2005-01-06 01:43:34 +00:00
/*-
2009-08-01 01:04:26 +00:00
* Copyright ( c ) 1997 - 2009 by Matthew Jacob
2007-03-10 02:39:54 +00:00
* All rights reserved .
2009-08-01 01:04:26 +00:00
*
2007-03-10 02:39:54 +00:00
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions
* are met :
2009-08-01 01:04:26 +00:00
*
2007-03-10 02:39:54 +00:00
* 1. Redistributions of source code must retain the above copyright
* notice , this list of conditions and the following disclaimer .
* 2. Redistributions in binary form must reproduce the above copyright
* notice , this list of conditions and the following disclaimer in the
* documentation and / or other materials provided with the distribution .
2009-08-01 01:04:26 +00:00
*
2007-03-10 02:39:54 +00:00
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ` ` AS IS ' ' AND
* ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED . IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL
* DAMAGES ( INCLUDING , BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES ; LOSS OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION )
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT
* LIABILITY , OR TORT ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE .
2009-08-01 01:04:26 +00:00
*
1998-04-22 17:54:58 +00:00
*/
2006-07-16 20:11:50 +00:00
/*
* Machine and OS Independent ( well , as best as possible )
2006-11-16 00:31:46 +00:00
* code for the Qlogic ISP SCSI and FC - SCSI adapters .
2006-07-16 20:11:50 +00:00
*/
2006-11-16 00:31:46 +00:00
1998-04-22 17:54:58 +00:00
/*
* Inspiration and ideas about this driver are from Erik Moe ' s Linux driver
* ( qlogicisp . c ) and Dave Miller ' s SBus version of same ( qlogicisp . c ) . Some
* ideas dredged from the Solaris driver .
*/
/*
* Include header file appropriate for platform we ' re building on .
*/
# ifdef __NetBSD__
2007-03-10 02:39:54 +00:00
# include <sys/cdefs.h>
__KERNEL_RCSID ( 0 , " $NetBSD$ " ) ;
1998-04-22 17:54:58 +00:00
# include <dev/ic/isp_netbsd.h>
# endif
# ifdef __FreeBSD__
2006-07-16 20:11:50 +00:00
# include <sys/cdefs.h>
__FBSDID ( " $FreeBSD$ " ) ;
1998-04-22 17:54:58 +00:00
# include <dev/isp/isp_freebsd.h>
# endif
1999-03-17 05:04:39 +00:00
# ifdef __OpenBSD__
# include <dev/ic/isp_openbsd.h>
# endif
1998-04-22 17:54:58 +00:00
# ifdef __linux__
1998-12-28 19:22:27 +00:00
# include "isp_linux.h"
1998-04-22 17:54:58 +00:00
# endif
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
# ifdef __svr4__
# include "isp_solaris.h"
# endif
1998-04-22 17:54:58 +00:00
/*
* General defines
*/
# define MBOX_DELAY_COUNT 1000000 / 100
2009-08-01 01:04:26 +00:00
# define ISP_MARK_PORTDB(a, b, c) \
isp_prt ( isp , ISP_LOGSANCFG , \
" Chan %d ISP_MARK_PORTDB@LINE %d " , b , __LINE__ ) ; \
isp_mark_portdb ( a , b , c )
1998-04-22 17:54:58 +00:00
/*
1998-09-15 08:42:56 +00:00
* Local static data
1998-04-22 17:54:58 +00:00
*/
2009-08-01 01:04:26 +00:00
static const char fconf [ ] = " Chan %d PortDB[%d] changed: \n current =(0x%x@0x%06x 0x%08x%08x 0x%08x%08x) \n database=(0x%x@0x%06x 0x%08x%08x 0x%08x%08x) " ;
static const char notresp [ ] = " Not RESPONSE in RESPONSE Queue (type 0x%x) @ idx %d (next %d) nlooked %d " ;
static const char xact1 [ ] = " HBA attempted queued transaction with disconnect not set for %d.%d.%d " ;
static const char xact2 [ ] = " HBA attempted queued transaction to target routine %d on target %d bus %d " ;
static const char xact3 [ ] = " HBA attempted queued cmd for %d.%d.%d when queueing disabled " ;
static const char pskip [ ] = " SCSI phase skipped for target %d.%d.%d " ;
static const char topology [ ] = " Chan %d WWPN 0x%08x%08x PortID 0x%06x N-Port Handle %d, Connection '%s' " ;
static const char finmsg [ ] = " %d.%d.%d: FIN dl%d resid %ld STS 0x%x SKEY %c XS_ERR=0x%x " ;
2001-08-20 17:28:32 +00:00
static const char sc4 [ ] = " NVRAM " ;
2009-08-01 01:04:26 +00:00
static const char bun [ ] = " bad underrun for %d.%d (count %d, resid %d, status %s) " ;
static const char lipd [ ] = " Chan %d LIP destroyed %d active commands " ;
static const char sacq [ ] = " unable to acquire scratch area " ;
static const uint8_t alpa_map [ ] = {
0xef , 0xe8 , 0xe4 , 0xe2 , 0xe1 , 0xe0 , 0xdc , 0xda ,
0xd9 , 0xd6 , 0xd5 , 0xd4 , 0xd3 , 0xd2 , 0xd1 , 0xce ,
0xcd , 0xcc , 0xcb , 0xca , 0xc9 , 0xc7 , 0xc6 , 0xc5 ,
0xc3 , 0xbc , 0xba , 0xb9 , 0xb6 , 0xb5 , 0xb4 , 0xb3 ,
0xb2 , 0xb1 , 0xae , 0xad , 0xac , 0xab , 0xaa , 0xa9 ,
0xa7 , 0xa6 , 0xa5 , 0xa3 , 0x9f , 0x9e , 0x9d , 0x9b ,
0x98 , 0x97 , 0x90 , 0x8f , 0x88 , 0x84 , 0x82 , 0x81 ,
0x80 , 0x7c , 0x7a , 0x79 , 0x76 , 0x75 , 0x74 , 0x73 ,
0x72 , 0x71 , 0x6e , 0x6d , 0x6c , 0x6b , 0x6a , 0x69 ,
0x67 , 0x66 , 0x65 , 0x63 , 0x5c , 0x5a , 0x59 , 0x56 ,
0x55 , 0x54 , 0x53 , 0x52 , 0x51 , 0x4e , 0x4d , 0x4c ,
0x4b , 0x4a , 0x49 , 0x47 , 0x46 , 0x45 , 0x43 , 0x3c ,
0x3a , 0x39 , 0x36 , 0x35 , 0x34 , 0x33 , 0x32 , 0x31 ,
0x2e , 0x2d , 0x2c , 0x2b , 0x2a , 0x29 , 0x27 , 0x26 ,
0x25 , 0x23 , 0x1f , 0x1e , 0x1d , 0x1b , 0x18 , 0x17 ,
0x10 , 0x0f , 0x08 , 0x04 , 0x02 , 0x01 , 0x00
} ;
2001-08-20 17:28:32 +00:00
1998-09-15 08:42:56 +00:00
/*
* Local function prototypes .
*/
2006-04-21 18:30:01 +00:00
static int isp_parse_async ( ispsoftc_t * , uint16_t ) ;
2009-08-01 01:04:26 +00:00
static int isp_handle_other_response ( ispsoftc_t * , int , isphdr_t * , uint32_t * ) ;
static void isp_parse_status ( ispsoftc_t * , ispstatusreq_t * , XS_T * , long * ) ; static void
2006-11-02 03:21:32 +00:00
isp_parse_status_24xx ( ispsoftc_t * , isp24xx_statusreq_t * , XS_T * , long * ) ;
2006-04-21 18:30:01 +00:00
static void isp_fastpost_complete ( ispsoftc_t * , uint16_t ) ;
static int isp_mbox_continue ( ispsoftc_t * ) ;
static void isp_scsi_init ( ispsoftc_t * ) ;
static void isp_scsi_channel_init ( ispsoftc_t * , int ) ;
static void isp_fibre_init ( ispsoftc_t * ) ;
2006-11-02 03:21:32 +00:00
static void isp_fibre_init_2400 ( ispsoftc_t * ) ;
2009-08-01 01:04:26 +00:00
static void isp_mark_portdb ( ispsoftc_t * , int , int ) ;
static int isp_plogx ( ispsoftc_t * , int , uint16_t , uint32_t , int , int ) ;
2006-11-02 03:21:32 +00:00
static int isp_port_login ( ispsoftc_t * , uint16_t , uint32_t ) ;
2006-11-18 03:53:16 +00:00
static int isp_port_logout ( ispsoftc_t * , uint16_t , uint32_t ) ;
2009-08-01 01:04:26 +00:00
static int isp_getpdb ( ispsoftc_t * , int , uint16_t , isp_pdb_t * , int ) ;
static void isp_dump_chip_portdb ( ispsoftc_t * , int , int ) ;
static uint64_t isp_get_wwn ( ispsoftc_t * , int , int , int ) ;
static int isp_fclink_test ( ispsoftc_t * , int , int ) ;
static int isp_pdb_sync ( ispsoftc_t * , int ) ;
static int isp_scan_loop ( ispsoftc_t * , int ) ;
static int isp_gid_ft_sns ( ispsoftc_t * , int ) ;
static int isp_gid_ft_ct_passthru ( ispsoftc_t * , int ) ;
static int isp_scan_fabric ( ispsoftc_t * , int ) ;
static int isp_login_device ( ispsoftc_t * , int , uint32_t , isp_pdb_t * , uint16_t * ) ;
static int isp_register_fc4_type ( ispsoftc_t * , int ) ;
static int isp_register_fc4_type_24xx ( ispsoftc_t * , int ) ;
static uint16_t isp_nxt_handle ( ispsoftc_t * , int , uint16_t ) ;
static void isp_fw_state ( ispsoftc_t * , int ) ;
2006-04-21 18:30:01 +00:00
static void isp_mboxcmd_qnw ( ispsoftc_t * , mbreg_t * , int ) ;
2006-11-02 03:21:32 +00:00
static void isp_mboxcmd ( ispsoftc_t * , mbreg_t * ) ;
2006-04-21 18:30:01 +00:00
2009-08-01 01:04:26 +00:00
static void isp_spi_update ( ispsoftc_t * , int ) ;
static void isp_setdfltsdparm ( ispsoftc_t * ) ;
static void isp_setdfltfcparm ( ispsoftc_t * , int ) ;
static int isp_read_nvram ( ispsoftc_t * , int ) ;
static int isp_read_nvram_2400 ( ispsoftc_t * , uint8_t * ) ;
2006-04-21 18:30:01 +00:00
static void isp_rdnvram_word ( ispsoftc_t * , int , uint16_t * ) ;
2006-11-02 03:21:32 +00:00
static void isp_rd_2400_nvram ( ispsoftc_t * , uint32_t , uint32_t * ) ;
2006-04-21 18:30:01 +00:00
static void isp_parse_nvram_1020 ( ispsoftc_t * , uint8_t * ) ;
static void isp_parse_nvram_1080 ( ispsoftc_t * , int , uint8_t * ) ;
static void isp_parse_nvram_12160 ( ispsoftc_t * , int , uint8_t * ) ;
static void isp_parse_nvram_2100 ( ispsoftc_t * , uint8_t * ) ;
2006-11-02 03:21:32 +00:00
static void isp_parse_nvram_2400 ( ispsoftc_t * , uint8_t * ) ;
2000-02-11 19:31:32 +00:00
1998-04-22 17:54:58 +00:00
/*
* Reset Hardware .
1998-09-15 08:42:56 +00:00
*
1999-10-30 19:32:44 +00:00
* Hit the chip over the head , download new f / w if available and set it running .
1998-09-15 08:42:56 +00:00
*
* Locking done elsewhere .
1998-04-22 17:54:58 +00:00
*/
2001-08-31 21:39:04 +00:00
1998-04-22 17:54:58 +00:00
void
2009-08-01 01:04:26 +00:00
isp_reset ( ispsoftc_t * isp , int do_load_defaults )
1998-04-22 17:54:58 +00:00
{
mbreg_t mbs ;
2006-11-02 03:21:32 +00:00
uint32_t code_org , val ;
2002-06-16 05:18:22 +00:00
int loops , i , dodnld = 1 ;
2009-08-01 01:04:26 +00:00
const char * btype = " ???? " ;
2006-11-02 03:21:32 +00:00
static const char dcrc [ ] = " Downloaded RISC Code Checksum Failure " ;
1998-04-22 17:54:58 +00:00
isp - > isp_state = ISP_NILSTATE ;
2009-08-01 01:04:26 +00:00
if ( isp - > isp_dead ) {
isp_shutdown ( isp ) ;
ISP_DISABLE_INTS ( isp ) ;
return ;
}
1998-04-22 17:54:58 +00:00
/*
1998-09-15 08:42:56 +00:00
* Basic types ( SCSI , FibreChannel and PCI or SBus )
* have been set in the MD code . We figure out more
2001-08-31 21:39:04 +00:00
* here . Possibly more refined types based upon PCI
* identification . Chip revision has been gathered .
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
*
1999-02-09 01:07:06 +00:00
* After we ' ve fired this chip up , zero out the conf1 register
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
* for SCSI adapters and do other settings for the 2100.
1999-02-09 01:07:06 +00:00
*/
2006-11-02 03:21:32 +00:00
ISP_DISABLE_INTS ( isp ) ;
/*
* Pick an initial maxcmds value which will be used
* to allocate xflist pointer space . It may be changed
* later by the firmware .
*/
if ( IS_24XX ( isp ) ) {
isp - > isp_maxcmds = 4096 ;
} else if ( IS_2322 ( isp ) ) {
isp - > isp_maxcmds = 2048 ;
} else if ( IS_23XX ( isp ) | | IS_2200 ( isp ) ) {
isp - > isp_maxcmds = 1024 ;
} else {
isp - > isp_maxcmds = 512 ;
}
/*
2009-08-01 01:04:26 +00:00
* Set up DMA for the request and response queues .
2006-11-02 03:21:32 +00:00
*
* We do this now so we can use the request queue
2009-08-01 01:04:26 +00:00
* for dma to load firmware from .
2006-11-02 03:21:32 +00:00
*/
if ( ISP_MBOXDMASETUP ( isp ) ! = 0 ) {
isp_prt ( isp , ISP_LOGERR , " Cannot setup DMA " ) ;
return ;
}
2001-08-31 21:39:04 +00:00
/*
* Set up default request / response queue in - pointer / out - pointer
* register indices .
*/
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
isp - > isp_rqstinrp = BIU2400_REQINP ;
isp - > isp_rqstoutrp = BIU2400_REQOUTP ;
isp - > isp_respinrp = BIU2400_RSPINP ;
isp - > isp_respoutrp = BIU2400_RSPOUTP ;
} else if ( IS_23XX ( isp ) ) {
2001-09-29 19:37:49 +00:00
isp - > isp_rqstinrp = BIU_REQINP ;
isp - > isp_rqstoutrp = BIU_REQOUTP ;
isp - > isp_respinrp = BIU_RSPINP ;
isp - > isp_respoutrp = BIU_RSPOUTP ;
} else {
isp - > isp_rqstinrp = INMAILBOX4 ;
isp - > isp_rqstoutrp = OUTMAILBOX4 ;
isp - > isp_respinrp = OUTMAILBOX5 ;
isp - > isp_respoutrp = INMAILBOX5 ;
}
1999-04-04 02:28:29 +00:00
1999-01-30 07:29:00 +00:00
/*
2001-01-15 18:33:08 +00:00
* Put the board into PAUSE mode ( so we can read the SXP registers
* or write FPM / FBM registers ) .
1999-01-30 07:29:00 +00:00
*/
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
ISP_WRITE ( isp , BIU2400_HCCR , HCCR_2400_CMD_CLEAR_HOST_INT ) ;
ISP_WRITE ( isp , BIU2400_HCCR , HCCR_2400_CMD_CLEAR_RISC_INT ) ;
ISP_WRITE ( isp , BIU2400_HCCR , HCCR_2400_CMD_PAUSE ) ;
} else {
ISP_WRITE ( isp , HCCR , HCCR_CMD_PAUSE ) ;
}
1999-01-30 07:29:00 +00:00
1999-03-17 05:04:39 +00:00
if ( IS_FC ( isp ) ) {
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
switch ( isp - > isp_type ) {
case ISP_HA_FC_2100 :
2001-08-31 21:39:04 +00:00
btype = " 2100 " ;
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
break ;
case ISP_HA_FC_2200 :
2001-08-31 21:39:04 +00:00
btype = " 2200 " ;
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
break ;
Spring MegaChange #1.
----
Make a device for each ISP- really usable only with devfs and add an ioctl
entry point (this can be used to (re)set debug levels, reset the HBA,
rescan the fabric, issue lips, etc).
----
Add in a kernel thread for Fibre Channel cards. The purpose of this
thread is to be woken up to clean up after Fibre Channel events
block things. Basically, any FC event that casts doubt on the
location or identify of FC devices blocks the queues. When, and
if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED
async event, we activate the kthread which will then, in full thread
context, re-evaluate the local loop and/or the fabric. When it's
satisfied that things are stable, it can then release the blocked
queues and let commands flow again.
The prior mechanism was a lazy evaluation. That is, the next command
to come down the pipe after change events would pay the full price
for re-evaluation. And if this was done off of a softcall, it really
could hang up the system.
These changes brings the FreeBSD port more in line with the Solaris,
Linux and NetBSD ports. It also, more importantly, gets us being
more proactive about topology changes which could then be reflected
upwards to CAM so that the periph driver can be informed sooner
rather than later when things arrive or depart.
---
Add in the (correct) usage of locking macros- we now have lock transition
macros which allow us to transition from holding the CAM lock (Giant)
and grabbing the softc lock and vice versa. Switch over to having this
HBA do real locking. Some folks claim this won't be a win. They're right.
But you have to start somewhere, and this will begin to teach us how
to DTRT for HBAs, etc.
--
Start putting in prototype 2300 support. Add back in LIP
and Loop Reset as async events that each platform will handle.
Add in another int_bogus instrumentation point.
Do some more substantial target mode cleanups.
MFC after: 8 weeks
2001-05-28 21:20:43 +00:00
case ISP_HA_FC_2300 :
2001-08-31 21:39:04 +00:00
btype = " 2300 " ;
Spring MegaChange #1.
----
Make a device for each ISP- really usable only with devfs and add an ioctl
entry point (this can be used to (re)set debug levels, reset the HBA,
rescan the fabric, issue lips, etc).
----
Add in a kernel thread for Fibre Channel cards. The purpose of this
thread is to be woken up to clean up after Fibre Channel events
block things. Basically, any FC event that casts doubt on the
location or identify of FC devices blocks the queues. When, and
if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED
async event, we activate the kthread which will then, in full thread
context, re-evaluate the local loop and/or the fabric. When it's
satisfied that things are stable, it can then release the blocked
queues and let commands flow again.
The prior mechanism was a lazy evaluation. That is, the next command
to come down the pipe after change events would pay the full price
for re-evaluation. And if this was done off of a softcall, it really
could hang up the system.
These changes brings the FreeBSD port more in line with the Solaris,
Linux and NetBSD ports. It also, more importantly, gets us being
more proactive about topology changes which could then be reflected
upwards to CAM so that the periph driver can be informed sooner
rather than later when things arrive or depart.
---
Add in the (correct) usage of locking macros- we now have lock transition
macros which allow us to transition from holding the CAM lock (Giant)
and grabbing the softc lock and vice versa. Switch over to having this
HBA do real locking. Some folks claim this won't be a win. They're right.
But you have to start somewhere, and this will begin to teach us how
to DTRT for HBAs, etc.
--
Start putting in prototype 2300 support. Add back in LIP
and Loop Reset as async events that each platform will handle.
Add in another int_bogus instrumentation point.
Do some more substantial target mode cleanups.
MFC after: 8 weeks
2001-05-28 21:20:43 +00:00
break ;
2002-02-04 21:04:25 +00:00
case ISP_HA_FC_2312 :
btype = " 2312 " ;
break ;
2006-01-23 06:23:37 +00:00
case ISP_HA_FC_2322 :
btype = " 2322 " ;
break ;
2006-11-02 03:21:32 +00:00
case ISP_HA_FC_2400 :
2006-01-23 06:23:37 +00:00
btype = " 2422 " ;
break ;
2009-08-01 01:04:26 +00:00
case ISP_HA_FC_2500 :
btype = " 2532 " ;
break ;
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
default :
break ;
}
2006-11-02 03:21:32 +00:00
if ( ! IS_24XX ( isp ) ) {
/*
* While we ' re paused , reset the FPM module and FBM
* fifos .
*/
ISP_WRITE ( isp , BIU2100_CSR , BIU2100_FPM0_REGS ) ;
ISP_WRITE ( isp , FPM_DIAG_CONFIG , FPM_SOFT_RESET ) ;
ISP_WRITE ( isp , BIU2100_CSR , BIU2100_FB_REGS ) ;
ISP_WRITE ( isp , FBM_CMD , FBMCMD_FIFO_RESET_ALL ) ;
ISP_WRITE ( isp , BIU2100_CSR , BIU2100_RISC_REGS ) ;
}
1999-12-16 05:42:02 +00:00
} else if ( IS_1240 ( isp ) ) {
2009-08-01 01:04:26 +00:00
sdparam * sdp ;
2001-08-31 21:39:04 +00:00
btype = " 1240 " ;
1999-05-11 05:06:55 +00:00
isp - > isp_clock = 60 ;
2009-08-01 01:04:26 +00:00
sdp = SDPARAM ( isp , 0 ) ;
1999-12-16 05:42:02 +00:00
sdp - > isp_ultramode = 1 ;
2009-08-01 01:04:26 +00:00
sdp = SDPARAM ( isp , 1 ) ;
1999-12-16 05:42:02 +00:00
sdp - > isp_ultramode = 1 ;
/*
* XXX : Should probably do some bus sensing .
*/
2008-12-15 21:42:38 +00:00
} else if ( IS_ULTRA3 ( isp ) ) {
sdparam * sdp = isp - > isp_param ;
isp - > isp_clock = 100 ;
if ( IS_10160 ( isp ) )
btype = " 10160 " ;
else if ( IS_12160 ( isp ) )
btype = " 12160 " ;
else
btype = " <UNKLVD> " ;
sdp - > isp_lvdmode = 1 ;
if ( IS_DUALBUS ( isp ) ) {
sdp + + ;
sdp - > isp_lvdmode = 1 ;
}
1999-12-16 05:42:02 +00:00
} else if ( IS_ULTRA2 ( isp ) ) {
2000-12-29 19:12:44 +00:00
static const char m [ ] = " bus %d is in %s Mode " ;
2006-02-15 00:31:48 +00:00
uint16_t l ;
2009-08-01 01:04:26 +00:00
sdparam * sdp = SDPARAM ( isp , 0 ) ;
1999-12-16 05:42:02 +00:00
1999-05-11 05:06:55 +00:00
isp - > isp_clock = 100 ;
1999-12-16 05:42:02 +00:00
2000-02-11 19:31:32 +00:00
if ( IS_1280 ( isp ) )
2001-08-31 21:39:04 +00:00
btype = " 1280 " ;
2000-02-11 19:31:32 +00:00
else if ( IS_1080 ( isp ) )
2001-08-31 21:39:04 +00:00
btype = " 1080 " ;
2000-02-11 19:31:32 +00:00
else
2001-08-31 21:39:04 +00:00
btype = " <UNKLVD> " ;
2000-02-11 19:31:32 +00:00
1999-03-25 22:52:45 +00:00
l = ISP_READ ( isp , SXP_PINS_DIFF ) & ISP1080_MODE_MASK ;
switch ( l ) {
case ISP1080_LVD_MODE :
sdp - > isp_lvdmode = 1 ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGCONFIG , m , 0 , " LVD " ) ;
1999-03-25 22:52:45 +00:00
break ;
case ISP1080_HVD_MODE :
sdp - > isp_diffmode = 1 ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGCONFIG , m , 0 , " Differential " ) ;
1999-03-25 22:52:45 +00:00
break ;
case ISP1080_SE_MODE :
sdp - > isp_ultramode = 1 ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGCONFIG , m , 0 , " Single-Ended " ) ;
1999-03-25 22:52:45 +00:00
break ;
default :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR ,
" unknown mode on bus %d (0x%x) " , 0 , l ) ;
1999-03-25 22:52:45 +00:00
break ;
}
1999-12-16 05:42:02 +00:00
2000-02-11 19:31:32 +00:00
if ( IS_DUALBUS ( isp ) ) {
2009-08-01 01:04:26 +00:00
sdp = SDPARAM ( isp , 1 ) ;
1999-12-16 05:42:02 +00:00
l = ISP_READ ( isp , SXP_PINS_DIFF | SXP_BANK1_SELECT ) ;
l & = ISP1080_MODE_MASK ;
2009-08-01 01:04:26 +00:00
switch ( l ) {
1999-12-16 05:42:02 +00:00
case ISP1080_LVD_MODE :
sdp - > isp_lvdmode = 1 ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGCONFIG , m , 1 , " LVD " ) ;
1999-12-16 05:42:02 +00:00
break ;
case ISP1080_HVD_MODE :
sdp - > isp_diffmode = 1 ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGCONFIG ,
m , 1 , " Differential " ) ;
1999-12-16 05:42:02 +00:00
break ;
case ISP1080_SE_MODE :
sdp - > isp_ultramode = 1 ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGCONFIG ,
m , 1 , " Single-Ended " ) ;
1999-12-16 05:42:02 +00:00
break ;
default :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR ,
" unknown mode on bus %d (0x%x) " , 1 , l ) ;
1999-12-16 05:42:02 +00:00
break ;
}
}
1998-04-22 17:54:58 +00:00
} else {
2009-08-01 01:04:26 +00:00
sdparam * sdp = SDPARAM ( isp , 0 ) ;
1999-01-10 02:55:10 +00:00
i = ISP_READ ( isp , BIU_CONF0 ) & BIU_CONF0_HW_MASK ;
switch ( i ) {
1998-04-22 17:54:58 +00:00
default :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGALL , " Unknown Chip Type 0x%x " , i ) ;
1998-09-15 08:42:56 +00:00
/* FALLTHROUGH */
case 1 :
2001-08-31 21:39:04 +00:00
btype = " 1020 " ;
1998-04-22 17:54:58 +00:00
isp - > isp_type = ISP_HA_SCSI_1020 ;
1999-05-11 05:06:55 +00:00
isp - > isp_clock = 40 ;
1998-04-22 17:54:58 +00:00
break ;
case 2 :
1998-09-15 08:42:56 +00:00
/*
* Some 1020 A chips are Ultra Capable , but don ' t
* run the clock rate up for that unless told to
* do so by the Ultra Capable bits being set .
*/
2001-08-31 21:39:04 +00:00
btype = " 1020A " ;
1998-09-15 08:42:56 +00:00
isp - > isp_type = ISP_HA_SCSI_1020A ;
1999-05-11 05:06:55 +00:00
isp - > isp_clock = 40 ;
1998-04-22 17:54:58 +00:00
break ;
case 3 :
2001-08-31 21:39:04 +00:00
btype = " 1040 " ;
1998-09-15 08:42:56 +00:00
isp - > isp_type = ISP_HA_SCSI_1040 ;
1999-05-11 05:06:55 +00:00
isp - > isp_clock = 60 ;
1998-09-15 08:42:56 +00:00
break ;
case 4 :
2001-08-31 21:39:04 +00:00
btype = " 1040A " ;
1998-04-22 17:54:58 +00:00
isp - > isp_type = ISP_HA_SCSI_1040A ;
1999-05-11 05:06:55 +00:00
isp - > isp_clock = 60 ;
1998-04-22 17:54:58 +00:00
break ;
case 5 :
2001-08-31 21:39:04 +00:00
btype = " 1040B " ;
1998-04-22 17:54:58 +00:00
isp - > isp_type = ISP_HA_SCSI_1040B ;
1999-05-11 05:06:55 +00:00
isp - > isp_clock = 60 ;
1998-04-22 17:54:58 +00:00
break ;
2001-07-04 18:42:41 +00:00
case 6 :
2001-08-31 21:39:04 +00:00
btype = " 1040C " ;
1999-04-04 02:28:29 +00:00
isp - > isp_type = ISP_HA_SCSI_1040C ;
1999-05-11 05:06:55 +00:00
isp - > isp_clock = 60 ;
2001-07-04 18:42:41 +00:00
break ;
1998-04-22 17:54:58 +00:00
}
1998-09-15 08:42:56 +00:00
/*
1999-01-30 07:29:00 +00:00
* Now , while we ' re at it , gather info about ultra
* and / or differential mode .
1998-09-15 08:42:56 +00:00
*/
1999-01-30 07:29:00 +00:00
if ( ISP_READ ( isp , SXP_PINS_DIFF ) & SXP_PINS_DIFF_MODE ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGCONFIG , " Differential Mode " ) ;
1999-01-30 07:29:00 +00:00
sdp - > isp_diffmode = 1 ;
1999-01-10 02:55:10 +00:00
} else {
1999-01-30 07:29:00 +00:00
sdp - > isp_diffmode = 0 ;
1998-09-15 08:42:56 +00:00
}
1999-01-30 07:29:00 +00:00
i = ISP_READ ( isp , RISC_PSR ) ;
if ( isp - > isp_bustype = = ISP_BT_SBUS ) {
i & = RISC_PSR_SBUS_ULTRA ;
} else {
i & = RISC_PSR_PCI_ULTRA ;
}
if ( i ! = 0 ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGCONFIG , " Ultra Mode Capable " ) ;
1999-01-30 07:29:00 +00:00
sdp - > isp_ultramode = 1 ;
1999-03-17 05:04:39 +00:00
/*
2003-08-25 17:58:23 +00:00
* If we ' re in Ultra Mode , we have to be 60 MHz clock -
1999-03-17 05:04:39 +00:00
* even for the SBus version .
*/
1999-05-11 05:06:55 +00:00
isp - > isp_clock = 60 ;
1999-03-25 22:52:45 +00:00
} else {
1999-01-30 07:29:00 +00:00
sdp - > isp_ultramode = 0 ;
1999-03-17 05:04:39 +00:00
/*
* Clock is known . Gronk .
*/
1999-01-30 07:29:00 +00:00
}
1998-09-15 08:42:56 +00:00
/*
* Machine dependent clock ( if set ) overrides
* our generic determinations .
*/
if ( isp - > isp_mdvec - > dv_clock ) {
1999-05-11 05:06:55 +00:00
if ( isp - > isp_mdvec - > dv_clock < isp - > isp_clock ) {
isp - > isp_clock = isp - > isp_mdvec - > dv_clock ;
1998-09-15 08:42:56 +00:00
}
}
1999-01-30 07:29:00 +00:00
1998-04-22 17:54:58 +00:00
}
2000-12-02 18:08:35 +00:00
/*
* Clear instrumentation
*/
isp - > isp_intcnt = isp - > isp_intbogus = 0 ;
1998-04-22 17:54:58 +00:00
/*
* Do MD specific pre initialization
*/
ISP_RESET0 ( isp ) ;
1998-09-15 08:42:56 +00:00
1998-04-22 17:54:58 +00:00
/*
* Hit the chip over the head with hammer ,
2009-08-01 01:04:26 +00:00
* and give it a chance to recover .
1998-04-22 17:54:58 +00:00
*/
1999-03-17 05:04:39 +00:00
if ( IS_SCSI ( isp ) ) {
1998-04-22 17:54:58 +00:00
ISP_WRITE ( isp , BIU_ICR , BIU_ICR_SOFT_RESET ) ;
/*
* A slight delay . . .
*/
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 100 ) ;
1999-03-17 05:04:39 +00:00
1998-04-22 17:54:58 +00:00
/*
* Clear data & & control DMA engines .
*/
2009-08-01 01:04:26 +00:00
ISP_WRITE ( isp , CDMA_CONTROL , DMA_CNTRL_CLEAR_CHAN | DMA_CNTRL_RESET_INT ) ;
ISP_WRITE ( isp , DDMA_CONTROL , DMA_CNTRL_CLEAR_CHAN | DMA_CNTRL_RESET_INT ) ;
1999-03-17 05:04:39 +00:00
2006-11-02 03:21:32 +00:00
} else if ( IS_24XX ( isp ) ) {
/*
* Stop DMA and wait for it to stop .
*/
ISP_WRITE ( isp , BIU2400_CSR , BIU2400_DMA_STOP | ( 3 < < 4 ) ) ;
for ( val = loops = 0 ; loops < 30000 ; loops + + ) {
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 10 ) ;
2006-11-02 03:21:32 +00:00
val = ISP_READ ( isp , BIU2400_CSR ) ;
if ( ( val & BIU2400_DMA_ACTIVE ) = = 0 ) {
break ;
}
2009-08-01 01:04:26 +00:00
}
2006-11-02 03:21:32 +00:00
if ( val & BIU2400_DMA_ACTIVE ) {
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
2006-11-02 03:21:32 +00:00
isp_prt ( isp , ISP_LOGERR , " DMA Failed to Stop on Reset " ) ;
return ;
}
/*
* Hold it in SOFT_RESET and STOP state for 100u s .
*/
2009-08-01 01:04:26 +00:00
ISP_WRITE ( isp , BIU2400_CSR , BIU2400_SOFT_RESET | BIU2400_DMA_STOP | ( 3 < < 4 ) ) ;
ISP_DELAY ( 100 ) ;
2006-11-02 03:21:32 +00:00
for ( loops = 0 ; loops < 10000 ; loops + + ) {
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 5 ) ;
2006-11-02 03:21:32 +00:00
val = ISP_READ ( isp , OUTMAILBOX0 ) ;
}
for ( val = loops = 0 ; loops < 500000 ; loops + + ) {
val = ISP_READ ( isp , BIU2400_CSR ) ;
if ( ( val & BIU2400_SOFT_RESET ) = = 0 ) {
break ;
}
}
if ( val & BIU2400_SOFT_RESET ) {
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
2006-11-02 03:21:32 +00:00
isp_prt ( isp , ISP_LOGERR , " Failed to come out of reset " ) ;
return ;
}
1998-04-22 17:54:58 +00:00
} else {
ISP_WRITE ( isp , BIU2100_CSR , BIU2100_SOFT_RESET ) ;
/*
* A slight delay . . .
*/
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 100 ) ;
1999-01-30 07:29:00 +00:00
/*
* Clear data & & control DMA engines .
*/
2009-08-01 01:04:26 +00:00
ISP_WRITE ( isp , CDMA2100_CONTROL , DMA_CNTRL2100_CLEAR_CHAN | DMA_CNTRL2100_RESET_INT ) ;
ISP_WRITE ( isp , TDMA2100_CONTROL , DMA_CNTRL2100_CLEAR_CHAN | DMA_CNTRL2100_RESET_INT ) ;
ISP_WRITE ( isp , RDMA2100_CONTROL , DMA_CNTRL2100_CLEAR_CHAN | DMA_CNTRL2100_RESET_INT ) ;
1998-04-22 17:54:58 +00:00
}
/*
* Wait for ISP to be ready to go . . .
*/
loops = MBOX_DELAY_COUNT ;
for ( ; ; ) {
1999-08-16 19:59:55 +00:00
if ( IS_SCSI ( isp ) ) {
2006-11-02 03:21:32 +00:00
if ( ! ( ISP_READ ( isp , BIU_ICR ) & BIU_ICR_SOFT_RESET ) ) {
break ;
}
} else if ( IS_24XX ( isp ) ) {
if ( ISP_READ ( isp , OUTMAILBOX0 ) = = 0 ) {
1998-04-22 17:54:58 +00:00
break ;
2006-11-02 03:21:32 +00:00
}
1998-04-22 17:54:58 +00:00
} else {
if ( ! ( ISP_READ ( isp , BIU2100_CSR ) & BIU2100_SOFT_RESET ) )
break ;
}
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 100 ) ;
1998-04-22 17:54:58 +00:00
if ( - - loops < 0 ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
ISP_DUMPREGS ( isp , " chip reset timed out " ) ;
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
1998-04-22 17:54:58 +00:00
return ;
}
}
1999-01-30 07:29:00 +00:00
1998-04-22 17:54:58 +00:00
/*
1999-01-30 07:29:00 +00:00
* After we ' ve fired this chip up , zero out the conf1 register
* for SCSI adapters and other settings for the 2100.
1998-04-22 17:54:58 +00:00
*/
1999-01-30 07:29:00 +00:00
1999-03-17 05:04:39 +00:00
if ( IS_SCSI ( isp ) ) {
1998-04-22 17:54:58 +00:00
ISP_WRITE ( isp , BIU_CONF1 , 0 ) ;
2006-11-02 03:21:32 +00:00
} else if ( ! IS_24XX ( isp ) ) {
1998-04-22 17:54:58 +00:00
ISP_WRITE ( isp , BIU2100_CSR , 0 ) ;
}
1999-01-30 07:29:00 +00:00
/*
* Reset RISC Processor
*/
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
ISP_WRITE ( isp , BIU2400_HCCR , HCCR_2400_CMD_RESET ) ;
ISP_WRITE ( isp , BIU2400_HCCR , HCCR_2400_CMD_RELEASE ) ;
ISP_WRITE ( isp , BIU2400_HCCR , HCCR_2400_CMD_CLEAR_RESET ) ;
} else {
ISP_WRITE ( isp , HCCR , HCCR_CMD_RESET ) ;
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 100 ) ;
2006-11-02 03:21:32 +00:00
ISP_WRITE ( isp , BIU_SEMA , 0 ) ;
}
1998-04-22 17:54:58 +00:00
1999-01-10 02:55:10 +00:00
/*
2006-11-02 03:21:32 +00:00
* Post - RISC Reset stuff .
1999-01-10 02:55:10 +00:00
*/
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
for ( val = loops = 0 ; loops < 5000000 ; loops + + ) {
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 5 ) ;
2006-11-02 03:21:32 +00:00
val = ISP_READ ( isp , OUTMAILBOX0 ) ;
if ( val = = 0 ) {
break ;
}
}
if ( val ! = 0 ) {
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
2006-11-02 03:21:32 +00:00
isp_prt ( isp , ISP_LOGERR , " reset didn't clear " ) ;
return ;
}
} else if ( IS_SCSI ( isp ) ) {
2006-02-15 00:31:48 +00:00
uint16_t tmp = isp - > isp_mdvec - > dv_conf1 ;
1999-01-10 02:55:10 +00:00
/*
* Busted FIFO . Turn off all but burst enables .
*/
if ( isp - > isp_type = = ISP_HA_SCSI_1040A ) {
1999-01-30 07:29:00 +00:00
tmp & = BIU_BURST_ENABLE ;
1999-01-10 02:55:10 +00:00
}
1999-01-30 07:29:00 +00:00
ISP_SETBITS ( isp , BIU_CONF1 , tmp ) ;
if ( tmp & BIU_BURST_ENABLE ) {
1998-04-22 17:54:58 +00:00
ISP_SETBITS ( isp , CDMA_CONF , DMA_ENABLE_BURST ) ;
ISP_SETBITS ( isp , DDMA_CONF , DMA_ENABLE_BURST ) ;
}
2009-08-01 01:04:26 +00:00
if ( SDPARAM ( isp , 0 ) - > isp_ptisp ) {
if ( SDPARAM ( isp , 0 ) - > isp_ultramode ) {
2006-11-02 03:21:32 +00:00
while ( ISP_READ ( isp , RISC_MTR ) ! = 0x1313 ) {
ISP_WRITE ( isp , RISC_MTR , 0x1313 ) ;
ISP_WRITE ( isp , HCCR , HCCR_CMD_STEP ) ;
}
} else {
ISP_WRITE ( isp , RISC_MTR , 0x1212 ) ;
}
/*
* PTI specific register
*/
ISP_WRITE ( isp , RISC_EMB , DUAL_BANK ) ;
} else {
ISP_WRITE ( isp , RISC_MTR , 0x1212 ) ;
}
ISP_WRITE ( isp , HCCR , HCCR_CMD_RELEASE ) ;
1999-01-30 07:29:00 +00:00
} else {
ISP_WRITE ( isp , RISC_MTR2100 , 0x1212 ) ;
2002-01-03 20:43:22 +00:00
if ( IS_2200 ( isp ) | | IS_23XX ( isp ) ) {
2001-01-15 18:33:08 +00:00
ISP_WRITE ( isp , HCCR , HCCR_2X00_DISABLE_PARITY_PAUSE ) ;
}
2006-11-02 03:21:32 +00:00
ISP_WRITE ( isp , HCCR , HCCR_CMD_RELEASE ) ;
1998-04-22 17:54:58 +00:00
}
1999-01-30 07:29:00 +00:00
2006-11-02 03:21:32 +00:00
ISP_WRITE ( isp , isp - > isp_rqstinrp , 0 ) ;
ISP_WRITE ( isp , isp - > isp_rqstoutrp , 0 ) ;
ISP_WRITE ( isp , isp - > isp_respinrp , 0 ) ;
ISP_WRITE ( isp , isp - > isp_respoutrp , 0 ) ;
2009-08-01 01:04:26 +00:00
if ( IS_24XX ( isp ) ) {
ISP_WRITE ( isp , BIU2400_PRI_REQINP , 0 ) ;
ISP_WRITE ( isp , BIU2400_PRI_REQOUTP , 0 ) ;
ISP_WRITE ( isp , BIU2400_ATIO_RSPINP , 0 ) ;
ISP_WRITE ( isp , BIU2400_ATIO_RSPOUTP , 0 ) ;
}
1998-04-22 17:54:58 +00:00
/*
* Do MD specific post initialization
*/
ISP_RESET1 ( isp ) ;
1999-01-30 07:29:00 +00:00
/*
2001-10-06 20:41:18 +00:00
* Wait for everything to finish firing up .
*
2009-08-01 01:04:26 +00:00
* Avoid doing this on early 2312 s because you can generate a PCI
2001-10-06 20:41:18 +00:00
* parity error ( chip breakage ) .
1999-01-30 07:29:00 +00:00
*/
2009-08-01 01:04:26 +00:00
if ( IS_2312 ( isp ) & & isp - > isp_revision < 2 ) {
ISP_DELAY ( 100 ) ;
2001-10-06 20:41:18 +00:00
} else {
loops = MBOX_DELAY_COUNT ;
while ( ISP_READ ( isp , OUTMAILBOX0 ) = = MBOX_BUSY ) {
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 100 ) ;
2001-10-06 20:41:18 +00:00
if ( - - loops < 0 ) {
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
2001-10-06 20:41:18 +00:00
isp_prt ( isp , ISP_LOGERR ,
" MBOX_BUSY never cleared on reset " ) ;
return ;
}
1999-01-30 07:29:00 +00:00
}
}
/*
* Up until this point we ' ve done everything by just reading or
* setting registers . From this point on we rely on at least * some *
* kind of firmware running in the card .
*/
1998-04-22 17:54:58 +00:00
/*
2009-08-01 01:04:26 +00:00
* Do some sanity checking by running a NOP command .
* If it succeeds , the ROM firmware is now running .
1998-04-22 17:54:58 +00:00
*/
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( & mbs , sizeof ( mbs ) ) ;
1998-04-22 17:54:58 +00:00
mbs . param [ 0 ] = MBOX_NO_OP ;
2006-11-02 03:21:32 +00:00
mbs . logval = MBLOGALL ;
isp_mboxcmd ( isp , & mbs ) ;
1998-04-22 17:54:58 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR , " NOP ommand failed (%x) " , mbs . param [ 0 ] ) ;
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
1998-04-22 17:54:58 +00:00
return ;
}
2009-08-01 01:04:26 +00:00
/*
* Do some operational tests
*/
2006-11-02 03:21:32 +00:00
if ( IS_SCSI ( isp ) | | IS_24XX ( isp ) ) {
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( & mbs , sizeof ( mbs ) ) ;
1998-04-22 17:54:58 +00:00
mbs . param [ 0 ] = MBOX_MAILBOX_REG_TEST ;
mbs . param [ 1 ] = 0xdead ;
mbs . param [ 2 ] = 0xbeef ;
mbs . param [ 3 ] = 0xffff ;
mbs . param [ 4 ] = 0x1111 ;
mbs . param [ 5 ] = 0xa5a5 ;
2006-11-02 03:21:32 +00:00
mbs . param [ 6 ] = 0x0000 ;
mbs . param [ 7 ] = 0x0000 ;
mbs . logval = MBLOGALL ;
isp_mboxcmd ( isp , & mbs ) ;
1998-04-22 17:54:58 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
1998-04-22 17:54:58 +00:00
return ;
}
if ( mbs . param [ 1 ] ! = 0xdead | | mbs . param [ 2 ] ! = 0xbeef | |
mbs . param [ 3 ] ! = 0xffff | | mbs . param [ 4 ] ! = 0x1111 | |
mbs . param [ 5 ] ! = 0xa5a5 ) {
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR , " Register Test Failed (0x%x 0x%x 0x%x 0x%x 0x%x) " , mbs . param [ 1 ] , mbs . param [ 2 ] , mbs . param [ 3 ] , mbs . param [ 4 ] , mbs . param [ 5 ] ) ;
1998-04-22 17:54:58 +00:00
return ;
}
}
/*
* Download new Firmware , unless requested not to do so .
