbuf_hexdump() with a
statically allocated sbuf with a drain. That will require
a drain function that goes to the kernel printf() buffer
that can take a non-NUL terminated string as input.
That is because an sbuf isn't NUL-terminated until it is
finished, and we don't want to finish it while we're still
using it.
We should also work to consolidate the userland hexdump and
kernel hexdump implemenatations, which are currently
separate. This would also mean making applications that
currently link in libutil link in libsbuf.
sys/sys/sbuf.h:
Add the prototype for sbuf_hexdump(), and add another copy
of the hexdump flag values if they aren't already defined.
Ideally the flags should be defined in one place but the
implemenation makes it difficult to do properly. (See
above.)
Sponsored by: Spectra Logic Corporation
MFC after: 1 week
2015-06-09 21:39:38 +00:00
|
|
|
/*service_action*/ read_service_action,
|
|
|
|
/*element*/ element_address,
|
|
|
|
/*elem_type*/ element_type,
|
|
|
|
/*logical_volume*/ logical_volume,
|
|
|
|
/*partition*/ partition,
|
|
|
|
/*first_attribute*/ start_attr,
|
|
|
|
/*cache*/ cached_attr,
|
|
|
|
/*data_ptr*/ data_buf,
|
|
|
|
/*length*/ dxfer_len,
|
|
|
|
/*sense_len*/ SSD_FULL_SIZE,
|
|
|
|
/*timeout*/ timeout ? timeout : 60000);
|
|
|
|
#if 0
|
|
|
|
} else {
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
|
|
|
|
|
|
|
|
if (err_recover != 0)
|
|
|
|
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
|
|
|
|
|
|
|
|
if (cam_send_ccb(device, ccb) < 0) {
|
|
|
|
warn("error sending %s ATTRIBUTE", (read_attr != 0) ?
|
|
|
|
"READ" : "WRITE");
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
|
|
|
|
if (verbosemode != 0) {
|
|
|
|
cam_error_print(device, ccb, CAM_ESF_ALL,
|
|
|
|
CAM_EPF_ALL, stderr);
|
|
|
|
}
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (read_attr == 0)
|
|
|
|
goto bailout;
|
|
|
|
|
|
|
|
valid_len = dxfer_len - ccb->csio.resid;
|
|
|
|
|
|
|
|
switch (read_service_action) {
|
|
|
|
case SRA_SA_ATTR_VALUES: {
|
|
|
|
uint32_t len_left, hdr_len, cur_len;
|
|
|
|
struct scsi_read_attribute_values *hdr;
|
|
|
|
struct scsi_mam_attribute_header *cur_id;
|
|
|
|
char error_str[512];
|
|
|
|
uint8_t *cur_pos;
|
|
|
|
struct sbuf *sb;
|
|
|
|
|
|
|
|
hdr = (struct scsi_read_attribute_values *)data_buf;
|
|
|
|
|
|
|
|
if (valid_len < sizeof(*hdr)) {
|
|
|
|
fprintf(stdout, "No attributes returned.\n");
|
|
|
|
error = 0;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
|
|
|
|
sb = sbuf_new_auto();
|
|
|
|
if (sb == NULL) {
|
|
|
|
warn("%s: Unable to allocate sbuf", __func__);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* XXX KDM grab more data if it is available.