* This is made slightly trickier in some cases where the
* firmware of the ROM revision is newer than the revision
* compiled into the driver . So , where we used to compare
* versions of our f / w and the ROM f / w , now we just see
* whether we have f / w at all and whether a config flag
* has disabled our download .
*/
2009-08-01 01:04:26 +00:00
if ( ( isp - > isp_mdvec - > dv_ispfw = = NULL ) | | ( isp - > isp_confopts & ISP_CFG_NORELOAD ) ) {
1998-04-22 17:54:58 +00:00
dodnld = 0 ;
}
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
code_org = ISP_CODE_ORG_2400 ;
} else if ( IS_23XX ( isp ) ) {
2001-08-31 21:39:04 +00:00
code_org = ISP_CODE_ORG_2300 ;
2006-07-03 08:24:09 +00:00
} else {
2001-08-31 21:39:04 +00:00
code_org = ISP_CODE_ORG ;
2006-07-03 08:24:09 +00:00
}
2006-11-02 03:21:32 +00:00
if ( dodnld & & IS_24XX ( isp ) ) {
2007-03-22 23:38:32 +00:00
const uint32_t * ptr = isp - > isp_mdvec - > dv_ispfw ;
2006-11-02 03:21:32 +00:00
/*
* Keep loading until we run out of f / w .
*/
code_org = ptr [ 2 ] ; /* 1st load address is our start addr */
for ( ; ; ) {
uint32_t la , wi , wl ;
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 , " load 0x%x words of code at load address 0x%x " , ptr [ 3 ] , ptr [ 2 ] ) ;
2006-11-02 03:21:32 +00:00
wi = 0 ;
la = ptr [ 2 ] ;
wl = ptr [ 3 ] ;
while ( wi < ptr [ 3 ] ) {
uint32_t * cp ;
uint32_t nw ;
nw = ISP_QUEUE_SIZE ( RQUEST_QUEUE_LEN ( isp ) ) > > 2 ;
if ( nw > wl ) {
nw = wl ;
}
cp = isp - > isp_rquest ;
for ( i = 0 ; i < nw ; i + + ) {
2007-06-24 01:41:16 +00:00
ISP_IOXPUT_32 ( isp , ptr [ wi + + ] , & cp [ i ] ) ;
2006-11-02 03:21:32 +00:00
wl - - ;
}
2009-08-01 01:04:26 +00:00
MEMORYBARRIER ( isp , SYNC_REQUEST , 0 , ISP_QUEUE_SIZE ( RQUEST_QUEUE_LEN ( isp ) ) ) ;
ISP_MEMZERO ( & mbs , sizeof ( mbs ) ) ;
if ( la < 0x10000 & & nw < 0x10000 ) {
mbs . param [ 0 ] = MBOX_LOAD_RISC_RAM_2100 ;
mbs . param [ 1 ] = la ;
mbs . param [ 2 ] = DMA_WD1 ( isp - > isp_rquest_dma ) ;
mbs . param [ 3 ] = DMA_WD0 ( isp - > isp_rquest_dma ) ;
mbs . param [ 4 ] = nw ;
mbs . param [ 6 ] = DMA_WD3 ( isp - > isp_rquest_dma ) ;
mbs . param [ 7 ] = DMA_WD2 ( isp - > isp_rquest_dma ) ;
} else {
mbs . param [ 0 ] = MBOX_LOAD_RISC_RAM ;
mbs . param [ 1 ] = la ;
mbs . param [ 2 ] = DMA_WD1 ( isp - > isp_rquest_dma ) ;
mbs . param [ 3 ] = DMA_WD0 ( isp - > isp_rquest_dma ) ;
mbs . param [ 4 ] = nw > > 16 ;
mbs . param [ 5 ] = nw ;
mbs . param [ 6 ] = DMA_WD3 ( isp - > isp_rquest_dma ) ;
mbs . param [ 7 ] = DMA_WD2 ( isp - > isp_rquest_dma ) ;
mbs . param [ 8 ] = la > > 16 ;
}
2006-11-02 03:21:32 +00:00
mbs . logval = MBLOGALL ;
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR , " F/W Risc Ram Load Failed " ) ;
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
2006-11-02 03:21:32 +00:00
return ;
}
la + = nw ;
}
if ( ptr [ 1 ] = = 0 ) {
break ;
}
ptr + = ptr [ 3 ] ;
2009-08-01 01:04:26 +00:00
}
2006-11-02 03:21:32 +00:00
isp - > isp_loaded_fw = 1 ;
} else if ( dodnld & & IS_23XX ( isp ) ) {
2007-03-22 23:38:32 +00:00
const uint16_t * ptr = isp - > isp_mdvec - > dv_ispfw ;
2006-11-02 03:21:32 +00:00
uint16_t wi , wl , segno ;
uint32_t la ;
la = code_org ;
segno = 0 ;
for ( ; ; ) {
uint32_t nxtaddr ;
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 , " load 0x%x words of code at load address 0x%x " , ptr [ 3 ] , la ) ;
2006-11-02 03:21:32 +00:00
wi = 0 ;
wl = ptr [ 3 ] ;
while ( wi < ptr [ 3 ] ) {
uint16_t * cp ;
2009-08-01 01:04:26 +00:00
uint16_t nw ;
2006-11-02 03:21:32 +00:00
nw = ISP_QUEUE_SIZE ( RQUEST_QUEUE_LEN ( isp ) ) > > 1 ;
if ( nw > wl ) {
nw = wl ;
}
if ( nw > ( 1 < < 15 ) ) {
nw = 1 < < 15 ;
}
cp = isp - > isp_rquest ;
for ( i = 0 ; i < nw ; i + + ) {
2007-06-24 01:41:16 +00:00
ISP_IOXPUT_16 ( isp , ptr [ wi + + ] , & cp [ i ] ) ;
2006-11-02 03:21:32 +00:00
wl - - ;
}
2009-08-01 01:04:26 +00:00
MEMORYBARRIER ( isp , SYNC_REQUEST , 0 , ISP_QUEUE_SIZE ( RQUEST_QUEUE_LEN ( isp ) ) ) ;
ISP_MEMZERO ( & mbs , sizeof ( mbs ) ) ;
if ( la < 0x10000 ) {
mbs . param [ 0 ] = MBOX_LOAD_RISC_RAM_2100 ;
mbs . param [ 1 ] = la ;
mbs . param [ 2 ] = DMA_WD1 ( isp - > isp_rquest_dma ) ;
mbs . param [ 3 ] = DMA_WD0 ( isp - > isp_rquest_dma ) ;
mbs . param [ 4 ] = nw ;
mbs . param [ 6 ] = DMA_WD3 ( isp - > isp_rquest_dma ) ;
mbs . param [ 7 ] = DMA_WD2 ( isp - > isp_rquest_dma ) ;
} else {
mbs . param [ 0 ] = MBOX_LOAD_RISC_RAM ;
mbs . param [ 1 ] = la ;
mbs . param [ 2 ] = DMA_WD1 ( isp - > isp_rquest_dma ) ;
mbs . param [ 3 ] = DMA_WD0 ( isp - > isp_rquest_dma ) ;
mbs . param [ 4 ] = nw ;
mbs . param [ 6 ] = DMA_WD3 ( isp - > isp_rquest_dma ) ;
mbs . param [ 7 ] = DMA_WD2 ( isp - > isp_rquest_dma ) ;
mbs . param [ 8 ] = la > > 16 ;
}
2006-11-02 03:21:32 +00:00
mbs . logval = MBLOGALL ;
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR , " F/W Risc Ram Load Failed " ) ;
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
2006-11-02 03:21:32 +00:00
return ;
}
la + = nw ;
}
if ( ! IS_2322 ( isp ) ) {
break ;
}
if ( + + segno = = 3 ) {
break ;
}
/*
* If we ' re a 2322 , the firmware actually comes in
* three chunks . We loaded the first at the code_org
* address . The other two chunks , which follow right
* after each other in memory here , get loaded at
* addresses specfied at offset 0x9 . .0 xB .
*/
nxtaddr = ptr [ 3 ] ;
ptr = & ptr [ nxtaddr ] ;
la = ptr [ 5 ] | ( ( ptr [ 4 ] & 0x3f ) < < 16 ) ;
}
isp - > isp_loaded_fw = 1 ;
} else if ( dodnld ) {
2007-03-22 23:38:32 +00:00
union {
const uint16_t * cp ;
uint16_t * np ;
2009-08-01 01:04:26 +00:00
} ucd ;
ucd . cp = isp - > isp_mdvec - > dv_ispfw ;
isp - > isp_mbxworkp = & ucd . np [ 1 ] ;
isp - > isp_mbxwrk0 = ucd . np [ 3 ] - 1 ;
2002-02-04 21:04:25 +00:00
isp - > isp_mbxwrk1 = code_org + 1 ;
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( & mbs , sizeof ( mbs ) ) ;
2002-02-04 21:04:25 +00:00
mbs . param [ 0 ] = MBOX_WRITE_RAM_WORD ;
mbs . param [ 1 ] = code_org ;
2009-08-01 01:04:26 +00:00
mbs . param [ 2 ] = ucd . np [ 0 ] ;
2006-11-02 03:21:32 +00:00
mbs . logval = MBLOGNONE ;
isp_mboxcmd ( isp , & mbs ) ;
2002-02-04 21:04:25 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR , " F/W download failed at word %d " , isp - > isp_mbxwrk1 - code_org ) ;
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
2006-11-02 03:21:32 +00:00
return ;
1998-04-22 17:54:58 +00:00
}
2009-08-01 01:04:26 +00:00
} else {
isp - > isp_loaded_fw = 0 ;
isp_prt ( isp , ISP_LOGDEBUG2 , " skipping f/w download " ) ;
}
/*
* If we loaded firmware , verify its checksum
*/
if ( isp - > isp_loaded_fw ) {
ISP_MEMZERO ( & mbs , sizeof ( mbs ) ) ;
2006-11-02 03:21:32 +00:00
mbs . param [ 0 ] = MBOX_VERIFY_CHECKSUM ;
2009-08-01 01:04:26 +00:00
if ( IS_24XX ( isp ) ) {
mbs . param [ 1 ] = code_org > > 16 ;
mbs . param [ 2 ] = code_org ;
} else {
mbs . param [ 1 ] = code_org ;
}
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
isp_prt ( isp , ISP_LOGERR , dcrc ) ;
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
2006-11-02 03:21:32 +00:00
return ;
2006-08-14 05:42:46 +00:00
}
1998-04-22 17:54:58 +00:00
}
/*
* Now start it rolling .
*
* If we didn ' t actually download f / w ,
* we still need to ( re ) start it .
*/
2001-08-31 21:39:04 +00:00
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_EXEC_FIRMWARE , MBLOGALL , 1000000 ) ;
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
mbs . param [ 1 ] = code_org > > 16 ;
mbs . param [ 2 ] = code_org ;
if ( isp - > isp_loaded_fw ) {
mbs . param [ 3 ] = 0 ;
} else {
mbs . param [ 3 ] = 1 ;
}
2009-08-01 01:04:26 +00:00
if ( IS_25XX ( isp ) ) {
mbs . ibits | = 0x10 ;
}
2006-11-02 03:21:32 +00:00
} else if ( IS_2322 ( isp ) ) {
mbs . param [ 1 ] = code_org ;
2006-01-23 06:23:37 +00:00
if ( isp - > isp_loaded_fw ) {
mbs . param [ 2 ] = 0 ;
2006-07-03 08:24:09 +00:00
} else {
mbs . param [ 2 ] = 1 ;
2006-01-23 06:23:37 +00:00
}
2006-11-02 03:21:32 +00:00
} else {
mbs . param [ 1 ] = code_org ;
2006-01-23 06:23:37 +00:00
}
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
2006-08-14 05:42:46 +00:00
if ( IS_2322 ( isp ) | | IS_24XX ( isp ) ) {
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
2006-08-14 05:42:46 +00:00
return ;
}
}
2006-07-16 20:11:50 +00:00
2002-06-16 05:18:22 +00:00
/*
2006-11-02 03:21:32 +00:00
* Give it a chance to finish starting up .
2009-08-01 01:04:26 +00:00
* Give the 24 XX more time .
2002-06-16 05:18:22 +00:00
*/
2009-08-01 01:04:26 +00:00
if ( IS_24XX ( isp ) ) {
ISP_DELAY ( 500000 ) ;
1998-04-22 17:54:58 +00:00
/*
2009-08-01 01:04:26 +00:00
* Check to see if the 24 XX firmware really started .
1998-04-22 17:54:58 +00:00
*/
2009-08-01 01:04:26 +00:00
if ( mbs . param [ 1 ] = = 0xdead ) {
isp_prt ( isp , ISP_LOGERR , " f/w didn't *really* start " ) ;
ISP_RESET0 ( isp ) ;
return ;
}
} else {
ISP_DELAY ( 250000 ) ;
if ( IS_SCSI ( isp ) ) {
/*
* Set CLOCK RATE , but only if asked to .
*/
if ( isp - > isp_clock ) {
mbs . param [ 0 ] = MBOX_SET_CLOCK_RATE ;
mbs . param [ 1 ] = isp - > isp_clock ;
mbs . logval = MBLOGNONE ;
isp_mboxcmd ( isp , & mbs ) ;
/* we will try not to care if this fails */
}
1998-04-22 17:54:58 +00:00
}
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
2009-08-01 01:04:26 +00:00
/*
* Ask the chip for the current firmware version .
* This should prove that the new firmware is working .
*/
MBSINIT ( & mbs , MBOX_ABOUT_FIRMWARE , MBLOGALL , 0 ) ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
1998-04-22 17:54:58 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
1998-04-22 17:54:58 +00:00
return ;
}
2001-09-03 03:09:48 +00:00
/*
* The SBus firmware that we are using apparently does not return
* major , minor , micro revisions in the mailbox registers , which
* is really , really , annoying .
*/
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
if ( ISP_SBUS_SUPPORTED & & isp - > isp_bustype = = ISP_BT_SBUS ) {
2001-09-03 03:09:48 +00:00
if ( dodnld ) {
# ifdef ISP_TARGET_MODE
isp - > isp_fwrev [ 0 ] = 7 ;
isp - > isp_fwrev [ 1 ] = 55 ;
# else
isp - > isp_fwrev [ 0 ] = 1 ;
isp - > isp_fwrev [ 1 ] = 37 ;
# endif
isp - > isp_fwrev [ 2 ] = 0 ;
2009-08-01 01:04:26 +00:00
}
2001-09-03 03:09:48 +00:00
} else {
isp - > isp_fwrev [ 0 ] = mbs . param [ 1 ] ;
isp - > isp_fwrev [ 1 ] = mbs . param [ 2 ] ;
isp - > isp_fwrev [ 2 ] = mbs . param [ 3 ] ;
}
2006-07-16 20:11:50 +00:00
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGCONFIG , " Board Type %s, Chip Revision 0x%x, %s F/W Revision %d.%d.%d " ,
btype , isp - > isp_revision , dodnld ? " loaded " : " resident " , isp - > isp_fwrev [ 0 ] , isp - > isp_fwrev [ 1 ] , isp - > isp_fwrev [ 2 ] ) ;
2001-09-03 03:09:48 +00:00
1999-03-25 22:52:45 +00:00
if ( IS_FC ( isp ) ) {
2001-09-03 03:09:48 +00:00
/*
* We do not believe firmware attributes for 2100 code less
2002-08-17 17:29:15 +00:00
* than 1.17 .0 , unless it ' s the firmware we specifically
* are loading .
*
2006-11-02 03:21:32 +00:00
* Note that all 22 XX and later f / w is greater than 1. X .0 .
2001-09-03 03:09:48 +00:00
*/
2006-11-02 03:21:32 +00:00
if ( ( ISP_FW_OLDER_THAN ( isp , 1 , 17 , 1 ) ) ) {
2002-08-17 17:29:15 +00:00
# ifdef USE_SMALLER_2100_FIRMWARE
2009-08-01 01:04:26 +00:00
isp - > isp_fwattr = ISP_FW_ATTR_SCCLUN ;
2002-08-17 17:29:15 +00:00
# else
2009-08-01 01:04:26 +00:00
isp - > isp_fwattr = 0 ;
2002-08-17 17:29:15 +00:00
# endif
2001-09-03 03:09:48 +00:00
} else {
2009-08-01 01:04:26 +00:00
isp - > isp_fwattr = mbs . param [ 6 ] ;
isp_prt ( isp , ISP_LOGDEBUG0 , " Firmware Attributes = 0x%x " , mbs . param [ 6 ] ) ;
2006-11-02 03:21:32 +00:00
}
2009-08-01 01:04:26 +00:00
} else {
# ifndef ISP_TARGET_MODE
isp - > isp_fwattr = ISP_FW_ATTR_TMODE ;
# else
isp - > isp_fwattr = 0 ;
# endif
1998-09-15 08:42:56 +00:00
}
1999-10-17 18:58:22 +00:00
2006-11-02 03:21:32 +00:00
if ( ! IS_24XX ( isp ) ) {
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_GET_FIRMWARE_STATUS , MBLOGALL , 0 ) ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
2006-12-16 05:54:29 +00:00
ISP_RESET0 ( isp ) ;
2006-11-02 03:21:32 +00:00
return ;
}
if ( isp - > isp_maxcmds > = mbs . param [ 2 ] ) {
isp - > isp_maxcmds = mbs . param [ 2 ] ;
}
1999-10-17 18:58:22 +00:00
}
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGCONFIG , " %d max I/O command limit set " , isp - > isp_maxcmds ) ;
/*
* If we don ' t have Multi - ID f / w loaded , we need to restrict channels to one .
* Only make this check for non - SCSI cards ( I ' m not sure firmware attributes
* work for them ) .
*/
if ( IS_FC ( isp ) & & ISP_CAP_MULTI_ID ( isp ) = = 0 & & isp - > isp_nchan > 1 ) {
isp_prt ( isp , ISP_LOGWARN , " non-MULTIID f/w loaded, only can enable 1 of %d channels " , isp - > isp_nchan ) ;
isp - > isp_nchan = 1 ;
}
for ( i = 0 ; i < isp - > isp_nchan ; i + + ) {
isp_fw_state ( isp , i ) ;
}
if ( isp - > isp_dead ) {
isp_shutdown ( isp ) ;
ISP_DISABLE_INTS ( isp ) ;
return ;
}
1999-10-17 18:58:22 +00:00
1998-04-22 17:54:58 +00:00
isp - > isp_state = ISP_RESETSTATE ;
2000-06-18 04:56:17 +00:00
/*
* Okay - now that we have new firmware running , we now ( re ) set our
* notion of how many luns we support . This is somewhat tricky because
2001-09-03 03:09:48 +00:00
* if we haven ' t loaded firmware , we sometimes do not have an easy way
* of knowing how many luns we support .
2000-06-18 04:56:17 +00:00
*
* Expanded lun firmware gives you 32 luns for SCSI cards and
2002-04-16 19:55:35 +00:00
* 16384 luns for Fibre Channel cards .
2000-06-18 04:56:17 +00:00
*
2001-09-03 03:09:48 +00:00
* It turns out that even for QLogic 2100 s with ROM 1.10 and above
* we do get a firmware attributes word returned in mailbox register 6.
*
2003-01-01 18:49:04 +00:00
* Because the lun is in a different position in the Request Queue
2000-06-18 04:56:17 +00:00
* Entry structure for Fibre Channel with expanded lun firmware , we
* can only support one lun ( lun zero ) when we don ' t know what kind
* of firmware we ' re running .
*/
2002-06-16 05:18:22 +00:00
if ( IS_SCSI ( isp ) ) {
if ( dodnld ) {
if ( IS_ULTRA2 ( isp ) | | IS_ULTRA3 ( isp ) ) {
2000-06-18 04:56:17 +00:00
isp - > isp_maxluns = 32 ;
} else {
2001-09-03 03:09:48 +00:00
isp - > isp_maxluns = 8 ;
2000-06-18 04:56:17 +00:00
}
} else {
2002-06-16 05:18:22 +00:00
isp - > isp_maxluns = 8 ;
}
} else {
2009-08-01 01:04:26 +00:00
if ( ISP_CAP_SCCFW ( isp ) ) {
2002-06-16 05:18:22 +00:00
isp - > isp_maxluns = 16384 ;
} else {
isp - > isp_maxluns = 16 ;
2000-06-18 04:56:17 +00:00
}
}
2009-08-01 01:04:26 +00:00
2007-01-20 04:00:21 +00:00
/*
2009-08-01 01:04:26 +00:00
* We get some default values established . As a side
* effect , NVRAM is read here ( unless overriden by
* a configuration flag ) .
2007-01-20 04:00:21 +00:00
*/
2009-08-01 01:04:26 +00:00
if ( do_load_defaults ) {
if ( IS_SCSI ( isp ) ) {
isp_setdfltsdparm ( isp ) ;
} else {
for ( i = 0 ; i < isp - > isp_nchan ; i + + ) {
isp_setdfltfcparm ( isp , i ) ;
}
2007-03-22 23:38:32 +00:00
}
2007-01-20 04:00:21 +00:00
}
1998-04-22 17:54:58 +00:00
}
/*
1999-01-30 07:29:00 +00:00
* Initialize Parameters of Hardware to a known state .
1998-09-15 08:42:56 +00:00
*
* Locks are held before coming here .
1998-04-22 17:54:58 +00:00
*/
1998-09-15 08:42:56 +00:00
1998-04-22 17:54:58 +00:00
void
2006-04-21 18:30:01 +00:00
isp_init ( ispsoftc_t * isp )
1998-04-22 17:54:58 +00:00
{
2001-01-15 18:33:08 +00:00
if ( IS_FC ( isp ) ) {
2009-08-01 01:04:26 +00:00
if ( IS_24XX ( isp ) ) {
isp_fibre_init_2400 ( isp ) ;
} else {
isp_fibre_init ( isp ) ;
2006-11-02 03:21:32 +00:00
}
2001-01-15 18:33:08 +00:00
} else {
isp_scsi_init ( isp ) ;
1999-05-11 05:06:55 +00:00
}
2009-08-01 01:04:26 +00:00
GET_NANOTIME ( & isp - > isp_init_time ) ;
1999-05-11 05:06:55 +00:00
}
static void
2006-04-21 18:30:01 +00:00
isp_scsi_init ( ispsoftc_t * isp )
1999-05-11 05:06:55 +00:00
{
sdparam * sdp_chan0 , * sdp_chan1 ;
mbreg_t mbs ;
2009-08-01 01:04:26 +00:00
sdp_chan0 = SDPARAM ( isp , 0 ) ;
1999-05-11 05:06:55 +00:00
sdp_chan1 = sdp_chan0 ;
1999-12-16 05:42:02 +00:00
if ( IS_DUALBUS ( isp ) ) {
2009-08-01 01:04:26 +00:00
sdp_chan1 = SDPARAM ( isp , 1 ) ;
2001-01-15 18:33:08 +00:00
}
1999-05-11 05:06:55 +00:00
/* First do overall per-card settings. */
1998-04-22 17:54:58 +00:00
1999-02-09 01:07:06 +00:00
/*
* If we have fast memory timing enabled , turn it on .
*/
2000-08-27 23:38:44 +00:00
if ( sdp_chan0 - > isp_fast_mttr ) {
1999-02-09 01:07:06 +00:00
ISP_WRITE ( isp , RISC_MTR , 0x1313 ) ;
}
1998-04-22 17:54:58 +00:00
/*
1999-05-11 05:06:55 +00:00
* Set Retry Delay and Count .
* You set both channels at the same time .
1998-04-22 17:54:58 +00:00
*/
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_SET_RETRY_COUNT , MBLOGALL , 0 ) ;
1999-05-11 05:06:55 +00:00
mbs . param [ 1 ] = sdp_chan0 - > isp_retry_count ;
mbs . param [ 2 ] = sdp_chan0 - > isp_retry_delay ;
mbs . param [ 6 ] = sdp_chan1 - > isp_retry_count ;
mbs . param [ 7 ] = sdp_chan1 - > isp_retry_delay ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
1998-04-22 17:54:58 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ;
}
1998-09-15 08:42:56 +00:00
/*
1999-05-11 05:06:55 +00:00
* Set ASYNC DATA SETUP time . This is very important .
1998-09-15 08:42:56 +00:00
*/
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_SET_ASYNC_DATA_SETUP_TIME , MBLOGALL , 0 ) ;
1999-05-11 05:06:55 +00:00
mbs . param [ 1 ] = sdp_chan0 - > isp_async_data_setup ;
mbs . param [ 2 ] = sdp_chan1 - > isp_async_data_setup ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
1998-04-22 17:54:58 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ;
}
1998-09-15 08:42:56 +00:00
/*
1999-05-11 05:06:55 +00:00
* Set ACTIVE Negation State .
1998-09-15 08:42:56 +00:00
*/
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_SET_ACT_NEG_STATE , MBLOGNONE , 0 ) ;
1999-05-11 05:06:55 +00:00
mbs . param [ 1 ] =
( sdp_chan0 - > isp_req_ack_active_neg < < 4 ) |
( sdp_chan0 - > isp_data_line_active_neg < < 5 ) ;
mbs . param [ 2 ] =
( sdp_chan1 - > isp_req_ack_active_neg < < 4 ) |
( sdp_chan1 - > isp_data_line_active_neg < < 5 ) ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
1999-05-11 05:06:55 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR ,
" failed to set active negation state (%d,%d), (%d,%d) " ,
1999-05-11 05:06:55 +00:00
sdp_chan0 - > isp_req_ack_active_neg ,
sdp_chan0 - > isp_data_line_active_neg ,
sdp_chan1 - > isp_req_ack_active_neg ,
sdp_chan1 - > isp_data_line_active_neg ) ;
/*
* But don ' t return .
*/
}
/*
* Set the Tag Aging limit
*/
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_SET_TAG_AGE_LIMIT , MBLOGALL , 0 ) ;
1999-05-11 05:06:55 +00:00
mbs . param [ 1 ] = sdp_chan0 - > isp_tag_aging ;
mbs . param [ 2 ] = sdp_chan1 - > isp_tag_aging ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
1998-04-22 17:54:58 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " failed to set tag age limit (%d,%d) " ,
sdp_chan0 - > isp_tag_aging , sdp_chan1 - > isp_tag_aging ) ;
1998-04-22 17:54:58 +00:00
return ;
}
1998-09-15 08:42:56 +00:00
/*
1999-05-11 05:06:55 +00:00
* Set selection timeout .
1998-09-15 08:42:56 +00:00
*/
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_SET_SELECT_TIMEOUT , MBLOGALL , 0 ) ;
1999-05-11 05:06:55 +00:00
mbs . param [ 1 ] = sdp_chan0 - > isp_selection_timeout ;
mbs . param [ 2 ] = sdp_chan1 - > isp_selection_timeout ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
1998-04-22 17:54:58 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ;
}
1999-05-11 05:06:55 +00:00
/* now do per-channel settings */
isp_scsi_channel_init ( isp , 0 ) ;
1999-12-16 05:42:02 +00:00
if ( IS_DUALBUS ( isp ) )
1999-05-11 05:06:55 +00:00
isp_scsi_channel_init ( isp , 1 ) ;
1998-09-15 08:42:56 +00:00
/*
1999-05-11 05:06:55 +00:00
* Now enable request / response queues
1998-09-15 08:42:56 +00:00
*/
2002-09-23 04:59:42 +00:00
if ( IS_ULTRA2 ( isp ) | | IS_1240 ( isp ) ) {
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_INIT_RES_QUEUE_A64 , MBLOGALL , 0 ) ;
2002-09-23 04:59:42 +00:00
mbs . param [ 1 ] = RESULT_QUEUE_LEN ( isp ) ;
mbs . param [ 2 ] = DMA_WD1 ( isp - > isp_result_dma ) ;
mbs . param [ 3 ] = DMA_WD0 ( isp - > isp_result_dma ) ;
mbs . param [ 4 ] = 0 ;
mbs . param [ 6 ] = DMA_WD3 ( isp - > isp_result_dma ) ;
mbs . param [ 7 ] = DMA_WD2 ( isp - > isp_result_dma ) ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
2002-09-23 04:59:42 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ;
}
isp - > isp_residx = mbs . param [ 5 ] ;
1999-05-11 05:06:55 +00:00
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_INIT_REQ_QUEUE_A64 , MBLOGALL , 0 ) ;
2002-09-23 04:59:42 +00:00
mbs . param [ 1 ] = RQUEST_QUEUE_LEN ( isp ) ;
mbs . param [ 2 ] = DMA_WD1 ( isp - > isp_rquest_dma ) ;
mbs . param [ 3 ] = DMA_WD0 ( isp - > isp_rquest_dma ) ;
mbs . param [ 5 ] = 0 ;
mbs . param [ 6 ] = DMA_WD3 ( isp - > isp_result_dma ) ;
mbs . param [ 7 ] = DMA_WD2 ( isp - > isp_result_dma ) ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
2002-09-23 04:59:42 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ;
}
isp - > isp_reqidx = isp - > isp_reqodx = mbs . param [ 4 ] ;
} else {
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_INIT_RES_QUEUE , MBLOGALL , 0 ) ;
2002-09-23 04:59:42 +00:00
mbs . param [ 1 ] = RESULT_QUEUE_LEN ( isp ) ;
mbs . param [ 2 ] = DMA_WD1 ( isp - > isp_result_dma ) ;
mbs . param [ 3 ] = DMA_WD0 ( isp - > isp_result_dma ) ;
mbs . param [ 4 ] = 0 ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
2002-09-23 04:59:42 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ;
}
isp - > isp_residx = mbs . param [ 5 ] ;
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_INIT_REQ_QUEUE , MBLOGALL , 0 ) ;
2002-09-23 04:59:42 +00:00
mbs . param [ 1 ] = RQUEST_QUEUE_LEN ( isp ) ;
mbs . param [ 2 ] = DMA_WD1 ( isp - > isp_rquest_dma ) ;
mbs . param [ 3 ] = DMA_WD0 ( isp - > isp_rquest_dma ) ;
mbs . param [ 5 ] = 0 ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
2002-09-23 04:59:42 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ;
}
isp - > isp_reqidx = isp - > isp_reqodx = mbs . param [ 4 ] ;
1999-05-11 05:06:55 +00:00
}
1998-04-22 17:54:58 +00:00
1998-09-15 08:42:56 +00:00
/*
1999-12-20 01:34:01 +00:00
* Turn on Fast Posting , LVD transitions
*
* Ultra2 F / W always has had fast posting ( and LVD transitions )
*
2000-02-15 00:35:00 +00:00
* Ultra and older ( i . e . , SBus ) cards may not . It ' s just safer
* to assume not for them .
1998-09-15 08:42:56 +00:00
*/
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_SET_FW_FEATURES , MBLOGALL , 0 ) ;
1999-12-20 01:34:01 +00:00
if ( IS_ULTRA2 ( isp ) )
mbs . param [ 1 ] | = FW_FEATURE_LVD_NOTIFY ;
2002-02-04 21:04:25 +00:00
# ifndef ISP_NO_RIO
if ( IS_ULTRA2 ( isp ) | | IS_1240 ( isp ) )
mbs . param [ 1 ] | = FW_FEATURE_RIO_16BIT ;
# else
2000-02-11 19:31:32 +00:00
if ( IS_ULTRA2 ( isp ) | | IS_1240 ( isp ) )
mbs . param [ 1 ] | = FW_FEATURE_FAST_POST ;
2002-02-04 21:04:25 +00:00
# endif
1999-12-20 01:34:01 +00:00
if ( mbs . param [ 1 ] ! = 0 ) {
2006-02-15 00:31:48 +00:00
uint16_t sfeat = mbs . param [ 1 ] ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( mbs . param [ 0 ] = = MBOX_COMMAND_COMPLETE ) {
isp_prt ( isp , ISP_LOGINFO ,
" Enabled FW features (0x%x) " , sfeat ) ;
1999-05-11 05:06:55 +00:00
}
}
isp - > isp_state = ISP_INITSTATE ;
}
static void
2009-08-01 01:04:26 +00:00
isp_scsi_channel_init ( ispsoftc_t * isp , int chan )
1999-05-11 05:06:55 +00:00
{
sdparam * sdp ;
mbreg_t mbs ;
int tgt ;
2009-08-01 01:04:26 +00:00
sdp = SDPARAM ( isp , chan ) ;
1999-05-11 05:06:55 +00:00
/*
* Set ( possibly new ) Initiator ID .
*/
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_SET_INIT_SCSI_ID , MBLOGALL , 0 ) ;
mbs . param [ 1 ] = ( chan < < 7 ) | sdp - > isp_initiator_id ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
1998-04-22 17:54:58 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ;
}
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGINFO , " Chan %d Initiator ID is %d " ,
chan , sdp - > isp_initiator_id ) ;
2000-09-21 17:06:45 +00:00
1998-04-22 17:54:58 +00:00
1998-09-15 08:42:56 +00:00
/*
2001-07-30 00:59:06 +00:00
* Set current per - target parameters to an initial safe minimum .
1998-09-15 08:42:56 +00:00
*/
for ( tgt = 0 ; tgt < MAX_TARGETS ; tgt + + ) {
2000-06-18 04:56:17 +00:00
int lun ;
2006-02-15 00:31:48 +00:00
uint16_t sdf ;
1998-09-15 08:42:56 +00:00
1999-05-11 05:06:55 +00:00
if ( sdp - > isp_devparam [ tgt ] . dev_enable = = 0 ) {
1998-04-22 17:54:58 +00:00
continue ;
1999-05-11 05:06:55 +00:00
}
2001-04-04 21:42:59 +00:00
# ifndef ISP_TARGET_MODE
2001-07-30 00:59:06 +00:00
sdf = sdp - > isp_devparam [ tgt ] . goal_flags ;
sdf & = DPARM_SAFE_DFLT ;
/*
* It is not quite clear when this changed over so that
* we could force narrow and async for 1000 / 1020 cards ,
* but assume that this is only the case for loaded
* firmware .
*/
if ( isp - > isp_loaded_fw ) {
sdf | = DPARM_NARROW | DPARM_ASYNC ;
2001-04-04 21:42:59 +00:00
}
# else
1999-05-11 05:06:55 +00:00
/*
2001-04-04 21:42:59 +00:00
* The ! $ * ! ) $ ! $ ) * f / w uses the same index into some
* internal table to decide how to respond to negotiations ,
* so if we ' ve said " let's be safe " for ID X , and ID X
* selects * us * , the negotiations will back to ' safe '
* ( as in narrow / async ) . What the f / w * should * do is
* use the initiator id settings to decide how to respond .
1999-05-11 05:06:55 +00:00
*/
2001-07-30 00:59:06 +00:00
sdp - > isp_devparam [ tgt ] . goal_flags = sdf = DPARM_DEFAULT ;
2001-04-04 21:42:59 +00:00
# endif
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_SET_TARGET_PARAMS , MBLOGNONE , 0 ) ;
mbs . param [ 1 ] = ( chan < < 15 ) | ( tgt < < 8 ) ;
1999-02-09 01:07:06 +00:00
mbs . param [ 2 ] = sdf ;
2000-08-27 23:38:44 +00:00
if ( ( sdf & DPARM_SYNC ) = = 0 ) {
mbs . param [ 3 ] = 0 ;
} else {
mbs . param [ 3 ] =
2001-07-30 00:59:06 +00:00
( sdp - > isp_devparam [ tgt ] . goal_offset < < 8 ) |
( sdp - > isp_devparam [ tgt ] . goal_period ) ;
2000-08-27 23:38:44 +00:00
}
2001-04-04 21:42:59 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 ,
2001-07-30 00:59:06 +00:00
" Initial Settings bus%d tgt%d flags 0x%x off 0x%x per 0x%x " ,
2009-08-01 01:04:26 +00:00
chan , tgt , mbs . param [ 2 ] , mbs . param [ 3 ] > > 8 ,
2001-04-04 21:42:59 +00:00
mbs . param [ 3 ] & 0xff ) ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
1998-04-22 17:54:58 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
1999-02-09 01:07:06 +00:00
sdf = DPARM_SAFE_DFLT ;
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_SET_TARGET_PARAMS , MBLOGALL , 0 ) ;
mbs . param [ 1 ] = ( tgt < < 8 ) | ( chan < < 15 ) ;
1999-02-09 01:07:06 +00:00
mbs . param [ 2 ] = sdf ;
2000-08-27 23:38:44 +00:00
mbs . param [ 3 ] = 0 ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
1998-04-22 17:54:58 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
1998-09-15 08:42:56 +00:00
continue ;
1998-04-22 17:54:58 +00:00
}
}
1999-12-20 01:34:01 +00:00
1999-03-26 00:33:13 +00:00
/*
2000-08-27 23:38:44 +00:00
* We don ' t update any information directly from the f / w
* because we need to run at least one command to cause a
* new state to be latched up . So , we just assume that we
* converge to the values we just had set .
*
1999-03-26 00:33:13 +00:00
* Ensure that we don ' t believe tagged queuing is enabled yet .
* It turns out that sometimes the ISP just ignores our
* attempts to set parameters for devices that it hasn ' t
* seen yet .
*/
2001-07-30 00:59:06 +00:00
sdp - > isp_devparam [ tgt ] . actv_flags = sdf & ~ DPARM_TQING ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
for ( lun = 0 ; lun < ( int ) isp - > isp_maxluns ; lun + + ) {
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_SET_DEV_QUEUE_PARAMS , MBLOGALL , 0 ) ;
mbs . param [ 1 ] = ( chan < < 15 ) | ( tgt < < 8 ) | lun ;
1998-04-22 17:54:58 +00:00
mbs . param [ 2 ] = sdp - > isp_max_queue_depth ;
1998-09-15 08:42:56 +00:00
mbs . param [ 3 ] = sdp - > isp_devparam [ tgt ] . exc_throttle ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
1998-04-22 17:54:58 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
1998-09-15 08:42:56 +00:00
break ;
1998-04-22 17:54:58 +00:00
}
}
1999-01-30 07:29:00 +00:00
}
2000-08-27 23:38:44 +00:00
for ( tgt = 0 ; tgt < MAX_TARGETS ; tgt + + ) {
if ( sdp - > isp_devparam [ tgt ] . dev_refresh ) {
2009-08-01 01:04:26 +00:00
sdp - > sendmarker = 1 ;
sdp - > update = 1 ;
2000-08-27 23:38:44 +00:00
break ;
}
}
1998-04-22 17:54:58 +00:00
}
1998-09-15 08:42:56 +00:00
/*
* Fibre Channel specific initialization .
*/
1998-04-22 17:54:58 +00:00
static void
2006-04-21 18:30:01 +00:00
isp_fibre_init ( ispsoftc_t * isp )
1998-04-22 17:54:58 +00:00
{
fcparam * fcp ;
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
isp_icb_t local , * icbp = & local ;
1998-04-22 17:54:58 +00:00
mbreg_t mbs ;
2007-02-23 21:59:21 +00:00
int ownloopid ;
1998-04-22 17:54:58 +00:00
2009-08-01 01:04:26 +00:00
/*
* We only support one channel on non - 24 XX cards
*/
fcp = FCPARAM ( isp , 0 ) ;
if ( fcp - > role = = ISP_ROLE_NONE ) {
isp - > isp_state = ISP_INITSTATE ;
return ;
}
1998-04-22 17:54:58 +00:00
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( icbp , sizeof ( * icbp ) ) ;
1998-09-15 08:42:56 +00:00
icbp - > icb_version = ICB_VERSION1 ;
2006-11-02 03:21:32 +00:00
icbp - > icb_fwoptions = fcp - > isp_fwoptions ;
2000-08-27 23:38:44 +00:00
/*
* Firmware Options are either retrieved from NVRAM or
* are patched elsewhere . We check them for sanity here
* and make changes based on board revision , but otherwise
* let others decide policy .
*/
1999-11-21 03:18:22 +00:00
/*
* If this is a 2100 < revision 5 , we have to turn off FAIRNESS .
*/
2006-11-02 03:21:32 +00:00
if ( IS_2100 ( isp ) & & isp - > isp_revision < 5 ) {
icbp - > icb_fwoptions & = ~ ICBOPT_FAIRNESS ;
1999-11-21 03:18:22 +00:00
}
2000-08-27 23:38:44 +00:00
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
/*
1999-08-16 19:59:55 +00:00
* We have to use FULL LOGIN even though it resets the loop too much
* because otherwise port database entries don ' t get updated after
2000-05-09 01:14:43 +00:00
* a LIP - this is a known f / w bug for 2100 f / w less than 1.17 .0 .
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
*/
2002-08-17 17:29:15 +00:00
if ( ! ISP_FW_NEWER_THAN ( isp , 1 , 17 , 0 ) ) {
2006-11-02 03:21:32 +00:00
icbp - > icb_fwoptions | = ICBOPT_FULL_LOGIN ;
1999-08-16 19:59:55 +00:00
}
2000-08-27 23:38:44 +00:00
/*
* Insist on Port Database Update Async notifications
*/
2006-11-02 03:21:32 +00:00
icbp - > icb_fwoptions | = ICBOPT_PDBCHANGE_AE ;
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
2001-01-15 18:33:08 +00:00
/*
* Make sure that target role reflects into fwoptions .
*/
2009-08-01 01:04:26 +00:00
if ( fcp - > role & ISP_ROLE_TARGET ) {
2006-11-02 03:21:32 +00:00
icbp - > icb_fwoptions | = ICBOPT_TGT_ENABLE ;
2001-01-15 18:33:08 +00:00
} else {
2006-11-02 03:21:32 +00:00
icbp - > icb_fwoptions & = ~ ICBOPT_TGT_ENABLE ;
2001-01-15 18:33:08 +00:00
}
2009-08-01 01:04:26 +00:00
if ( fcp - > role & ISP_ROLE_INITIATOR ) {
2006-11-02 03:21:32 +00:00
icbp - > icb_fwoptions & = ~ ICBOPT_INI_DISABLE ;
2004-01-23 23:23:31 +00:00
} else {
2006-11-02 03:21:32 +00:00
icbp - > icb_fwoptions | = ICBOPT_INI_DISABLE ;
2004-01-23 23:23:31 +00:00
}
2009-08-01 01:04:26 +00:00
icbp - > icb_maxfrmlen = DEFAULT_FRAMESIZE ( isp ) ;
1998-09-15 08:42:56 +00:00
if ( icbp - > icb_maxfrmlen < ICB_MIN_FRMLEN | |
icbp - > icb_maxfrmlen > ICB_MAX_FRMLEN ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR ,
" bad frame length (%d) from NVRAM- using %d " ,
2009-08-01 01:04:26 +00:00
DEFAULT_FRAMESIZE ( isp ) , ICB_DFLT_FRMLEN ) ;
1999-04-04 02:28:29 +00:00
icbp - > icb_maxfrmlen = ICB_DFLT_FRMLEN ;
1998-09-15 08:42:56 +00:00
}
icbp - > icb_maxalloc = fcp - > isp_maxalloc ;
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
if ( icbp - > icb_maxalloc < 1 ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR ,
" bad maximum allocation (%d)- using 16 " , fcp - > isp_maxalloc ) ;
1999-04-04 02:28:29 +00:00
icbp - > icb_maxalloc = 16 ;
}
2009-08-01 01:04:26 +00:00
icbp - > icb_execthrottle = DEFAULT_EXEC_THROTTLE ( isp ) ;
1999-04-04 02:28:29 +00:00
if ( icbp - > icb_execthrottle < 1 ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR ,
2009-08-01 01:04:26 +00:00
" bad execution throttle of %d- using %d " ,
DEFAULT_EXEC_THROTTLE ( isp ) , ICB_DFLT_THROTTLE ) ;
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
icbp - > icb_execthrottle = ICB_DFLT_THROTTLE ;
1999-04-04 02:28:29 +00:00
}
1998-09-15 08:42:56 +00:00
icbp - > icb_retry_delay = fcp - > isp_retry_delay ;
icbp - > icb_retry_count = fcp - > isp_retry_count ;
2006-11-02 03:21:32 +00:00
icbp - > icb_hardaddr = fcp - > isp_loopid ;
2007-02-23 21:59:21 +00:00
ownloopid = ( isp - > isp_confopts & ISP_CFG_OWNLOOPID ) ! = 0 ;
2009-08-01 01:04:26 +00:00
if ( icbp - > icb_hardaddr > = LOCAL_LOOP_LIM ) {
2007-02-23 21:59:21 +00:00
icbp - > icb_hardaddr = 0 ;
ownloopid = 0 ;
2003-09-13 01:55:44 +00:00
}
2006-07-03 08:24:09 +00:00
2006-07-03 20:56:48 +00:00
/*
* Our life seems so much better with 2200 s and later with
* the latest f / w if we set Hard Address .
*/
2007-02-23 21:59:21 +00:00
if ( ownloopid | | ISP_FW_NEWER_THAN ( isp , 2 , 2 , 5 ) ) {
2006-07-03 08:24:09 +00:00
icbp - > icb_fwoptions | = ICBOPT_HARD_ADDRESS ;
}
2000-08-27 23:38:44 +00:00
/*
* Right now we just set extended options to prefer point - to - point
* over loop based upon some soft config options .
2009-08-01 01:04:26 +00:00
*
2001-08-31 21:39:04 +00:00
* NB : for the 2300 , ICBOPT_EXTENDED is required .
2000-08-27 23:38:44 +00:00
*/
2002-01-03 20:43:22 +00:00
if ( IS_2200 ( isp ) | | IS_23XX ( isp ) ) {
2000-02-11 19:31:32 +00:00
icbp - > icb_fwoptions | = ICBOPT_EXTENDED ;
/*
* Prefer or force Point - To - Point instead Loop ?
*/
2009-08-01 01:04:26 +00:00
switch ( isp - > isp_confopts & ISP_CFG_PORT_PREF ) {
2000-12-02 18:08:35 +00:00
case ISP_CFG_NPORT :
2001-10-01 03:45:54 +00:00
icbp - > icb_xfwoptions | = ICBXOPT_PTP_2_LOOP ;
2000-12-02 18:08:35 +00:00
break ;
case ISP_CFG_NPORT_ONLY :
2001-10-01 03:45:54 +00:00
icbp - > icb_xfwoptions | = ICBXOPT_PTP_ONLY ;
2000-12-02 18:08:35 +00:00
break ;
case ISP_CFG_LPORT_ONLY :
2001-10-01 03:45:54 +00:00
icbp - > icb_xfwoptions | = ICBXOPT_LOOP_ONLY ;
2000-12-02 18:08:35 +00:00
break ;
default :
2001-10-01 03:45:54 +00:00
icbp - > icb_xfwoptions | = ICBXOPT_LOOP_2_PTP ;
2000-12-02 18:08:35 +00:00
break ;
}
2006-07-03 08:24:09 +00:00
if ( IS_2200 ( isp ) ) {
2009-08-01 01:04:26 +00:00
/*
* There seems to just be too much breakage here
* with RIO and Fast Posting - it probably actually
* works okay but this driver is messing it up .
* This card is really ancient by now , so let ' s
* just opt for safety and not use the feature .
*/
#if 0
if ( ISP_FW_NEWER_THAN ( isp , 1 , 17 , 0 ) ) {
icbp - > icb_xfwoptions | = ICBXOPT_RIO_16BIT ;
icbp - > icb_fwoptions & = ~ ICBOPT_FAST_POST ;
icbp - > icb_racctimer = 4 ;
icbp - > icb_idelaytimer = 8 ;
} else {
icbp - > icb_fwoptions | = ICBOPT_FAST_POST ;
}
# else
icbp - > icb_xfwoptions & = ~ ICBXOPT_RIO_16BIT ;
2007-07-10 07:55:04 +00:00
icbp - > icb_fwoptions & = ~ ICBOPT_FAST_POST ;
2009-08-01 01:04:26 +00:00
# endif
2006-07-03 08:24:09 +00:00
} else {
2002-08-17 17:29:15 +00:00
/*
* QLogic recommends that FAST Posting be turned
* off for 23 XX cards and instead allow the HBA
* to write response queue entries and interrupt
* after a delay ( ZIO ) .
*/
2006-07-03 08:24:09 +00:00
icbp - > icb_fwoptions & = ~ ICBOPT_FAST_POST ;
2009-08-01 01:04:26 +00:00
if ( ( fcp - > isp_xfwoptions & ICBXOPT_TIMER_MASK ) = = ICBXOPT_ZIO ) {
2005-01-23 06:26:45 +00:00
icbp - > icb_xfwoptions | = ICBXOPT_ZIO ;
2006-07-03 08:24:09 +00:00
icbp - > icb_idelaytimer = 10 ;
2005-01-23 06:26:45 +00:00
}
2001-10-01 03:45:54 +00:00
if ( isp - > isp_confopts & ISP_CFG_ONEGB ) {
2001-10-06 20:41:18 +00:00
icbp - > icb_zfwoptions | = ICBZOPT_RATE_ONEGB ;
2001-10-01 03:45:54 +00:00
} else if ( isp - > isp_confopts & ISP_CFG_TWOGB ) {
2001-10-06 20:41:18 +00:00
icbp - > icb_zfwoptions | = ICBZOPT_RATE_TWOGB ;
2001-10-01 03:45:54 +00:00
} else {
2001-10-06 20:41:18 +00:00
icbp - > icb_zfwoptions | = ICBZOPT_RATE_AUTO ;
2001-10-01 03:45:54 +00:00
}
2006-07-03 08:24:09 +00:00
if ( fcp - > isp_zfwoptions & ICBZOPT_50_OHM ) {
icbp - > icb_zfwoptions | = ICBZOPT_50_OHM ;
}
2001-08-31 21:39:04 +00:00
}
2002-02-17 06:38:22 +00:00
}
2006-01-23 06:23:37 +00:00
2002-08-17 17:29:15 +00:00
/*
2006-01-23 06:23:37 +00:00
* For 22 XX > 2.1 .26 & & 23 XX , set some options .
2002-08-17 17:29:15 +00:00
* XXX : Probably okay for newer 2100 f / w too .
*/
if ( ISP_FW_NEWER_THAN ( isp , 2 , 26 , 0 ) ) {
2001-08-16 17:25:08 +00:00
/*
* Turn on LIP F8 async event ( 1 )
* Turn on generate AE 8013 on all LIP Resets ( 2 )
* Disable LIP F7 switching ( 8 )
*/
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_SET_FIRMWARE_OPTIONS , MBLOGALL , 0 ) ;
2001-08-16 17:25:08 +00:00
mbs . param [ 1 ] = 0xb ;
mbs . param [ 2 ] = 0 ;
mbs . param [ 3 ] = 0 ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ;
}
2000-02-11 19:31:32 +00:00
}
2006-04-21 18:30:01 +00:00
icbp - > icb_logintime = ICB_LOGIN_TOV ;
icbp - > icb_lunetimeout = ICB_LUN_ENABLE_TOV ;
2001-08-31 21:39:04 +00:00
2009-08-01 01:04:26 +00:00
if ( fcp - > isp_wwnn & & fcp - > isp_wwpn & & ( fcp - > isp_wwnn > > 60 ) ! = 2 ) {
2001-02-23 05:35:50 +00:00
icbp - > icb_fwoptions | = ICBOPT_BOTH_WWNS ;
2009-08-01 01:04:26 +00:00
MAKE_NODE_NAME_FROM_WWN ( icbp - > icb_nodename , fcp - > isp_wwnn ) ;
MAKE_NODE_NAME_FROM_WWN ( icbp - > icb_portname , fcp - > isp_wwpn ) ;
2000-10-12 23:49:09 +00:00
isp_prt ( isp , ISP_LOGDEBUG1 ,
" Setting ICB Node 0x%08x%08x Port 0x%08x%08x " ,
2009-08-01 01:04:26 +00:00
( ( uint32_t ) ( fcp - > isp_wwnn > > 32 ) ) ,
( ( uint32_t ) ( fcp - > isp_wwnn ) ) ,
( ( uint32_t ) ( fcp - > isp_wwpn > > 32 ) ) ,
( ( uint32_t ) ( fcp - > isp_wwpn ) ) ) ;
} else if ( fcp - > isp_wwpn ) {
2006-11-02 03:21:32 +00:00
icbp - > icb_fwoptions & = ~ ICBOPT_BOTH_WWNS ;
2009-08-01 01:04:26 +00:00
MAKE_NODE_NAME_FROM_WWN ( icbp - > icb_portname , fcp - > isp_wwpn ) ;
2006-11-02 03:21:32 +00:00
isp_prt ( isp , ISP_LOGDEBUG1 ,
" Setting ICB Port 0x%08x%08x " ,
2009-08-01 01:04:26 +00:00
( ( uint32_t ) ( fcp - > isp_wwpn > > 32 ) ) ,
( ( uint32_t ) ( fcp - > isp_wwpn ) ) ) ;
1999-04-04 02:28:29 +00:00
} else {
2006-11-02 03:21:32 +00:00
isp_prt ( isp , ISP_LOGERR , " No valid WWNs to use " ) ;
return ;
1998-12-05 01:33:57 +00:00
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
icbp - > icb_rqstqlen = RQUEST_QUEUE_LEN ( isp ) ;
2003-09-13 01:55:44 +00:00
if ( icbp - > icb_rqstqlen < 1 ) {
isp_prt ( isp , ISP_LOGERR , " bad request queue length " ) ;
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
icbp - > icb_rsltqlen = RESULT_QUEUE_LEN ( isp ) ;
2003-09-13 01:55:44 +00:00
if ( icbp - > icb_rsltqlen < 1 ) {
isp_prt ( isp , ISP_LOGERR , " bad result queue length " ) ;
}
2001-08-31 21:39:04 +00:00
icbp - > icb_rqstaddr [ RQRSP_ADDR0015 ] = DMA_WD0 ( isp - > isp_rquest_dma ) ;
icbp - > icb_rqstaddr [ RQRSP_ADDR1631 ] = DMA_WD1 ( isp - > isp_rquest_dma ) ;
icbp - > icb_rqstaddr [ RQRSP_ADDR3247 ] = DMA_WD2 ( isp - > isp_rquest_dma ) ;
icbp - > icb_rqstaddr [ RQRSP_ADDR4863 ] = DMA_WD3 ( isp - > isp_rquest_dma ) ;
icbp - > icb_respaddr [ RQRSP_ADDR0015 ] = DMA_WD0 ( isp - > isp_result_dma ) ;
icbp - > icb_respaddr [ RQRSP_ADDR1631 ] = DMA_WD1 ( isp - > isp_result_dma ) ;
icbp - > icb_respaddr [ RQRSP_ADDR3247 ] = DMA_WD2 ( isp - > isp_result_dma ) ;
icbp - > icb_respaddr [ RQRSP_ADDR4863 ] = DMA_WD3 ( isp - > isp_result_dma ) ;
2006-07-03 08:24:09 +00:00
2009-08-01 01:04:26 +00:00
if ( FC_SCRATCH_ACQUIRE ( isp , 0 ) ) {
isp_prt ( isp , ISP_LOGERR , sacq ) ;
return ;
}
2002-08-17 17:29:15 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 ,
" isp_fibre_init: fwopt 0x%x xfwopt 0x%x zfwopt 0x%x " ,
icbp - > icb_fwoptions , icbp - > icb_xfwoptions , icbp - > icb_zfwoptions ) ;
2002-02-04 21:04:25 +00:00
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
isp_put_icb ( isp , icbp , ( isp_icb_t * ) fcp - > isp_scratch ) ;
2001-01-15 18:33:08 +00:00
1999-08-16 19:59:55 +00:00
/*
2001-01-15 18:33:08 +00:00
* Init the firmware
1999-08-16 19:59:55 +00:00
*/
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_INIT_FIRMWARE , MBLOGALL , 30000000 ) ;
2001-08-31 21:39:04 +00:00
mbs . param [ 2 ] = DMA_WD1 ( fcp - > isp_scdma ) ;
mbs . param [ 3 ] = DMA_WD0 ( fcp - > isp_scdma ) ;
mbs . param [ 6 ] = DMA_WD3 ( fcp - > isp_scdma ) ;
mbs . param [ 7 ] = DMA_WD2 ( fcp - > isp_scdma ) ;
2006-11-02 03:21:32 +00:00
mbs . logval = MBLOGALL ;
2006-07-16 20:11:50 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 , " INIT F/W from %p (%08x%08x) " ,
fcp - > isp_scratch , ( uint32_t ) ( ( uint64_t ) fcp - > isp_scdma > > 32 ) ,
( uint32_t ) fcp - > isp_scdma ) ;
2006-07-14 05:14:48 +00:00
MEMORYBARRIER ( isp , SYNC_SFORDEV , 0 , sizeof ( * icbp ) ) ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , 0 ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
2007-02-23 21:59:21 +00:00
isp_print_bytes ( isp , " isp_fibre_init " , sizeof ( * icbp ) , icbp ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
return ;
1998-04-22 17:54:58 +00:00
}
2006-11-02 03:21:32 +00:00
isp - > isp_reqidx = 0 ;
isp - > isp_reqodx = 0 ;
1998-04-22 17:54:58 +00:00
isp - > isp_residx = 0 ;
/*
1999-03-17 05:04:39 +00:00
* Whatever happens , we ' re now committed to being here .
*/
isp - > isp_state = ISP_INITSTATE ;
}
2006-11-02 03:21:32 +00:00
static void
isp_fibre_init_2400 ( ispsoftc_t * isp )
2001-02-11 03:44:43 +00:00
{
2006-11-02 03:21:32 +00:00
fcparam * fcp ;
isp_icb_2400_t local , * icbp = & local ;
2001-02-11 03:44:43 +00:00
mbreg_t mbs ;
2009-08-01 01:04:26 +00:00
int chan ;
/*
* Check to see whether all channels have * some * kind of role
*/
for ( chan = 0 ; chan < isp - > isp_nchan ; chan + + ) {
fcp = FCPARAM ( isp , chan ) ;
if ( fcp - > role ! = ISP_ROLE_NONE ) {
break ;
}
}
if ( chan = = isp - > isp_nchan ) {
isp_prt ( isp , ISP_LOGDEBUG0 , " all %d channels with role 'none' " , chan ) ;
isp - > isp_state = ISP_INITSTATE ;
return ;
}
2006-11-02 03:21:32 +00:00
2009-08-01 01:04:26 +00:00
/*
* Start with channel 0.
*/
fcp = FCPARAM ( isp , 0 ) ;
2001-02-11 03:44:43 +00:00
2006-11-02 03:21:32 +00:00
/*
* Turn on LIP F8 async event ( 1 )
*/
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_SET_FIRMWARE_OPTIONS , MBLOGALL , 0 ) ;
2006-11-02 03:21:32 +00:00
mbs . param [ 1 ] = 1 ;
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ;
2001-02-11 03:44:43 +00:00
}
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( icbp , sizeof ( * icbp ) ) ;
icbp - > icb_fwoptions1 = fcp - > isp_fwoptions ;
if ( fcp - > role & ISP_ROLE_TARGET ) {
icbp - > icb_fwoptions1 | = ICB2400_OPT1_TGT_ENABLE ;
2006-11-02 03:21:32 +00:00
} else {
2009-08-01 01:04:26 +00:00
icbp - > icb_fwoptions1 & = ~ ICB2400_OPT1_TGT_ENABLE ;
2006-11-02 03:21:32 +00:00
}
2009-08-01 01:04:26 +00:00
if ( fcp - > role & ISP_ROLE_INITIATOR ) {
icbp - > icb_fwoptions1 & = ~ ICB2400_OPT1_INI_DISABLE ;
2006-11-02 03:21:32 +00:00
} else {
2009-08-01 01:04:26 +00:00
icbp - > icb_fwoptions1 | = ICB2400_OPT1_INI_DISABLE ;
2006-11-02 03:21:32 +00:00
}
icbp - > icb_version = ICB_VERSION1 ;
2009-08-01 01:04:26 +00:00
icbp - > icb_maxfrmlen = DEFAULT_FRAMESIZE ( isp ) ;
if ( icbp - > icb_maxfrmlen < ICB_MIN_FRMLEN | | icbp - > icb_maxfrmlen > ICB_MAX_FRMLEN ) {
isp_prt ( isp , ISP_LOGERR , " bad frame length (%d) from NVRAM- using %d " , DEFAULT_FRAMESIZE ( isp ) , ICB_DFLT_FRMLEN ) ;
2006-11-02 03:21:32 +00:00
icbp - > icb_maxfrmlen = ICB_DFLT_FRMLEN ;
}
2009-08-01 01:04:26 +00:00
icbp - > icb_execthrottle = DEFAULT_EXEC_THROTTLE ( isp ) ;
2006-11-02 03:21:32 +00:00
if ( icbp - > icb_execthrottle < 1 ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR , " bad execution throttle of %d- using %d " , DEFAULT_EXEC_THROTTLE ( isp ) , ICB_DFLT_THROTTLE ) ;
2006-11-02 03:21:32 +00:00
icbp - > icb_execthrottle = ICB_DFLT_THROTTLE ;
}
2009-08-01 01:04:26 +00:00
if ( icbp - > icb_fwoptions1 & ICB2400_OPT1_TGT_ENABLE ) {
2006-11-02 03:21:32 +00:00
/*
* Get current resource count
*/
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_GET_RESOURCE_COUNT , MBLOGALL , 0 ) ;
2006-11-02 03:21:32 +00:00
mbs . obits = 0x4cf ;
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ;
}
icbp - > icb_xchgcnt = mbs . param [ 3 ] ;
}
icbp - > icb_hardaddr = fcp - > isp_loopid ;
2009-08-01 01:04:26 +00:00
if ( icbp - > icb_hardaddr > = LOCAL_LOOP_LIM ) {
2007-02-23 21:59:21 +00:00
icbp - > icb_hardaddr = 0 ;
2006-11-02 03:21:32 +00:00
}
2009-08-01 01:04:26 +00:00
/*
* Force this on .
*/
icbp - > icb_fwoptions1 | = ICB2400_OPT1_HARD_ADDRESS ;
2006-11-02 03:21:32 +00:00
icbp - > icb_fwoptions2 = fcp - > isp_xfwoptions ;
2009-08-01 01:04:26 +00:00
switch ( isp - > isp_confopts & ISP_CFG_PORT_PREF ) {
#if 0
2006-11-02 03:21:32 +00:00
case ISP_CFG_NPORT :
2009-08-01 01:04:26 +00:00
/*
* XXX : This causes the f / w to crash .
*/
2006-11-02 03:21:32 +00:00
icbp - > icb_fwoptions2 & = ~ ICB2400_OPT2_TOPO_MASK ;
icbp - > icb_fwoptions2 | = ICB2400_OPT2_PTP_2_LOOP ;
break ;
2009-08-01 01:04:26 +00:00
# endif
2006-11-02 03:21:32 +00:00
case ISP_CFG_NPORT_ONLY :
icbp - > icb_fwoptions2 & = ~ ICB2400_OPT2_TOPO_MASK ;
icbp - > icb_fwoptions2 | = ICB2400_OPT2_PTP_ONLY ;
break ;
case ISP_CFG_LPORT_ONLY :
icbp - > icb_fwoptions2 & = ~ ICB2400_OPT2_TOPO_MASK ;
icbp - > icb_fwoptions2 | = ICB2400_OPT2_LOOP_ONLY ;
break ;
default :
icbp - > icb_fwoptions2 & = ~ ICB2400_OPT2_TOPO_MASK ;
icbp - > icb_fwoptions2 | = ICB2400_OPT2_LOOP_2_PTP ;
break ;
}
2009-08-01 01:04:26 +00:00
/* force this on for now */
icbp - > icb_fwoptions2 | = ICB2400_OPT2_ZIO ;
2006-11-02 03:21:32 +00:00
switch ( icbp - > icb_fwoptions2 & ICB2400_OPT2_TIMER_MASK ) {
case ICB2400_OPT2_ZIO :
case ICB2400_OPT2_ZIO1 :
icbp - > icb_idelaytimer = 0 ;
break ;
case 0 :
break ;
default :
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGWARN , " bad value %x in fwopt2 timer field " , icbp - > icb_fwoptions2 & ICB2400_OPT2_TIMER_MASK ) ;
2006-11-02 03:21:32 +00:00
icbp - > icb_fwoptions2 & = ~ ICB2400_OPT2_TIMER_MASK ;
break ;
}
2009-08-01 01:04:26 +00:00
/*
* We don ' t support FCTAPE , so clear it .
*/
icbp - > icb_fwoptions2 & = ~ ICB2400_OPT2_FCTAPE ;
2006-11-02 03:21:32 +00:00
icbp - > icb_fwoptions3 = fcp - > isp_zfwoptions ;
icbp - > icb_fwoptions3 & = ~ ICB2400_OPT3_RATE_AUTO ;
if ( isp - > isp_confopts & ISP_CFG_ONEGB ) {
icbp - > icb_fwoptions3 | = ICB2400_OPT3_RATE_ONEGB ;
} else if ( isp - > isp_confopts & ISP_CFG_TWOGB ) {
icbp - > icb_fwoptions3 | = ICB2400_OPT3_RATE_TWOGB ;
} else if ( isp - > isp_confopts & ISP_CFG_FOURGB ) {
icbp - > icb_fwoptions3 | = ICB2400_OPT3_RATE_FOURGB ;
} else {
icbp - > icb_fwoptions3 | = ICB2400_OPT3_RATE_AUTO ;
}
if ( ( isp - > isp_confopts & ISP_CFG_OWNLOOPID ) = = 0 ) {
icbp - > icb_fwoptions3 | = ICB2400_OPT3_SOFTID ;
}
icbp - > icb_logintime = ICB_LOGIN_TOV ;
2009-08-01 01:04:26 +00:00
if ( fcp - > isp_wwnn & & fcp - > isp_wwpn & & ( fcp - > isp_wwnn > > 60 ) ! = 2 ) {
2006-11-02 03:21:32 +00:00
icbp - > icb_fwoptions1 | = ICB2400_OPT1_BOTH_WWNS ;
2009-08-01 01:04:26 +00:00
MAKE_NODE_NAME_FROM_WWN ( icbp - > icb_portname , fcp - > isp_wwpn ) ;
MAKE_NODE_NAME_FROM_WWN ( icbp - > icb_nodename , fcp - > isp_wwnn ) ;
isp_prt ( isp , ISP_LOGDEBUG1 , " Setting ICB Node 0x%08x%08x Port 0x%08x%08x " , ( ( uint32_t ) ( fcp - > isp_wwnn > > 32 ) ) , ( ( uint32_t ) ( fcp - > isp_wwnn ) ) ,
( ( uint32_t ) ( fcp - > isp_wwpn > > 32 ) ) , ( ( uint32_t ) ( fcp - > isp_wwpn ) ) ) ;
} else if ( fcp - > isp_wwpn ) {
2006-11-02 03:21:32 +00:00
icbp - > icb_fwoptions1 & = ~ ICB2400_OPT1_BOTH_WWNS ;
2009-08-01 01:04:26 +00:00
MAKE_NODE_NAME_FROM_WWN ( icbp - > icb_portname , fcp - > isp_wwpn ) ;
isp_prt ( isp , ISP_LOGDEBUG1 , " Setting ICB Node to be same as Port 0x%08x%08x " , ( ( uint32_t ) ( fcp - > isp_wwpn > > 32 ) ) , ( ( uint32_t ) ( fcp - > isp_wwpn ) ) ) ;
2006-11-02 03:21:32 +00:00
} else {
isp_prt ( isp , ISP_LOGERR , " No valid WWNs to use " ) ;
return ;
}
icbp - > icb_retry_count = fcp - > isp_retry_count ;
icbp - > icb_rqstqlen = RQUEST_QUEUE_LEN ( isp ) ;
if ( icbp - > icb_rqstqlen < 8 ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR , " bad request queue length %d " , icbp - > icb_rqstqlen ) ;
2006-11-02 03:21:32 +00:00
return ;
}
icbp - > icb_rsltqlen = RESULT_QUEUE_LEN ( isp ) ;
if ( icbp - > icb_rsltqlen < 8 ) {
isp_prt ( isp , ISP_LOGERR , " bad result queue length %d " ,
icbp - > icb_rsltqlen ) ;
return ;
}
icbp - > icb_rqstaddr [ RQRSP_ADDR0015 ] = DMA_WD0 ( isp - > isp_rquest_dma ) ;
icbp - > icb_rqstaddr [ RQRSP_ADDR1631 ] = DMA_WD1 ( isp - > isp_rquest_dma ) ;
icbp - > icb_rqstaddr [ RQRSP_ADDR3247 ] = DMA_WD2 ( isp - > isp_rquest_dma ) ;
icbp - > icb_rqstaddr [ RQRSP_ADDR4863 ] = DMA_WD3 ( isp - > isp_rquest_dma ) ;
icbp - > icb_respaddr [ RQRSP_ADDR0015 ] = DMA_WD0 ( isp - > isp_result_dma ) ;
icbp - > icb_respaddr [ RQRSP_ADDR1631 ] = DMA_WD1 ( isp - > isp_result_dma ) ;
icbp - > icb_respaddr [ RQRSP_ADDR3247 ] = DMA_WD2 ( isp - > isp_result_dma ) ;
icbp - > icb_respaddr [ RQRSP_ADDR4863 ] = DMA_WD3 ( isp - > isp_result_dma ) ;
# ifdef ISP_TARGET_MODE
2009-08-01 01:04:26 +00:00
/* unconditionally set up the ATIO queue if we support target mode */
icbp - > icb_atioqlen = RESULT_QUEUE_LEN ( isp ) ;
if ( icbp - > icb_atioqlen < 8 ) {
isp_prt ( isp , ISP_LOGERR , " bad ATIO queue length %d " , icbp - > icb_atioqlen ) ;
return ;
2006-11-02 03:21:32 +00:00
}
2009-08-01 01:04:26 +00:00
icbp - > icb_atioqaddr [ RQRSP_ADDR0015 ] = DMA_WD0 ( isp - > isp_atioq_dma ) ;
icbp - > icb_atioqaddr [ RQRSP_ADDR1631 ] = DMA_WD1 ( isp - > isp_atioq_dma ) ;
icbp - > icb_atioqaddr [ RQRSP_ADDR3247 ] = DMA_WD2 ( isp - > isp_atioq_dma ) ;
icbp - > icb_atioqaddr [ RQRSP_ADDR4863 ] = DMA_WD3 ( isp - > isp_atioq_dma ) ;
isp_prt ( isp , ISP_LOGDEBUG0 , " isp_fibre_init_2400: atioq %04x%04x%04x%04x " , DMA_WD3 ( isp - > isp_atioq_dma ) , DMA_WD2 ( isp - > isp_atioq_dma ) ,
DMA_WD1 ( isp - > isp_atioq_dma ) , DMA_WD0 ( isp - > isp_atioq_dma ) ) ;
2006-11-02 03:21:32 +00:00
# endif
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 , " isp_fibre_init_2400: fwopt1 0x%x fwopt2 0x%x fwopt3 0x%x " , icbp - > icb_fwoptions1 , icbp - > icb_fwoptions2 , icbp - > icb_fwoptions3 ) ;
2006-11-02 03:21:32 +00:00
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 , " isp_fibre_init_2400: rqst %04x%04x%04x%04x rsp %04x%04x%04x%04x " , DMA_WD3 ( isp - > isp_rquest_dma ) , DMA_WD2 ( isp - > isp_rquest_dma ) ,
DMA_WD1 ( isp - > isp_rquest_dma ) , DMA_WD0 ( isp - > isp_rquest_dma ) , DMA_WD3 ( isp - > isp_result_dma ) , DMA_WD2 ( isp - > isp_result_dma ) ,
2006-11-02 03:21:32 +00:00
DMA_WD1 ( isp - > isp_result_dma ) , DMA_WD0 ( isp - > isp_result_dma ) ) ;
if ( isp - > isp_dblev & ISP_LOGDEBUG1 ) {
2009-08-01 01:04:26 +00:00
isp_print_bytes ( isp , " isp_fibre_init_2400 " , sizeof ( * icbp ) , icbp ) ;
}
if ( FC_SCRATCH_ACQUIRE ( isp , 0 ) ) {
isp_prt ( isp , ISP_LOGERR , sacq ) ;
return ;
2006-11-02 03:21:32 +00:00
}
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( fcp - > isp_scratch , ISP_FC_SCRLEN ) ;
2006-11-02 03:21:32 +00:00
isp_put_icb_2400 ( isp , icbp , fcp - > isp_scratch ) ;
2009-08-01 01:04:26 +00:00
/*
* Now fill in information about any additional channels
*/
if ( isp - > isp_nchan > 1 ) {
isp_icb_2400_vpinfo_t vpinfo , * vdst ;
vp_port_info_t pi , * pdst ;
size_t amt = 0 ;
uint8_t * off ;
vpinfo . vp_count = isp - > isp_nchan - 1 ;
vpinfo . vp_global_options = 0 ;
off = fcp - > isp_scratch ;
off + = ICB2400_VPINFO_OFF ;
vdst = ( isp_icb_2400_vpinfo_t * ) off ;
isp_put_icb_2400_vpinfo ( isp , & vpinfo , vdst ) ;
amt = ICB2400_VPINFO_OFF + sizeof ( isp_icb_2400_vpinfo_t ) ;
for ( chan = 1 ; chan < isp - > isp_nchan ; chan + + ) {
fcparam * fcp2 ;
ISP_MEMZERO ( & pi , sizeof ( pi ) ) ;
fcp2 = FCPARAM ( isp , chan ) ;
if ( fcp2 - > role ! = ISP_ROLE_NONE ) {
pi . vp_port_options = ICB2400_VPOPT_ENABLED ;
if ( fcp2 - > role & ISP_ROLE_INITIATOR ) {
pi . vp_port_options | = ICB2400_VPOPT_INI_ENABLE ;
}
if ( ( fcp2 - > role & ISP_ROLE_TARGET ) = = 0 ) {
pi . vp_port_options | = ICB2400_VPOPT_TGT_DISABLE ;
}
MAKE_NODE_NAME_FROM_WWN ( pi . vp_port_portname , fcp2 - > isp_wwpn ) ;
MAKE_NODE_NAME_FROM_WWN ( pi . vp_port_nodename , fcp2 - > isp_wwnn ) ;
}
off = fcp - > isp_scratch ;
off + = ICB2400_VPINFO_PORT_OFF ( chan ) ;
pdst = ( vp_port_info_t * ) off ;
isp_put_vp_port_info ( isp , & pi , pdst ) ;
amt + = ICB2400_VPOPT_WRITE_SIZE ;
}
}
2006-11-02 03:21:32 +00:00
/*
* Init the firmware
*/
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , 0 , MBLOGALL , 30000000 ) ;
if ( isp - > isp_nchan > 1 ) {
mbs . param [ 0 ] = MBOX_INIT_FIRMWARE_MULTI_ID ;
} else {
mbs . param [ 0 ] = MBOX_INIT_FIRMWARE ;
}
2006-11-02 03:21:32 +00:00
mbs . param [ 2 ] = DMA_WD1 ( fcp - > isp_scdma ) ;
mbs . param [ 3 ] = DMA_WD0 ( fcp - > isp_scdma ) ;
mbs . param [ 6 ] = DMA_WD3 ( fcp - > isp_scdma ) ;
mbs . param [ 7 ] = DMA_WD2 ( fcp - > isp_scdma ) ;
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 , " INIT F/W from %04x%04x%04x%04x " , DMA_WD3 ( fcp - > isp_scdma ) , DMA_WD2 ( fcp - > isp_scdma ) , DMA_WD1 ( fcp - > isp_scdma ) , DMA_WD0 ( fcp - > isp_scdma ) ) ;
2006-11-02 03:21:32 +00:00
MEMORYBARRIER ( isp , SYNC_SFORDEV , 0 , sizeof ( * icbp ) ) ;
isp_mboxcmd ( isp , & mbs ) ;
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , 0 ) ;
2006-11-02 03:21:32 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ;
}
isp - > isp_reqidx = 0 ;
isp - > isp_reqodx = 0 ;
isp - > isp_residx = 0 ;
/*
* Whatever happens , we ' re now committed to being here .
*/
isp - > isp_state = ISP_INITSTATE ;
}
static void
2009-08-01 01:04:26 +00:00
isp_mark_portdb ( ispsoftc_t * isp , int chan , int disposition )
2006-11-02 03:21:32 +00:00
{
2009-08-01 01:04:26 +00:00
fcparam * fcp = FCPARAM ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
int i ;
2009-08-01 01:04:26 +00:00
if ( chan < 0 | | chan > = isp - > isp_nchan ) {
isp_prt ( isp , ISP_LOGWARN , " isp_mark_portdb: bad channel %d " , chan ) ;
return ;
}
2006-11-02 03:21:32 +00:00
for ( i = 0 ; i < MAX_FC_TARG ; i + + ) {
2009-08-01 01:04:26 +00:00
if ( fcp - > portdb [ i ] . target_mode ) {
if ( disposition < 0 ) {
isp_prt ( isp , ISP_LOGTINFO , " isp_mark_portdb: Chan %d zeroing handle 0x " " %04x port 0x%06x " , chan ,
fcp - > portdb [ i ] . handle , fcp - > portdb [ i ] . portid ) ;
ISP_MEMZERO ( & fcp - > portdb [ i ] , sizeof ( fcportdb_t ) ) ;
}
continue ;
}
if ( disposition = = 0 ) {
ISP_MEMZERO ( & fcp - > portdb [ i ] , sizeof ( fcportdb_t ) ) ;
2006-11-02 03:21:32 +00:00
} else {
switch ( fcp - > portdb [ i ] . state ) {
case FC_PORTDB_STATE_CHANGED :
case FC_PORTDB_STATE_PENDING_VALID :
case FC_PORTDB_STATE_VALID :
case FC_PORTDB_STATE_PROBATIONAL :
2009-08-01 01:04:26 +00:00
fcp - > portdb [ i ] . state = FC_PORTDB_STATE_PROBATIONAL ;
2006-11-02 03:21:32 +00:00
break ;
2006-11-14 08:45:48 +00:00
case FC_PORTDB_STATE_ZOMBIE :
break ;
2006-11-02 03:21:32 +00:00
case FC_PORTDB_STATE_NIL :
default :
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( & fcp - > portdb [ i ] , sizeof ( fcportdb_t ) ) ;
fcp - > portdb [ i ] . state = FC_PORTDB_STATE_NIL ;
2006-11-02 03:21:32 +00:00
break ;
}
}
}
}
/*
* Perform an IOCB PLOGI or LOGO via EXECUTE IOCB A64 for 24 XX cards
2006-11-18 03:53:16 +00:00
* or via FABRIC LOGIN / FABRIC LOGOUT for other cards .