|
|
|
|
*/
|
|
|
|
hdr_len = scsi_4btoul(hdr->length);
|
|
|
|
|
|
|
|
for (len_left = MIN(valid_len, hdr_len),
|
|
|
|
cur_pos = &hdr->attribute_0[0]; len_left > sizeof(*cur_id);
|
|
|
|
len_left -= cur_len, cur_pos += cur_len) {
|
|
|
|
int cur_attr_num;
|
|
|
|
cur_id = (struct scsi_mam_attribute_header *)cur_pos;
|
|
|
|
cur_len = scsi_2btoul(cur_id->length) + sizeof(*cur_id);
|
|
|
|
cur_attr_num = scsi_2btoul(cur_id->id);
|
|
|
|
|
|
|
|
if ((attr_num != -1)
|
|
|
|
&& (cur_attr_num != attr_num))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
error = scsi_attrib_sbuf(sb, cur_id, len_left,
|
|
|
|
/*user_table*/ NULL, /*num_user_entries*/ 0,
|
|
|
|
/*prefer_user_table*/ 0, output_format, error_str,
|
|
|
|
sizeof(error_str));
|
|
|
|
if (error != 0) {
|
|
|
|
warnx("%s: %s", __func__, error_str);
|
|
|
|
sbuf_delete(sb);
|
|
|
|
error = 1;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
if (attr_num != -1)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
sbuf_finish(sb);
|
|
|
|
fprintf(stdout, "%s", sbuf_data(sb));
|
|
|
|
sbuf_delete(sb);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case SRA_SA_SUPPORTED_ATTRS:
|
|
|
|
case SRA_SA_ATTR_LIST: {
|
|
|
|
uint32_t len_left, hdr_len;
|
|
|
|
struct scsi_attrib_list_header *hdr;
|
|
|
|
struct scsi_attrib_table_entry *entry = NULL;
|
|
|
|
const char *sa_name = "Supported Attributes";
|
|
|
|
const char *at_name = "Available Attributes";
|
|
|
|
int attr_id;
|
|
|
|
uint8_t *cur_id;
|
|
|
|
|
|
|
|
hdr = (struct scsi_attrib_list_header *)data_buf;
|
|
|
|
if (valid_len < sizeof(*hdr)) {
|
|
|
|
fprintf(stdout, "No %s\n",
|
|
|
|
(read_service_action == SRA_SA_SUPPORTED_ATTRS)?
|
|
|
|
sa_name : at_name);
|
|
|
|
error = 0;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
fprintf(stdout, "%s:\n",
|
|
|
|
(read_service_action == SRA_SA_SUPPORTED_ATTRS) ?
|
|
|
|
sa_name : at_name);
|
|
|
|
hdr_len = scsi_4btoul(hdr->length);
|
|
|
|
for (len_left = MIN(valid_len, hdr_len),
|
|
|
|
cur_id = &hdr->first_attr_0[0]; len_left > 1;
|
|
|
|
len_left -= sizeof(uint16_t), cur_id += sizeof(uint16_t)) {
|
|
|
|
attr_id = scsi_2btoul(cur_id);
|
|
|
|
|
|
|
|
if ((attr_num != -1)
|
|
|
|
&& (attr_id != attr_num))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
entry = scsi_get_attrib_entry(attr_id);
|
|
|
|
fprintf(stdout, "0x%.4x", attr_id);
|
|
|
|
if (entry == NULL)
|
|
|
|
fprintf(stdout, "\n");
|
|
|
|
else
|
|
|
|
fprintf(stdout, ": %s\n", entry->desc);
|
|
|
|
|
|
|
|
if (attr_num != -1)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case SRA_SA_PART_LIST:
|
|
|
|
case SRA_SA_LOG_VOL_LIST: {
|
|
|
|
struct scsi_attrib_lv_list *lv_list;
|
|
|
|
const char *partition_name = "Partition";
|
|
|
|
const char *lv_name = "Logical Volume";
|
|
|
|
|
|
|
|
if (valid_len < sizeof(*lv_list)) {
|
|
|
|
fprintf(stdout, "No %s list returned\n",
|
|
|
|
(read_service_action == SRA_SA_PART_LIST) ?
|
|
|
|
partition_name : lv_name);
|
|
|
|
error = 0;
|
|
|
|
goto bailout;
|
|
|
|
}
|
|
|
|
|
|
|
|
lv_list = (struct scsi_attrib_lv_list *)data_buf;
|
|
|
|
|
|
|
|
fprintf(stdout, "First %s: %d\n",
|
|
|
|
(read_service_action == SRA_SA_PART_LIST) ?
|
|
|
|
partition_name : lv_name,
|
|
|
|
lv_list->first_lv_number);
|
|
|
|
fprintf(stdout, "Number of %ss: %d\n",
|
|
|
|
(read_service_action == SRA_SA_PART_LIST) ?
|
|
|
|
partition_name : lv_name,
|
|
|
|
lv_list->num_logical_volumes);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
bailout:
|
|
|
|
if (ccb != NULL)
|
|
|
|
cam_freeccb(ccb);
|
|
|
|
|
|
|
|
free(data_buf);
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|