2006-11-02 03:21:32 +00:00
*/
2006-11-18 03:53:16 +00:00
static int
2009-08-01 01:04:26 +00:00
isp_plogx ( ispsoftc_t * isp , int chan , uint16_t handle , uint32_t portid ,
int flags , int gs )
2006-11-02 03:21:32 +00:00
{
mbreg_t mbs ;
uint8_t q [ QENTRY_LEN ] ;
2006-11-18 03:53:16 +00:00
isp_plogx_t * plp ;
2009-08-01 01:04:26 +00:00
fcparam * fcp ;
2006-11-18 03:53:16 +00:00
uint8_t * scp ;
2006-11-02 03:21:32 +00:00
uint32_t sst , parm1 ;
2009-08-01 01:04:26 +00:00
int rval , lev ;
const char * msg ;
char buf [ 64 ] ;
2006-11-18 03:53:16 +00:00
if ( ! IS_24XX ( isp ) ) {
int action = flags & PLOGX_FLG_CMD_MASK ;
if ( action = = PLOGX_FLG_CMD_PLOGI ) {
return ( isp_port_login ( isp , handle , portid ) ) ;
} else if ( action = = PLOGX_FLG_CMD_LOGO ) {
return ( isp_port_logout ( isp , handle , portid ) ) ;
} else {
return ( MBOX_INVALID_COMMAND ) ;
}
}
2006-11-02 03:21:32 +00:00
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( q , QENTRY_LEN ) ;
2006-11-18 03:53:16 +00:00
plp = ( isp_plogx_t * ) q ;
2006-11-02 03:21:32 +00:00
plp - > plogx_header . rqs_entry_count = 1 ;
plp - > plogx_header . rqs_entry_type = RQSTYPE_LOGIN ;
plp - > plogx_handle = 0xffffffff ;
plp - > plogx_nphdl = handle ;
2009-08-01 01:04:26 +00:00
plp - > plogx_vphdl = chan ;
2006-11-02 03:21:32 +00:00
plp - > plogx_portlo = portid ;
plp - > plogx_rspsz_porthi = ( portid > > 16 ) & 0xff ;
2006-11-18 03:53:16 +00:00
plp - > plogx_flags = flags ;
2006-11-02 03:21:32 +00:00
if ( isp - > isp_dblev & ISP_LOGDEBUG1 ) {
isp_print_bytes ( isp , " IOCB LOGX " , QENTRY_LEN , plp ) ;
}
2006-11-18 03:53:16 +00:00
if ( gs = = 0 ) {
2009-08-01 01:04:26 +00:00
if ( FC_SCRATCH_ACQUIRE ( isp , chan ) ) {
isp_prt ( isp , ISP_LOGERR , sacq ) ;
return ( - 1 ) ;
}
2006-11-18 03:53:16 +00:00
}
2009-08-01 01:04:26 +00:00
fcp = FCPARAM ( isp , chan ) ;
scp = fcp - > isp_scratch ;
2006-11-02 03:21:32 +00:00
isp_put_plogx ( isp , plp , ( isp_plogx_t * ) scp ) ;
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_EXEC_COMMAND_IOCB_A64 , MBLOGALL , 500000 ) ;
2006-11-02 03:21:32 +00:00
mbs . param [ 1 ] = QENTRY_LEN ;
2009-08-01 01:04:26 +00:00
mbs . param [ 2 ] = DMA_WD1 ( fcp - > isp_scdma ) ;
mbs . param [ 3 ] = DMA_WD0 ( fcp - > isp_scdma ) ;
mbs . param [ 6 ] = DMA_WD3 ( fcp - > isp_scdma ) ;
mbs . param [ 7 ] = DMA_WD2 ( fcp - > isp_scdma ) ;
2006-11-02 03:21:32 +00:00
MEMORYBARRIER ( isp , SYNC_SFORDEV , 0 , QENTRY_LEN ) ;
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
2006-11-18 03:53:16 +00:00
rval = mbs . param [ 0 ] ;
goto out ;
2006-11-02 03:21:32 +00:00
}
MEMORYBARRIER ( isp , SYNC_SFORCPU , QENTRY_LEN , QENTRY_LEN ) ;
scp + = QENTRY_LEN ;
isp_get_plogx ( isp , ( isp_plogx_t * ) scp , plp ) ;
if ( isp - > isp_dblev & ISP_LOGDEBUG1 ) {
isp_print_bytes ( isp , " IOCB LOGX response " , QENTRY_LEN , plp ) ;
}
if ( plp - > plogx_status = = PLOGX_STATUS_OK ) {
2006-11-18 03:53:16 +00:00
rval = 0 ;
goto out ;
2006-11-02 03:21:32 +00:00
} else if ( plp - > plogx_status ! = PLOGX_STATUS_IOCBERR ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGWARN ,
" status 0x%x on port login IOCB chanel %d " ,
plp - > plogx_status , chan ) ;
2006-11-18 03:53:16 +00:00
rval = - 1 ;
goto out ;
2006-11-02 03:21:32 +00:00
}
sst = plp - > plogx_ioparm [ 0 ] . lo16 | ( plp - > plogx_ioparm [ 0 ] . hi16 < < 16 ) ;
parm1 = plp - > plogx_ioparm [ 1 ] . lo16 | ( plp - > plogx_ioparm [ 1 ] . hi16 < < 16 ) ;
2006-11-18 03:53:16 +00:00
rval = - 1 ;
2009-08-01 01:04:26 +00:00
lev = ISP_LOGERR ;
msg = NULL ;
2006-11-02 03:21:32 +00:00
switch ( sst ) {
case PLOGX_IOCBERR_NOLINK :
2009-08-01 01:04:26 +00:00
msg = " no link " ;
2006-11-02 03:21:32 +00:00
break ;
case PLOGX_IOCBERR_NOIOCB :
2009-08-01 01:04:26 +00:00
msg = " no IOCB buffer " ;
2006-11-02 03:21:32 +00:00
break ;
case PLOGX_IOCBERR_NOXGHG :
2009-08-01 01:04:26 +00:00
msg = " no Exchange Control Block " ;
2006-11-02 03:21:32 +00:00
break ;
case PLOGX_IOCBERR_FAILED :
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) ,
" reason 0x%x (last LOGIN state 0x%x) " ,
parm1 & 0xff , ( parm1 > > 8 ) & 0xff ) ;
msg = buf ;
2006-11-02 03:21:32 +00:00
break ;
case PLOGX_IOCBERR_NOFABRIC :
2009-08-01 01:04:26 +00:00
msg = " no fabric " ;
2006-11-02 03:21:32 +00:00
break ;
case PLOGX_IOCBERR_NOTREADY :
2009-08-01 01:04:26 +00:00
msg = " firmware not ready " ;
2006-11-02 03:21:32 +00:00
break ;
case PLOGX_IOCBERR_NOLOGIN :
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " not logged in (last state 0x%x) " ,
2006-11-02 03:21:32 +00:00
parm1 ) ;
2009-08-01 01:04:26 +00:00
msg = buf ;
2006-11-18 03:53:16 +00:00
rval = MBOX_NOT_LOGGED_IN ;
2006-11-02 03:21:32 +00:00
break ;
case PLOGX_IOCBERR_REJECT :
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " LS_RJT = 0x%x " , parm1 ) ;
msg = buf ;
2006-11-02 03:21:32 +00:00
break ;
case PLOGX_IOCBERR_NOPCB :
2009-08-01 01:04:26 +00:00
msg = " no PCB allocated " ;
2006-11-02 03:21:32 +00:00
break ;
case PLOGX_IOCBERR_EINVAL :
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " invalid parameter at offset 0x%x " ,
parm1 ) ;
msg = buf ;
2006-11-02 03:21:32 +00:00
break ;
case PLOGX_IOCBERR_PORTUSED :
2009-08-01 01:04:26 +00:00
lev = ISP_LOGSANCFG | ISP_LOGDEBUG0 ;
ISP_SNPRINTF ( buf , sizeof ( buf ) ,
" already logged in with N-Port handle 0x%x " , parm1 ) ;
msg = buf ;
rval = MBOX_PORT_ID_USED | ( parm1 < < 16 ) ;
2006-11-02 03:21:32 +00:00
break ;
case PLOGX_IOCBERR_HNDLUSED :
2009-08-01 01:04:26 +00:00
lev = ISP_LOGSANCFG | ISP_LOGDEBUG0 ;
ISP_SNPRINTF ( buf , sizeof ( buf ) ,
" handle already used for PortID 0x%06x " , parm1 ) ;
msg = buf ;
2006-11-18 03:53:16 +00:00
rval = MBOX_LOOP_ID_USED ;
2006-11-02 03:21:32 +00:00
break ;
case PLOGX_IOCBERR_NOHANDLE :
2009-08-01 01:04:26 +00:00
msg = " no handle allocated " ;
2006-11-02 03:21:32 +00:00
break ;
case PLOGX_IOCBERR_NOFLOGI :
2009-08-01 01:04:26 +00:00
msg = " no FLOGI_ACC " ;
2006-11-02 03:21:32 +00:00
break ;
default :
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " status %x from %x " ,
plp - > plogx_status , flags ) ;
msg = buf ;
2006-11-02 03:21:32 +00:00
break ;
1999-03-17 05:04:39 +00:00
}
2009-08-01 01:04:26 +00:00
if ( msg ) {
isp_prt ( isp , ISP_LOGERR ,
" Chan %d PLOGX PortID 0x%06x to N-Port handle 0x%x: %s " ,
chan , portid , handle , msg ) ;
}
2006-11-18 03:53:16 +00:00
out :
if ( gs = = 0 ) {
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , chan ) ;
2006-11-18 03:53:16 +00:00
}
return ( rval ) ;
1999-03-17 05:04:39 +00:00
}
static int
2006-11-02 03:21:32 +00:00
isp_port_login ( ispsoftc_t * isp , uint16_t handle , uint32_t portid )
{
mbreg_t mbs ;
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_FABRIC_LOGIN , MBLOGNONE , 500000 ) ;
if ( ISP_CAP_2KLOGIN ( isp ) ) {
2006-11-02 03:21:32 +00:00
mbs . param [ 1 ] = handle ;
mbs . ibits = ( 1 < < 10 ) ;
} else {
mbs . param [ 1 ] = handle < < 8 ;
}
mbs . param [ 2 ] = portid > > 16 ;
mbs . param [ 3 ] = portid ;
mbs . logval = MBLOGNONE ;
2006-11-16 00:39:56 +00:00
mbs . timeout = 500000 ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
switch ( mbs . param [ 0 ] ) {
case MBOX_PORT_ID_USED :
isp_prt ( isp , ISP_LOGDEBUG0 ,
2009-08-01 01:04:26 +00:00
" isp_port_login: portid 0x%06x already logged in as %u " ,
2006-11-02 03:21:32 +00:00
portid , mbs . param [ 1 ] ) ;
return ( MBOX_PORT_ID_USED | ( mbs . param [ 1 ] < < 16 ) ) ;
case MBOX_LOOP_ID_USED :
isp_prt ( isp , ISP_LOGDEBUG0 ,
2009-08-01 01:04:26 +00:00
" isp_port_login: handle 0x%04x in use for port id 0x%02xXXXX " ,
2006-11-02 03:21:32 +00:00
handle , mbs . param [ 1 ] & 0xff ) ;
return ( MBOX_LOOP_ID_USED ) ;
case MBOX_COMMAND_COMPLETE :
return ( 0 ) ;
case MBOX_COMMAND_ERROR :
isp_prt ( isp , ISP_LOGINFO ,
2009-08-01 01:04:26 +00:00
" isp_port_login: error 0x%x in PLOGI to port 0x%06x " ,
2006-11-02 03:21:32 +00:00
mbs . param [ 1 ] , portid ) ;
return ( MBOX_COMMAND_ERROR ) ;
case MBOX_ALL_IDS_USED :
isp_prt ( isp , ISP_LOGINFO ,
2009-08-01 01:04:26 +00:00
" isp_port_login: all IDs used for fabric login " ) ;
2006-11-02 03:21:32 +00:00
return ( MBOX_ALL_IDS_USED ) ;
default :
isp_prt ( isp , ISP_LOGINFO ,
2009-08-01 01:04:26 +00:00
" isp_port_login: error 0x%x on port login of 0x%06x@0x%0x " ,
2006-11-02 03:21:32 +00:00
mbs . param [ 0 ] , portid , handle ) ;
return ( mbs . param [ 0 ] ) ;
}
}
2006-11-18 03:53:16 +00:00
static int
2006-11-02 03:21:32 +00:00
isp_port_logout ( ispsoftc_t * isp , uint16_t handle , uint32_t portid )
{
mbreg_t mbs ;
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_FABRIC_LOGOUT , MBLOGNONE , 500000 ) ;
if ( ISP_CAP_2KLOGIN ( isp ) ) {
2006-11-02 03:21:32 +00:00
mbs . param [ 1 ] = handle ;
mbs . ibits = ( 1 < < 10 ) ;
} else {
mbs . param [ 1 ] = handle < < 8 ;
}
isp_mboxcmd ( isp , & mbs ) ;
2006-11-18 03:53:16 +00:00
return ( mbs . param [ 0 ] = = MBOX_COMMAND_COMPLETE ? 0 : mbs . param [ 0 ] ) ;
2006-11-02 03:21:32 +00:00
}
static int
2009-08-01 01:04:26 +00:00
isp_getpdb ( ispsoftc_t * isp , int chan , uint16_t id , isp_pdb_t * pdb , int dolock )
1999-03-17 05:04:39 +00:00
{
2009-08-01 01:04:26 +00:00
fcparam * fcp = FCPARAM ( isp , chan ) ;
1999-03-17 05:04:39 +00:00
mbreg_t mbs ;
2006-11-02 03:21:32 +00:00
union {
isp_pdb_21xx_t fred ;
isp_pdb_24xx_t bill ;
} un ;
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_GET_PORT_DB , MBLOGALL & ~ MBOX_COMMAND_PARAM_ERROR , 250000 ) ;
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
2009-08-01 01:04:26 +00:00
mbs . ibits = ( 1 < < 9 ) | ( 1 < < 10 ) ;
2006-01-23 06:23:37 +00:00
mbs . param [ 1 ] = id ;
2009-08-01 01:04:26 +00:00
mbs . param [ 9 ] = chan ;
} else if ( ISP_CAP_2KLOGIN ( isp ) ) {
2006-11-02 03:21:32 +00:00
mbs . param [ 1 ] = id ;
2006-01-23 06:23:37 +00:00
} else {
mbs . param [ 1 ] = id < < 8 ;
}
2001-08-31 21:39:04 +00:00
mbs . param [ 2 ] = DMA_WD1 ( fcp - > isp_scdma ) ;
mbs . param [ 3 ] = DMA_WD0 ( fcp - > isp_scdma ) ;
mbs . param [ 6 ] = DMA_WD3 ( fcp - > isp_scdma ) ;
mbs . param [ 7 ] = DMA_WD2 ( fcp - > isp_scdma ) ;
2006-11-02 03:21:32 +00:00
if ( dolock ) {
2009-08-01 01:04:26 +00:00
if ( FC_SCRATCH_ACQUIRE ( isp , chan ) ) {
isp_prt ( isp , ISP_LOGERR , sacq ) ;
return ( - 1 ) ;
}
2006-11-02 03:21:32 +00:00
}
MEMORYBARRIER ( isp , SYNC_SFORDEV , 0 , sizeof ( un ) ) ;
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
if ( dolock ) {
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
}
2009-08-01 01:04:26 +00:00
return ( mbs . param [ 0 ] ) ;
2006-11-02 03:21:32 +00:00
}
if ( IS_24XX ( isp ) ) {
isp_get_pdb_24xx ( isp , fcp - > isp_scratch , & un . bill ) ;
pdb - > handle = un . bill . pdb_handle ;
pdb - > s3_role = un . bill . pdb_prli_svc3 ;
pdb - > portid = BITS2WORD_24XX ( un . bill . pdb_portid_bits ) ;
2009-08-01 01:04:26 +00:00
ISP_MEMCPY ( pdb - > portname , un . bill . pdb_portname , 8 ) ;
ISP_MEMCPY ( pdb - > nodename , un . bill . pdb_nodename , 8 ) ;
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d Port 0x%06x flags 0x%x curstate %x " ,
chan , pdb - > portid , un . bill . pdb_flags ,
un . bill . pdb_curstate ) ;
if ( un . bill . pdb_curstate < PDB2400_STATE_PLOGI_DONE | |
un . bill . pdb_curstate > PDB2400_STATE_LOGGED_IN ) {
mbs . param [ 0 ] = MBOX_NOT_LOGGED_IN ;
if ( dolock ) {
FC_SCRATCH_RELEASE ( isp , chan ) ;
}
return ( mbs . param [ 0 ] ) ;
}
2006-11-02 03:21:32 +00:00
} else {
isp_get_pdb_21xx ( isp , fcp - > isp_scratch , & un . fred ) ;
pdb - > handle = un . fred . pdb_loopid ;
pdb - > s3_role = un . fred . pdb_prli_svc3 ;
pdb - > portid = BITS2WORD ( un . fred . pdb_portid_bits ) ;
2009-08-01 01:04:26 +00:00
ISP_MEMCPY ( pdb - > portname , un . fred . pdb_portname , 8 ) ;
ISP_MEMCPY ( pdb - > nodename , un . fred . pdb_nodename , 8 ) ;
2006-11-02 03:21:32 +00:00
}
if ( dolock ) {
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , chan ) ;
1999-03-17 05:04:39 +00:00
}
2006-11-02 03:21:32 +00:00
return ( 0 ) ;
1999-03-17 05:04:39 +00:00
}
2009-08-01 01:04:26 +00:00
static void
isp_dump_chip_portdb ( ispsoftc_t * isp , int chan , int dolock )
{
isp_pdb_t pdb ;
int lim , loopid ;
if ( ISP_CAP_2KLOGIN ( isp ) ) {
lim = NPH_MAX_2K ;
} else {
lim = NPH_MAX ;
}
for ( loopid = 0 ; loopid ! = lim ; loopid + + ) {
if ( isp_getpdb ( isp , chan , loopid , & pdb , dolock ) ) {
continue ;
}
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGINFO , " Chan %d Loopid 0x%04x "
" PortID 0x%06x WWPN 0x%02x%02x%02x%02x%02x%02x%02x%02x " ,
chan , loopid , pdb . portid , pdb . portname [ 0 ] , pdb . portname [ 1 ] ,
pdb . portname [ 2 ] , pdb . portname [ 3 ] , pdb . portname [ 4 ] ,
pdb . portname [ 5 ] , pdb . portname [ 6 ] , pdb . portname [ 7 ] ) ;
}
}
2006-02-15 00:31:48 +00:00
static uint64_t
2009-08-01 01:04:26 +00:00
isp_get_wwn ( ispsoftc_t * isp , int chan , int loopid , int nodename )
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
{
2009-08-01 01:04:26 +00:00
uint64_t wwn = INI_NONE ;
fcparam * fcp = FCPARAM ( isp , chan ) ;
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
mbreg_t mbs ;
2009-08-01 01:04:26 +00:00
if ( fcp - > isp_fwstate < FW_READY | |
fcp - > isp_loopstate < LOOP_PDB_RCVD ) {
return ( wwn ) ;
}
MBSINIT ( & mbs , MBOX_GET_PORT_NAME , MBLOGALL & ~ MBOX_COMMAND_PARAM_ERROR , 500000 ) ;
if ( ISP_CAP_2KLOGIN ( isp ) ) {
2006-01-23 06:23:37 +00:00
mbs . param [ 1 ] = loopid ;
2006-11-02 03:21:32 +00:00
mbs . ibits = ( 1 < < 10 ) ;
2006-07-03 08:24:09 +00:00
if ( nodename ) {
mbs . param [ 10 ] = 1 ;
}
2009-08-01 01:04:26 +00:00
if ( ISP_CAP_MULTI_ID ( isp ) ) {
mbs . ibits | = ( 1 < < 9 ) ;
mbs . param [ 9 ] = chan ;
}
2006-01-23 06:23:37 +00:00
} else {
mbs . param [ 1 ] = loopid < < 8 ;
2006-07-03 08:24:09 +00:00
if ( nodename ) {
2006-01-23 06:23:37 +00:00
mbs . param [ 1 ] | = 1 ;
2006-07-03 08:24:09 +00:00
}
2006-01-23 06:23:37 +00:00
}
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ( wwn ) ;
}
if ( IS_24XX ( isp ) ) {
wwn =
2009-08-01 01:04:26 +00:00
( ( ( uint64_t ) ( mbs . param [ 2 ] > > 8 ) ) < < 56 ) |
2006-11-02 03:21:32 +00:00
( ( ( uint64_t ) ( mbs . param [ 2 ] & 0xff ) ) < < 48 ) |
( ( ( uint64_t ) ( mbs . param [ 3 ] > > 8 ) ) < < 40 ) |
( ( ( uint64_t ) ( mbs . param [ 3 ] & 0xff ) ) < < 32 ) |
( ( ( uint64_t ) ( mbs . param [ 6 ] > > 8 ) ) < < 24 ) |
( ( ( uint64_t ) ( mbs . param [ 6 ] & 0xff ) ) < < 16 ) |
( ( ( uint64_t ) ( mbs . param [ 7 ] > > 8 ) ) < < 8 ) |
( ( ( uint64_t ) ( mbs . param [ 7 ] & 0xff ) ) ) ;
} else {
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
wwn =
2006-07-03 08:24:09 +00:00
( ( ( uint64_t ) ( mbs . param [ 2 ] & 0xff ) ) < < 56 ) |
2006-02-15 00:31:48 +00:00
( ( ( uint64_t ) ( mbs . param [ 2 ] > > 8 ) ) < < 48 ) |
( ( ( uint64_t ) ( mbs . param [ 3 ] & 0xff ) ) < < 40 ) |
( ( ( uint64_t ) ( mbs . param [ 3 ] > > 8 ) ) < < 32 ) |
( ( ( uint64_t ) ( mbs . param [ 6 ] & 0xff ) ) < < 24 ) |
( ( ( uint64_t ) ( mbs . param [ 6 ] > > 8 ) ) < < 16 ) |
( ( ( uint64_t ) ( mbs . param [ 7 ] & 0xff ) ) < < 8 ) |
( ( ( uint64_t ) ( mbs . param [ 7 ] > > 8 ) ) ) ;
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
}
return ( wwn ) ;
}
1999-03-17 05:04:39 +00:00
/*
2006-11-02 03:21:32 +00:00
* Make sure we have good FC link .
1999-03-17 05:04:39 +00:00
*/
static int
2009-08-01 01:04:26 +00:00
isp_fclink_test ( ispsoftc_t * isp , int chan , int usdelay )
1999-03-17 05:04:39 +00:00
{
mbreg_t mbs ;
2009-08-01 01:04:26 +00:00
int count , check_for_fabric , r ;
2006-02-15 00:31:48 +00:00
uint8_t lwfs ;
2006-11-02 03:21:32 +00:00
int loopid ;
1999-03-17 05:04:39 +00:00
fcparam * fcp ;
2006-11-02 03:21:32 +00:00
fcportdb_t * lp ;
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
isp_pdb_t pdb ;
2001-02-11 03:44:43 +00:00
2009-08-01 01:04:26 +00:00
fcp = FCPARAM ( isp , chan ) ;
1999-03-17 05:04:39 +00:00
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 , " Chan %d FC Link Test Entry " , chan ) ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
1999-03-17 05:04:39 +00:00
/*
* Wait up to N microseconds for F / W to go to a ready state .
1998-04-22 17:54:58 +00:00
*/
lwfs = FW_CONFIG_WAIT ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
count = 0 ;
while ( count < usdelay ) {
2006-02-15 00:31:48 +00:00
uint64_t enano ;
uint32_t wrk ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
NANOTIME_T hra , hrb ;
GET_NANOTIME ( & hra ) ;
2009-08-01 01:04:26 +00:00
isp_fw_state ( isp , chan ) ;
1998-04-22 17:54:58 +00:00
if ( lwfs ! = fcp - > isp_fwstate ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGCONFIG | ISP_LOGSANCFG , " Chan %d Firmware State <%s->%s> " , chan , isp_fc_fw_statename ( ( int ) lwfs ) , isp_fc_fw_statename ( ( int ) fcp - > isp_fwstate ) ) ;
1998-04-22 17:54:58 +00:00
lwfs = fcp - > isp_fwstate ;
}
if ( fcp - > isp_fwstate = = FW_READY ) {
break ;
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
GET_NANOTIME ( & hrb ) ;
/*
* Get the elapsed time in nanoseconds .
* Always guaranteed to be non - zero .
*/
enano = NANOTIME_SUB ( & hrb , & hra ) ;
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGDEBUG1 , " usec%d: 0x%lx->0x%lx enano 0x%x%08x " , count , ( long ) GET_NANOSEC ( & hra ) , ( long ) GET_NANOSEC ( & hrb ) , ( uint32_t ) ( enano > > 32 ) , ( uint32_t ) ( enano ) ) ;
2000-12-29 19:12:44 +00:00
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
/*
* If the elapsed time is less than 1 millisecond ,
* delay a period of time up to that millisecond of
* waiting .
2000-12-29 19:12:44 +00:00
*
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
* This peculiar code is an attempt to try and avoid
2006-02-15 00:31:48 +00:00
* invoking uint64_t math support functions for some
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
* platforms where linkage is a problem .
*/
if ( enano < ( 1000 * 1000 ) ) {
count + = 1000 ;
enano = ( 1000 * 1000 ) - enano ;
2006-02-15 00:31:48 +00:00
while ( enano > ( uint64_t ) 4000000000U ) {
2009-08-01 01:04:26 +00:00
ISP_SLEEP ( isp , 4000000 ) ;
2006-02-15 00:31:48 +00:00
enano - = ( uint64_t ) 4000000000U ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
wrk = enano ;
2001-03-14 04:11:56 +00:00
wrk / = 1000 ;
2009-08-01 01:04:26 +00:00
ISP_SLEEP ( isp , wrk ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
} else {
2006-02-15 00:31:48 +00:00
while ( enano > ( uint64_t ) 4000000000U ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
count + = 4000000 ;
2006-02-15 00:31:48 +00:00
enano - = ( uint64_t ) 4000000000U ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
wrk = enano ;
count + = ( wrk / 1000 ) ;
}
1998-04-22 17:54:58 +00:00
}
2009-08-01 01:04:26 +00:00
1998-04-22 17:54:58 +00:00
/*
1999-03-17 05:04:39 +00:00
* If we haven ' t gone to ' ready ' state , return .
1998-04-22 17:54:58 +00:00
*/
1999-03-17 05:04:39 +00:00
if ( fcp - > isp_fwstate ! = FW_READY ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGSANCFG , " %s: chan %d not at FW_READY state " , __func__ , chan ) ;
1999-03-17 05:04:39 +00:00
return ( - 1 ) ;
1998-04-22 17:54:58 +00:00
}
1999-03-25 22:52:45 +00:00
1999-03-17 05:04:39 +00:00
/*
2006-11-02 03:21:32 +00:00
* Get our Loop ID and Port ID .
1999-03-17 05:04:39 +00:00
*/
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_GET_LOOP_ID , MBLOGALL , 0 ) ;
if ( ISP_CAP_MULTI_ID ( isp ) ) {
mbs . param [ 9 ] = chan ;
mbs . ibits = ( 1 < < 9 ) ;
mbs . obits = ( 1 < < 7 ) ;
}
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
1999-03-17 05:04:39 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ( - 1 ) ;
}
2006-11-02 03:21:32 +00:00
2009-08-01 01:04:26 +00:00
if ( ISP_CAP_2KLOGIN ( isp ) ) {
2006-07-03 08:24:09 +00:00
fcp - > isp_loopid = mbs . param [ 1 ] ;
} else {
fcp - > isp_loopid = mbs . param [ 1 ] & 0xff ;
}
2006-11-02 03:21:32 +00:00
if ( IS_2100 ( isp ) ) {
fcp - > isp_topo = TOPO_NL_PORT ;
} else {
2000-05-09 01:14:43 +00:00
int topo = ( int ) mbs . param [ 6 ] ;
2006-11-02 03:21:32 +00:00
if ( topo < TOPO_NL_PORT | | topo > TOPO_PTP_STUB ) {
2000-05-09 01:14:43 +00:00
topo = TOPO_PTP_STUB ;
2006-11-02 03:21:32 +00:00
}
2000-05-09 01:14:43 +00:00
fcp - > isp_topo = topo ;
1999-10-17 18:58:22 +00:00
}
2006-02-02 09:02:16 +00:00
fcp - > isp_portid = mbs . param [ 2 ] | ( mbs . param [ 3 ] < < 16 ) ;
2000-05-09 01:14:43 +00:00
2002-08-17 17:29:15 +00:00
if ( IS_2100 ( isp ) ) {
/*
* Don ' t bother with fabric if we are using really old
* 2100 firmware . It ' s just not worth it .
*/
if ( ISP_FW_NEWER_THAN ( isp , 1 , 15 , 37 ) ) {
check_for_fabric = 1 ;
} else {
check_for_fabric = 0 ;
}
2009-08-01 01:04:26 +00:00
} else if ( fcp - > isp_topo = = TOPO_FL_PORT | | fcp - > isp_topo = = TOPO_F_PORT ) {
2001-02-11 03:44:43 +00:00
check_for_fabric = 1 ;
2006-11-02 03:21:32 +00:00
} else {
2001-02-11 03:44:43 +00:00
check_for_fabric = 0 ;
2006-11-02 03:21:32 +00:00
}
2009-08-01 01:04:26 +00:00
/*
* Check to make sure we got a valid loopid
* The 24 XX seems to mess this up for multiple channels .
*/
if ( fcp - > isp_topo = = TOPO_FL_PORT | | fcp - > isp_topo = = TOPO_NL_PORT ) {
uint8_t alpa = fcp - > isp_portid ;
if ( alpa = = 0 ) {
/* "Cannot Happen" */
isp_prt ( isp , ISP_LOGWARN , " Zero AL_PA for Loop Topology? " ) ;
} else {
int i ;
for ( i = 0 ; alpa_map [ i ] ; i + + ) {
if ( alpa_map [ i ] = = alpa ) {
break ;
}
}
if ( alpa_map [ i ] & & fcp - > isp_loopid ! = i ) {
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 , " Chan %d deriving loopid %d from AL_PA map (AL_PA 0x%x) and ignoring returned value %d (AL_PA 0x%x) " , chan , i , alpa_map [ i ] , fcp - > isp_loopid , alpa ) ;
fcp - > isp_loopid = i ;
}
}
}
if ( IS_24XX ( isp ) ) { /* XXX SHOULDN'T THIS BE FOR 2K F/W? XXX */
2006-11-02 03:21:32 +00:00
loopid = NPH_FL_ID ;
} else {
loopid = FL_ID ;
}
2009-08-01 01:04:26 +00:00
if ( check_for_fabric ) {
r = isp_getpdb ( isp , chan , loopid , & pdb , 1 ) ;
if ( r & & ( fcp - > isp_topo = = TOPO_F_PORT | | fcp - > isp_topo = = TOPO_FL_PORT ) ) {
isp_prt ( isp , ISP_LOGWARN , " fabric topology but cannot get info about fabric controller (0x%x) " , r ) ;
fcp - > isp_topo = TOPO_PTP_STUB ;
}
} else {
r = - 1 ;
}
if ( r = = 0 ) {
2000-05-09 01:14:43 +00:00
if ( IS_2100 ( isp ) ) {
2000-04-21 02:04:34 +00:00
fcp - > isp_topo = TOPO_FL_PORT ;
2000-05-09 01:14:43 +00:00
}
2006-11-02 03:21:32 +00:00
if ( pdb . portid = = 0 ) {
2001-02-11 03:44:43 +00:00
/*
* Crock .
*/
fcp - > isp_topo = TOPO_NL_PORT ;
goto not_on_fabric ;
}
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
/*
2000-05-09 01:14:43 +00:00
* Save the Fabric controller ' s port database entry .
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
*/
2006-11-02 03:21:32 +00:00
lp = & fcp - > portdb [ FL_ID ] ;
lp - > state = FC_PORTDB_STATE_PENDING_VALID ;
MAKE_WWN_FROM_NODE_NAME ( lp - > node_wwn , pdb . nodename ) ;
MAKE_WWN_FROM_NODE_NAME ( lp - > port_wwn , pdb . portname ) ;
lp - > roles = ( pdb . s3_role & SVC3_ROLE_MASK ) > > SVC3_ROLE_SHIFT ;
lp - > portid = pdb . portid ;
lp - > handle = pdb . handle ;
lp - > new_portid = lp - > portid ;
lp - > new_roles = lp - > roles ;
if ( IS_24XX ( isp ) ) {
2009-08-01 01:04:26 +00:00
fcp - > inorder = ( mbs . param [ 7 ] & ISP24XX_INORDER ) ! = 0 ;
if ( ISP_FW_NEWER_THAN ( isp , 4 , 0 , 27 ) ) {
fcp - > npiv_fabric = ( mbs . param [ 7 ] & ISP24XX_NPIV_SAN ) ! = 0 ;
if ( fcp - > npiv_fabric ) {
isp_prt ( isp , ISP_LOGCONFIG , " fabric supports NP-IV " ) ;
}
}
if ( chan ) {
fcp - > isp_sns_hdl = NPH_SNS_HDLBASE + chan ;
r = isp_plogx ( isp , chan , fcp - > isp_sns_hdl , SNS_PORT_ID , PLOGX_FLG_CMD_PLOGI | PLOGX_FLG_COND_PLOGI | PLOGX_FLG_SKIP_PRLI , 0 ) ;
if ( r ) {
isp_prt ( isp , ISP_LOGWARN , " %s: Chan %d cannot log into SNS " , __func__ , chan ) ;
return ( - 1 ) ;
}
} else {
fcp - > isp_sns_hdl = NPH_SNS_ID ;
}
r = isp_register_fc4_type_24xx ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
} else {
2009-08-01 01:04:26 +00:00
fcp - > isp_sns_hdl = SNS_ID ;
r = isp_register_fc4_type ( isp , chan ) ;
2007-01-05 22:59:26 +00:00
}
if ( r ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGWARN | ISP_LOGSANCFG , " %s: register fc4 type failed " , __func__ ) ;
2007-01-05 22:59:26 +00:00
return ( - 1 ) ;
2006-11-02 03:21:32 +00:00
}
2001-02-11 03:44:43 +00:00
} else {
not_on_fabric :
2006-11-02 03:21:32 +00:00
fcp - > portdb [ FL_ID ] . state = FC_PORTDB_STATE_NIL ;
2000-05-09 01:14:43 +00:00
}
2001-10-01 03:45:54 +00:00
fcp - > isp_gbspeed = 1 ;
2006-11-02 03:21:32 +00:00
if ( IS_23XX ( isp ) | | IS_24XX ( isp ) ) {
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_GET_SET_DATA_RATE , MBLOGALL , 3000000 ) ;
2001-10-01 03:45:54 +00:00
mbs . param [ 1 ] = MBGSD_GET_RATE ;
/* mbs.param[2] undefined if we're just getting rate */
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
2001-10-01 03:45:54 +00:00
if ( mbs . param [ 0 ] = = MBOX_COMMAND_COMPLETE ) {
2009-08-01 01:04:26 +00:00
if ( mbs . param [ 1 ] = = MBGSD_EIGHTGB ) {
isp_prt ( isp , ISP_LOGINFO , " Chan %d 8Gb link speed " , chan ) ;
fcp - > isp_gbspeed = 8 ;
} else if ( mbs . param [ 1 ] = = MBGSD_FOURGB ) {
isp_prt ( isp , ISP_LOGINFO , " Chan %d 4Gb link speed " , chan ) ;
2006-11-02 03:21:32 +00:00
fcp - > isp_gbspeed = 4 ;
2009-08-01 01:04:26 +00:00
} else if ( mbs . param [ 1 ] = = MBGSD_TWOGB ) {
isp_prt ( isp , ISP_LOGINFO , " Chan %d 2Gb link speed " , chan ) ;
2001-10-01 03:45:54 +00:00
fcp - > isp_gbspeed = 2 ;
2009-08-01 01:04:26 +00:00
} else if ( mbs . param [ 1 ] = = MBGSD_ONEGB ) {
isp_prt ( isp , ISP_LOGINFO , " Chan %d 1Gb link speed " , chan ) ;
fcp - > isp_gbspeed = 1 ;
2001-10-01 03:45:54 +00:00
}
}
}
2001-02-11 03:44:43 +00:00
/*
2006-11-02 03:21:32 +00:00
* Announce ourselves , too .
2001-02-11 03:44:43 +00:00
*/
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGCONFIG , topology , chan , ( uint32_t ) ( fcp - > isp_wwpn > > 32 ) , ( uint32_t ) fcp - > isp_wwpn , fcp - > isp_portid , fcp - > isp_loopid , isp_fc_toponame ( fcp ) ) ;
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 , " Chan %d FC Link Test Complete " , chan ) ;
1999-03-17 05:04:39 +00:00
return ( 0 ) ;
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
}
/*
2006-11-02 03:21:32 +00:00
* Complete the synchronization of our Port Database .
*
* At this point , we ' ve scanned the local loop ( if any ) and the fabric
* and performed fabric logins on all new devices .
*
* Our task here is to go through our port database and remove any entities
* that are still marked probational ( issuing PLOGO for ones which we had
* PLOGI ' d into ) or are dead .
*
* Our task here is to also check policy to decide whether devices which
* have * changed * in some way should still be kept active . For example ,
* if a device has just changed PortID , we can either elect to treat it
* as an old device or as a newly arrived device ( and notify the outer
* layer appropriately ) .
*
* We also do initiator map target id assignment here for new initiator
* devices and refresh old ones ot make sure that they point to the corret
* entities .
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
*/
static int
2009-08-01 01:04:26 +00:00
isp_pdb_sync ( ispsoftc_t * isp , int chan )
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
{
2009-08-01 01:04:26 +00:00
fcparam * fcp = FCPARAM ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
fcportdb_t * lp ;
uint16_t dbidx ;
if ( fcp - > isp_loopstate = = LOOP_READY ) {
return ( 0 ) ;
}
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
/*
2001-02-11 03:44:43 +00:00
* Make sure we ' re okay for doing this right now .
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
*/
2009-09-15 02:25:03 +00:00
if ( fcp - > isp_loopstate ! = LOOP_PDB_RCVD & & fcp - > isp_loopstate ! = LOOP_FSCAN_DONE & & fcp - > isp_loopstate ! = LOOP_LSCAN_DONE ) {
isp_prt ( isp , ISP_LOGWARN , " isp_pdb_sync: bad loopstate %d " , fcp - > isp_loopstate ) ;
2001-02-11 03:44:43 +00:00
return ( - 1 ) ;
}
2009-09-15 02:25:03 +00:00
if ( fcp - > isp_topo = = TOPO_FL_PORT | | fcp - > isp_topo = = TOPO_NL_PORT | | fcp - > isp_topo = = TOPO_N_PORT ) {
2001-02-11 03:44:43 +00:00
if ( fcp - > isp_loopstate < LOOP_LSCAN_DONE ) {
2009-08-01 01:04:26 +00:00
if ( isp_scan_loop ( isp , chan ) ! = 0 ) {
2009-09-15 02:25:03 +00:00
isp_prt ( isp , ISP_LOGWARN , " isp_pdb_sync: isp_scan_loop failed " ) ;
2001-02-11 03:44:43 +00:00
return ( - 1 ) ;
}
}
}
2000-05-09 01:14:43 +00:00
2006-11-02 03:21:32 +00:00
if ( fcp - > isp_topo = = TOPO_F_PORT | | fcp - > isp_topo = = TOPO_FL_PORT ) {
if ( fcp - > isp_loopstate < LOOP_FSCAN_DONE ) {
2009-08-01 01:04:26 +00:00
if ( isp_scan_fabric ( isp , chan ) ! = 0 ) {
2009-09-15 02:25:03 +00:00
isp_prt ( isp , ISP_LOGWARN , " isp_pdb_sync: isp_scan_fabric failed " ) ;
2006-11-02 03:21:32 +00:00
return ( - 1 ) ;
}
2001-02-11 03:44:43 +00:00
}
}
2009-09-15 02:25:03 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 , " Chan %d Synchronizing PDBs " , chan ) ;
2006-11-14 08:45:48 +00:00
2006-11-02 03:21:32 +00:00
fcp - > isp_loopstate = LOOP_SYNCING_PDB ;
2001-02-11 03:44:43 +00:00
2006-11-02 03:21:32 +00:00
for ( dbidx = 0 ; dbidx < MAX_FC_TARG ; dbidx + + ) {
lp = & fcp - > portdb [ dbidx ] ;
2001-02-11 03:44:43 +00:00
2009-08-01 01:04:26 +00:00
if ( lp - > state = = FC_PORTDB_STATE_NIL | | lp - > target_mode ) {
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
continue ;
}
1999-08-16 19:59:55 +00:00
2006-11-02 03:21:32 +00:00
if ( lp - > state = = FC_PORTDB_STATE_VALID ) {
if ( dbidx ! = FL_ID ) {
isp_prt ( isp ,
ISP_LOGERR , " portdb idx %d already valid " ,
dbidx ) ;
}
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
continue ;
}
1999-08-16 19:59:55 +00:00
2006-11-02 03:21:32 +00:00
switch ( lp - > state ) {
case FC_PORTDB_STATE_PROBATIONAL :
case FC_PORTDB_STATE_DEAD :
2006-11-14 08:45:48 +00:00
/*
2009-08-01 01:04:26 +00:00
* It ' s up to the outer layers to clear isp_dev_map .
2006-11-14 08:45:48 +00:00
*/
2006-11-02 03:21:32 +00:00
lp - > state = FC_PORTDB_STATE_NIL ;
2009-08-01 01:04:26 +00:00
isp_async ( isp , ISPASYNC_DEV_GONE , chan , lp ) ;
2006-11-02 03:21:32 +00:00
if ( lp - > autologin = = 0 ) {
2009-09-15 02:25:03 +00:00
( void ) isp_plogx ( isp , chan , lp - > handle , lp - > portid , PLOGX_FLG_CMD_LOGO | PLOGX_FLG_IMPLICIT | PLOGX_FLG_FREE_NPHDL , 0 ) ;
2006-01-23 06:23:37 +00:00
} else {
2006-11-02 03:21:32 +00:00
lp - > autologin = 0 ;
2001-02-11 03:44:43 +00:00
}
2006-11-02 03:21:32 +00:00
lp - > new_roles = 0 ;
lp - > new_portid = 0 ;
2006-11-14 08:45:48 +00:00
/*
* Note that we might come out of this with our state
* set to FC_PORTDB_STATE_ZOMBIE .
*/
2006-11-02 03:21:32 +00:00
break ;
case FC_PORTDB_STATE_NEW :
/*
2006-11-14 08:45:48 +00:00
* It ' s up to the outer layers to assign a virtual
2009-08-01 01:04:26 +00:00
* target id in isp_dev_map ( if any ) .
2006-11-02 03:21:32 +00:00
*/
lp - > portid = lp - > new_portid ;
lp - > roles = lp - > new_roles ;
lp - > state = FC_PORTDB_STATE_VALID ;
2009-08-01 01:04:26 +00:00
isp_async ( isp , ISPASYNC_DEV_ARRIVED , chan , lp ) ;
2006-11-02 03:21:32 +00:00
lp - > new_roles = 0 ;
lp - > new_portid = 0 ;
2006-11-14 08:45:48 +00:00
lp - > reserved = 0 ;
lp - > new_reserved = 0 ;
2006-11-02 03:21:32 +00:00
break ;
case FC_PORTDB_STATE_CHANGED :
2006-11-14 08:45:48 +00:00
/*
* XXXX FIX THIS
*/
2006-11-02 03:21:32 +00:00
lp - > state = FC_PORTDB_STATE_VALID ;
2009-08-01 01:04:26 +00:00
isp_async ( isp , ISPASYNC_DEV_CHANGED , chan , lp ) ;
2006-11-02 03:21:32 +00:00
lp - > new_roles = 0 ;
lp - > new_portid = 0 ;
2006-11-14 08:45:48 +00:00
lp - > reserved = 0 ;
lp - > new_reserved = 0 ;
2006-11-02 03:21:32 +00:00
break ;
case FC_PORTDB_STATE_PENDING_VALID :
lp - > portid = lp - > new_portid ;
lp - > roles = lp - > new_roles ;
2009-08-01 01:04:26 +00:00
if ( lp - > dev_map_idx ) {
int t = lp - > dev_map_idx - 1 ;
fcp - > isp_dev_map [ t ] = dbidx + 1 ;
2006-11-02 03:21:32 +00:00
}
2006-11-14 08:45:48 +00:00
lp - > state = FC_PORTDB_STATE_VALID ;
2009-08-01 01:04:26 +00:00
isp_async ( isp , ISPASYNC_DEV_STAYED , chan , lp ) ;
2006-11-02 03:21:32 +00:00
if ( dbidx ! = FL_ID ) {
lp - > new_roles = 0 ;
lp - > new_portid = 0 ;
}
2006-11-14 08:45:48 +00:00
lp - > reserved = 0 ;
lp - > new_reserved = 0 ;
break ;
case FC_PORTDB_STATE_ZOMBIE :
2006-11-02 03:21:32 +00:00
break ;
default :
2006-11-14 08:45:48 +00:00
isp_prt ( isp , ISP_LOGWARN ,
" isp_scan_loop: state %d for idx %d " ,
2006-11-02 03:21:32 +00:00
lp - > state , dbidx ) ;
2009-08-01 01:04:26 +00:00
isp_dump_portdb ( isp , chan ) ;
2001-02-11 03:44:43 +00:00
}
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
}
2006-11-02 03:21:32 +00:00
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
/*
2001-02-11 03:44:43 +00:00
* If we get here , we ' ve for sure seen not only a valid loop
* but know what is or isn ' t on it , so mark this for usage
* in isp_start .
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
*/
2001-02-11 03:44:43 +00:00
fcp - > loop_seen_once = 1 ;
fcp - > isp_loopstate = LOOP_READY ;
return ( 0 ) ;
}
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
2006-11-02 03:21:32 +00:00
/*
* Scan local loop for devices .
*/
2001-02-11 03:44:43 +00:00
static int
2009-08-01 01:04:26 +00:00
isp_scan_loop ( ispsoftc_t * isp , int chan )
2001-02-11 03:44:43 +00:00
{
2006-11-02 03:21:32 +00:00
fcportdb_t * lp , tmp ;
2009-08-01 01:04:26 +00:00
fcparam * fcp = FCPARAM ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
int i ;
2001-02-11 03:44:43 +00:00
isp_pdb_t pdb ;
2006-11-14 08:45:48 +00:00
uint16_t handle , lim = 0 ;
2006-11-02 03:21:32 +00:00
if ( fcp - > isp_fwstate < FW_READY | |
fcp - > isp_loopstate < LOOP_PDB_RCVD ) {
return ( - 1 ) ;
}
2001-02-11 03:44:43 +00:00
2006-11-02 03:21:32 +00:00
if ( fcp - > isp_loopstate > LOOP_SCANNING_LOOP ) {
return ( 0 ) ;
}
/*
* Check our connection topology .
*
* If we ' re a public or private loop , we scan 0. .125 as handle values .
2009-08-01 01:04:26 +00:00
* The firmware has ( typically ) peformed a PLOGI for us . We skip this
* step if we ' re a ISP_24XX in NP - IV mode .
2006-11-02 03:21:32 +00:00
*
* If we ' re a N - port connection , we treat this is a short loop ( 0. .1 ) .
*/
2001-02-11 03:44:43 +00:00
switch ( fcp - > isp_topo ) {
case TOPO_NL_PORT :
2009-08-01 01:04:26 +00:00
lim = LOCAL_LOOP_LIM ;
break ;
2006-11-02 03:21:32 +00:00
case TOPO_FL_PORT :
2009-08-01 01:04:26 +00:00
if ( IS_24XX ( isp ) & & isp - > isp_nchan > 1 ) {
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d Skipping Local Loop Scan " , chan ) ;
fcp - > isp_loopstate = LOOP_LSCAN_DONE ;
return ( 0 ) ;
}
2006-11-02 03:21:32 +00:00
lim = LOCAL_LOOP_LIM ;
2001-02-11 03:44:43 +00:00
break ;
case TOPO_N_PORT :
2006-11-02 03:21:32 +00:00
lim = 2 ;
2001-02-11 03:44:43 +00:00
break ;
default :
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d no loop topology to scan " , chan ) ;
2001-02-11 03:44:43 +00:00
fcp - > isp_loopstate = LOOP_LSCAN_DONE ;
return ( 0 ) ;
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
}
2006-07-03 08:24:09 +00:00
2006-11-02 03:21:32 +00:00
fcp - > isp_loopstate = LOOP_SCANNING_LOOP ;
2006-11-14 08:45:48 +00:00
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d FC scan loop 0..%d " , chan , lim - 1 ) ;
2006-07-03 08:24:09 +00:00
2001-01-15 18:33:08 +00:00
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
/*
2006-11-02 03:21:32 +00:00
* Run through the list and get the port database info for each one .
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
*/
2006-11-14 08:45:48 +00:00
for ( handle = 0 ; handle < lim ; handle + + ) {
2009-08-01 01:04:26 +00:00
int r ;
2001-02-11 03:44:43 +00:00
/*
2009-08-01 01:04:26 +00:00
* Don ' t scan " special " ids .
*/
if ( handle > = FL_ID & & handle < = SNS_ID ) {
2001-02-11 03:44:43 +00:00
continue ;
2006-07-03 08:24:09 +00:00
}
2009-08-01 01:04:26 +00:00
if ( ISP_CAP_2KLOGIN ( isp ) ) {
if ( handle > = NPH_RESERVED & & handle < = NPH_FL_ID ) {
continue ;
}
}
2006-11-02 03:21:32 +00:00
/*
* In older cards with older f / w GET_PORT_DATABASE has been
* known to hang . This trick gets around that problem .
*/
2006-07-03 08:24:09 +00:00
if ( IS_2100 ( isp ) | | IS_2200 ( isp ) ) {
2009-08-01 01:04:26 +00:00
uint64_t node_wwn = isp_get_wwn ( isp , chan , handle , 1 ) ;
2006-07-03 08:24:09 +00:00
if ( fcp - > isp_loopstate < LOOP_SCANNING_LOOP ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d FC scan loop DONE (bad) " , chan ) ;
2006-07-03 08:24:09 +00:00
return ( - 1 ) ;
}
2009-08-01 01:04:26 +00:00
if ( node_wwn = = INI_NONE ) {
2006-07-03 08:24:09 +00:00
continue ;
}
2001-01-09 02:46:23 +00:00
}
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
/*
2006-11-02 03:21:32 +00:00
* Get the port database entity for this index .
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
*/
2009-08-01 01:04:26 +00:00
r = isp_getpdb ( isp , chan , handle , & pdb , 1 ) ;
if ( r ! = 0 ) {
isp_prt ( isp , ISP_LOGDEBUG1 ,
" Chan %d FC scan loop handle %d returned %x " ,
chan , handle , r ) ;
2006-07-03 08:24:09 +00:00
if ( fcp - > isp_loopstate < LOOP_SCANNING_LOOP ) {
2009-08-01 01:04:26 +00:00
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d FC scan loop DONE (bad) " , chan ) ;
2001-02-11 03:44:43 +00:00
return ( - 1 ) ;
2006-07-03 08:24:09 +00:00
}
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
continue ;
2006-11-02 03:21:32 +00:00
}
if ( fcp - > isp_loopstate < LOOP_SCANNING_LOOP ) {
2009-08-01 01:04:26 +00:00
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d FC scan loop DONE (bad) " , chan ) ;
2006-11-02 03:21:32 +00:00
return ( - 1 ) ;
}
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
2001-08-31 21:39:04 +00:00
/*
2006-11-02 03:21:32 +00:00
* On * very * old 2100 firmware we would end up sometimes
* with the firmware returning the port database entry
2006-11-14 08:45:48 +00:00
* for something else . We used to restart this , but
* now we just punt .
2001-08-31 21:39:04 +00:00
*/
2006-11-14 08:45:48 +00:00
if ( IS_2100 ( isp ) & & pdb . handle ! = handle ) {
2006-11-02 03:21:32 +00:00
isp_prt ( isp , ISP_LOGWARN ,
2009-08-01 01:04:26 +00:00
" Chan %d cannot synchronize port database " , chan ) ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d FC scan loop DONE (bad) " , chan ) ;
2001-02-11 03:44:43 +00:00
return ( - 1 ) ;
}
2002-04-04 23:46:01 +00:00
2002-06-16 05:18:22 +00:00
/*
2006-11-02 03:21:32 +00:00
* Save the pertinent info locally .
2002-06-16 05:18:22 +00:00
*/
2006-11-02 03:21:32 +00:00
MAKE_WWN_FROM_NODE_NAME ( tmp . node_wwn , pdb . nodename ) ;
MAKE_WWN_FROM_NODE_NAME ( tmp . port_wwn , pdb . portname ) ;
tmp . roles = ( pdb . s3_role & SVC3_ROLE_MASK ) > > SVC3_ROLE_SHIFT ;
tmp . portid = pdb . portid ;
tmp . handle = pdb . handle ;
2002-04-04 23:46:01 +00:00
/*
2006-11-02 03:21:32 +00:00
* Check to make sure it ' s still a valid entry . The 24 XX seems
* to return a portid but not a WWPN / WWNN or role for devices
2007-02-23 21:59:21 +00:00
* which shift on a loop .
2002-04-04 23:46:01 +00:00
*/
2006-11-02 03:21:32 +00:00
if ( tmp . node_wwn = = 0 | | tmp . port_wwn = = 0 | | tmp . portid = = 0 ) {
2007-02-23 21:59:21 +00:00
int a , b , c ;
a = ( tmp . node_wwn = = 0 ) ;
b = ( tmp . port_wwn = = 0 ) ;
c = ( tmp . portid = = 0 ) ;
2009-08-01 01:04:26 +00:00
if ( a = = 0 & & b = = 0 ) {
tmp . node_wwn =
isp_get_wwn ( isp , chan , handle , 1 ) ;
tmp . port_wwn =
isp_get_wwn ( isp , chan , handle , 0 ) ;
if ( tmp . node_wwn & & tmp . port_wwn ) {
isp_prt ( isp , ISP_LOGINFO , " DODGED! " ) ;
goto cont ;
}
}
2007-02-23 21:59:21 +00:00
isp_prt ( isp , ISP_LOGWARN ,
2009-08-01 01:04:26 +00:00
" Chan %d bad pdb (%1d%1d%1d) @ handle 0x%x " , chan ,
a , b , c , handle ) ;
isp_dump_portdb ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
continue ;
}
2009-08-01 01:04:26 +00:00
cont :
2002-04-04 23:46:01 +00:00
/*
2006-11-02 03:21:32 +00:00
* Now search the entire port database
* for the same Port and Node WWN .
2002-04-04 23:46:01 +00:00
*/
2006-11-02 03:21:32 +00:00
for ( i = 0 ; i < MAX_FC_TARG ; i + + ) {
lp = & fcp - > portdb [ i ] ;
2009-08-01 01:04:26 +00:00
2009-09-15 02:25:03 +00:00
if ( lp - > state = = FC_PORTDB_STATE_NIL | | lp - > target_mode ) {
2006-11-02 03:21:32 +00:00
continue ;
2002-04-04 23:46:01 +00:00
}
2006-11-02 03:21:32 +00:00
if ( lp - > node_wwn ! = tmp . node_wwn ) {
continue ;
}
if ( lp - > port_wwn ! = tmp . port_wwn ) {
continue ;
}
/*
* Okay - we ' ve found a non - nil entry that matches .
2006-11-14 08:45:48 +00:00
* Check to make sure it ' s probational or a zombie .
2006-11-02 03:21:32 +00:00
*/
2006-11-14 08:45:48 +00:00
if ( lp - > state ! = FC_PORTDB_STATE_PROBATIONAL & &
lp - > state ! = FC_PORTDB_STATE_ZOMBIE ) {
2006-11-02 03:21:32 +00:00
isp_prt ( isp , ISP_LOGERR ,
2009-08-01 01:04:26 +00:00
" Chan %d [%d] not probational/zombie (0x%x) " ,
chan , i , lp - > state ) ;
isp_dump_portdb ( isp , chan ) ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d FC scan loop DONE (bad) " , chan ) ;
2006-11-02 03:21:32 +00:00
return ( - 1 ) ;
}
2006-11-14 08:45:48 +00:00
/*
* Mark the device as something the f / w logs into
* automatically .
*/
2006-11-02 03:21:32 +00:00
lp - > autologin = 1 ;
2006-11-14 08:45:48 +00:00
2006-11-02 03:21:32 +00:00
/*
2006-11-14 08:45:48 +00:00
* Check to make see if really still the same
* device . If it is , we mark it pending valid .
2006-11-02 03:21:32 +00:00
*/
if ( lp - > portid = = tmp . portid & &
lp - > handle = = tmp . handle & &
lp - > roles = = tmp . roles ) {
lp - > new_portid = tmp . portid ;
lp - > new_roles = tmp . roles ;
lp - > state = FC_PORTDB_STATE_PENDING_VALID ;
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d Loop Port 0x%06x@0x%04x Pending "
" Valid " , chan , tmp . portid , tmp . handle ) ;
2006-11-02 03:21:32 +00:00
break ;
}
2009-08-01 01:04:26 +00:00
2006-11-02 03:21:32 +00:00
/*
2006-11-14 08:45:48 +00:00
* We can wipe out the old handle value
* here because it ' s no longer valid .
2006-11-02 03:21:32 +00:00
*/
lp - > handle = tmp . handle ;
/*
* Claim that this has changed and let somebody else
* decide what to do .
*/
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d Loop Port 0x%06x@0x%04x changed " ,
chan , tmp . portid , tmp . handle ) ;
2006-11-02 03:21:32 +00:00
lp - > state = FC_PORTDB_STATE_CHANGED ;
lp - > new_portid = tmp . portid ;
lp - > new_roles = tmp . roles ;
break ;
2002-04-04 23:46:01 +00:00
}
2006-11-02 03:21:32 +00:00
/*
* Did we find and update an old entry ?
*/
if ( i < MAX_FC_TARG ) {
continue ;
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
}
2006-11-02 03:21:32 +00:00
/*
* Ah . A new device entry . Find an empty slot
* for it and save info for later disposition .
*/
for ( i = 0 ; i < MAX_FC_TARG ; i + + ) {
2009-08-01 01:04:26 +00:00
if ( fcp - > portdb [ i ] . target_mode ) {
continue ;
}
2006-11-02 03:21:32 +00:00
if ( fcp - > portdb [ i ] . state = = FC_PORTDB_STATE_NIL ) {
2001-10-18 17:26:52 +00:00
break ;
}
}
2006-11-02 03:21:32 +00:00
if ( i = = MAX_FC_TARG ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR ,
" Chan %d out of portdb entries " , chan ) ;
2006-11-02 03:21:32 +00:00
continue ;
}
lp = & fcp - > portdb [ i ] ;
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( lp , sizeof ( fcportdb_t ) ) ;
2006-11-02 03:21:32 +00:00
lp - > autologin = 1 ;
lp - > state = FC_PORTDB_STATE_NEW ;
lp - > new_portid = tmp . portid ;
lp - > new_roles = tmp . roles ;
lp - > handle = tmp . handle ;
lp - > port_wwn = tmp . port_wwn ;
lp - > node_wwn = tmp . node_wwn ;
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d Loop Port 0x%06x@0x%04x is New Entry " ,
chan , tmp . portid , tmp . handle ) ;
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
}
2006-11-02 03:21:32 +00:00
fcp - > isp_loopstate = LOOP_LSCAN_DONE ;
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d FC scan loop DONE " , chan ) ;
2002-04-04 23:46:01 +00:00
return ( 0 ) ;
}
2006-11-02 03:21:32 +00:00
/*
* Scan the fabric for devices and add them to our port database .
*
* Use the GID_FT command to get all Port IDs for FC4 SCSI devices it knows .
*
* For 2100 - 23 XX cards , we can use the SNS mailbox command to pass simple
* name server commands to the switch management server via the QLogic f / w .
*
* For the 24 XX card , we have to use CT - Pass through run via the Execute IOCB
* mailbox command .
*
* The net result is to leave the list of Port IDs setting untranslated in
* offset IGPOFF of the FC scratch area , whereupon we ' ll canonicalize it to
* host order at OGPOFF .
*/
/*
2009-08-01 01:04:26 +00:00
* Take less than half of our scratch area to store Port IDs
2006-11-02 03:21:32 +00:00
*/
2009-08-01 01:04:26 +00:00
# define GIDLEN ((ISP_FC_SCRLEN >> 1) - 16 - SNS_GID_FT_REQ_SIZE)
2002-04-04 23:46:01 +00:00
# define NGENT ((GIDLEN - 16) >> 2)
2006-11-02 03:21:32 +00:00
# define IGPOFF (2 * QENTRY_LEN)
2009-08-01 01:04:26 +00:00
# define OGPOFF (ISP_FC_SCRLEN >> 1)
# define ZTXOFF (ISP_FC_SCRLEN - (1 * QENTRY_LEN))
# define CTXOFF (ISP_FC_SCRLEN - (2 * QENTRY_LEN))
# define XTXOFF (ISP_FC_SCRLEN - (3 * QENTRY_LEN))
2001-02-11 03:44:43 +00:00
2002-04-04 23:46:01 +00:00
static int
2009-08-01 01:04:26 +00:00
isp_gid_ft_sns ( ispsoftc_t * isp , int chan )
2002-04-04 23:46:01 +00:00
{
2006-11-02 03:21:32 +00:00
union {
sns_gid_ft_req_t _x ;
uint8_t _y [ SNS_GID_FT_REQ_SIZE ] ;
} un ;
2009-08-01 01:04:26 +00:00
fcparam * fcp = FCPARAM ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
sns_gid_ft_req_t * rq = & un . _x ;
2002-04-04 23:46:01 +00:00
mbreg_t mbs ;
2001-02-11 03:44:43 +00:00
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 ,
" Chan %d scanning fabric (GID_FT) via SNS " , chan ) ;
2002-04-04 23:46:01 +00:00
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( rq , SNS_GID_FT_REQ_SIZE ) ;
2002-04-04 23:46:01 +00:00
rq - > snscb_rblen = GIDLEN > > 1 ;
2006-11-02 03:21:32 +00:00
rq - > snscb_addr [ RQRSP_ADDR0015 ] = DMA_WD0 ( fcp - > isp_scdma + IGPOFF ) ;
rq - > snscb_addr [ RQRSP_ADDR1631 ] = DMA_WD1 ( fcp - > isp_scdma + IGPOFF ) ;
rq - > snscb_addr [ RQRSP_ADDR3247 ] = DMA_WD2 ( fcp - > isp_scdma + IGPOFF ) ;
rq - > snscb_addr [ RQRSP_ADDR4863 ] = DMA_WD3 ( fcp - > isp_scdma + IGPOFF ) ;
2002-04-04 23:46:01 +00:00
rq - > snscb_sblen = 6 ;
rq - > snscb_cmd = SNS_GID_FT ;
rq - > snscb_mword_div_2 = NGENT ;
2006-11-02 03:21:32 +00:00
rq - > snscb_fc4_type = FC4_SCSI ;
isp_put_gid_ft_request ( isp , rq , fcp - > isp_scratch ) ;
2002-04-04 23:46:01 +00:00
MEMORYBARRIER ( isp , SYNC_SFORDEV , 0 , SNS_GID_FT_REQ_SIZE ) ;
2006-11-02 03:21:32 +00:00
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_SEND_SNS , MBLOGALL , 10000000 ) ;
2002-04-04 23:46:01 +00:00
mbs . param [ 0 ] = MBOX_SEND_SNS ;
mbs . param [ 1 ] = SNS_GID_FT_REQ_SIZE > > 1 ;
mbs . param [ 2 ] = DMA_WD1 ( fcp - > isp_scdma ) ;
mbs . param [ 3 ] = DMA_WD0 ( fcp - > isp_scdma ) ;
mbs . param [ 6 ] = DMA_WD3 ( fcp - > isp_scdma ) ;
mbs . param [ 7 ] = DMA_WD2 ( fcp - > isp_scdma ) ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
if ( mbs . param [ 0 ] = = MBOX_INVALID_COMMAND ) {
return ( 1 ) ;
} else {
return ( - 1 ) ;
2002-04-04 23:46:01 +00:00
}
2006-11-02 03:21:32 +00:00
}
return ( 0 ) ;
}
static int
2009-08-01 01:04:26 +00:00
isp_gid_ft_ct_passthru ( ispsoftc_t * isp , int chan )
2006-11-02 03:21:32 +00:00
{
mbreg_t mbs ;
2009-08-01 01:04:26 +00:00
fcparam * fcp = FCPARAM ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
union {
isp_ct_pt_t plocal ;
ct_hdr_t clocal ;
uint8_t q [ QENTRY_LEN ] ;
} un ;
isp_ct_pt_t * pt ;
ct_hdr_t * ct ;
uint32_t * rp ;
uint8_t * scp = fcp - > isp_scratch ;
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 ,
" Chan %d scanning fabric (GID_FT) via CT " , chan ) ;
2006-11-02 03:21:32 +00:00
if ( ! IS_24XX ( isp ) ) {
return ( 1 ) ;
}
/*
* Build a Passthrough IOCB in memory .
*/
pt = & un . plocal ;
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( un . q , QENTRY_LEN ) ;
2006-11-02 03:21:32 +00:00
pt - > ctp_header . rqs_entry_count = 1 ;
pt - > ctp_header . rqs_entry_type = RQSTYPE_CT_PASSTHRU ;
pt - > ctp_handle = 0xffffffff ;
2009-08-01 01:04:26 +00:00
pt - > ctp_nphdl = fcp - > isp_sns_hdl ;
2006-11-02 03:21:32 +00:00
pt - > ctp_cmd_cnt = 1 ;
2009-08-01 01:04:26 +00:00
pt - > ctp_vpidx = ISP_GET_VPIDX ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
pt - > ctp_time = 30 ;
pt - > ctp_rsp_cnt = 1 ;
pt - > ctp_rsp_bcnt = GIDLEN ;
pt - > ctp_cmd_bcnt = sizeof ( * ct ) + sizeof ( uint32_t ) ;
pt - > ctp_dataseg [ 0 ] . ds_base = DMA_LO32 ( fcp - > isp_scdma + XTXOFF ) ;
pt - > ctp_dataseg [ 0 ] . ds_basehi = DMA_HI32 ( fcp - > isp_scdma + XTXOFF ) ;
pt - > ctp_dataseg [ 0 ] . ds_count = sizeof ( * ct ) + sizeof ( uint32_t ) ;
pt - > ctp_dataseg [ 1 ] . ds_base = DMA_LO32 ( fcp - > isp_scdma + IGPOFF ) ;
pt - > ctp_dataseg [ 1 ] . ds_basehi = DMA_HI32 ( fcp - > isp_scdma + IGPOFF ) ;
pt - > ctp_dataseg [ 1 ] . ds_count = GIDLEN ;
if ( isp - > isp_dblev & ISP_LOGDEBUG1 ) {
isp_print_bytes ( isp , " ct IOCB " , QENTRY_LEN , pt ) ;
}
isp_put_ct_pt ( isp , pt , ( isp_ct_pt_t * ) & scp [ CTXOFF ] ) ;
/*
* Build the CT header and command in memory .
*
* Note that the CT header has to end up as Big Endian format in memory .
*/
ct = & un . clocal ;
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( ct , sizeof ( * ct ) ) ;
2006-11-02 03:21:32 +00:00
ct - > ct_revision = CT_REVISION ;
ct - > ct_fcs_type = CT_FC_TYPE_FC ;
ct - > ct_fcs_subtype = CT_FC_SUBTYPE_NS ;
ct - > ct_cmd_resp = SNS_GID_FT ;
ct - > ct_bcnt_resid = ( GIDLEN - 16 ) > > 2 ;
isp_put_ct_hdr ( isp , ct , ( ct_hdr_t * ) & scp [ XTXOFF ] ) ;
rp = ( uint32_t * ) & scp [ XTXOFF + sizeof ( * ct ) ] ;
ISP_IOZPUT_32 ( isp , FC4_SCSI , rp ) ;
2006-12-05 07:50:23 +00:00
if ( isp - > isp_dblev & ISP_LOGDEBUG1 ) {
isp_print_bytes ( isp , " CT HDR + payload after put " ,
sizeof ( * ct ) + sizeof ( uint32_t ) , & scp [ XTXOFF ] ) ;
}
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( & scp [ ZTXOFF ] , QENTRY_LEN ) ;
MBSINIT ( & mbs , MBOX_EXEC_COMMAND_IOCB_A64 , MBLOGALL , 500000 ) ;
2006-11-02 03:21:32 +00:00
mbs . param [ 1 ] = QENTRY_LEN ;
mbs . param [ 2 ] = DMA_WD1 ( fcp - > isp_scdma + CTXOFF ) ;
mbs . param [ 3 ] = DMA_WD0 ( fcp - > isp_scdma + CTXOFF ) ;
mbs . param [ 6 ] = DMA_WD3 ( fcp - > isp_scdma + CTXOFF ) ;
mbs . param [ 7 ] = DMA_WD2 ( fcp - > isp_scdma + CTXOFF ) ;
MEMORYBARRIER ( isp , SYNC_SFORDEV , XTXOFF , 2 * QENTRY_LEN ) ;
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
return ( - 1 ) ;
}
MEMORYBARRIER ( isp , SYNC_SFORCPU , ZTXOFF , QENTRY_LEN ) ;
pt = & un . plocal ;
isp_get_ct_pt ( isp , ( isp_ct_pt_t * ) & scp [ ZTXOFF ] , pt ) ;
if ( isp - > isp_dblev & ISP_LOGDEBUG1 ) {
isp_print_bytes ( isp , " IOCB response " , QENTRY_LEN , pt ) ;
}
if ( pt - > ctp_status & & pt - > ctp_status ! = RQCS_DATA_UNDERRUN ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGWARN ,
" Chan %d ISP GID FT CT Passthrough returned 0x%x " ,
chan , pt - > ctp_status ) ;
2006-11-02 03:21:32 +00:00
return ( - 1 ) ;
}
MEMORYBARRIER ( isp , SYNC_SFORCPU , IGPOFF , GIDLEN + 16 ) ;
2006-12-05 07:50:23 +00:00
if ( isp - > isp_dblev & ISP_LOGDEBUG1 ) {
isp_print_bytes ( isp , " CT response " , GIDLEN + 16 , & scp [ IGPOFF ] ) ;
}
2006-11-02 03:21:32 +00:00
return ( 0 ) ;
}
static int
2009-08-01 01:04:26 +00:00
isp_scan_fabric ( ispsoftc_t * isp , int chan )
2006-11-02 03:21:32 +00:00
{
2009-08-01 01:04:26 +00:00
fcparam * fcp = FCPARAM ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
uint32_t portid ;
2009-08-01 01:04:26 +00:00
uint16_t handle , oldhandle , loopid ;
isp_pdb_t pdb ;
2006-11-02 03:21:32 +00:00
int portidx , portlim , r ;
sns_gid_ft_rsp_t * rs0 , * rs1 ;
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d FC Scan Fabric " , chan ) ;
2006-11-02 03:21:32 +00:00
if ( fcp - > isp_fwstate ! = FW_READY | |
fcp - > isp_loopstate < LOOP_LSCAN_DONE ) {
2002-04-04 23:46:01 +00:00
return ( - 1 ) ;
}
2006-11-02 03:21:32 +00:00
if ( fcp - > isp_loopstate > LOOP_SCANNING_FABRIC ) {
return ( 0 ) ;
}
if ( fcp - > isp_topo ! = TOPO_FL_PORT & & fcp - > isp_topo ! = TOPO_F_PORT ) {
fcp - > isp_loopstate = LOOP_FSCAN_DONE ;
2006-11-14 08:45:48 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
2009-08-01 01:04:26 +00:00
" Chan %d FC Scan Fabric Done (no fabric) " , chan ) ;
2006-11-02 03:21:32 +00:00
return ( 0 ) ;
}
fcp - > isp_loopstate = LOOP_SCANNING_FABRIC ;
2009-08-01 01:04:26 +00:00
if ( FC_SCRATCH_ACQUIRE ( isp , chan ) ) {
isp_prt ( isp , ISP_LOGERR , sacq ) ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
return ( - 1 ) ;
}
if ( fcp - > isp_loopstate < LOOP_SCANNING_FABRIC ) {
FC_SCRATCH_RELEASE ( isp , chan ) ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
return ( - 1 ) ;
}
/*
* Make sure we still are logged into the fabric controller .
*/
if ( IS_24XX ( isp ) ) { /* XXX SHOULDN'T THIS BE TRUE FOR 2K F/W? XXX */
loopid = NPH_FL_ID ;
} else {
loopid = FL_ID ;
}
r = isp_getpdb ( isp , chan , loopid , & pdb , 0 ) ;
if ( r = = MBOX_NOT_LOGGED_IN ) {
isp_dump_chip_portdb ( isp , chan , 0 ) ;
}
if ( r ) {
fcp - > isp_loopstate = LOOP_PDB_RCVD ;
FC_SCRATCH_RELEASE ( isp , chan ) ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
return ( - 1 ) ;
}
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
2009-08-01 01:04:26 +00:00
r = isp_gid_ft_ct_passthru ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
} else {
2009-08-01 01:04:26 +00:00
r = isp_gid_ft_sns ( isp , chan ) ;
}
if ( fcp - > isp_loopstate < LOOP_SCANNING_FABRIC ) {
FC_SCRATCH_RELEASE ( isp , chan ) ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
return ( - 1 ) ;
2006-11-02 03:21:32 +00:00
}
if ( r > 0 ) {
fcp - > isp_loopstate = LOOP_FSCAN_DONE ;
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
return ( 0 ) ;
} else if ( r < 0 ) {
fcp - > isp_loopstate = LOOP_PDB_RCVD ; /* try again */
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
return ( 0 ) ;
}
2002-04-04 23:46:01 +00:00
MEMORYBARRIER ( isp , SYNC_SFORCPU , IGPOFF , GIDLEN ) ;
2006-02-15 00:31:48 +00:00
rs0 = ( sns_gid_ft_rsp_t * ) ( ( uint8_t * ) fcp - > isp_scratch + IGPOFF ) ;
2006-11-02 03:21:32 +00:00
rs1 = ( sns_gid_ft_rsp_t * ) ( ( uint8_t * ) fcp - > isp_scratch + OGPOFF ) ;
2002-04-04 23:46:01 +00:00
isp_get_gid_ft_response ( isp , rs0 , rs1 , NGENT ) ;
2009-08-01 01:04:26 +00:00
if ( fcp - > isp_loopstate < LOOP_SCANNING_FABRIC ) {
FC_SCRATCH_RELEASE ( isp , chan ) ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
return ( - 1 ) ;
}
2006-11-02 03:21:32 +00:00
if ( rs1 - > snscb_cthdr . ct_cmd_resp ! = LS_ACC ) {
2002-06-16 05:18:22 +00:00
int level ;
if ( rs1 - > snscb_cthdr . ct_reason = = 9 & &
2006-11-02 03:21:32 +00:00
rs1 - > snscb_cthdr . ct_explanation = = 7 ) {
2006-11-14 08:45:48 +00:00
level = ISP_LOGSANCFG | ISP_LOGDEBUG0 ;
2006-11-02 03:21:32 +00:00
} else {
2002-06-16 05:18:22 +00:00
level = ISP_LOGWARN ;
2006-11-02 03:21:32 +00:00
}
2009-08-01 01:04:26 +00:00
isp_prt ( isp , level , " Chan %d Fabric Nameserver rejected GID_FT "
" (Reason=0x%x Expl=0x%x) " , chan ,
rs1 - > snscb_cthdr . ct_reason ,
2006-11-02 03:21:32 +00:00
rs1 - > snscb_cthdr . ct_explanation ) ;
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , chan ) ;
2002-04-04 23:46:01 +00:00
fcp - > isp_loopstate = LOOP_FSCAN_DONE ;
return ( 0 ) ;
}
2006-11-02 03:21:32 +00:00
/*
* If we get this far , we certainly still have the fabric controller .
*/
fcp - > portdb [ FL_ID ] . state = FC_PORTDB_STATE_PENDING_VALID ;
/*
* Prime the handle we will start using .
*/
2009-08-01 01:04:26 +00:00
oldhandle = FCPARAM ( isp , 0 ) - > isp_lasthdl ;
2006-11-02 03:21:32 +00:00
/*
2009-08-01 01:04:26 +00:00
* Go through the list and remove duplicate port ids .
2006-11-02 03:21:32 +00:00
*/
portlim = 0 ;
portidx = 0 ;
for ( portidx = 0 ; portidx < NGENT - 1 ; portidx + + ) {
if ( rs1 - > snscb_ports [ portidx ] . control & 0x80 ) {
break ;
}
}
/*
* If we ' re not at the last entry , our list wasn ' t big enough .
*/
if ( ( rs1 - > snscb_ports [ portidx ] . control & 0x80 ) = = 0 ) {
isp_prt ( isp , ISP_LOGWARN ,
2009-08-01 01:04:26 +00:00
" fabric too big for scratch area: increase ISP_FC_SCRLEN " ) ;
2006-11-02 03:21:32 +00:00
}
portlim = portidx + 1 ;
2006-11-14 08:45:48 +00:00
isp_prt ( isp , ISP_LOGSANCFG ,
2009-08-01 01:04:26 +00:00
" Chan %d got %d ports back from name server " , chan , portlim ) ;
2006-11-02 03:21:32 +00:00
for ( portidx = 0 ; portidx < portlim ; portidx + + ) {
int npidx ;
portid =
( ( rs1 - > snscb_ports [ portidx ] . portid [ 0 ] ) < < 16 ) |
( ( rs1 - > snscb_ports [ portidx ] . portid [ 1 ] ) < < 8 ) |
( ( rs1 - > snscb_ports [ portidx ] . portid [ 2 ] ) ) ;
for ( npidx = portidx + 1 ; npidx < portlim ; npidx + + ) {
uint32_t new_portid =
( ( rs1 - > snscb_ports [ npidx ] . portid [ 0 ] ) < < 16 ) |
( ( rs1 - > snscb_ports [ npidx ] . portid [ 1 ] ) < < 8 ) |
( ( rs1 - > snscb_ports [ npidx ] . portid [ 2 ] ) ) ;
if ( new_portid = = portid ) {
break ;
}
}
if ( npidx < portlim ) {
rs1 - > snscb_ports [ npidx ] . portid [ 0 ] = 0 ;
rs1 - > snscb_ports [ npidx ] . portid [ 1 ] = 0 ;
rs1 - > snscb_ports [ npidx ] . portid [ 2 ] = 0 ;
2006-11-14 08:45:48 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
2009-08-01 01:04:26 +00:00
" Chan %d removing duplicate PortID 0x%06x "
" entry from list " , chan , portid ) ;
2006-11-02 03:21:32 +00:00
}
}
2002-04-04 23:46:01 +00:00
/*
2009-08-01 01:04:26 +00:00
* We now have a list of Port IDs for all FC4 SCSI devices
2006-11-02 03:21:32 +00:00
* that the Fabric Name server knows about .
2002-04-04 23:46:01 +00:00
*
2006-11-02 03:21:32 +00:00
* For each entry on this list go through our port database looking
* for probational entries - if we find one , then an old entry is
2009-08-01 01:04:26 +00:00
* maybe still this one . We get some information to find out .
2006-11-02 03:21:32 +00:00
*
* Otherwise , it ' s a new fabric device , and we log into it
* ( unconditionally ) . After searching the entire database
* again to make sure that we never ever ever ever have more
* than one entry that has the same PortID or the same
* WWNN / WWPN duple , we enter the device into our database .
2002-04-04 23:46:01 +00:00
*/
2006-11-02 03:21:32 +00:00
for ( portidx = 0 ; portidx < portlim ; portidx + + ) {
fcportdb_t * lp ;
uint64_t wwnn , wwpn ;
2007-03-22 23:38:32 +00:00
int dbidx , nr ;
2006-11-02 03:21:32 +00:00
portid =
( ( rs1 - > snscb_ports [ portidx ] . portid [ 0 ] ) < < 16 ) |
( ( rs1 - > snscb_ports [ portidx ] . portid [ 1 ] ) < < 8 ) |
( ( rs1 - > snscb_ports [ portidx ] . portid [ 2 ] ) ) ;
if ( portid = = 0 ) {
2006-11-14 08:45:48 +00:00
isp_prt ( isp , ISP_LOGSANCFG ,
2009-08-01 01:04:26 +00:00
" Chan %d skipping null PortID at idx %d " ,
chan , portidx ) ;
2006-11-02 03:21:32 +00:00
continue ;
}
2002-04-04 23:46:01 +00:00
/*
2009-08-01 01:04:26 +00:00
* Skip ourselves here and on other channels . If we ' re
* multi - id , we can ' t check the portids in other FCPARAM
* arenas because the resolutions here aren ' t synchronized .
* The best way to do this is to exclude looking at portids
* that have the same domain and area code as our own
* portid .
2002-04-04 23:46:01 +00:00
*/
2009-08-01 01:04:26 +00:00
if ( ISP_CAP_MULTI_ID ( isp ) ) {
if ( ( portid > > 8 ) = = ( fcp - > isp_portid > > 8 ) ) {
isp_prt ( isp , ISP_LOGSANCFG ,
" Chan %d skip PortID 0x%06x " ,
chan , portid ) ;
continue ;
}
} else if ( portid = = fcp - > isp_portid ) {
2006-11-14 08:45:48 +00:00
isp_prt ( isp , ISP_LOGSANCFG ,
2009-08-01 01:04:26 +00:00
" Chan %d skip ourselves on @ PortID 0x%06x " ,
chan , portid ) ;
2006-11-02 03:21:32 +00:00
continue ;
2002-04-04 23:46:01 +00:00
}
2009-08-01 01:04:26 +00:00
2006-11-14 08:45:48 +00:00
isp_prt ( isp , ISP_LOGSANCFG ,
2009-08-01 01:04:26 +00:00
" Chan %d Checking Fabric Port 0x%06x " , chan , portid ) ;
2006-11-02 03:21:32 +00:00
/*
* We now search our Port Database for any
2006-11-14 08:45:48 +00:00
* probational entries with this PortID . We don ' t
* look for zombies here - only probational
* entries ( we ' ve already logged out of zombies ) .
2006-11-02 03:21:32 +00:00
*/
for ( dbidx = 0 ; dbidx < MAX_FC_TARG ; dbidx + + ) {
lp = & fcp - > portdb [ dbidx ] ;
2009-09-15 02:25:03 +00:00
if ( lp - > state ! = FC_PORTDB_STATE_PROBATIONAL | | lp - > target_mode ) {
2006-11-02 03:21:32 +00:00
continue ;
}
if ( lp - > portid = = portid ) {
break ;
}
2002-04-04 23:46:01 +00:00
}
2006-11-02 03:21:32 +00:00
/*
* We found a probational entry with this Port ID .
*/
if ( dbidx < MAX_FC_TARG ) {
int handle_changed = 0 ;
lp = & fcp - > portdb [ dbidx ] ;
/*
* See if we ' re still logged into it .
*
* If we aren ' t , mark it as a dead device and
* leave the new portid in the database entry
* for somebody further along to decide what to
* do ( policy choice ) .
*
* If we are , check to see if it ' s the same
* device still ( it should be ) . If for some
* reason it isn ' t , mark it as a changed device
* and leave the new portid and role in the
* database entry for somebody further along to
* decide what to do ( policy choice ) .
*
*/
2009-08-01 01:04:26 +00:00
r = isp_getpdb ( isp , chan , lp - > handle , & pdb , 0 ) ;
2002-04-04 23:46:01 +00:00
if ( fcp - > isp_loopstate ! = LOOP_SCANNING_FABRIC ) {
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , chan ) ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
2002-04-04 23:46:01 +00:00
return ( - 1 ) ;
}
2006-11-02 03:21:32 +00:00
if ( r ! = 0 ) {
lp - > new_portid = portid ;
lp - > state = FC_PORTDB_STATE_DEAD ;
2006-11-14 08:45:48 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
2009-08-01 01:04:26 +00:00
" Chan %d Fabric Port 0x%06x is dead " ,
chan , portid ) ;
2006-11-02 03:21:32 +00:00
continue ;
}
/*
* Check to make sure that handle , portid , WWPN and
* WWNN agree . If they don ' t , then the association
* between this PortID and the stated handle has been
* broken by the firmware .
*/
MAKE_WWN_FROM_NODE_NAME ( wwnn , pdb . nodename ) ;
MAKE_WWN_FROM_NODE_NAME ( wwpn , pdb . portname ) ;
if ( pdb . handle ! = lp - > handle | |
pdb . portid ! = portid | |
wwpn ! = lp - > port_wwn | |
wwnn ! = lp - > node_wwn ) {
2006-11-14 08:45:48 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
2009-08-01 01:04:26 +00:00
fconf , chan , dbidx , pdb . handle , pdb . portid ,
2006-11-02 03:21:32 +00:00
( uint32_t ) ( wwnn > > 32 ) , ( uint32_t ) wwnn ,
( uint32_t ) ( wwpn > > 32 ) , ( uint32_t ) wwpn ,
lp - > handle , portid ,
( uint32_t ) ( lp - > node_wwn > > 32 ) ,
( uint32_t ) lp - > node_wwn ,
( uint32_t ) ( lp - > port_wwn > > 32 ) ,
( uint32_t ) lp - > port_wwn ) ;
/*
* Try to re - login to this device using a
* new handle . If that fails , mark it dead .
2009-08-01 01:04:26 +00:00
*
2006-11-02 03:21:32 +00:00
* isp_login_device will check for handle and
* portid consistency after re - login .
2009-08-01 01:04:26 +00:00
*
2006-11-02 03:21:32 +00:00
*/
2009-08-01 01:04:26 +00:00
if ( isp_login_device ( isp , chan , portid , & pdb ,
2006-11-02 03:21:32 +00:00
& oldhandle ) ) {
lp - > new_portid = portid ;
lp - > state = FC_PORTDB_STATE_DEAD ;
if ( fcp - > isp_loopstate ! =
LOOP_SCANNING_FABRIC ) {
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , chan ) ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
2006-11-02 03:21:32 +00:00
return ( - 1 ) ;
}
continue ;
}
2009-08-01 01:04:26 +00:00
if ( fcp - > isp_loopstate ! =
LOOP_SCANNING_FABRIC ) {
FC_SCRATCH_RELEASE ( isp , chan ) ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
return ( - 1 ) ;
}
FCPARAM ( isp , 0 ) - > isp_lasthdl = oldhandle ;
2006-11-02 03:21:32 +00:00
MAKE_WWN_FROM_NODE_NAME ( wwnn , pdb . nodename ) ;
MAKE_WWN_FROM_NODE_NAME ( wwpn , pdb . portname ) ;
if ( wwpn ! = lp - > port_wwn | |
wwnn ! = lp - > node_wwn ) {
isp_prt ( isp , ISP_LOGWARN , " changed WWN "
" after relogin " ) ;
lp - > new_portid = portid ;
lp - > state = FC_PORTDB_STATE_DEAD ;
continue ;
}
lp - > handle = pdb . handle ;
handle_changed + + ;
}
nr = ( pdb . s3_role & SVC3_ROLE_MASK ) > > SVC3_ROLE_SHIFT ;
/*
* Check to see whether the portid and roles have
* stayed the same . If they have stayed the same ,
* we believe that this is the same device and it
* hasn ' t become disconnected and reconnected , so
* mark it as pending valid .
*
* If they aren ' t the same , mark the device as a
* changed device and save the new port id and role
* and let somebody else decide .
*/
lp - > new_portid = portid ;
lp - > new_roles = nr ;
if ( pdb . portid ! = lp - > portid | | nr ! = lp - > roles | |
handle_changed ) {
2006-11-14 08:45:48 +00:00
isp_prt ( isp , ISP_LOGSANCFG ,
2009-08-01 01:04:26 +00:00
" Chan %d Fabric Port 0x%06x changed " ,
chan , portid ) ;
2006-11-02 03:21:32 +00:00
lp - > state = FC_PORTDB_STATE_CHANGED ;
} else {
2006-11-14 08:45:48 +00:00
isp_prt ( isp , ISP_LOGSANCFG ,
2009-08-01 01:04:26 +00:00
" Chan %d Fabric Port 0x%06x "
" Now Pending Valid " , chan , portid ) ;
2006-11-02 03:21:32 +00:00
lp - > state = FC_PORTDB_STATE_PENDING_VALID ;
}
continue ;
}
/*
* Ah - a new entry . Search the database again for all non - NIL
2006-11-14 08:45:48 +00:00
* entries to make sure we never ever make a new database entry
* with the same port id . While we ' re at it , mark where the
* last free entry was .
2006-11-02 03:21:32 +00:00
*/
2009-08-01 01:04:26 +00:00
2006-11-14 08:45:48 +00:00
dbidx = MAX_FC_TARG ;
for ( lp = fcp - > portdb ; lp < & fcp - > portdb [ MAX_FC_TARG ] ; lp + + ) {
if ( lp > = & fcp - > portdb [ FL_ID ] & &
lp < = & fcp - > portdb [ SNS_ID ] ) {
2006-11-02 03:21:32 +00:00
continue ;
}
2009-08-01 01:04:26 +00:00
/*
* Skip any target mode entries .
*/
if ( lp - > target_mode ) {
continue ;
}
2006-11-14 08:45:48 +00:00
if ( lp - > state = = FC_PORTDB_STATE_NIL ) {
if ( dbidx = = MAX_FC_TARG ) {
dbidx = lp - fcp - > portdb ;
}
2006-11-02 03:21:32 +00:00
continue ;
}
2006-11-14 08:45:48 +00:00
if ( lp - > state = = FC_PORTDB_STATE_ZOMBIE ) {
continue ;
}
if ( lp - > portid = = portid ) {
2006-11-02 03:21:32 +00:00
break ;
}
}
2006-11-14 08:45:48 +00:00
if ( lp < & fcp - > portdb [ MAX_FC_TARG ] ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGWARN , " Chan %d PortID 0x%06x "
" already at %d handle %d state %d " ,
chan , portid , dbidx , lp - > handle , lp - > state ) ;
2002-04-04 23:46:01 +00:00
continue ;
}
2006-11-02 03:21:32 +00:00
2002-04-04 23:46:01 +00:00
/*
2006-11-14 08:45:48 +00:00
* We should have the index of the first free entry seen .
2002-04-04 23:46:01 +00:00
*/
2006-11-02 03:21:32 +00:00
if ( dbidx = = MAX_FC_TARG ) {
isp_prt ( isp , ISP_LOGERR ,
2006-11-14 08:45:48 +00:00
" port database too small to login PortID 0x%06x "
" - increase MAX_FC_TARG " , portid ) ;
2006-11-02 03:21:32 +00:00
continue ;
2002-04-04 23:46:01 +00:00
}
2006-11-02 03:21:32 +00:00
2006-11-14 08:45:48 +00:00
/*
* Otherwise , point to our new home .
*/
lp = & fcp - > portdb [ dbidx ] ;
2006-11-02 03:21:32 +00:00
/*
* Try to see if we are logged into this device ,
* and maybe log into it .
*
* isp_login_device will check for handle and
* portid consistency after login .
*/
2009-08-01 01:04:26 +00:00
if ( isp_login_device ( isp , chan , portid , & pdb , & oldhandle ) ) {
2002-04-04 23:46:01 +00:00
if ( fcp - > isp_loopstate ! = LOOP_SCANNING_FABRIC ) {
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , chan ) ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
2002-04-04 23:46:01 +00:00
return ( - 1 ) ;
}
continue ;
}
2009-08-01 01:04:26 +00:00
if ( fcp - > isp_loopstate ! = LOOP_SCANNING_FABRIC ) {
FC_SCRATCH_RELEASE ( isp , chan ) ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
return ( - 1 ) ;
}
FCPARAM ( isp , 0 ) - > isp_lasthdl = oldhandle ;
2006-11-02 03:21:32 +00:00
handle = pdb . handle ;
MAKE_WWN_FROM_NODE_NAME ( wwnn , pdb . nodename ) ;
MAKE_WWN_FROM_NODE_NAME ( wwpn , pdb . portname ) ;
nr = ( pdb . s3_role & SVC3_ROLE_MASK ) > > SVC3_ROLE_SHIFT ;
2002-04-04 23:46:01 +00:00
/*
2006-11-02 03:21:32 +00:00
* And go through the database * one * more time to make sure
* that we do not make more than one entry that has the same
* WWNN / WWPN duple
2002-04-16 19:55:35 +00:00
*/
2006-11-02 03:21:32 +00:00
for ( dbidx = 0 ; dbidx < MAX_FC_TARG ; dbidx + + ) {
2006-11-14 08:45:48 +00:00
if ( dbidx > = FL_ID & & dbidx < = SNS_ID ) {
2006-11-02 03:21:32 +00:00
continue ;
}
2009-08-01 01:04:26 +00:00
if ( fcp - > portdb [ dbidx ] . target_mode ) {
2006-11-02 03:21:32 +00:00
continue ;
}
2009-09-15 02:25:03 +00:00
if ( fcp - > portdb [ dbidx ] . node_wwn = = wwnn & & fcp - > portdb [ dbidx ] . port_wwn = = wwpn ) {
2006-11-02 03:21:32 +00:00
break ;
}
}
2006-11-14 08:45:48 +00:00
if ( dbidx = = MAX_FC_TARG ) {
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( lp , sizeof ( fcportdb_t ) ) ;
2006-11-14 08:45:48 +00:00
lp - > handle = handle ;
lp - > node_wwn = wwnn ;
lp - > port_wwn = wwpn ;
lp - > new_portid = portid ;
lp - > new_roles = nr ;
lp - > state = FC_PORTDB_STATE_NEW ;
isp_prt ( isp , ISP_LOGSANCFG ,
2009-08-01 01:04:26 +00:00
" Chan %d Fabric Port 0x%06x is a New Entry " ,
chan , portid ) ;
2006-11-14 08:45:48 +00:00
continue ;
}
if ( fcp - > portdb [ dbidx ] . state ! = FC_PORTDB_STATE_ZOMBIE ) {
2006-11-02 03:21:32 +00:00
isp_prt ( isp , ISP_LOGWARN ,
2009-08-01 01:04:26 +00:00
" Chan %d PortID 0x%x 0x%08x%08x/0x%08x%08x %ld "
" already at idx %d, state 0x%x " , chan , portid ,
2006-11-02 03:21:32 +00:00
( uint32_t ) ( wwnn > > 32 ) , ( uint32_t ) wwnn ,
( uint32_t ) ( wwpn > > 32 ) , ( uint32_t ) wwpn ,
2006-11-14 08:45:48 +00:00
( long ) ( lp - fcp - > portdb ) , dbidx ,
fcp - > portdb [ dbidx ] . state ) ;
2006-11-02 03:21:32 +00:00
continue ;
}
2006-11-14 08:45:48 +00:00
/*
* We found a zombie entry that matches us .
* Revive it . We know that WWN and WWPN
* are the same . For fabric devices , we
* don ' t care that handle is different
* as we assign that . If role or portid
* are different , it maybe a changed device .
*/
lp = & fcp - > portdb [ dbidx ] ;
2006-11-02 03:21:32 +00:00
lp - > handle = handle ;
lp - > new_portid = portid ;
lp - > new_roles = nr ;
2006-11-14 08:45:48 +00:00
if ( lp - > portid ! = portid | | lp - > roles ! = nr ) {
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
2009-08-01 01:04:26 +00:00
" Chan %d Zombie Fabric Port 0x%06x Now Changed " ,
chan , portid ) ;
2006-11-14 08:45:48 +00:00
lp - > state = FC_PORTDB_STATE_CHANGED ;
} else {
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
2009-08-01 01:04:26 +00:00
" Chan %d Zombie Fabric Port 0x%06x "
" Now Pending Valid " , chan , portid ) ;
2006-11-14 08:45:48 +00:00
lp - > state = FC_PORTDB_STATE_PENDING_VALID ;
}
2006-11-02 03:21:32 +00:00
}
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
if ( fcp - > isp_loopstate ! = LOOP_SCANNING_FABRIC ) {
2009-08-01 01:04:26 +00:00
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
2006-11-02 03:21:32 +00:00
return ( - 1 ) ;
}
fcp - > isp_loopstate = LOOP_FSCAN_DONE ;
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
" Chan %d FC Scan Fabric Done " , chan ) ;
2006-11-02 03:21:32 +00:00
return ( 0 ) ;
}
/*
* Find an unused handle and try and use to login to a port .
*/
static int
2009-08-01 01:04:26 +00:00
isp_login_device ( ispsoftc_t * isp , int chan , uint32_t portid , isp_pdb_t * p ,
uint16_t * ohp )
2006-11-02 03:21:32 +00:00
{
2006-11-18 03:53:16 +00:00
int lim , i , r ;
2006-11-02 03:21:32 +00:00
uint16_t handle ;
2009-08-01 01:04:26 +00:00
if ( ISP_CAP_2KLOGIN ( isp ) ) {
2006-12-05 07:50:23 +00:00
lim = NPH_MAX_2K ;
2006-11-02 03:21:32 +00:00
} else {
lim = NPH_MAX ;
}
2009-08-01 01:04:26 +00:00
handle = isp_nxt_handle ( isp , chan , * ohp ) ;
2006-11-02 03:21:32 +00:00
for ( i = 0 ; i < lim ; i + + ) {
2002-04-16 19:55:35 +00:00
/*
2006-11-02 03:21:32 +00:00
* See if we ' re still logged into something with
* this handle and that something agrees with this
* port id .
2002-04-04 23:46:01 +00:00
*/
2009-08-01 01:04:26 +00:00
r = isp_getpdb ( isp , chan , handle , p , 0 ) ;
2006-11-02 03:21:32 +00:00
if ( r = = 0 & & p - > portid ! = portid ) {
2009-08-01 01:04:26 +00:00
( void ) isp_plogx ( isp , chan , handle , portid ,
2006-11-18 03:53:16 +00:00
PLOGX_FLG_CMD_LOGO | PLOGX_FLG_IMPLICIT , 1 ) ;
2006-11-02 03:21:32 +00:00
} else if ( r = = 0 ) {
break ;
2002-04-16 19:55:35 +00:00
}
2009-08-01 01:04:26 +00:00
if ( FCPARAM ( isp , chan ) - > isp_loopstate ! = LOOP_SCANNING_FABRIC ) {
2002-04-16 19:55:35 +00:00
return ( - 1 ) ;
}
2002-04-04 23:46:01 +00:00
/*
2006-11-02 03:21:32 +00:00
* Now try and log into the device
2002-04-04 23:46:01 +00:00
*/
2009-08-01 01:04:26 +00:00
r = isp_plogx ( isp , chan , handle , portid ,
PLOGX_FLG_CMD_PLOGI , 1 ) ;
if ( FCPARAM ( isp , chan ) - > isp_loopstate ! = LOOP_SCANNING_FABRIC ) {
2006-11-02 03:21:32 +00:00
return ( - 1 ) ;
}
2006-11-18 03:53:16 +00:00
if ( r = = 0 ) {
2006-11-02 03:21:32 +00:00
* ohp = handle ;
break ;
2006-11-18 03:53:16 +00:00
} else if ( ( r & 0xffff ) = = MBOX_PORT_ID_USED ) {
handle = r > > 16 ;
2006-11-02 03:21:32 +00:00
break ;
2006-11-18 03:53:16 +00:00
} else if ( r ! = MBOX_LOOP_ID_USED ) {
2006-11-02 03:21:32 +00:00
i = lim ;
break ;
2009-08-01 01:04:26 +00:00
} else if ( r = = MBOX_TIMEOUT ) {
return ( - 1 ) ;
2002-04-04 23:46:01 +00:00
} else {
2006-11-02 03:21:32 +00:00
* ohp = handle ;
2009-08-01 01:04:26 +00:00
handle = isp_nxt_handle ( isp , chan , * ohp ) ;
2002-04-04 23:46:01 +00:00
}
2006-11-02 03:21:32 +00:00
}
2002-04-04 23:46:01 +00:00
2006-11-02 03:21:32 +00:00
if ( i = = lim ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGWARN , " Chan %d PLOGI 0x%06x failed " ,
chan , portid ) ;
2006-11-02 03:21:32 +00:00
return ( - 1 ) ;
}
2002-04-04 23:46:01 +00:00
/*
2006-11-02 03:21:32 +00:00
* If we successfully logged into it , get the PDB for it
* so we can crosscheck that it is still what we think it
* is and that we also have the role it plays
2002-04-04 23:46:01 +00:00
*/
2009-08-01 01:04:26 +00:00
r = isp_getpdb ( isp , chan , handle , p , 0 ) ;
if ( FCPARAM ( isp , chan ) - > isp_loopstate ! = LOOP_SCANNING_FABRIC ) {
2006-11-02 03:21:32 +00:00
return ( - 1 ) ;
}
if ( r ! = 0 ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR ,
" Chan %d new device 0x%06x@0x%x disappeared " ,
chan , portid , handle ) ;
2006-11-02 03:21:32 +00:00
return ( - 1 ) ;
2002-04-04 23:46:01 +00:00
}
2006-11-02 03:21:32 +00:00
if ( p - > handle ! = handle | | p - > portid ! = portid ) {
isp_prt ( isp , ISP_LOGERR ,
2009-08-01 01:04:26 +00:00
" Chan %d new device 0x%06x@0x%x changed (0x%06x@0x%0x) " ,
chan , portid , handle , p - > portid , p - > handle ) ;
2006-11-02 03:21:32 +00:00
return ( - 1 ) ;
}
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
return ( 0 ) ;
}
2001-01-09 02:46:23 +00:00
2006-11-02 03:21:32 +00:00
static int
2009-08-01 01:04:26 +00:00
isp_register_fc4_type ( ispsoftc_t * isp , int chan )
2001-01-09 02:46:23 +00:00
{
2009-08-01 01:04:26 +00:00
fcparam * fcp = FCPARAM ( isp , chan ) ;
2006-02-15 00:31:48 +00:00
uint8_t local [ SNS_RFT_ID_REQ_SIZE ] ;
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
sns_screq_t * reqp = ( sns_screq_t * ) local ;
2001-01-09 02:46:23 +00:00
mbreg_t mbs ;
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( ( void * ) reqp , SNS_RFT_ID_REQ_SIZE ) ;
2002-04-04 23:46:01 +00:00
reqp - > snscb_rblen = SNS_RFT_ID_RESP_SIZE > > 1 ;
2001-08-31 21:39:04 +00:00
reqp - > snscb_addr [ RQRSP_ADDR0015 ] = DMA_WD0 ( fcp - > isp_scdma + 0x100 ) ;
reqp - > snscb_addr [ RQRSP_ADDR1631 ] = DMA_WD1 ( fcp - > isp_scdma + 0x100 ) ;
reqp - > snscb_addr [ RQRSP_ADDR3247 ] = DMA_WD2 ( fcp - > isp_scdma + 0x100 ) ;
reqp - > snscb_addr [ RQRSP_ADDR4863 ] = DMA_WD3 ( fcp - > isp_scdma + 0x100 ) ;
2001-01-09 02:46:23 +00:00
reqp - > snscb_sblen = 22 ;
2002-04-04 23:46:01 +00:00
reqp - > snscb_data [ 0 ] = SNS_RFT_ID ;
2001-01-09 02:46:23 +00:00
reqp - > snscb_data [ 4 ] = fcp - > isp_portid & 0xffff ;
reqp - > snscb_data [ 5 ] = ( fcp - > isp_portid > > 16 ) & 0xff ;
2002-04-04 23:46:01 +00:00
reqp - > snscb_data [ 6 ] = ( 1 < < FC4_SCSI ) ;
2009-08-01 01:04:26 +00:00
if ( FC_SCRATCH_ACQUIRE ( isp , chan ) ) {
isp_prt ( isp , ISP_LOGERR , sacq ) ;
return ( - 1 ) ;
}
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
isp_put_sns_request ( isp , reqp , ( sns_screq_t * ) fcp - > isp_scratch ) ;
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_SEND_SNS , MBLOGALL , 1000000 ) ;
2002-04-04 23:46:01 +00:00
mbs . param [ 1 ] = SNS_RFT_ID_REQ_SIZE > > 1 ;
2001-08-31 21:39:04 +00:00
mbs . param [ 2 ] = DMA_WD1 ( fcp - > isp_scdma ) ;
mbs . param [ 3 ] = DMA_WD0 ( fcp - > isp_scdma ) ;
mbs . param [ 6 ] = DMA_WD3 ( fcp - > isp_scdma ) ;
mbs . param [ 7 ] = DMA_WD2 ( fcp - > isp_scdma ) ;
2006-07-14 05:14:48 +00:00
MEMORYBARRIER ( isp , SYNC_SFORDEV , 0 , SNS_RFT_ID_REQ_SIZE ) ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , chan ) ;
2001-01-09 02:46:23 +00:00
if ( mbs . param [ 0 ] = = MBOX_COMMAND_COMPLETE ) {
2006-11-02 03:21:32 +00:00
return ( 0 ) ;
} else {
return ( - 1 ) ;
}
}
static int
2009-08-01 01:04:26 +00:00
isp_register_fc4_type_24xx ( ispsoftc_t * isp , int chan )
2006-11-02 03:21:32 +00:00
{
mbreg_t mbs ;
2009-08-01 01:04:26 +00:00
fcparam * fcp = FCPARAM ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
union {
isp_ct_pt_t plocal ;
rft_id_t clocal ;
uint8_t q [ QENTRY_LEN ] ;
} un ;
isp_ct_pt_t * pt ;
ct_hdr_t * ct ;
rft_id_t * rp ;
uint8_t * scp = fcp - > isp_scratch ;
2009-08-01 01:04:26 +00:00
if ( FC_SCRATCH_ACQUIRE ( isp , chan ) ) {
isp_prt ( isp , ISP_LOGERR , sacq ) ;
return ( - 1 ) ;
}
2006-11-02 03:21:32 +00:00
/*
* Build a Passthrough IOCB in memory .
*/
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( un . q , QENTRY_LEN ) ;
2006-11-02 03:21:32 +00:00
pt = & un . plocal ;
pt - > ctp_header . rqs_entry_count = 1 ;
pt - > ctp_header . rqs_entry_type = RQSTYPE_CT_PASSTHRU ;
pt - > ctp_handle = 0xffffffff ;
2009-08-01 01:04:26 +00:00
pt - > ctp_nphdl = fcp - > isp_sns_hdl ;
2006-11-02 03:21:32 +00:00
pt - > ctp_cmd_cnt = 1 ;
2009-08-01 01:04:26 +00:00
pt - > ctp_vpidx = ISP_GET_VPIDX ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
pt - > ctp_time = 1 ;
pt - > ctp_rsp_cnt = 1 ;
pt - > ctp_rsp_bcnt = sizeof ( ct_hdr_t ) ;
pt - > ctp_cmd_bcnt = sizeof ( rft_id_t ) ;
pt - > ctp_dataseg [ 0 ] . ds_base = DMA_LO32 ( fcp - > isp_scdma + XTXOFF ) ;
pt - > ctp_dataseg [ 0 ] . ds_basehi = DMA_HI32 ( fcp - > isp_scdma + XTXOFF ) ;
pt - > ctp_dataseg [ 0 ] . ds_count = sizeof ( rft_id_t ) ;
pt - > ctp_dataseg [ 1 ] . ds_base = DMA_LO32 ( fcp - > isp_scdma + IGPOFF ) ;
pt - > ctp_dataseg [ 1 ] . ds_basehi = DMA_HI32 ( fcp - > isp_scdma + IGPOFF ) ;
pt - > ctp_dataseg [ 1 ] . ds_count = sizeof ( ct_hdr_t ) ;
isp_put_ct_pt ( isp , pt , ( isp_ct_pt_t * ) & scp [ CTXOFF ] ) ;
2009-08-01 01:04:26 +00:00
if ( isp - > isp_dblev & ISP_LOGDEBUG1 ) {
isp_print_bytes ( isp , " IOCB CT Request " , QENTRY_LEN , pt ) ;
}
2006-11-02 03:21:32 +00:00
/*
* Build the CT header and command in memory .
*
* Note that the CT header has to end up as Big Endian format in memory .
*/
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( & un . clocal , sizeof ( un . clocal ) ) ;
2006-11-02 03:21:32 +00:00
ct = & un . clocal . rftid_hdr ;
ct - > ct_revision = CT_REVISION ;
ct - > ct_fcs_type = CT_FC_TYPE_FC ;
ct - > ct_fcs_subtype = CT_FC_SUBTYPE_NS ;
ct - > ct_cmd_resp = SNS_RFT_ID ;
ct - > ct_bcnt_resid = ( sizeof ( rft_id_t ) - sizeof ( ct_hdr_t ) ) > > 2 ;
rp = & un . clocal ;
rp - > rftid_portid [ 0 ] = fcp - > isp_portid > > 16 ;
rp - > rftid_portid [ 1 ] = fcp - > isp_portid > > 8 ;
rp - > rftid_portid [ 2 ] = fcp - > isp_portid ;
rp - > rftid_fc4types [ FC4_SCSI > > 5 ] = 1 < < ( FC4_SCSI & 0x1f ) ;
isp_put_rft_id ( isp , rp , ( rft_id_t * ) & scp [ XTXOFF ] ) ;
2009-08-01 01:04:26 +00:00
if ( isp - > isp_dblev & ISP_LOGDEBUG1 ) {
isp_print_bytes ( isp , " CT Header " , QENTRY_LEN , & scp [ XTXOFF ] ) ;
}
2006-11-02 03:21:32 +00:00
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( & scp [ ZTXOFF ] , sizeof ( ct_hdr_t ) ) ;
2006-11-02 03:21:32 +00:00
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_EXEC_COMMAND_IOCB_A64 , MBLOGALL , 1000000 ) ;
2006-11-02 03:21:32 +00:00
mbs . param [ 1 ] = QENTRY_LEN ;
mbs . param [ 2 ] = DMA_WD1 ( fcp - > isp_scdma + CTXOFF ) ;
mbs . param [ 3 ] = DMA_WD0 ( fcp - > isp_scdma + CTXOFF ) ;
mbs . param [ 6 ] = DMA_WD3 ( fcp - > isp_scdma + CTXOFF ) ;
mbs . param [ 7 ] = DMA_WD2 ( fcp - > isp_scdma + CTXOFF ) ;
MEMORYBARRIER ( isp , SYNC_SFORDEV , XTXOFF , 2 * QENTRY_LEN ) ;
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
return ( - 1 ) ;
}
MEMORYBARRIER ( isp , SYNC_SFORCPU , ZTXOFF , QENTRY_LEN ) ;
pt = & un . plocal ;
isp_get_ct_pt ( isp , ( isp_ct_pt_t * ) & scp [ ZTXOFF ] , pt ) ;
if ( isp - > isp_dblev & ISP_LOGDEBUG1 ) {
isp_print_bytes ( isp , " IOCB response " , QENTRY_LEN , pt ) ;
}
if ( pt - > ctp_status ) {
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , chan ) ;
isp_prt ( isp , ISP_LOGWARN ,
" Chan %d Register FC4 Type CT Passthrough returned 0x%x " ,
chan , pt - > ctp_status ) ;
return ( 1 ) ;
2006-11-02 03:21:32 +00:00
}
isp_get_ct_hdr ( isp , ( ct_hdr_t * ) & scp [ IGPOFF ] , ct ) ;
2009-08-01 01:04:26 +00:00
FC_SCRATCH_RELEASE ( isp , chan ) ;
2006-11-02 03:21:32 +00:00
if ( ct - > ct_cmd_resp = = LS_RJT ) {
2006-11-14 08:45:48 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
2009-08-01 01:04:26 +00:00
" Chan %d Register FC4 Type rejected " , chan ) ;
2006-11-02 03:21:32 +00:00
return ( - 1 ) ;
} else if ( ct - > ct_cmd_resp = = LS_ACC ) {
2006-11-14 08:45:48 +00:00
isp_prt ( isp , ISP_LOGSANCFG | ISP_LOGDEBUG0 ,
2009-08-01 01:04:26 +00:00
" Chan %d Register FC4 Type accepted " , chan ) ;
return ( 0 ) ;
2006-11-02 03:21:32 +00:00
} else {
isp_prt ( isp , ISP_LOGWARN ,
2009-08-01 01:04:26 +00:00
" Chan %d Register FC4 Type: 0x%x " ,
chan , ct - > ct_cmd_resp ) ;
2006-11-02 03:21:32 +00:00
return ( - 1 ) ;
}
}
static uint16_t
2009-08-01 01:04:26 +00:00
isp_nxt_handle ( ispsoftc_t * isp , int chan , uint16_t handle )
2006-11-02 03:21:32 +00:00
{
2007-01-20 04:00:21 +00:00
int i ;
2006-12-05 07:50:23 +00:00
if ( handle = = NIL_HANDLE ) {
2009-08-01 01:04:26 +00:00
if ( FCPARAM ( isp , chan ) - > isp_topo = = TOPO_F_PORT ) {
2006-11-02 03:21:32 +00:00
handle = 0 ;
} else {
handle = SNS_ID + 1 ;
}
} else {
handle + = 1 ;
if ( handle > = FL_ID & & handle < = SNS_ID ) {
handle = SNS_ID + 1 ;
2006-12-05 07:50:23 +00:00
}
if ( handle > = NPH_RESERVED & & handle < = NPH_FL_ID ) {
handle = NPH_FL_ID + 1 ;
}
2009-08-01 01:04:26 +00:00
if ( ISP_CAP_2KLOGIN ( isp ) ) {
2006-12-05 07:50:23 +00:00
if ( handle = = NPH_MAX_2K ) {
2006-11-02 03:21:32 +00:00
handle = 0 ;
}
} else {
2006-12-05 07:50:23 +00:00
if ( handle = = NPH_MAX ) {
2006-11-02 03:21:32 +00:00
handle = 0 ;
}
}
}
2009-08-01 01:04:26 +00:00
if ( handle = = FCPARAM ( isp , chan ) - > isp_loopid ) {
return ( isp_nxt_handle ( isp , chan , handle ) ) ;
2001-01-09 02:46:23 +00:00
}
2007-01-20 04:00:21 +00:00
for ( i = 0 ; i < MAX_FC_TARG ; i + + ) {
2009-08-01 01:04:26 +00:00
if ( FCPARAM ( isp , chan ) - > portdb [ i ] . state = =
FC_PORTDB_STATE_NIL ) {
2007-01-20 04:00:21 +00:00
continue ;
}
2009-08-01 01:04:26 +00:00
if ( FCPARAM ( isp , chan ) - > portdb [ i ] . handle = = handle ) {
return ( isp_nxt_handle ( isp , chan , handle ) ) ;
2007-01-20 04:00:21 +00:00
}
}
return ( handle ) ;
2001-01-09 02:46:23 +00:00
}
2001-02-11 03:44:43 +00:00
1998-04-22 17:54:58 +00:00
/*
1998-09-15 08:42:56 +00:00
* Start a command . Locking is assumed done in the caller .
1998-04-22 17:54:58 +00:00
*/
1998-09-15 08:42:56 +00:00
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
int
2001-03-14 04:11:56 +00:00
isp_start ( XS_T * xs )
1998-04-22 17:54:58 +00:00
{
2006-04-21 18:30:01 +00:00
ispsoftc_t * isp ;
2009-08-01 01:04:26 +00:00
uint32_t handle ;
2006-02-15 00:31:48 +00:00
uint8_t local [ QENTRY_LEN ] ;
2009-08-01 01:04:26 +00:00
ispreq_t * reqp ;
void * cdbp , * qep ;
2006-11-02 03:21:32 +00:00
uint16_t * tptr ;
2009-08-01 01:04:26 +00:00
int target , dmaresult , hdlidx = 0 ;
1998-04-22 17:54:58 +00:00
XS_INITERR ( xs ) ;
isp = XS_ISP ( xs ) ;
2001-01-15 18:33:08 +00:00
/*
* Now make sure we ' re running .
*/
1998-09-15 08:42:56 +00:00
if ( isp - > isp_state ! = ISP_RUNSTATE ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " Adapter not at RUNSTATE " ) ;
1998-09-15 08:42:56 +00:00
XS_SETERR ( xs , HBA_BOTCH ) ;
return ( CMD_COMPLETE ) ;
}
/*
2000-02-15 00:35:00 +00:00
* Check command CDB length , etc . . We really are limited to 16 bytes
* for Fibre Channel , but can do up to 44 bytes in parallel SCSI ,
* but probably only if we ' re running fairly new firmware ( we ' ll
* let the old f / w choke on an extended command queue entry ) .
1998-09-15 08:42:56 +00:00
*/
1999-03-17 05:04:39 +00:00
2000-02-15 00:35:00 +00:00
if ( XS_CDBLEN ( xs ) > ( IS_FC ( isp ) ? 16 : 44 ) | | XS_CDBLEN ( xs ) = = 0 ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR , " unsupported cdb length (%d, CDB[0]=0x%x) " , XS_CDBLEN ( xs ) , XS_CDBP ( xs ) [ 0 ] & 0xff ) ;
1998-09-15 08:42:56 +00:00
XS_SETERR ( xs , HBA_BOTCH ) ;
return ( CMD_COMPLETE ) ;
}
/*
2006-11-02 03:21:32 +00:00
* Translate the target to device handle as appropriate , checking
* for correct device state as well .
1999-03-17 05:04:39 +00:00
*/
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
target = XS_TGT ( xs ) ;
1999-03-17 05:04:39 +00:00
if ( IS_FC ( isp ) ) {
2009-08-01 01:04:26 +00:00
fcparam * fcp = FCPARAM ( isp , XS_CHANNEL ( xs ) ) ;
if ( ( fcp - > role & ISP_ROLE_INITIATOR ) = = 0 ) {
XS_SETERR ( xs , HBA_SELTIMEOUT ) ;
return ( CMD_COMPLETE ) ;
}
2006-11-02 03:21:32 +00:00
2006-11-14 08:45:48 +00:00
/*
* Try again later .
*/
2009-08-01 01:04:26 +00:00
if ( fcp - > isp_fwstate ! = FW_READY | | fcp - > isp_loopstate ! = LOOP_READY ) {
2001-03-02 06:28:55 +00:00
return ( CMD_RQLATER ) ;
}
2006-11-02 03:21:32 +00:00
if ( XS_TGT ( xs ) > = MAX_FC_TARG ) {
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
XS_SETERR ( xs , HBA_SELTIMEOUT ) ;
return ( CMD_COMPLETE ) ;
}
2006-11-02 03:21:32 +00:00
2009-08-01 01:04:26 +00:00
hdlidx = fcp - > isp_dev_map [ XS_TGT ( xs ) ] - 1 ;
isp_prt ( isp , ISP_LOGDEBUG2 , " XS_TGT(xs)=%d- hdlidx value %d " , XS_TGT ( xs ) , hdlidx ) ;
2006-11-14 08:45:48 +00:00
if ( hdlidx < 0 | | hdlidx > = MAX_FC_TARG ) {
XS_SETERR ( xs , HBA_SELTIMEOUT ) ;
return ( CMD_COMPLETE ) ;
}
if ( fcp - > portdb [ hdlidx ] . state = = FC_PORTDB_STATE_ZOMBIE ) {
return ( CMD_RQLATER ) ;
}
if ( fcp - > portdb [ hdlidx ] . state ! = FC_PORTDB_STATE_VALID ) {
Roll revision levels. Add support for the Qlogic 2200 (warn about
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
1999-07-02 23:06:38 +00:00
XS_SETERR ( xs , HBA_SELTIMEOUT ) ;
return ( CMD_COMPLETE ) ;
}
2006-11-14 08:45:48 +00:00
target = fcp - > portdb [ hdlidx ] . handle ;
2009-08-01 01:04:26 +00:00
fcp - > portdb [ hdlidx ] . dirty = 1 ;
} else {
sdparam * sdp = SDPARAM ( isp , XS_CHANNEL ( xs ) ) ;
if ( ( sdp - > role & ISP_ROLE_INITIATOR ) = = 0 ) {
XS_SETERR ( xs , HBA_SELTIMEOUT ) ;
return ( CMD_COMPLETE ) ;
}
if ( sdp - > update ) {
isp_spi_update ( isp , XS_CHANNEL ( xs ) ) ;
}
1998-04-22 17:54:58 +00:00
}
1998-09-15 08:42:56 +00:00
2006-11-02 03:21:32 +00:00
start_again :
2009-08-01 01:04:26 +00:00
qep = isp_getrqentry ( isp ) ;
if ( qep = = NULL ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 , " Request Queue Overflow " ) ;
1998-04-22 17:54:58 +00:00
XS_SETERR ( xs , HBA_BOTCH ) ;
return ( CMD_EAGAIN ) ;
}
2009-08-01 01:04:26 +00:00
XS_SETERR ( xs , HBA_NOERROR ) ;
1998-04-22 17:54:58 +00:00
1999-05-11 05:06:55 +00:00
/*
* Now see if we need to synchronize the ISP with respect to anything .
* We do dual duty here ( cough ) for synchronizing for busses other
* than which we got here to send a command to .
*/
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
reqp = ( ispreq_t * ) local ;
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( local , QENTRY_LEN ) ;
if ( ISP_TST_SENDMARKER ( isp , XS_CHANNEL ( xs ) ) ) {
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
2009-08-01 01:04:26 +00:00
isp_marker_24xx_t * m = ( isp_marker_24xx_t * ) reqp ;
2006-11-02 03:21:32 +00:00
m - > mrk_header . rqs_entry_count = 1 ;
m - > mrk_header . rqs_entry_type = RQSTYPE_MARKER ;
m - > mrk_modifier = SYNC_ALL ;
2009-08-01 01:04:26 +00:00
isp_put_marker_24xx ( isp , m , qep ) ;
2006-11-02 03:21:32 +00:00
} else {
2009-08-01 01:04:26 +00:00
isp_marker_t * m = ( isp_marker_t * ) reqp ;
m - > mrk_header . rqs_entry_count = 1 ;
m - > mrk_header . rqs_entry_type = RQSTYPE_MARKER ;
m - > mrk_target = ( XS_CHANNEL ( xs ) < < 7 ) ; /* bus # */
m - > mrk_modifier = SYNC_ALL ;
isp_put_marker ( isp , m , qep ) ;
1998-04-22 17:54:58 +00:00
}
2009-08-01 01:04:26 +00:00
ISP_SYNC_REQUEST ( isp ) ;
ISP_SET_SENDMARKER ( isp , XS_CHANNEL ( xs ) , 0 ) ;
goto start_again ;
1998-04-22 17:54:58 +00:00
}
reqp - > req_header . rqs_entry_count = 1 ;
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
reqp - > req_header . rqs_entry_type = RQSTYPE_T7RQS ;
} else if ( IS_FC ( isp ) ) {
1998-04-22 17:54:58 +00:00
reqp - > req_header . rqs_entry_type = RQSTYPE_T2RQS ;
} else {
2009-08-01 01:04:26 +00:00
if ( XS_CDBLEN ( xs ) > 12 ) {
2000-02-15 00:35:00 +00:00
reqp - > req_header . rqs_entry_type = RQSTYPE_CMDONLY ;
2009-08-01 01:04:26 +00:00
} else {
2000-02-15 00:35:00 +00:00
reqp - > req_header . rqs_entry_type = RQSTYPE_REQUEST ;
2009-08-01 01:04:26 +00:00
}
1998-04-22 17:54:58 +00:00
}
2001-10-23 23:05:20 +00:00
/* reqp->req_header.rqs_flags = 0; */
/* reqp->req_header.rqs_seqno = 0; */
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
int ttype ;
if ( XS_TAG_P ( xs ) ) {
ttype = XS_TAG_TYPE ( xs ) ;
} else {
if ( XS_CDBP ( xs ) [ 0 ] = = 0x3 ) {
ttype = REQFLAG_HTAG ;
} else {
ttype = REQFLAG_STAG ;
}
}
if ( ttype = = REQFLAG_OTAG ) {
ttype = FCP_CMND_TASK_ATTR_ORDERED ;
} else if ( ttype = = REQFLAG_HTAG ) {
ttype = FCP_CMND_TASK_ATTR_HEAD ;
} else {
ttype = FCP_CMND_TASK_ATTR_SIMPLE ;
}
( ( ispreqt7_t * ) reqp ) - > req_task_attribute = ttype ;
} else if ( IS_FC ( isp ) ) {
1998-04-22 17:54:58 +00:00
/*
* See comment in isp_intr
*/
2009-08-01 01:04:26 +00:00
/* XS_SET_RESID(xs, 0); */
1999-03-25 22:52:45 +00:00
1998-04-22 17:54:58 +00:00
/*
1999-10-28 02:48:42 +00:00
* Fibre Channel always requires some kind of tag .
* The Qlogic drivers seem be happy not to use a tag ,
* but this breaks for some devices ( IBM drives ) .
1998-04-22 17:54:58 +00:00
*/
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( XS_TAG_P ( xs ) ) {
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
( ( ispreqt2_t * ) reqp ) - > req_flags = XS_TAG_TYPE ( xs ) ;
1999-10-28 02:48:42 +00:00
} else {
2000-08-27 23:38:44 +00:00
/*
* If we don ' t know what tag to use , use HEAD OF QUEUE
2001-08-31 21:39:04 +00:00
* for Request Sense or Simple .
2000-08-27 23:38:44 +00:00
*/
1999-10-28 02:48:42 +00:00
if ( XS_CDBP ( xs ) [ 0 ] = = 0x3 ) /* REQUEST SENSE */
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
( ( ispreqt2_t * ) reqp ) - > req_flags = REQFLAG_HTAG ;
1999-10-28 02:48:42 +00:00
else
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
( ( ispreqt2_t * ) reqp ) - > req_flags = REQFLAG_STAG ;
1998-04-22 17:54:58 +00:00
}
} else {
2009-08-01 01:04:26 +00:00
sdparam * sdp = SDPARAM ( isp , XS_CHANNEL ( xs ) ) ;
if ( ( sdp - > isp_devparam [ target ] . actv_flags & DPARM_TQING ) & & XS_TAG_P ( xs ) ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
reqp - > req_flags = XS_TAG_TYPE ( xs ) ;
1998-04-22 17:54:58 +00:00
}
}
2006-11-02 03:21:32 +00:00
cdbp = reqp - > req_cdb ;
tptr = & reqp - > req_time ;
1999-08-16 19:59:55 +00:00
if ( IS_SCSI ( isp ) ) {
2006-01-23 06:23:37 +00:00
reqp - > req_target = target | ( XS_CHANNEL ( xs ) < < 7 ) ;
1998-12-05 01:33:57 +00:00
reqp - > req_lun_trn = XS_LUN ( xs ) ;
1998-04-22 17:54:58 +00:00
reqp - > req_cdblen = XS_CDBLEN ( xs ) ;
2006-11-02 03:21:32 +00:00
} else if ( IS_24XX ( isp ) ) {
fcportdb_t * lp ;
2009-08-01 01:04:26 +00:00
lp = & FCPARAM ( isp , XS_CHANNEL ( xs ) ) - > portdb [ hdlidx ] ;
2006-11-02 03:21:32 +00:00
( ( ispreqt7_t * ) reqp ) - > req_nphdl = target ;
( ( ispreqt7_t * ) reqp ) - > req_tidlo = lp - > portid ;
( ( ispreqt7_t * ) reqp ) - > req_tidhi = lp - > portid > > 16 ;
2009-08-01 01:04:26 +00:00
( ( ispreqt7_t * ) reqp ) - > req_vpidx = ISP_GET_VPIDX ( isp , XS_CHANNEL ( xs ) ) ;
2006-11-02 03:21:32 +00:00
if ( XS_LUN ( xs ) > 256 ) {
( ( ispreqt7_t * ) reqp ) - > req_lun [ 0 ] = XS_LUN ( xs ) > > 8 ;
( ( ispreqt7_t * ) reqp ) - > req_lun [ 0 ] | = 0x40 ;
}
( ( ispreqt7_t * ) reqp ) - > req_lun [ 1 ] = XS_LUN ( xs ) ;
cdbp = ( ( ispreqt7_t * ) reqp ) - > req_cdb ;
tptr = & ( ( ispreqt7_t * ) reqp ) - > req_time ;
2009-08-01 01:04:26 +00:00
} else if ( ISP_CAP_2KLOGIN ( isp ) ) {
2006-01-23 06:23:37 +00:00
( ( ispreqt2e_t * ) reqp ) - > req_target = target ;
( ( ispreqt2e_t * ) reqp ) - > req_scclun = XS_LUN ( xs ) ;
2009-08-01 01:04:26 +00:00
} else if ( ISP_CAP_SCCFW ( isp ) ) {
2006-01-23 06:23:37 +00:00
( ( ispreqt2_t * ) reqp ) - > req_target = target ;
( ( ispreqt2_t * ) reqp ) - > req_scclun = XS_LUN ( xs ) ;
1998-12-05 01:33:57 +00:00
} else {
2006-01-23 06:23:37 +00:00
( ( ispreqt2_t * ) reqp ) - > req_target = target ;
( ( ispreqt2_t * ) reqp ) - > req_lun_trn = XS_LUN ( xs ) ;
1998-04-22 17:54:58 +00:00
}
2009-08-01 01:04:26 +00:00
ISP_MEMCPY ( cdbp , XS_CDBP ( xs ) , XS_CDBLEN ( xs ) ) ;
1998-04-22 17:54:58 +00:00
2006-11-02 03:21:32 +00:00
* tptr = XS_TIME ( xs ) / 1000 ;
if ( * tptr = = 0 & & XS_TIME ( xs ) ) {
* tptr = 1 ;
}
if ( IS_24XX ( isp ) & & * tptr > 0x1999 ) {
* tptr = 0x1999 ;
1999-10-17 18:58:22 +00:00
}
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
2001-03-02 06:28:55 +00:00
if ( isp_save_xs ( isp , xs , & handle ) ) {
2001-10-23 23:05:20 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 , " out of xflist pointers " ) ;
1999-10-17 18:58:22 +00:00
XS_SETERR ( xs , HBA_BOTCH ) ;
return ( CMD_EAGAIN ) ;
}
2006-11-02 03:21:32 +00:00
/* Whew. Thankfully the same for type 7 requests */
2001-03-02 06:28:55 +00:00
reqp - > req_handle = handle ;
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
1999-10-17 18:58:22 +00:00
/*
2009-08-01 01:04:26 +00:00
* Set up DMA and / or do any platform dependent swizzling of the request entry
1999-10-17 18:58:22 +00:00
* so that the Qlogic F / W understands what is being asked of it .
2009-08-01 01:04:26 +00:00
*
* The callee is responsible for adding all requests at this point .
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
*/
2009-08-01 01:04:26 +00:00
dmaresult = ISP_DMASETUP ( isp , xs , reqp ) ;
if ( dmaresult ! = CMD_QUEUED ) {
2001-03-02 06:28:55 +00:00
isp_destroy_handle ( isp , handle ) ;
1998-09-17 21:03:45 +00:00
/*
* dmasetup sets actual error in packet , and
* return what we were given to return .
*/
2009-08-01 01:04:26 +00:00
return ( dmaresult ) ;
1998-04-22 17:54:58 +00:00
}
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 , " START cmd for %d.%d.%d cmd 0x%x datalen %ld " , XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) , XS_CDBP ( xs ) [ 0 ] , ( long ) XS_XFRLEN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
isp - > isp_nactive + + ;
return ( CMD_QUEUED ) ;
1998-04-22 17:54:58 +00:00
}
/*
1998-09-15 08:42:56 +00:00
* isp control
* Locks ( ints blocked ) assumed held .
1998-04-22 17:54:58 +00:00
*/
int
2009-08-01 01:04:26 +00:00
isp_control ( ispsoftc_t * isp , ispctl_t ctl , . . . )
1998-04-22 17:54:58 +00:00
{
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
XS_T * xs ;
2009-08-01 01:04:26 +00:00
mbreg_t * mbr , mbs ;
int chan , tgt ;
2006-11-02 03:21:32 +00:00
uint32_t handle ;
2009-08-01 01:04:26 +00:00
va_list ap ;
2006-01-23 06:23:37 +00:00
1998-09-15 08:42:56 +00:00
switch ( ctl ) {
case ISPCTL_RESET_BUS :
1999-03-17 05:04:39 +00:00
/*
* Issue a bus reset .
*/
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
2007-03-29 21:29:26 +00:00
isp_prt ( isp , ISP_LOGWARN , " RESET BUS NOT IMPLEMENTED " ) ;
2006-11-02 03:21:32 +00:00
break ;
} else if ( IS_FC ( isp ) ) {
mbs . param [ 1 ] = 10 ;
2009-08-01 01:04:26 +00:00
chan = 0 ;
2006-11-02 03:21:32 +00:00
} else {
2009-08-01 01:04:26 +00:00
va_start ( ap , ctl ) ;
chan = va_arg ( ap , int ) ;
va_end ( ap ) ;
mbs . param [ 1 ] = SDPARAM ( isp , chan ) - > isp_bus_reset_delay ;
2006-07-03 08:24:09 +00:00
if ( mbs . param [ 1 ] < 2 ) {
1999-03-17 05:04:39 +00:00
mbs . param [ 1 ] = 2 ;
2006-07-03 08:24:09 +00:00
}
2009-08-01 01:04:26 +00:00
mbs . param [ 2 ] = chan ;
1999-02-09 01:07:06 +00:00
}
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_BUS_RESET , MBLOGALL , 0 ) ;
ISP_SET_SENDMARKER ( isp , chan , 1 ) ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
1998-09-15 08:42:56 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
break ;
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGINFO ,
2009-08-01 01:04:26 +00:00
" driver initiated bus reset of bus %d " , chan ) ;
1998-09-15 08:42:56 +00:00
return ( 0 ) ;
1999-03-25 22:52:45 +00:00
case ISPCTL_RESET_DEV :
2009-08-01 01:04:26 +00:00
va_start ( ap , ctl ) ;
chan = va_arg ( ap , int ) ;
tgt = va_arg ( ap , int ) ;
va_end ( ap ) ;
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
2009-08-01 01:04:26 +00:00
uint8_t local [ QENTRY_LEN ] ;
isp24xx_tmf_t * tmf ;
isp24xx_statusreq_t * sp ;
fcparam * fcp = FCPARAM ( isp , chan ) ;
fcportdb_t * lp ;
int hdlidx ;
hdlidx = fcp - > isp_dev_map [ tgt ] - 1 ;
if ( hdlidx < 0 | | hdlidx > = MAX_FC_TARG ) {
isp_prt ( isp , ISP_LOGWARN ,
" Chan %d bad handle %d trying to reset "
" target %d " , chan , hdlidx , tgt ) ;
break ;
}
lp = & fcp - > portdb [ hdlidx ] ;
if ( lp - > state ! = FC_PORTDB_STATE_VALID ) {
isp_prt ( isp , ISP_LOGWARN ,
" Chan %d handle %d for abort of target %d "
" no longer valid " , chan ,
hdlidx , tgt ) ;
break ;
}
tmf = ( isp24xx_tmf_t * ) local ;
ISP_MEMZERO ( tmf , QENTRY_LEN ) ;
tmf - > tmf_header . rqs_entry_type = RQSTYPE_TSK_MGMT ;
tmf - > tmf_header . rqs_entry_count = 1 ;
tmf - > tmf_nphdl = lp - > handle ;
tmf - > tmf_delay = 2 ;
tmf - > tmf_timeout = 2 ;
tmf - > tmf_flags = ISP24XX_TMF_TARGET_RESET ;
tmf - > tmf_tidlo = lp - > portid ;
tmf - > tmf_tidhi = lp - > portid > > 16 ;
tmf - > tmf_vpidx = ISP_GET_VPIDX ( isp , chan ) ;
isp_prt ( isp , ISP_LOGALL , " Chan %d Reset N-Port Handle 0x%04x @ Port 0x%06x " , chan , lp - > handle , lp - > portid ) ;
MBSINIT ( & mbs , MBOX_EXEC_COMMAND_IOCB_A64 , MBLOGALL , 5000000 ) ;
mbs . param [ 1 ] = QENTRY_LEN ;
mbs . param [ 2 ] = DMA_WD1 ( fcp - > isp_scdma ) ;
mbs . param [ 3 ] = DMA_WD0 ( fcp - > isp_scdma ) ;
mbs . param [ 6 ] = DMA_WD3 ( fcp - > isp_scdma ) ;
mbs . param [ 7 ] = DMA_WD2 ( fcp - > isp_scdma ) ;
if ( FC_SCRATCH_ACQUIRE ( isp , chan ) ) {
isp_prt ( isp , ISP_LOGERR , sacq ) ;
break ;
}
isp_put_24xx_tmf ( isp , tmf , fcp - > isp_scratch ) ;
MEMORYBARRIER ( isp , SYNC_SFORDEV , 0 , QENTRY_LEN ) ;
fcp - > sendmarker = 1 ;
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
FC_SCRATCH_RELEASE ( isp , chan ) ;
break ;
}
MEMORYBARRIER ( isp , SYNC_SFORCPU , QENTRY_LEN ,
QENTRY_LEN ) ;
sp = ( isp24xx_statusreq_t * ) local ;
isp_get_24xx_response ( isp ,
& ( ( isp24xx_statusreq_t * ) fcp - > isp_scratch ) [ 1 ] , sp ) ;
FC_SCRATCH_RELEASE ( isp , chan ) ;
if ( sp - > req_completion_status = = 0 ) {
return ( 0 ) ;
}
isp_prt ( isp , ISP_LOGWARN ,
" Chan %d reset of target %d returned 0x%x " ,
chan , tgt , sp - > req_completion_status ) ;
2006-11-02 03:21:32 +00:00
break ;
} else if ( IS_FC ( isp ) ) {
2009-08-01 01:04:26 +00:00
if ( ISP_CAP_2KLOGIN ( isp ) ) {
2006-01-23 06:23:37 +00:00
mbs . param [ 1 ] = tgt ;
2006-11-02 03:21:32 +00:00
mbs . ibits = ( 1 < < 10 ) ;
2006-01-23 06:23:37 +00:00
} else {
mbs . param [ 1 ] = ( tgt < < 8 ) ;
}
2006-11-02 03:21:32 +00:00
} else {
2009-08-01 01:04:26 +00:00
mbs . param [ 1 ] = ( chan < < 15 ) | ( tgt < < 8 ) ;
2006-01-23 06:23:37 +00:00
}
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_ABORT_TARGET , MBLOGALL , 0 ) ;
1999-02-09 01:07:06 +00:00
mbs . param [ 2 ] = 3 ; /* 'delay', in seconds */
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
1998-09-15 08:42:56 +00:00
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
break ;
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGINFO ,
2009-08-01 01:04:26 +00:00
" Target %d on Bus %d Reset Succeeded " , tgt , chan ) ;
ISP_SET_SENDMARKER ( isp , chan , 1 ) ;
1998-09-15 08:42:56 +00:00
return ( 0 ) ;
1999-03-25 22:52:45 +00:00
case ISPCTL_ABORT_CMD :
2009-08-01 01:04:26 +00:00
va_start ( ap , ctl ) ;
xs = va_arg ( ap , XS_T * ) ;
va_end ( ap ) ;
2000-07-05 06:41:36 +00:00
tgt = XS_TGT ( xs ) ;
2009-08-01 01:04:26 +00:00
chan = XS_CHANNEL ( xs ) ;
2006-11-02 03:21:32 +00:00
1999-10-17 18:58:22 +00:00
handle = isp_find_handle ( isp , xs ) ;
if ( handle = = 0 ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN ,
" cannot find handle for command to abort " ) ;
1998-09-15 08:42:56 +00:00
break ;
}
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
2009-08-01 01:04:26 +00:00
isp24xx_abrt_t local , * ab = & local , * ab2 ;
fcparam * fcp ;
fcportdb_t * lp ;
int hdlidx ;
fcp = FCPARAM ( isp , chan ) ;
hdlidx = fcp - > isp_dev_map [ tgt ] - 1 ;
if ( hdlidx < 0 | | hdlidx > = MAX_FC_TARG ) {
isp_prt ( isp , ISP_LOGWARN ,
" Chan %d bad handle %d trying to abort "
" target %d " , chan , hdlidx , tgt ) ;
break ;
}
lp = & fcp - > portdb [ hdlidx ] ;
if ( lp - > state ! = FC_PORTDB_STATE_VALID ) {
isp_prt ( isp , ISP_LOGWARN ,
" Chan %d handle %d for abort of target %d "
" no longer valid " , chan , hdlidx , tgt ) ;
break ;
}
isp_prt ( isp , ISP_LOGALL ,
" Chan %d Abort Cmd for N-Port 0x%04x @ Port "
" 0x%06x %p " , chan , lp - > handle , lp - > portid , xs ) ;
ISP_MEMZERO ( ab , QENTRY_LEN ) ;
ab - > abrt_header . rqs_entry_type = RQSTYPE_ABORT_IO ;
ab - > abrt_header . rqs_entry_count = 1 ;
ab - > abrt_handle = lp - > handle ;
ab - > abrt_cmd_handle = handle ;
ab - > abrt_tidlo = lp - > portid ;
ab - > abrt_tidhi = lp - > portid > > 16 ;
ab - > abrt_vpidx = ISP_GET_VPIDX ( isp , chan ) ;
ISP_MEMZERO ( & mbs , sizeof ( mbs ) ) ;
MBSINIT ( & mbs , MBOX_EXEC_COMMAND_IOCB_A64 , MBLOGALL , 5000000 ) ;
mbs . param [ 1 ] = QENTRY_LEN ;
mbs . param [ 2 ] = DMA_WD1 ( fcp - > isp_scdma ) ;
mbs . param [ 3 ] = DMA_WD0 ( fcp - > isp_scdma ) ;
mbs . param [ 6 ] = DMA_WD3 ( fcp - > isp_scdma ) ;
mbs . param [ 7 ] = DMA_WD2 ( fcp - > isp_scdma ) ;
if ( FC_SCRATCH_ACQUIRE ( isp , chan ) ) {
isp_prt ( isp , ISP_LOGERR , sacq ) ;
break ;
}
isp_put_24xx_abrt ( isp , ab , fcp - > isp_scratch ) ;
ab2 = ( isp24xx_abrt_t * )
& ( ( uint8_t * ) fcp - > isp_scratch ) [ QENTRY_LEN ] ;
ab2 - > abrt_nphdl = 0xdeaf ;
MEMORYBARRIER ( isp , SYNC_SFORDEV , 0 , 2 * QENTRY_LEN ) ;
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
FC_SCRATCH_RELEASE ( isp , chan ) ;
break ;
}
MEMORYBARRIER ( isp , SYNC_SFORCPU , QENTRY_LEN ,
QENTRY_LEN ) ;
isp_get_24xx_abrt ( isp , ab2 , ab ) ;
FC_SCRATCH_RELEASE ( isp , chan ) ;
if ( ab - > abrt_nphdl = = ISP24XX_ABRT_OKAY ) {
return ( 0 ) ;
}
isp_prt ( isp , ISP_LOGWARN ,
" Chan %d handle %d abort returned 0x%x " , chan ,
hdlidx , ab - > abrt_nphdl ) ;
2006-11-02 03:21:32 +00:00
break ;
} else if ( IS_FC ( isp ) ) {
2009-08-01 01:04:26 +00:00
if ( ISP_CAP_SCCFW ( isp ) ) {
if ( ISP_CAP_2KLOGIN ( isp ) ) {
2006-01-23 06:23:37 +00:00
mbs . param [ 1 ] = tgt ;
} else {
mbs . param [ 1 ] = tgt < < 8 ;
}
2000-06-18 04:56:17 +00:00
mbs . param [ 6 ] = XS_LUN ( xs ) ;
} else {
2000-07-05 06:41:36 +00:00
mbs . param [ 1 ] = tgt < < 8 | XS_LUN ( xs ) ;
2000-06-18 04:56:17 +00:00
}
1999-10-17 18:58:22 +00:00
} else {
2009-08-01 01:04:26 +00:00
mbs . param [ 1 ] = ( chan < < 15 ) | ( tgt < < 8 ) | XS_LUN ( xs ) ;
1999-10-17 18:58:22 +00:00
}
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_ABORT , MBLOGALL & ~ MBOX_COMMAND_ERROR , 0 ) ;
2001-03-02 06:28:55 +00:00
mbs . param [ 2 ] = handle ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
break ;
1998-09-15 08:42:56 +00:00
}
2006-11-02 03:21:32 +00:00
return ( 0 ) ;
1998-09-15 08:42:56 +00:00
case ISPCTL_UPDATE_PARAMS :
2001-02-11 03:44:43 +00:00
2009-08-01 01:04:26 +00:00
va_start ( ap , ctl ) ;
chan = va_arg ( ap , int ) ;
va_end ( ap ) ;
isp_spi_update ( isp , chan ) ;
1999-03-25 22:52:45 +00:00
return ( 0 ) ;
1999-03-17 05:04:39 +00:00
case ISPCTL_FCLINK_TEST :
2001-02-11 03:44:43 +00:00
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
if ( IS_FC ( isp ) ) {
2009-08-01 01:04:26 +00:00
int usdelay ;
va_start ( ap , ctl ) ;
chan = va_arg ( ap , int ) ;
usdelay = va_arg ( ap , int ) ;
va_end ( ap ) ;
2006-04-21 18:46:35 +00:00
if ( usdelay = = 0 ) {
usdelay = 250000 ;
}
2009-08-01 01:04:26 +00:00
return ( isp_fclink_test ( isp , chan , usdelay ) ) ;
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
}
break ;
1999-11-21 03:18:22 +00:00
2001-02-11 03:44:43 +00:00
case ISPCTL_SCAN_FABRIC :
if ( IS_FC ( isp ) ) {
2009-08-01 01:04:26 +00:00
va_start ( ap , ctl ) ;
chan = va_arg ( ap , int ) ;
va_end ( ap ) ;
return ( isp_scan_fabric ( isp , chan ) ) ;
2001-02-11 03:44:43 +00:00
}
break ;
case ISPCTL_SCAN_LOOP :
if ( IS_FC ( isp ) ) {
2009-08-01 01:04:26 +00:00
va_start ( ap , ctl ) ;
chan = va_arg ( ap , int ) ;
va_end ( ap ) ;
return ( isp_scan_loop ( isp , chan ) ) ;
2001-02-11 03:44:43 +00:00
}
break ;
2000-01-03 23:52:41 +00:00
case ISPCTL_PDB_SYNC :
2001-02-11 03:44:43 +00:00
if ( IS_FC ( isp ) ) {
2009-08-01 01:04:26 +00:00
va_start ( ap , ctl ) ;
chan = va_arg ( ap , int ) ;
va_end ( ap ) ;
return ( isp_pdb_sync ( isp , chan ) ) ;
2001-02-11 03:44:43 +00:00
}
break ;
case ISPCTL_SEND_LIP :
2006-11-02 03:21:32 +00:00
if ( IS_FC ( isp ) & & ! IS_24XX ( isp ) ) {
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_INIT_LIP , MBLOGALL , 0 ) ;
if ( ISP_CAP_2KLOGIN ( isp ) ) {
2006-11-02 03:21:32 +00:00
mbs . ibits = ( 1 < < 10 ) ;
2006-07-03 08:24:09 +00:00
}
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
2001-02-11 03:44:43 +00:00
if ( mbs . param [ 0 ] = = MBOX_COMMAND_COMPLETE ) {
return ( 0 ) ;
}
}
break ;
2004-02-07 03:42:17 +00:00
case ISPCTL_GET_PDB :
2009-08-01 01:04:26 +00:00
if ( IS_FC ( isp ) ) {
isp_pdb_t * pdb ;
va_start ( ap , ctl ) ;
chan = va_arg ( ap , int ) ;
tgt = va_arg ( ap , int ) ;
pdb = va_arg ( ap , isp_pdb_t * ) ;
va_end ( ap ) ;
return ( isp_getpdb ( isp , chan , tgt , pdb , 1 ) ) ;
2004-02-07 03:42:17 +00:00
}
break ;
2009-08-01 01:04:26 +00:00
case ISPCTL_GET_NAMES :
2006-11-02 03:21:32 +00:00
{
2009-08-01 01:04:26 +00:00
uint64_t * wwnn , * wwnp ;
va_start ( ap , ctl ) ;
chan = va_arg ( ap , int ) ;
tgt = va_arg ( ap , int ) ;
wwnn = va_arg ( ap , uint64_t * ) ;
wwnp = va_arg ( ap , uint64_t * ) ;
va_end ( ap ) ;
if ( wwnn = = NULL & & wwnp = = NULL ) {
2006-11-02 03:21:32 +00:00
break ;
}
2009-08-01 01:04:26 +00:00
if ( wwnn ) {
* wwnn = isp_get_wwn ( isp , chan , tgt , 1 ) ;
if ( * wwnn = = INI_NONE ) {
break ;
}
}
if ( wwnp ) {
* wwnp = isp_get_wwn ( isp , chan , tgt , 0 ) ;
if ( * wwnp = = INI_NONE ) {
break ;
}
}
return ( 0 ) ;
2006-11-02 03:21:32 +00:00
}
2001-02-23 05:35:50 +00:00
case ISPCTL_RUN_MBOXCMD :
2009-08-01 01:04:26 +00:00
{
va_start ( ap , ctl ) ;
mbr = va_arg ( ap , mbreg_t * ) ;
va_end ( ap ) ;
isp_mboxcmd ( isp , mbr ) ;
return ( 0 ) ;
}
2006-11-18 03:53:16 +00:00
case ISPCTL_PLOGX :
{
2009-08-01 01:04:26 +00:00
isp_plcmd_t * p ;
2006-12-05 07:50:23 +00:00
int r ;
2009-08-01 01:04:26 +00:00
va_start ( ap , ctl ) ;
p = va_arg ( ap , isp_plcmd_t * ) ;
va_end ( ap ) ;
if ( ( p - > flags & PLOGX_FLG_CMD_MASK ) ! = PLOGX_FLG_CMD_PLOGI | | ( p - > handle ! = NIL_HANDLE ) ) {
return ( isp_plogx ( isp , p - > channel , p - > handle , p - > portid , p - > flags , 0 ) ) ;
2006-12-05 07:50:23 +00:00
}
do {
2009-08-01 01:04:26 +00:00
p - > handle = isp_nxt_handle ( isp , p - > channel , p - > handle ) ;
r = isp_plogx ( isp , p - > channel , p - > handle , p - > portid , p - > flags , 0 ) ;
2006-12-05 07:50:23 +00:00
if ( ( r & 0xffff ) = = MBOX_PORT_ID_USED ) {
p - > handle = r > > 16 ;
r = 0 ;
break ;
}
} while ( ( r & 0xffff ) = = MBOX_LOOP_ID_USED ) ;
return ( r ) ;
2006-11-18 03:53:16 +00:00
}
2009-08-01 01:04:26 +00:00
default :
isp_prt ( isp , ISP_LOGERR , " Unknown Control Opcode 0x%x " , ctl ) ;
break ;
2001-01-15 18:33:08 +00:00
1998-09-15 08:42:56 +00:00
}
return ( - 1 ) ;
}
/*
* Interrupt Service Routine ( s ) .
*
* External ( OS ) framework has done the appropriate locking ,
* and the locking will be held throughout this function .
*/
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
/*
* Limit our stack depth by sticking with the max likely number
* of completions on a request queue at any one time .
*/
2002-02-04 21:04:25 +00:00
# ifndef MAX_REQUESTQ_COMPLETIONS
2006-11-02 03:21:32 +00:00
# define MAX_REQUESTQ_COMPLETIONS 32
2002-02-04 21:04:25 +00:00
# endif
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
2001-08-31 21:39:04 +00:00
void
2006-11-02 03:21:32 +00:00
isp_intr ( ispsoftc_t * isp , uint32_t isr , uint16_t sema , uint16_t mbox )
1998-09-15 08:42:56 +00:00
{
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
XS_T * complist [ MAX_REQUESTQ_COMPLETIONS ] , * xs ;
2006-11-02 03:21:32 +00:00
uint32_t iptr , optr , junk ;
1999-02-09 01:07:06 +00:00
int i , nlooked = 0 , ndone = 0 ;
1998-09-15 08:42:56 +00:00
2002-02-04 21:04:25 +00:00
again :
2006-11-02 03:21:32 +00:00
optr = isp - > isp_residx ;
2001-08-31 21:39:04 +00:00
/*
* Is this a mailbox related interrupt ?
* The mailbox semaphore will be nonzero if so .
*/
1999-05-11 05:06:55 +00:00
if ( sema ) {
2009-08-01 01:04:26 +00:00
fmbox :
1999-03-17 05:04:39 +00:00
if ( mbox & 0x4000 ) {
2002-02-04 21:04:25 +00:00
isp - > isp_intmboxc + + ;
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
if ( isp - > isp_mboxbsy ) {
2007-03-22 23:38:32 +00:00
int obits = isp - > isp_obits ;
isp - > isp_mboxtmp [ 0 ] = mbox ;
2006-01-23 06:23:37 +00:00
for ( i = 1 ; i < MAX_MAILBOX ( isp ) ; i + + ) {
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
if ( ( obits & ( 1 < < i ) ) = = 0 ) {
continue ;
}
2009-08-01 01:04:26 +00:00
isp - > isp_mboxtmp [ i ] = ISP_READ ( isp , MBOX_OFF ( i ) ) ;
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
}
2002-02-04 21:04:25 +00:00
if ( isp - > isp_mbxwrk0 ) {
if ( isp_mbox_continue ( isp ) = = 0 ) {
return ;
}
}
2000-07-04 01:02:38 +00:00
MBOX_NOTIFY_COMPLETE ( isp ) ;
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
} else {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGWARN , " mailbox cmd (0x%x) with no waiters " , mbox ) ;
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
}
2002-01-03 20:43:22 +00:00
} else if ( isp_parse_async ( isp , mbox ) < 0 ) {
return ;
1999-01-30 07:29:00 +00:00
}
2009-08-01 01:04:26 +00:00
if ( ( IS_FC ( isp ) & & mbox ! = ASYNC_RIO_RESP ) | | isp - > isp_state ! = ISP_RUNSTATE ) {
2006-11-02 03:21:32 +00:00
goto out ;
2000-06-18 04:56:17 +00:00
}
1998-04-22 17:54:58 +00:00
}
1998-09-15 08:42:56 +00:00
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
/*
* We can ' t be getting this now .
*/
if ( isp - > isp_state ! = ISP_RUNSTATE ) {
2009-08-01 01:04:26 +00:00
/*
* This seems to happen to 23 XX and 24 XX cards - don ' t know why .
*/
if ( isp - > isp_mboxbsy & & isp - > isp_lastmbxcmd = = MBOX_ABOUT_FIRMWARE ) {
goto fmbox ;
}
isp_prt ( isp , ISP_LOGINFO , " interrupt (ISR=%x SEMA=%x) when not ready " , isr , sema ) ;
2001-08-31 21:39:04 +00:00
/*
* Thank you very much ! * Burrrp * !
*/
2009-08-01 01:04:26 +00:00
ISP_WRITE ( isp , isp - > isp_respoutrp , ISP_READ ( isp , isp - > isp_respinrp ) ) ;
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
ISP_DISABLE_INTS ( isp ) ;
}
goto out ;
}
2001-08-31 21:39:04 +00:00
2006-11-02 03:21:32 +00:00
# ifdef ISP_TARGET_MODE
/*
* Check for ATIO Queue entries .
*/
2009-08-01 01:04:26 +00:00
if ( IS_24XX ( isp ) ) {
iptr = ISP_READ ( isp , BIU2400_ATIO_RSPINP ) ;
optr = ISP_READ ( isp , BIU2400_ATIO_RSPOUTP ) ;
2006-11-02 03:21:32 +00:00
while ( optr ! = iptr ) {
uint8_t qe [ QENTRY_LEN ] ;
isphdr_t * hp ;
uint32_t oop ;
void * addr ;
oop = optr ;
MEMORYBARRIER ( isp , SYNC_ATIOQ , oop , QENTRY_LEN ) ;
addr = ISP_QUEUE_ENTRY ( isp - > isp_atioq , oop ) ;
isp_get_hdr ( isp , addr , ( isphdr_t * ) qe ) ;
hp = ( isphdr_t * ) qe ;
switch ( hp - > rqs_entry_type ) {
case RQSTYPE_NOTIFY :
case RQSTYPE_ATIO :
( void ) isp_target_notify ( isp , addr , & oop ) ;
break ;
default :
2009-08-01 01:04:26 +00:00
isp_print_qentry ( isp , " ?ATIOQ entry? " , oop , addr ) ;
2006-11-02 03:21:32 +00:00
break ;
}
optr = ISP_NXT_QENTRY ( oop , RESULT_QUEUE_LEN ( isp ) ) ;
2009-08-01 01:04:26 +00:00
ISP_WRITE ( isp , BIU2400_ATIO_RSPOUTP , optr ) ;
2006-11-02 03:21:32 +00:00
}
2007-03-13 06:44:07 +00:00
optr = isp - > isp_residx ;
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
}
2006-11-02 03:21:32 +00:00
# endif
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
1999-04-04 02:28:29 +00:00
/*
2001-08-31 21:39:04 +00:00
* Get the current Response Queue Out Pointer .
*
2006-11-02 03:21:32 +00:00
* If we ' re a 2300 or 2400 , we can ask what hardware what it thinks .
1999-04-04 02:28:29 +00:00
*/
2006-11-02 03:21:32 +00:00
if ( IS_23XX ( isp ) | | IS_24XX ( isp ) ) {
2001-08-31 21:39:04 +00:00
optr = ISP_READ ( isp , isp - > isp_respoutrp ) ;
2002-02-04 21:04:25 +00:00
/*
* Debug : to be taken out eventually
*/
2001-08-31 21:39:04 +00:00
if ( isp - > isp_residx ! = optr ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGINFO , " isp_intr: hard optr=%x, soft optr %x " , optr , isp - > isp_residx ) ;
2006-11-02 03:21:32 +00:00
isp - > isp_residx = optr ;
2001-08-31 21:39:04 +00:00
}
} else {
optr = isp - > isp_residx ;
}
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
2001-08-31 21:39:04 +00:00
/*
* You * must * read the Response Queue In Pointer
* prior to clearing the RISC interrupt .
2002-01-03 20:43:22 +00:00
*
* Debounce the 2300 if revision less than 2.
2001-08-31 21:39:04 +00:00
*/
2002-01-03 20:43:22 +00:00
if ( IS_2100 ( isp ) | | ( IS_2300 ( isp ) & & isp - > isp_revision < 2 ) ) {
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
i = 0 ;
do {
2006-11-02 03:21:32 +00:00
iptr = ISP_READ ( isp , isp - > isp_respinrp ) ;
junk = ISP_READ ( isp , isp - > isp_respinrp ) ;
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
} while ( junk ! = iptr & & + + i < 1000 ) ;
if ( iptr ! = junk ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGWARN , " Response Queue Out Pointer Unstable (%x, %x) " , iptr , junk ) ;
2006-11-02 03:21:32 +00:00
goto out ;
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
}
} else {
2006-11-02 03:21:32 +00:00
iptr = ISP_READ ( isp , isp - > isp_respinrp ) ;
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
}
2002-03-21 21:10:16 +00:00
isp - > isp_resodx = iptr ;
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
2000-06-18 04:56:17 +00:00
if ( optr = = iptr & & sema = = 0 ) {
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
/*
* There are a lot of these - reasons unknown - mostly on
* faster Alpha machines .
*
* I tried delaying after writing HCCR_CMD_CLEAR_RISC_INT to
* make sure the old interrupt went away ( to avoid ' ringing '
* effects ) , but that didn ' t stop this from occurring .
*/
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
junk = 0 ;
} else if ( IS_23XX ( isp ) ) {
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 100 ) ;
2006-11-02 03:21:32 +00:00
iptr = ISP_READ ( isp , isp - > isp_respinrp ) ;
2001-08-31 21:39:04 +00:00
junk = ISP_READ ( isp , BIU_R2HSTSLO ) ;
} else {
junk = ISP_READ ( isp , BIU_ISR ) ;
}
if ( optr = = iptr ) {
2006-11-02 03:21:32 +00:00
if ( IS_23XX ( isp ) | | IS_24XX ( isp ) ) {
2002-02-04 21:04:25 +00:00
;
} else {
sema = ISP_READ ( isp , BIU_SEMA ) ;
mbox = ISP_READ ( isp , OUTMAILBOX0 ) ;
if ( ( sema & 0x3 ) & & ( mbox & 0x8000 ) ) {
goto again ;
}
}
isp - > isp_intbogus + + ;
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGDEBUG1 , " bogus intr- isr %x (%x) iptr %x optr %x " , isr , junk , iptr , optr ) ;
2001-08-31 21:39:04 +00:00
}
1998-04-22 17:54:58 +00:00
}
2002-03-21 21:10:16 +00:00
isp - > isp_resodx = iptr ;
2006-11-02 03:21:32 +00:00
1998-04-22 17:54:58 +00:00
while ( optr ! = iptr ) {
2006-11-02 03:21:32 +00:00
uint8_t qe [ QENTRY_LEN ] ;
ispstatusreq_t * sp = ( ispstatusreq_t * ) qe ;
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
isphdr_t * hp ;
2006-11-02 03:21:32 +00:00
int buddaboom , etype , scsi_status , completion_status ;
int req_status_flags , req_state_flags ;
2006-11-14 08:45:48 +00:00
uint8_t * snsp , * resp ;
uint32_t rlen , slen ;
2006-11-02 03:21:32 +00:00
long resid ;
2006-02-15 00:31:48 +00:00
uint16_t oop ;
1998-04-22 17:54:58 +00:00
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
hp = ( isphdr_t * ) ISP_QUEUE_ENTRY ( isp - > isp_result , optr ) ;
1998-09-15 08:42:56 +00:00
oop = optr ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
optr = ISP_NXT_QENTRY ( optr , RESULT_QUEUE_LEN ( isp ) ) ;
1999-02-09 01:07:06 +00:00
nlooked + + ;
2005-01-23 06:26:45 +00:00
read_again :
2006-11-02 03:21:32 +00:00
buddaboom = req_status_flags = req_state_flags = 0 ;
resid = 0L ;
1999-10-17 18:58:22 +00:00
/*
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
* Synchronize our view of this response queue entry .
1999-10-17 18:58:22 +00:00
*/
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
MEMORYBARRIER ( isp , SYNC_RESULT , oop , QENTRY_LEN ) ;
2006-11-02 03:21:32 +00:00
isp_get_hdr ( isp , hp , & sp - > req_header ) ;
etype = sp - > req_header . rqs_entry_type ;
2007-07-02 20:08:20 +00:00
if ( IS_24XX ( isp ) & & etype = = RQSTYPE_RESPONSE ) {
2006-11-02 03:21:32 +00:00
isp24xx_statusreq_t * sp2 = ( isp24xx_statusreq_t * ) qe ;
2009-08-01 01:04:26 +00:00
isp_get_24xx_response ( isp , ( isp24xx_statusreq_t * ) hp , sp2 ) ;
2006-11-02 03:21:32 +00:00
if ( isp - > isp_dblev & ISP_LOGDEBUG1 ) {
2009-08-01 01:04:26 +00:00
isp_print_bytes ( isp , " Response Queue Entry " , QENTRY_LEN , sp2 ) ;
2006-11-02 03:21:32 +00:00
}
scsi_status = sp2 - > req_scsi_status ;
completion_status = sp2 - > req_completion_status ;
req_state_flags = 0 ;
resid = sp2 - > req_resid ;
} else if ( etype = = RQSTYPE_RESPONSE ) {
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
isp_get_response ( isp , ( ispstatusreq_t * ) hp , sp ) ;
2006-11-02 03:21:32 +00:00
if ( isp - > isp_dblev & ISP_LOGDEBUG1 ) {
2009-08-01 01:04:26 +00:00
isp_print_bytes ( isp , " Response Queue Entry " , QENTRY_LEN , sp ) ;
2006-11-02 03:21:32 +00:00
}
scsi_status = sp - > req_scsi_status ;
completion_status = sp - > req_completion_status ;
req_status_flags = sp - > req_status_flags ;
req_state_flags = sp - > req_state_flags ;
resid = sp - > req_resid ;
} else if ( etype = = RQSTYPE_RIO2 ) {
isp_rio2_t * rio = ( isp_rio2_t * ) qe ;
isp_get_rio2 ( isp , ( isp_rio2_t * ) hp , rio ) ;
if ( isp - > isp_dblev & ISP_LOGDEBUG1 ) {
2009-08-01 01:04:26 +00:00
isp_print_bytes ( isp , " Response Queue Entry " , QENTRY_LEN , rio ) ;
2006-11-02 03:21:32 +00:00
}
for ( i = 0 ; i < rio - > req_header . rqs_seqno ; i + + ) {
isp_fastpost_complete ( isp , rio - > req_handles [ i ] ) ;
}
if ( isp - > isp_fpcchiwater < rio - > req_header . rqs_seqno ) {
2009-08-01 01:04:26 +00:00
isp - > isp_fpcchiwater = rio - > req_header . rqs_seqno ;
2002-01-03 20:43:22 +00:00
}
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( hp , QENTRY_LEN ) ; /* PERF */
2002-01-03 20:43:22 +00:00
continue ;
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
} else {
2002-03-07 17:32:45 +00:00
/*
* Somebody reachable via isp_handle_other_response
* may have updated the response queue pointers for
2002-03-21 21:10:16 +00:00
* us , so we reload our goal index .
2002-03-07 17:32:45 +00:00
*/
2006-11-02 03:21:32 +00:00
int r ;
2009-08-01 01:04:26 +00:00
uint32_t tsto = oop ;
r = isp_handle_other_response ( isp , etype , hp , & tsto ) ;
2006-11-02 03:21:32 +00:00
if ( r < 0 ) {
2005-01-23 06:26:45 +00:00
goto read_again ;
2006-11-02 03:21:32 +00:00
}
2009-08-01 01:04:26 +00:00
/*
* If somebody updated the output pointer , then reset
* optr to be one more than the updated amount .
*/
while ( tsto ! = oop ) {
optr = ISP_NXT_QENTRY ( tsto ,
RESULT_QUEUE_LEN ( isp ) ) ;
}
2006-11-02 03:21:32 +00:00
if ( r > 0 ) {
2009-08-01 01:04:26 +00:00
ISP_WRITE ( isp , isp - > isp_respoutrp , optr ) ;
ISP_MEMZERO ( hp , QENTRY_LEN ) ; /* PERF */
1998-09-15 08:42:56 +00:00
continue ;
}
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
/*
* After this point , we ' ll just look at the header as
* we don ' t know how to deal with the rest of the
* response .
*/
1998-09-15 08:42:56 +00:00
/*
* It really has to be a bounced request just copied
1999-04-14 17:37:36 +00:00
* from the request queue to the response queue . If
* not , something bad has happened .
1998-09-15 08:42:56 +00:00
*/
2006-11-02 03:21:32 +00:00
if ( etype ! = RQSTYPE_REQUEST ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , notresp ,
2006-11-02 03:21:32 +00:00
etype , oop , optr , nlooked ) ;
isp_print_bytes ( isp ,
2007-03-12 04:54:30 +00:00
" Request Queue Entry " , QENTRY_LEN , sp ) ;
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( hp , QENTRY_LEN ) ; /* PERF */
1998-04-22 17:54:58 +00:00
continue ;
}
buddaboom = 1 ;
2006-11-02 03:21:32 +00:00
scsi_status = sp - > req_scsi_status ;
completion_status = sp - > req_completion_status ;
req_status_flags = sp - > req_status_flags ;
req_state_flags = sp - > req_state_flags ;
resid = sp - > req_resid ;
1998-04-22 17:54:58 +00:00
}
2006-11-02 03:21:32 +00:00
if ( sp - > req_header . rqs_flags & RQSFLAG_MASK ) {
1998-04-22 17:54:58 +00:00
if ( sp - > req_header . rqs_flags & RQSFLAG_CONTINUATION ) {
2009-08-01 01:04:26 +00:00
isp_print_bytes ( isp , " unexpected continuation segment " , QENTRY_LEN , sp ) ;
2006-11-02 03:21:32 +00:00
ISP_WRITE ( isp , isp - > isp_respoutrp , optr ) ;
1998-04-22 17:54:58 +00:00
continue ;
}
1998-09-15 08:42:56 +00:00
if ( sp - > req_header . rqs_flags & RQSFLAG_FULL ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 , " internal queues full " ) ;
1999-04-14 17:37:36 +00:00
/*
* We ' ll synthesize a QUEUE FULL message below .
*/
1998-09-15 08:42:56 +00:00
}
if ( sp - > req_header . rqs_flags & RQSFLAG_BADHEADER ) {
2009-08-01 01:04:26 +00:00
isp_print_bytes ( isp , " bad header flag " , QENTRY_LEN , sp ) ;
1998-09-15 08:42:56 +00:00
buddaboom + + ;
}
if ( sp - > req_header . rqs_flags & RQSFLAG_BADPACKET ) {
2009-08-01 01:04:26 +00:00
isp_print_bytes ( isp , " bad request packet " , QENTRY_LEN , sp ) ;
buddaboom + + ;
}
if ( sp - > req_header . rqs_flags & RQSFLAG_BADCOUNT ) {
isp_print_bytes ( isp , " invalid entry count " , QENTRY_LEN , sp ) ;
1999-04-14 17:37:36 +00:00
buddaboom + + ;
}
2009-08-01 01:04:26 +00:00
if ( sp - > req_header . rqs_flags & RQSFLAG_BADORDER ) {
isp_print_bytes ( isp , " invalid IOCB ordering " , QENTRY_LEN , sp ) ;
ISP_WRITE ( isp , isp - > isp_respoutrp , optr ) ;
continue ;
}
1998-04-22 17:54:58 +00:00
}
2006-11-02 03:21:32 +00:00
2009-08-01 01:04:26 +00:00
if ( ( sp - > req_handle ! = ISP_SPCL_HANDLE ) & & ( sp - > req_handle > isp - > isp_maxcmds | | sp - > req_handle < 1 ) ) {
isp_prt ( isp , ISP_LOGERR , " bad request handle %d (type 0x%x) " , sp - > req_handle , etype ) ;
ISP_MEMZERO ( hp , QENTRY_LEN ) ; /* PERF */
2006-11-02 03:21:32 +00:00
ISP_WRITE ( isp , isp - > isp_respoutrp , optr ) ;
1998-04-22 17:54:58 +00:00
continue ;
}
1999-10-17 18:58:22 +00:00
xs = isp_find_xs ( isp , sp - > req_handle ) ;
1998-04-22 17:54:58 +00:00
if ( xs = = NULL ) {
2006-11-02 03:21:32 +00:00
uint8_t ts = completion_status & 0xff ;
2002-04-16 19:55:35 +00:00
/*
* Only whine if this isn ' t the expected fallout of
2009-08-01 01:04:26 +00:00
* aborting the command or resetting the target .
2002-04-16 19:55:35 +00:00
*/
2006-11-02 03:21:32 +00:00
if ( etype ! = RQSTYPE_RESPONSE ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR , " cannot find handle 0x%x (type 0x%x) " , sp - > req_handle , etype ) ;
} else if ( ts ! = RQCS_ABORTED & & ts ! = RQCS_RESET_OCCURRED & & sp - > req_handle ! = ISP_SPCL_HANDLE ) {
isp_prt ( isp , ISP_LOGERR , " cannot find handle 0x%x (status 0x%x) " , sp - > req_handle , ts ) ;
2002-04-16 19:55:35 +00:00
}
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( hp , QENTRY_LEN ) ; /* PERF */
2006-11-02 03:21:32 +00:00
ISP_WRITE ( isp , isp - > isp_respoutrp , optr ) ;
1998-04-22 17:54:58 +00:00
continue ;
}
1999-10-17 18:58:22 +00:00
isp_destroy_handle ( isp , sp - > req_handle ) ;
2006-11-02 03:21:32 +00:00
if ( req_status_flags & RQSTF_BUS_RESET ) {
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
XS_SETERR ( xs , HBA_BUSRESET ) ;
2009-08-01 01:04:26 +00:00
ISP_SET_SENDMARKER ( isp , XS_CHANNEL ( xs ) , 1 ) ;
1998-04-22 17:54:58 +00:00
}
if ( buddaboom ) {
XS_SETERR ( xs , HBA_BOTCH ) ;
}
2000-08-27 23:38:44 +00:00
2006-11-14 08:45:48 +00:00
resp = NULL ;
rlen = 0 ;
snsp = NULL ;
slen = 0 ;
2007-07-02 20:08:20 +00:00
if ( IS_24XX ( isp ) & & ( scsi_status & ( RQCS_RV | RQCS_SV ) ) ! = 0 ) {
2006-11-14 08:45:48 +00:00
resp = ( ( isp24xx_statusreq_t * ) sp ) - > req_rsp_sense ;
rlen = ( ( isp24xx_statusreq_t * ) sp ) - > req_response_len ;
} else if ( IS_FC ( isp ) & & ( scsi_status & RQCS_RV ) ! = 0 ) {
resp = sp - > req_response ;
rlen = sp - > req_response_len ;
}
2006-11-02 03:21:32 +00:00
if ( IS_FC ( isp ) & & ( scsi_status & RQCS_SV ) ! = 0 ) {
1999-01-30 07:29:00 +00:00
/*
2000-08-27 23:38:44 +00:00
* Fibre Channel F / W doesn ' t say we got status
* if there ' s Sense Data instead . I guess they
* think it goes w / o saying .
1999-01-30 07:29:00 +00:00
*/
2006-11-14 08:45:48 +00:00
req_state_flags | = RQSF_GOT_STATUS | RQSF_GOT_SENSE ;
if ( IS_24XX ( isp ) ) {
2009-08-01 01:04:26 +00:00
snsp = ( ( isp24xx_statusreq_t * ) sp ) - > req_rsp_sense ;
2006-11-14 08:45:48 +00:00
snsp + = rlen ;
2009-08-01 01:04:26 +00:00
slen = ( ( isp24xx_statusreq_t * ) sp ) - > req_sense_len ;
2006-11-14 08:45:48 +00:00
} else {
snsp = sp - > req_sense_data ;
slen = sp - > req_sense_len ;
}
} else if ( IS_SCSI ( isp ) & & ( req_state_flags & RQSF_GOT_SENSE ) ) {
snsp = sp - > req_sense_data ;
slen = sp - > req_sense_len ;
2000-08-27 23:38:44 +00:00
}
2006-11-02 03:21:32 +00:00
if ( req_state_flags & RQSF_GOT_STATUS ) {
* XS_STSP ( xs ) = scsi_status & 0xff ;
1998-04-22 17:54:58 +00:00
}
2006-11-02 03:21:32 +00:00
switch ( etype ) {
2000-08-27 23:38:44 +00:00
case RQSTYPE_RESPONSE :
2009-08-01 01:04:26 +00:00
if ( resp & & rlen > = 4 & & resp [ FCP_RSPNS_CODE_OFFSET ] ! = 0 ) {
const char * ptr ;
char lb [ 64 ] ;
const char * rnames [ 6 ] = {
" Task Management Function Done " ,
" Data Length Differs From Burst Length " ,
" Invalid FCP Cmnd " ,
" FCP DATA RO mismatch with FCP DATA_XFR_RDY RO " ,
" Task Management Function Rejected " ,
" Task Management Function Failed " ,
} ;
if ( resp [ FCP_RSPNS_CODE_OFFSET ] > 5 ) {
ISP_SNPRINTF ( lb , sizeof lb , " Unknown FCP Response Code 0x%x " , resp [ FCP_RSPNS_CODE_OFFSET ] ) ;
ptr = lb ;
} else {
ptr = rnames [ resp [ FCP_RSPNS_CODE_OFFSET ] ] ;
}
isp_prt ( isp , ISP_LOGWARN , " %d.%d.%d FCP RESPONSE, LENGTH %u: %s CDB0=0x%02x " , XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) , rlen , ptr , XS_CDBP ( xs ) [ 0 ] & 0xff ) ;
if ( resp [ FCP_RSPNS_CODE_OFFSET ] ! = 0 ) {
XS_SETERR ( xs , HBA_BOTCH ) ;
}
2006-11-14 08:45:48 +00:00
}
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
2009-08-01 01:04:26 +00:00
isp_parse_status_24xx ( isp , ( isp24xx_statusreq_t * ) sp , xs , & resid ) ;
2006-11-02 03:21:32 +00:00
} else {
isp_parse_status ( isp , ( void * ) sp , xs , & resid ) ;
}
2009-08-01 01:04:26 +00:00
if ( ( XS_NOERR ( xs ) | | XS_ERR ( xs ) = = HBA_NOERROR ) & & ( * XS_STSP ( xs ) = = SCSI_BUSY ) ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
XS_SETERR ( xs , HBA_TGTBSY ) ;
1998-09-15 08:42:56 +00:00
}
2000-08-27 23:38:44 +00:00
if ( IS_SCSI ( isp ) ) {
2009-08-01 01:04:26 +00:00
XS_SET_RESID ( xs , resid ) ;
2000-08-27 23:38:44 +00:00
/*
* A new synchronous rate was negotiated for
* this target . Mark state such that we ' ll go
* look up that which has changed later .
*/
2006-11-02 03:21:32 +00:00
if ( req_status_flags & RQSTF_NEGOTIATION ) {
2000-08-27 23:38:44 +00:00
int t = XS_TGT ( xs ) ;
2009-08-01 01:04:26 +00:00
sdparam * sdp = SDPARAM ( isp , XS_CHANNEL ( xs ) ) ;
2000-08-27 23:38:44 +00:00
sdp - > isp_devparam [ t ] . dev_refresh = 1 ;
2009-08-01 01:04:26 +00:00
sdp - > update = 1 ;
2000-08-27 23:38:44 +00:00
}
} else {
2006-11-02 03:21:32 +00:00
if ( req_status_flags & RQSF_XFER_COMPLETE ) {
2009-08-01 01:04:26 +00:00
XS_SET_RESID ( xs , 0 ) ;
2006-11-02 03:21:32 +00:00
} else if ( scsi_status & RQCS_RESID ) {
2009-08-01 01:04:26 +00:00
XS_SET_RESID ( xs , resid ) ;
2000-08-27 23:38:44 +00:00
} else {
2009-08-01 01:04:26 +00:00
XS_SET_RESID ( xs , 0 ) ;
2000-08-27 23:38:44 +00:00
}
2006-11-14 08:45:48 +00:00
}
if ( snsp & & slen ) {
XS_SAVE_SENSE ( xs , snsp , slen ) ;
2009-08-01 01:04:26 +00:00
} else if ( ( req_status_flags & RQSF_GOT_STATUS ) & & ( scsi_status & 0xff ) = = SCSI_CHECK & & IS_FC ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN , " CHECK CONDITION w/o sense data for CDB=0x%x " , XS_CDBP ( xs ) [ 0 ] & 0xff ) ;
isp_print_bytes ( isp , " CC with no Sense " , QENTRY_LEN , qe ) ;
2000-08-27 23:38:44 +00:00
}
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGDEBUG2 , " asked for %ld got raw resid %ld settled for %ld " , ( long ) XS_XFRLEN ( xs ) , resid , ( long ) XS_GET_RESID ( xs ) ) ;
2000-08-27 23:38:44 +00:00
break ;
case RQSTYPE_REQUEST :
2006-11-02 03:21:32 +00:00
case RQSTYPE_A64 :
case RQSTYPE_T2RQS :
case RQSTYPE_T3RQS :
case RQSTYPE_T7RQS :
2009-08-01 01:04:26 +00:00
if ( ! IS_24XX ( isp ) & & ( sp - > req_header . rqs_flags & RQSFLAG_FULL ) ) {
1999-05-11 05:06:55 +00:00
/*
* Force Queue Full status .
*/
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
* XS_STSP ( xs ) = SCSI_QFULL ;
1999-05-11 05:06:55 +00:00
XS_SETERR ( xs , HBA_NOERROR ) ;
} else if ( XS_NOERR ( xs ) ) {
2006-11-02 03:21:32 +00:00
XS_SETERR ( xs , HBA_BOTCH ) ;
1999-05-11 05:06:55 +00:00
}
2009-08-01 01:04:26 +00:00
XS_SET_RESID ( xs , XS_XFRLEN ( xs ) ) ;
2000-08-27 23:38:44 +00:00
break ;
default :
2009-08-01 01:04:26 +00:00
isp_print_bytes ( isp , " Unhandled Response Type " , QENTRY_LEN , qe ) ;
1999-01-10 02:55:10 +00:00
if ( XS_NOERR ( xs ) ) {
1998-04-22 17:54:58 +00:00
XS_SETERR ( xs , HBA_BOTCH ) ;
1999-01-10 02:55:10 +00:00
}
2000-08-27 23:38:44 +00:00
break ;
1998-04-22 17:54:58 +00:00
}
2000-08-27 23:38:44 +00:00
/*
2003-09-13 01:55:44 +00:00
* Free any DMA resources . As a side effect , this may
2007-07-02 20:08:20 +00:00
* also do any cache flushing necessary for data coherence .
*/
1998-04-22 17:54:58 +00:00
if ( XS_XFRLEN ( xs ) ) {
1999-10-17 18:58:22 +00:00
ISP_DMAFREE ( isp , xs , sp - > req_handle ) ;
1998-04-22 17:54:58 +00:00
}
2000-08-27 23:38:44 +00:00
2009-08-01 01:04:26 +00:00
if ( ( ( isp - > isp_dblev & ( ISP_LOGDEBUG1 | ISP_LOGDEBUG2 | ISP_LOGDEBUG3 ) ) ) | |
2007-07-02 20:08:20 +00:00
( ( isp - > isp_dblev & ISP_LOGDEBUG0 ) & & ( ( ! XS_NOERR ( xs ) ) | |
2001-02-11 03:44:43 +00:00
( * XS_STSP ( xs ) ! = SCSI_GOOD ) ) ) ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
char skey ;
2006-11-02 03:21:32 +00:00
if ( req_state_flags & RQSF_GOT_SENSE ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
skey = XS_SNSKEY ( xs ) & 0xf ;
if ( skey < 10 )
skey + = ' 0 ' ;
else
2001-02-11 03:44:43 +00:00
skey + = ' a ' - 10 ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
} else if ( * XS_STSP ( xs ) = = SCSI_CHECK ) {
skey = ' ? ' ;
} else {
skey = ' . ' ;
1998-04-22 17:54:58 +00:00
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGALL , finmsg , XS_CHANNEL ( xs ) ,
2009-08-01 01:04:26 +00:00
XS_TGT ( xs ) , XS_LUN ( xs ) , XS_XFRLEN ( xs ) , ( long ) XS_GET_RESID ( xs ) ,
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
* XS_STSP ( xs ) , skey , XS_ERR ( xs ) ) ;
1998-04-22 17:54:58 +00:00
}
1998-09-15 08:42:56 +00:00
2009-08-01 01:04:26 +00:00
if ( isp - > isp_nactive > 0 ) {
1998-12-05 01:33:57 +00:00
isp - > isp_nactive - - ;
2009-08-01 01:04:26 +00:00
}
1998-09-15 08:42:56 +00:00
complist [ ndone + + ] = xs ; /* defer completion call until later */
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( hp , QENTRY_LEN ) ; /* PERF */
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( ndone = = MAX_REQUESTQ_COMPLETIONS ) {
break ;
}
1998-09-15 08:42:56 +00:00
}
1999-02-09 01:07:06 +00:00
1998-09-15 08:42:56 +00:00
/*
1999-02-09 01:07:06 +00:00
* If we looked at any commands , then it ' s valid to find out
* what the outpointer is . It also is a trigger to update the
* ISP ' s notion of what we ' ve seen so far .
1998-09-15 08:42:56 +00:00
*/
1999-03-17 05:04:39 +00:00
if ( nlooked ) {
2006-11-02 03:21:32 +00:00
ISP_WRITE ( isp , isp - > isp_respoutrp , optr ) ;
2001-08-31 21:39:04 +00:00
/*
2002-03-07 17:32:45 +00:00
* While we ' re at it , read the requst queue out pointer .
2001-08-31 21:39:04 +00:00
*/
2006-11-02 03:21:32 +00:00
isp - > isp_reqodx = ISP_READ ( isp , isp - > isp_rqstoutrp ) ;
if ( isp - > isp_rscchiwater < ndone ) {
2002-01-03 20:43:22 +00:00
isp - > isp_rscchiwater = ndone ;
2006-11-02 03:21:32 +00:00
}
}
out :
if ( IS_24XX ( isp ) ) {
ISP_WRITE ( isp , BIU2400_HCCR , HCCR_2400_CMD_CLEAR_RISC_INT ) ;
} else {
ISP_WRITE ( isp , HCCR , HCCR_CMD_CLEAR_RISC_INT ) ;
ISP_WRITE ( isp , BIU_SEMA , 0 ) ;
1998-04-22 17:54:58 +00:00
}
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
1998-04-22 17:54:58 +00:00
isp - > isp_residx = optr ;
1998-09-15 08:42:56 +00:00
for ( i = 0 ; i < ndone ; i + + ) {
xs = complist [ i ] ;
if ( xs ) {
2002-01-03 20:43:22 +00:00
isp - > isp_rsltccmplt + + ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_done ( xs ) ;
1998-09-15 08:42:56 +00:00
}
}
1998-04-22 17:54:58 +00:00
}
/*
* Support routines .
*/
2009-08-01 01:04:26 +00:00
# define GET_24XX_BUS(isp, chan, msg) \
if ( IS_24XX ( isp ) ) { \
chan = ISP_READ ( isp , OUTMAILBOX3 ) & 0xff ; \
if ( chan > = isp - > isp_nchan ) { \
isp_prt ( isp , ISP_LOGERR , " bogus channel %u for %s at line %d " , chan , msg , __LINE__ ) ; \
break ; \
} \
}
1998-09-15 08:42:56 +00:00
static int
2006-04-21 18:30:01 +00:00
isp_parse_async ( ispsoftc_t * isp , uint16_t mbox )
1998-09-15 08:42:56 +00:00
{
2002-06-16 05:18:22 +00:00
int rval = 0 ;
2009-08-01 01:04:26 +00:00
int pattern = 0 ;
uint16_t chan ;
1999-01-30 07:29:00 +00:00
1999-12-16 05:42:02 +00:00
if ( IS_DUALBUS ( isp ) ) {
2009-08-01 01:04:26 +00:00
chan = ISP_READ ( isp , OUTMAILBOX6 ) ;
1999-11-21 03:18:22 +00:00
} else {
2009-08-01 01:04:26 +00:00
chan = 0 ;
1999-11-21 03:18:22 +00:00
}
2002-01-03 20:43:22 +00:00
isp_prt ( isp , ISP_LOGDEBUG2 , " Async Mbox 0x%x " , mbox ) ;
1999-11-21 03:18:22 +00:00
1998-09-15 08:42:56 +00:00
switch ( mbox ) {
case ASYNC_BUS_RESET :
2009-08-01 01:04:26 +00:00
if ( IS_FC ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" ILLEGAL ASYNC_BUS_RESET for FC card " ) ;
break ;
}
ISP_SET_SENDMARKER ( isp , chan , 1 ) ;
1998-12-05 01:33:57 +00:00
# ifdef ISP_TARGET_MODE
2009-08-01 01:04:26 +00:00
if ( isp_target_async ( isp , chan , mbox ) ) {
2002-06-16 05:18:22 +00:00
rval = - 1 ;
2006-11-02 03:21:32 +00:00
}
1998-12-05 01:33:57 +00:00
# endif
2009-08-01 01:04:26 +00:00
isp_async ( isp , ISPASYNC_BUS_RESET , chan ) ;
1998-09-15 08:42:56 +00:00
break ;
case ASYNC_SYSTEM_ERROR :
2009-08-01 01:04:26 +00:00
isp - > isp_dead = 1 ;
2006-07-03 08:24:09 +00:00
isp - > isp_state = ISP_CRASHED ;
if ( IS_FC ( isp ) ) {
2009-08-01 01:04:26 +00:00
FCPARAM ( isp , chan ) - > isp_loopstate = LOOP_NIL ;
FCPARAM ( isp , chan ) - > isp_fwstate = FW_CONFIG_WAIT ;
2006-07-03 08:24:09 +00:00
}
/*
* Were we waiting for a mailbox command to complete ?
* If so , it ' s dead , so wake up the waiter .
*/
if ( isp - > isp_mboxbsy ) {
isp - > isp_obits = 1 ;
isp - > isp_mboxtmp [ 0 ] = MBOX_HOST_INTERFACE_ERROR ;
MBOX_NOTIFY_COMPLETE ( isp ) ;
}
2002-08-17 17:29:15 +00:00
/*
2007-05-05 20:17:23 +00:00
* It ' s up to the handler for isp_async to reinit stuff and
* restart the firmware
2002-08-17 17:29:15 +00:00
*/
2009-08-01 01:04:26 +00:00
isp_async ( isp , ISPASYNC_FW_CRASH ) ;
2002-06-16 05:18:22 +00:00
rval = - 1 ;
break ;
1998-09-15 08:42:56 +00:00
case ASYNC_RQS_XFER_ERR :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " Request Queue Transfer Error " ) ;
1998-09-15 08:42:56 +00:00
break ;
case ASYNC_RSP_XFER_ERR :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " Response Queue Transfer Error " ) ;
1998-09-15 08:42:56 +00:00
break ;
case ASYNC_QWAKEUP :
2009-08-01 01:04:26 +00:00
# ifdef ISP_TARGET_MODE
if ( IS_24XX ( isp ) ) {
isp_prt ( isp , ISP_LOGERR , " ATIO Queue Transfer Error " ) ;
break ;
}
# endif
if ( IS_FC ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" ILLEGAL ASYNC_QWAKEUP for FC card " ) ;
break ;
}
1999-11-21 03:18:22 +00:00
/*
* We ' ve just been notified that the Queue has woken up .
* We don ' t need to be chatty about this - just unlatch things
* and move on .
*/
2006-11-02 03:21:32 +00:00
mbox = ISP_READ ( isp , isp - > isp_rqstoutrp ) ;
1998-09-15 08:42:56 +00:00
break ;
case ASYNC_TIMEOUT_RESET :
2009-08-01 01:04:26 +00:00
if ( IS_FC ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" ILLEGAL ASYNC_TIMEOUT_RESET for FC card " ) ;
break ;
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN ,
2009-08-01 01:04:26 +00:00
" timeout initiated SCSI bus reset of chan %d " , chan ) ;
ISP_SET_SENDMARKER ( isp , chan , 1 ) ;
1998-12-05 01:33:57 +00:00
# ifdef ISP_TARGET_MODE
2009-08-01 01:04:26 +00:00
if ( isp_target_async ( isp , chan , mbox ) ) {
2002-06-16 05:18:22 +00:00
rval = - 1 ;
2006-11-02 03:21:32 +00:00
}
1998-12-05 01:33:57 +00:00
# endif
1998-09-15 08:42:56 +00:00
break ;
1998-12-05 01:33:57 +00:00
case ASYNC_DEVICE_RESET :
2009-08-01 01:04:26 +00:00
if ( IS_FC ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" ILLEGAL DEVICE_RESET for FC card " ) ;
break ;
}
isp_prt ( isp , ISP_LOGINFO , " device reset on chan %d " , chan ) ;
ISP_SET_SENDMARKER ( isp , chan , 1 ) ;
1998-12-05 01:33:57 +00:00
# ifdef ISP_TARGET_MODE
2009-08-01 01:04:26 +00:00
if ( isp_target_async ( isp , chan , mbox ) ) {
2002-06-16 05:18:22 +00:00
rval = - 1 ;
2006-11-02 03:21:32 +00:00
}
1998-12-05 01:33:57 +00:00
# endif
1998-09-15 08:42:56 +00:00
break ;
case ASYNC_EXTMSG_UNDERRUN :
2009-08-01 01:04:26 +00:00
if ( IS_FC ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" ILLEGAL ASYNC_EXTMSG_UNDERRUN for FC card " ) ;
break ;
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN , " extended message underrun " ) ;
1998-09-15 08:42:56 +00:00
break ;
case ASYNC_SCAM_INT :
2009-08-01 01:04:26 +00:00
if ( IS_FC ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" ILLEGAL ASYNC_SCAM_INT for FC card " ) ;
break ;
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGINFO , " SCAM interrupt " ) ;
1998-09-15 08:42:56 +00:00
break ;
case ASYNC_HUNG_SCSI :
2009-08-01 01:04:26 +00:00
if ( IS_FC ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" ILLEGAL ASYNC_HUNG_SCSI for FC card " ) ;
break ;
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR ,
" stalled SCSI Bus after DATA Overrun " ) ;
1998-09-15 08:42:56 +00:00
/* XXX: Need to issue SCSI reset at this point */
break ;
case ASYNC_KILLED_BUS :
2009-08-01 01:04:26 +00:00
if ( IS_FC ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" ILLEGAL ASYNC_KILLED_BUS for FC card " ) ;
break ;
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " SCSI Bus reset after DATA Overrun " ) ;
1998-09-15 08:42:56 +00:00
break ;
case ASYNC_BUS_TRANSIT :
2009-08-01 01:04:26 +00:00
if ( IS_FC ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" ILLEGAL ASYNC_BUS_TRANSIT for FC card " ) ;
break ;
}
1999-03-25 22:52:45 +00:00
mbox = ISP_READ ( isp , OUTMAILBOX2 ) ;
switch ( mbox & 0x1c00 ) {
case SXP_PINS_LVD_MODE :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGINFO , " Transition to LVD mode " ) ;
2009-08-01 01:04:26 +00:00
SDPARAM ( isp , chan ) - > isp_diffmode = 0 ;
SDPARAM ( isp , chan ) - > isp_ultramode = 0 ;
SDPARAM ( isp , chan ) - > isp_lvdmode = 1 ;
1999-03-25 22:52:45 +00:00
break ;
case SXP_PINS_HVD_MODE :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGINFO ,
" Transition to Differential mode " ) ;
2009-08-01 01:04:26 +00:00
SDPARAM ( isp , chan ) - > isp_diffmode = 1 ;
SDPARAM ( isp , chan ) - > isp_ultramode = 0 ;
SDPARAM ( isp , chan ) - > isp_lvdmode = 0 ;
1999-03-25 22:52:45 +00:00
break ;
case SXP_PINS_SE_MODE :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGINFO ,
" Transition to Single Ended mode " ) ;
2009-08-01 01:04:26 +00:00
SDPARAM ( isp , chan ) - > isp_diffmode = 0 ;
SDPARAM ( isp , chan ) - > isp_ultramode = 1 ;
SDPARAM ( isp , chan ) - > isp_lvdmode = 0 ;
1999-03-25 22:52:45 +00:00
break ;
default :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN ,
" Transition to Unknown Mode 0x%x " , mbox ) ;
1999-03-25 22:52:45 +00:00
break ;
}
/*
* XXX : Set up to renegotiate again !
*/
1999-05-11 05:06:55 +00:00
/* Can only be for a 1080... */
2009-08-01 01:04:26 +00:00
ISP_SET_SENDMARKER ( isp , chan , 1 ) ;
1998-09-15 08:42:56 +00:00
break ;
2002-01-03 20:43:22 +00:00
case ASYNC_RIO5 :
2009-08-01 01:04:26 +00:00
pattern = 0xce ; /* outgoing mailbox regs 1-3, 6-7 */
2002-01-03 20:43:22 +00:00
break ;
case ASYNC_RIO4 :
2009-08-01 01:04:26 +00:00
pattern = 0x4e ; /* outgoing mailbox regs 1-3, 6 */
2002-01-03 20:43:22 +00:00
break ;
case ASYNC_RIO3 :
2009-08-01 01:04:26 +00:00
pattern = 0x0e ; /* outgoing mailbox regs 1-3 */
2002-01-03 20:43:22 +00:00
break ;
case ASYNC_RIO2 :
2009-08-01 01:04:26 +00:00
pattern = 0x06 ; /* outgoing mailbox regs 1-2 */
2002-01-03 20:43:22 +00:00
break ;
case ASYNC_RIO1 :
1998-09-15 08:42:56 +00:00
case ASYNC_CMD_CMPLT :
2009-08-01 01:04:26 +00:00
pattern = 0x02 ; /* outgoing mailbox regs 1 */
2002-01-03 20:43:22 +00:00
break ;
case ASYNC_RIO_RESP :
2002-08-17 17:29:15 +00:00
return ( rval ) ;
1998-09-15 08:42:56 +00:00
case ASYNC_CTIO_DONE :
2002-06-16 05:18:22 +00:00
{
2000-08-27 23:38:44 +00:00
# ifdef ISP_TARGET_MODE
2009-08-01 01:04:26 +00:00
int handle ;
if ( IS_SCSI ( isp ) | | IS_24XX ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" bad ASYNC_CTIO_DONE for %s cards " ,
IS_SCSI ( isp ) ? " SCSI " : " 24XX " ) ;
break ;
}
handle =
( ISP_READ ( isp , OUTMAILBOX2 ) < < 16 ) |
2002-06-16 05:18:22 +00:00
( ISP_READ ( isp , OUTMAILBOX1 ) ) ;
2005-01-23 06:26:45 +00:00
if ( isp_target_async ( isp , handle , mbox ) ) {
2002-06-16 05:18:22 +00:00
rval = - 1 ;
2005-01-23 06:26:45 +00:00
} else {
/* count it as a fast posting intr */
isp - > isp_fphccmplt + + ;
}
2000-08-27 23:38:44 +00:00
# else
2009-08-01 01:04:26 +00:00
if ( IS_SCSI ( isp ) | | IS_24XX ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" bad ASYNC_CTIO_DONE for %s cards " ,
IS_SCSI ( isp ) ? " SCSI " : " 24XX " ) ;
break ;
}
2000-08-27 23:38:44 +00:00
isp_prt ( isp , ISP_LOGINFO , " Fast Posting CTIO done " ) ;
2002-02-04 21:04:25 +00:00
isp - > isp_fphccmplt + + ; /* count it as a fast posting intr */
2005-01-23 06:26:45 +00:00
# endif
2002-06-16 05:18:22 +00:00
break ;
}
2006-11-02 03:21:32 +00:00
case ASYNC_LIP_ERROR :
2001-08-16 17:25:08 +00:00
case ASYNC_LIP_F8 :
1998-09-15 08:42:56 +00:00
case ASYNC_LIP_OCCURRED :
2009-08-01 01:04:26 +00:00
case ASYNC_PTPMODE :
if ( IS_SCSI ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" bad LIP event for SCSI cards " ) ;
break ;
2006-11-02 03:21:32 +00:00
}
2001-06-14 17:13:24 +00:00
/*
2009-08-01 01:04:26 +00:00
* These are broadcast events that have to be sent across
* all active channels .
2001-06-14 17:13:24 +00:00
*/
2009-08-01 01:04:26 +00:00
for ( chan = 0 ; chan < isp - > isp_nchan ; chan + + ) {
fcparam * fcp = FCPARAM ( isp , chan ) ;
int topo = fcp - > isp_topo ;
if ( fcp - > role = = ISP_ROLE_NONE ) {
continue ;
}
fcp - > isp_fwstate = FW_CONFIG_WAIT ;
fcp - > isp_loopstate = LOOP_LIP_RCVD ;
ISP_SET_SENDMARKER ( isp , chan , 1 ) ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
isp_async ( isp , ISPASYNC_LIP , chan ) ;
# ifdef ISP_TARGET_MODE
if ( isp_target_async ( isp , chan , mbox ) ) {
rval = - 1 ;
}
# endif
/*
* We ' ve had problems with data corruption occuring on
* commands that complete ( with no apparent error ) after
* we receive a LIP . This has been observed mostly on
* Local Loop topologies . To be safe , let ' s just mark
* all active commands as dead .
*/
if ( topo = = TOPO_NL_PORT | | topo = = TOPO_FL_PORT ) {
int i , j ;
for ( i = j = 0 ; i < isp - > isp_maxcmds ; i + + ) {
XS_T * xs ;
xs = isp - > isp_xflist [ i ] ;
if ( xs = = NULL ) {
continue ;
}
if ( XS_CHANNEL ( xs ) ! = chan ) {
continue ;
}
2001-06-14 17:13:24 +00:00
j + + ;
XS_SETERR ( xs , HBA_BUSRESET ) ;
}
2009-08-01 01:04:26 +00:00
if ( j ) {
isp_prt ( isp , ISP_LOGERR , lipd , chan , j ) ;
}
2001-07-04 18:42:41 +00:00
}
2001-06-14 17:13:24 +00:00
}
1998-09-15 08:42:56 +00:00
break ;
case ASYNC_LOOP_UP :
2009-08-01 01:04:26 +00:00
if ( IS_SCSI ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" bad LOOP UP event for SCSI cards " ) ;
break ;
2006-07-14 05:14:48 +00:00
}
2009-08-01 01:04:26 +00:00
/*
* This is a broadcast event that has to be sent across
* all active channels .
*/
for ( chan = 0 ; chan < isp - > isp_nchan ; chan + + ) {
fcparam * fcp = FCPARAM ( isp , chan ) ;
if ( fcp - > role = = ISP_ROLE_NONE ) {
continue ;
}
ISP_SET_SENDMARKER ( isp , chan , 1 ) ;
fcp - > isp_fwstate = FW_CONFIG_WAIT ;
fcp - > isp_loopstate = LOOP_LIP_RCVD ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
isp_async ( isp , ISPASYNC_LOOP_UP , chan ) ;
# ifdef ISP_TARGET_MODE
if ( isp_target_async ( isp , chan , mbox ) ) {
rval = - 1 ;
}
2000-01-03 23:52:41 +00:00
# endif
2009-08-01 01:04:26 +00:00
}
1998-09-15 08:42:56 +00:00
break ;
case ASYNC_LOOP_DOWN :
2009-08-01 01:04:26 +00:00
if ( IS_SCSI ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" bad LOOP DOWN event for SCSI cards " ) ;
break ;
2006-07-14 05:14:48 +00:00
}
2009-08-01 01:04:26 +00:00
/*
* This is a broadcast event that has to be sent across
* all active channels .
*/
for ( chan = 0 ; chan < isp - > isp_nchan ; chan + + ) {
fcparam * fcp = FCPARAM ( isp , chan ) ;
if ( fcp - > role = = ISP_ROLE_NONE ) {
continue ;
}
ISP_SET_SENDMARKER ( isp , chan , 1 ) ;
fcp - > isp_fwstate = FW_CONFIG_WAIT ;
fcp - > isp_loopstate = LOOP_NIL ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
isp_async ( isp , ISPASYNC_LOOP_DOWN , chan ) ;
# ifdef ISP_TARGET_MODE
if ( isp_target_async ( isp , chan , mbox ) ) {
rval = - 1 ;
}
2000-01-03 23:52:41 +00:00
# endif
2009-08-01 01:04:26 +00:00
}
1998-09-15 08:42:56 +00:00
break ;
case ASYNC_LOOP_RESET :
2009-08-01 01:04:26 +00:00
if ( IS_SCSI ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" bad LIP RESET event for SCSI cards " ) ;
break ;
2006-07-14 05:14:48 +00:00
}
2009-08-01 01:04:26 +00:00
/*
* This is a broadcast event that has to be sent across
* all active channels .
*/
for ( chan = 0 ; chan < isp - > isp_nchan ; chan + + ) {
fcparam * fcp = FCPARAM ( isp , chan ) ;
if ( fcp - > role = = ISP_ROLE_NONE ) {
continue ;
}
ISP_SET_SENDMARKER ( isp , chan , 1 ) ;
fcp - > isp_fwstate = FW_CONFIG_WAIT ;
fcp - > isp_loopstate = LOOP_NIL ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
isp_async ( isp , ISPASYNC_LOOP_RESET , chan ) ;
# ifdef ISP_TARGET_MODE
if ( isp_target_async ( isp , chan , mbox ) ) {
rval = - 1 ;
}
1998-12-05 01:33:57 +00:00
# endif
2009-08-01 01:04:26 +00:00
}
1998-09-15 08:42:56 +00:00
break ;
case ASYNC_PDB_CHANGED :
2009-08-01 01:04:26 +00:00
{
int nphdl , nlstate , reason ;
if ( IS_SCSI ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" bad PDB CHANGED event for SCSI cards " ) ;
break ;
}
/*
* We * should * get a channel out of the 24 XX , but we don ' t seem
* to get more than a PDB CHANGED on channel 0 , so turn it into
* a broadcast event .
*/
if ( IS_24XX ( isp ) ) {
nphdl = ISP_READ ( isp , OUTMAILBOX1 ) ;
nlstate = ISP_READ ( isp , OUTMAILBOX2 ) ;
reason = ISP_READ ( isp , OUTMAILBOX3 ) > > 8 ;
} else {
nphdl = NIL_HANDLE ;
nlstate = reason = 0 ;
}
for ( chan = 0 ; chan < isp - > isp_nchan ; chan + + ) {
fcparam * fcp = FCPARAM ( isp , chan ) ;
1998-09-15 08:42:56 +00:00
2009-08-01 01:04:26 +00:00
if ( fcp - > role = = ISP_ROLE_NONE ) {
continue ;
}
ISP_SET_SENDMARKER ( isp , chan , 1 ) ;
fcp - > isp_loopstate = LOOP_PDB_RCVD ;
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
isp_async ( isp , ISPASYNC_CHANGE_NOTIFY , chan ,
ISPASYNC_CHANGE_PDB , nphdl , nlstate , reason ) ;
}
break ;
}
1998-09-15 08:42:56 +00:00
case ASYNC_CHANGE_NOTIFY :
2009-08-01 01:04:26 +00:00
{
int lochan , hichan ;
if ( IS_SCSI ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" bad CHANGE NOTIFY event for SCSI cards " ) ;
break ;
}
if ( ISP_FW_NEWER_THAN ( isp , 4 , 0 , 25 ) & & ISP_CAP_MULTI_ID ( isp ) ) {
GET_24XX_BUS ( isp , chan , " ASYNC_CHANGE_NOTIFY " ) ;
lochan = chan ;
hichan = chan + 1 ;
2006-11-02 03:21:32 +00:00
} else {
2009-08-01 01:04:26 +00:00
lochan = 0 ;
hichan = isp - > isp_nchan ;
2006-11-02 03:21:32 +00:00
}
2009-08-01 01:04:26 +00:00
for ( chan = lochan ; chan < hichan ; chan + + ) {
fcparam * fcp = FCPARAM ( isp , chan ) ;
1998-09-15 08:42:56 +00:00
2009-08-01 01:04:26 +00:00
if ( fcp - > role = = ISP_ROLE_NONE ) {
continue ;
}
if ( fcp - > isp_topo = = TOPO_F_PORT ) {
fcp - > isp_loopstate = LOOP_LSCAN_DONE ;
} else {
fcp - > isp_loopstate = LOOP_PDB_RCVD ;
}
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
isp_async ( isp , ISPASYNC_CHANGE_NOTIFY , chan ,
ISPASYNC_CHANGE_SNS ) ;
2006-11-02 03:21:32 +00:00
}
2000-02-11 19:31:32 +00:00
break ;
2009-08-01 01:04:26 +00:00
}
2000-02-11 19:31:32 +00:00
case ASYNC_CONNMODE :
2009-08-01 01:04:26 +00:00
/*
* This only applies to 2100 amd 2200 cards
*/
if ( ! IS_2200 ( isp ) & & ! IS_2100 ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN ,
" bad card for ASYNC_CONNMODE event " ) ;
break ;
}
chan = 0 ;
2000-02-11 19:31:32 +00:00
mbox = ISP_READ ( isp , OUTMAILBOX1 ) ;
2009-08-01 01:04:26 +00:00
ISP_MARK_PORTDB ( isp , chan , 1 ) ;
2000-02-11 19:31:32 +00:00
switch ( mbox ) {
case ISP_CONN_LOOP :
2001-02-11 03:44:43 +00:00
isp_prt ( isp , ISP_LOGINFO ,
" Point-to-Point -> Loop mode " ) ;
2000-02-11 19:31:32 +00:00
break ;
case ISP_CONN_PTP :
2001-02-11 03:44:43 +00:00
isp_prt ( isp , ISP_LOGINFO ,
" Loop -> Point-to-Point mode " ) ;
2000-02-11 19:31:32 +00:00
break ;
case ISP_CONN_BADLIP :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN ,
2001-02-11 03:44:43 +00:00
" Point-to-Point -> Loop mode (BAD LIP) " ) ;
2000-02-11 19:31:32 +00:00
break ;
case ISP_CONN_FATAL :
2009-08-01 01:04:26 +00:00
isp - > isp_dead = 1 ;
isp - > isp_state = ISP_CRASHED ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " FATAL CONNECTION ERROR " ) ;
2009-08-01 01:04:26 +00:00
isp_async ( isp , ISPASYNC_FW_CRASH ) ;
2000-02-11 19:31:32 +00:00
return ( - 1 ) ;
case ISP_CONN_LOOPBACK :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN ,
" Looped Back in Point-to-Point mode " ) ;
2001-02-11 03:44:43 +00:00
break ;
default :
isp_prt ( isp , ISP_LOGWARN ,
" Unknown connection mode (0x%x) " , mbox ) ;
break ;
2000-02-11 19:31:32 +00:00
}
2009-08-01 01:04:26 +00:00
isp_async ( isp , ISPASYNC_CHANGE_NOTIFY , chan ,
ISPASYNC_CHANGE_OTHER ) ;
FCPARAM ( isp , chan ) - > sendmarker = 1 ;
FCPARAM ( isp , chan ) - > isp_fwstate = FW_CONFIG_WAIT ;
FCPARAM ( isp , chan ) - > isp_loopstate = LOOP_LIP_RCVD ;
2000-02-11 19:31:32 +00:00
break ;
2009-08-01 01:04:26 +00:00
case ASYNC_RCV_ERR :
if ( IS_24XX ( isp ) ) {
isp_prt ( isp , ISP_LOGWARN , " Receive Error " ) ;
} else {
isp_prt ( isp , ISP_LOGWARN ,
" Unknown Async Code 0x%x " , mbox ) ;
}
break ;
2006-11-02 03:21:32 +00:00
case ASYNC_RJT_SENT : /* same as ASYNC_QFULL_SENT */
if ( IS_24XX ( isp ) ) {
isp_prt ( isp , ISP_LOGTDEBUG0 , " LS_RJT sent " ) ;
break ;
} else if ( IS_2200 ( isp ) ) {
isp_prt ( isp , ISP_LOGTDEBUG0 , " QFULL sent " ) ;
break ;
}
/* FALLTHROUGH */
1998-09-15 08:42:56 +00:00
default :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN , " Unknown Async Code 0x%x " , mbox ) ;
1998-09-15 08:42:56 +00:00
break ;
}
2002-01-03 20:43:22 +00:00
2009-08-01 01:04:26 +00:00
if ( pattern ) {
2002-01-03 20:43:22 +00:00
int i , nh ;
2006-02-15 00:31:48 +00:00
uint16_t handles [ 16 ] ;
2002-01-03 20:43:22 +00:00
2006-01-23 06:23:37 +00:00
for ( nh = 0 , i = 1 ; i < MAX_MAILBOX ( isp ) ; i + + ) {
2009-08-01 01:04:26 +00:00
if ( ( pattern & ( 1 < < i ) ) = = 0 ) {
2002-01-03 20:43:22 +00:00
continue ;
}
handles [ nh + + ] = ISP_READ ( isp , MBOX_OFF ( i ) ) ;
}
for ( i = 0 ; i < nh ; i + + ) {
isp_fastpost_complete ( isp , handles [ i ] ) ;
isp_prt ( isp , ISP_LOGDEBUG3 ,
" fast post completion of %u " , handles [ i ] ) ;
}
2006-11-02 03:21:32 +00:00
if ( isp - > isp_fpcchiwater < nh ) {
2002-01-03 20:43:22 +00:00
isp - > isp_fpcchiwater = nh ;
2006-11-02 03:21:32 +00:00
}
2002-01-03 20:43:22 +00:00
} else {
isp - > isp_intoasync + + ;
}
2002-06-16 05:18:22 +00:00
return ( rval ) ;
1998-09-15 08:42:56 +00:00
}
1999-11-21 03:18:22 +00:00
/*
* Handle other response entries . A pointer to the request queue output
* index is here in case we want to eat several entries at once , although
* this is not used currently .
*/
1998-09-15 08:42:56 +00:00
static int
2006-04-21 18:30:01 +00:00
isp_handle_other_response ( ispsoftc_t * isp , int type ,
2006-11-02 03:21:32 +00:00
isphdr_t * hp , uint32_t * optrp )
1998-09-15 08:42:56 +00:00
{
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
switch ( type ) {
2000-08-27 23:38:44 +00:00
case RQSTYPE_STATUS_CONT :
2006-11-02 03:21:32 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 , " Ignored Continuation Response " ) ;
return ( 1 ) ;
case RQSTYPE_MARKER :
isp_prt ( isp , ISP_LOGDEBUG0 , " Marker Response " ) ;
2002-03-21 21:10:16 +00:00
return ( 1 ) ;
1999-10-17 18:58:22 +00:00
case RQSTYPE_ATIO :
2000-01-03 23:52:41 +00:00
case RQSTYPE_CTIO :
1998-09-15 08:42:56 +00:00
case RQSTYPE_ENABLE_LUN :
1998-12-05 01:33:57 +00:00
case RQSTYPE_MODIFY_LUN :
1999-10-17 18:58:22 +00:00
case RQSTYPE_NOTIFY :
case RQSTYPE_NOTIFY_ACK :
case RQSTYPE_CTIO1 :
1998-09-15 08:42:56 +00:00
case RQSTYPE_ATIO2 :
case RQSTYPE_CTIO2 :
1999-10-17 18:58:22 +00:00
case RQSTYPE_CTIO3 :
2006-11-02 03:21:32 +00:00
case RQSTYPE_CTIO7 :
case RQSTYPE_ABTS_RCVD :
case RQSTYPE_ABTS_RSP :
2002-02-04 21:04:25 +00:00
isp - > isp_rsltccmplt + + ; /* count as a response completion */
1999-10-17 18:58:22 +00:00
# ifdef ISP_TARGET_MODE
2002-03-21 21:10:16 +00:00
if ( isp_target_notify ( isp , ( ispstatusreq_t * ) hp , optrp ) ) {
return ( 1 ) ;
}
1998-09-15 08:42:56 +00:00
# endif
2003-08-25 17:58:23 +00:00
/* FALLTHROUGH */
2009-08-01 01:04:26 +00:00
case RQSTYPE_RPT_ID_ACQ :
if ( IS_24XX ( isp ) ) {
isp_ridacq_t rid ;
isp_get_ridacq ( isp , ( isp_ridacq_t * ) hp , & rid ) ;
if ( rid . ridacq_format = = 0 ) {
}
return ( 1 ) ;
}
/* FALLTHROUGH */
1999-10-17 18:58:22 +00:00
case RQSTYPE_REQUEST :
1998-09-15 08:42:56 +00:00
default :
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 100 ) ;
2005-01-23 06:26:45 +00:00
if ( type ! = isp_get_response_type ( isp , hp ) ) {
/*
* This is questionable - we ' re just papering over
* something we ' ve seen on SMP linux in target
* mode - we don ' t really know what ' s happening
* here that causes us to think we ' ve gotten
* an entry , but that either the entry isn ' t
* filled out yet or our CPU read data is stale .
*/
isp_prt ( isp , ISP_LOGINFO ,
" unstable type in response queue " ) ;
return ( - 1 ) ;
2001-02-23 05:35:50 +00:00
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN , " Unhandled Response Type 0x%x " ,
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
isp_get_response_type ( isp , hp ) ) ;
2002-03-21 21:10:16 +00:00
return ( 0 ) ;
1998-09-15 08:42:56 +00:00
}
}
1998-12-05 01:33:57 +00:00
1998-04-22 17:54:58 +00:00
static void
2006-11-02 03:21:32 +00:00
isp_parse_status ( ispsoftc_t * isp , ispstatusreq_t * sp , XS_T * xs , long * rp )
1998-04-22 17:54:58 +00:00
{
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
switch ( sp - > req_completion_status & 0xff ) {
1998-04-22 17:54:58 +00:00
case RQCS_COMPLETE :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_NOERROR ) ;
}
1998-04-22 17:54:58 +00:00
return ;
case RQCS_INCOMPLETE :
if ( ( sp - > req_state_flags & RQSF_GOT_TARGET ) = = 0 ) {
2000-08-27 23:38:44 +00:00
isp_prt ( isp , ISP_LOGDEBUG1 ,
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
" Selection Timeout for %d.%d.%d " ,
2000-12-02 18:08:35 +00:00
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_SELTIMEOUT ) ;
2006-11-02 03:21:32 +00:00
* rp = XS_XFRLEN ( xs ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
1998-04-22 17:54:58 +00:00
return ;
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR ,
" command incomplete for %d.%d.%d, state 0x%x " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ,
1998-09-15 08:42:56 +00:00
sp - > req_state_flags ) ;
break ;
case RQCS_DMA_ERROR :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " DMA error for command on %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
2006-11-02 03:21:32 +00:00
* rp = XS_XFRLEN ( xs ) ;
1998-04-22 17:54:58 +00:00
break ;
case RQCS_TRANSPORT_ERROR :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
{
char buf [ 172 ] ;
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " states=> " ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( sp - > req_state_flags & RQSF_GOT_BUS ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s GOT_BUS " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
if ( sp - > req_state_flags & RQSF_GOT_TARGET ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s GOT_TGT " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
if ( sp - > req_state_flags & RQSF_SENT_CDB ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s SENT_CDB " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
if ( sp - > req_state_flags & RQSF_XFRD_DATA ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s XFRD_DATA " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
if ( sp - > req_state_flags & RQSF_GOT_STATUS ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s GOT_STS " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
if ( sp - > req_state_flags & RQSF_GOT_SENSE ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s GOT_SNS " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
if ( sp - > req_state_flags & RQSF_XFER_COMPLETE ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s XFR_CMPLT " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s \n status=> " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( sp - > req_status_flags & RQSTF_DISCONNECT ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s Disconnect " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
if ( sp - > req_status_flags & RQSTF_SYNCHRONOUS ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s Sync_xfr " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
if ( sp - > req_status_flags & RQSTF_PARITY_ERROR ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s Parity " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
if ( sp - > req_status_flags & RQSTF_BUS_RESET ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s Bus_Reset " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
if ( sp - > req_status_flags & RQSTF_DEVICE_RESET ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s Device_Reset " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
if ( sp - > req_status_flags & RQSTF_ABORTED ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s Aborted " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
if ( sp - > req_status_flags & RQSTF_TIMEOUT ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s Timeout " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
if ( sp - > req_status_flags & RQSTF_NEGOTIATION ) {
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( buf , sizeof ( buf ) , " %s Negotiation " , buf ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
isp_prt ( isp , ISP_LOGERR , " %s " , buf ) ;
isp_prt ( isp , ISP_LOGERR , " transport error for %d.%d.%d: \n %s " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) , buf ) ;
2006-11-02 03:21:32 +00:00
* rp = XS_XFRLEN ( xs ) ;
1998-04-22 17:54:58 +00:00
break ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
1998-09-15 08:42:56 +00:00
case RQCS_RESET_OCCURRED :
2009-08-01 01:04:26 +00:00
{
int chan ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN ,
" bus reset destroyed command for %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
2009-08-01 01:04:26 +00:00
for ( chan = 0 ; chan < isp - > isp_nchan ; chan + + ) {
FCPARAM ( isp , chan ) - > sendmarker = 1 ;
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_BUSRESET ) ;
}
2006-11-02 03:21:32 +00:00
* rp = XS_XFRLEN ( xs ) ;
1998-09-15 08:42:56 +00:00
return ;
2009-08-01 01:04:26 +00:00
}
1998-09-15 08:42:56 +00:00
case RQCS_ABORTED :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " command aborted for %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
2009-08-01 01:04:26 +00:00
ISP_SET_SENDMARKER ( isp , XS_CHANNEL ( xs ) , 1 ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_ABORTED ) ;
}
1998-09-15 08:42:56 +00:00
return ;
case RQCS_TIMEOUT :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN , " command timed out for %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
2002-06-16 05:18:22 +00:00
/*
2006-11-02 03:21:32 +00:00
* XXX : Check to see if we logged out of the device .
2002-06-16 05:18:22 +00:00
*/
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_CMDTIMEOUT ) ;
}
1998-09-15 08:42:56 +00:00
return ;
1998-04-22 17:54:58 +00:00
case RQCS_DATA_OVERRUN :
2009-08-01 01:04:26 +00:00
XS_SET_RESID ( xs , sp - > req_resid ) ;
isp_prt ( isp , ISP_LOGERR , " data overrun (%ld) for command on %d.%d.%d " ,
( long ) XS_GET_RESID ( xs ) , XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_DATAOVR ) ;
}
1998-04-22 17:54:58 +00:00
return ;
1998-09-15 08:42:56 +00:00
case RQCS_COMMAND_OVERRUN :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR ,
" command overrun for command on %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_STATUS_OVERRUN :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR ,
" status overrun for command on %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_BAD_MESSAGE :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR ,
" msg not COMMAND COMPLETE after status %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_NO_MESSAGE_OUT :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR ,
" No MESSAGE OUT phase after selection on %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_EXT_ID_FAILED :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " EXTENDED IDENTIFY failed %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_IDE_MSG_FAILED :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR ,
" INITIATOR DETECTED ERROR rejected by %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_ABORT_MSG_FAILED :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " ABORT OPERATION rejected by %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_REJECT_MSG_FAILED :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " MESSAGE REJECT rejected by %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_NOP_MSG_FAILED :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " NOP rejected by %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_PARITY_ERROR_MSG_FAILED :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR ,
" MESSAGE PARITY ERROR rejected by %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_DEVICE_RESET_MSG_FAILED :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN ,
" BUS DEVICE RESET rejected by %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_ID_MSG_FAILED :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " IDENTIFY rejected by %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_UNEXP_BUS_FREE :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " %d.%d.%d had an unexpected bus free " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
1998-04-22 17:54:58 +00:00
case RQCS_DATA_UNDERRUN :
2002-05-01 21:58:36 +00:00
{
if ( IS_FC ( isp ) ) {
int ru_marked = ( sp - > req_scsi_status & RQCS_RU ) ! = 0 ;
if ( ! ru_marked | | sp - > req_resid > XS_XFRLEN ( xs ) ) {
isp_prt ( isp , ISP_LOGWARN , bun , XS_TGT ( xs ) ,
XS_LUN ( xs ) , XS_XFRLEN ( xs ) , sp - > req_resid ,
( ru_marked ) ? " marked " : " not marked " ) ;
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_BOTCH ) ;
}
return ;
}
}
2009-08-01 01:04:26 +00:00
XS_SET_RESID ( xs , sp - > req_resid ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_NOERROR ) ;
}
1998-04-22 17:54:58 +00:00
return ;
2002-05-01 21:58:36 +00:00
}
1998-04-22 17:54:58 +00:00
1998-09-15 08:42:56 +00:00
case RQCS_XACT_ERR1 :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , xact1 , XS_CHANNEL ( xs ) ,
2000-02-29 05:52:14 +00:00
XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
1998-04-22 17:54:58 +00:00
1998-09-15 08:42:56 +00:00
case RQCS_XACT_ERR2 :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , xact2 ,
2000-02-29 05:52:14 +00:00
XS_LUN ( xs ) , XS_TGT ( xs ) , XS_CHANNEL ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_XACT_ERR3 :
2001-07-04 18:42:41 +00:00
isp_prt ( isp , ISP_LOGERR , xact3 ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_BAD_ENTRY :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " Invalid IOCB entry type detected " ) ;
1998-09-15 08:42:56 +00:00
break ;
case RQCS_QUEUE_FULL :
2001-10-23 23:05:20 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 ,
2002-05-01 21:58:36 +00:00
" internal queues full for %d.%d.%d status 0x%x " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) , * XS_STSP ( xs ) ) ;
2001-10-23 23:05:20 +00:00
1999-01-10 02:55:10 +00:00
/*
* If QFULL or some other status byte is set , then this
* isn ' t an error , per se .
2001-10-23 23:05:20 +00:00
*
* Unfortunately , some QLogic f / w writers have , in
* some cases , ommitted to * set * status to QFULL .
*
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( * XS_STSP ( xs ) ! = SCSI_GOOD & & XS_NOERR ( xs ) ) {
1999-01-10 02:55:10 +00:00
XS_SETERR ( xs , HBA_NOERROR ) ;
return ;
}
2001-10-23 23:05:20 +00:00
*
*
*/
* XS_STSP ( xs ) = SCSI_QFULL ;
XS_SETERR ( xs , HBA_NOERROR ) ;
return ;
1998-09-15 08:42:56 +00:00
2006-11-02 03:21:32 +00:00
case RQCS_PHASE_SKIPPED :
isp_prt ( isp , ISP_LOGERR , pskip , XS_CHANNEL ( xs ) ,
XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
break ;
case RQCS_ARQS_FAILED :
isp_prt ( isp , ISP_LOGERR ,
" Auto Request Sense failed for %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_ARQFAIL ) ;
}
return ;
case RQCS_WIDE_FAILED :
isp_prt ( isp , ISP_LOGERR ,
" Wide Negotiation failed for %d.%d.%d " ,
XS_TGT ( xs ) , XS_LUN ( xs ) , XS_CHANNEL ( xs ) ) ;
if ( IS_SCSI ( isp ) ) {
2009-08-01 01:04:26 +00:00
sdparam * sdp = SDPARAM ( isp , XS_CHANNEL ( xs ) ) ;
2006-11-02 03:21:32 +00:00
sdp - > isp_devparam [ XS_TGT ( xs ) ] . goal_flags & = ~ DPARM_WIDE ;
sdp - > isp_devparam [ XS_TGT ( xs ) ] . dev_update = 1 ;
2009-08-01 01:04:26 +00:00
sdp - > update = 1 ;
2006-11-02 03:21:32 +00:00
}
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_NOERROR ) ;
}
return ;
case RQCS_SYNCXFER_FAILED :
isp_prt ( isp , ISP_LOGERR ,
" SDTR Message failed for target %d.%d.%d " ,
XS_TGT ( xs ) , XS_LUN ( xs ) , XS_CHANNEL ( xs ) ) ;
if ( IS_SCSI ( isp ) ) {
2009-08-01 01:04:26 +00:00
sdparam * sdp = SDPARAM ( isp , XS_CHANNEL ( xs ) ) ;
2006-11-02 03:21:32 +00:00
sdp + = XS_CHANNEL ( xs ) ;
sdp - > isp_devparam [ XS_TGT ( xs ) ] . goal_flags & = ~ DPARM_SYNC ;
sdp - > isp_devparam [ XS_TGT ( xs ) ] . dev_update = 1 ;
2009-08-01 01:04:26 +00:00
sdp - > update = 1 ;
2006-11-02 03:21:32 +00:00
}
break ;
case RQCS_LVD_BUSERR :
isp_prt ( isp , ISP_LOGERR ,
" Bad LVD condition while talking to %d.%d.%d " ,
XS_TGT ( xs ) , XS_LUN ( xs ) , XS_CHANNEL ( xs ) ) ;
break ;
case RQCS_PORT_UNAVAILABLE :
/*
* No such port on the loop . Moral equivalent of SELTIMEO
*/
case RQCS_PORT_LOGGED_OUT :
{
2007-03-22 23:38:32 +00:00
const char * reason ;
2006-11-02 03:21:32 +00:00
uint8_t sts = sp - > req_completion_status & 0xff ;
/*
* It was there ( maybe ) - treat as a selection timeout .
*/
if ( sts = = RQCS_PORT_UNAVAILABLE ) {
reason = " unavailable " ;
} else {
reason = " logout " ;
}
isp_prt ( isp , ISP_LOGINFO , " port %s for target %d " ,
reason , XS_TGT ( xs ) ) ;
/*
* If we ' re on a local loop , force a LIP ( which is overkill )
* to force a re - login of this unit . If we ' re on fabric ,
* then we ' ll have to log in again as a matter of course .
*/
2009-08-01 01:04:26 +00:00
if ( FCPARAM ( isp , 0 ) - > isp_topo = = TOPO_NL_PORT | |
FCPARAM ( isp , 0 ) - > isp_topo = = TOPO_FL_PORT ) {
2006-11-02 03:21:32 +00:00
mbreg_t mbs ;
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_INIT_LIP , MBLOGALL , 0 ) ;
if ( ISP_CAP_2KLOGIN ( isp ) ) {
2006-11-02 03:21:32 +00:00
mbs . ibits = ( 1 < < 10 ) ;
}
isp_mboxcmd_qnw ( isp , & mbs , 1 ) ;
}
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_SELTIMEOUT ) ;
}
return ;
}
case RQCS_PORT_CHANGED :
isp_prt ( isp , ISP_LOGWARN ,
" port changed for target %d " , XS_TGT ( xs ) ) ;
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_SELTIMEOUT ) ;
}
return ;
case RQCS_PORT_BUSY :
isp_prt ( isp , ISP_LOGWARN ,
" port busy for target %d " , XS_TGT ( xs ) ) ;
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_TGTBSY ) ;
}
return ;
default :
isp_prt ( isp , ISP_LOGERR , " Unknown Completion Status 0x%x " ,
sp - > req_completion_status ) ;
break ;
}
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_BOTCH ) ;
}
}
static void
isp_parse_status_24xx ( ispsoftc_t * isp , isp24xx_statusreq_t * sp ,
XS_T * xs , long * rp )
{
2007-07-02 20:08:20 +00:00
int ru_marked , sv_marked ;
2009-08-01 01:04:26 +00:00
int chan = XS_CHANNEL ( xs ) ;
2006-11-02 03:21:32 +00:00
switch ( sp - > req_completion_status ) {
case RQCS_COMPLETE :
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_NOERROR ) ;
}
return ;
case RQCS_DMA_ERROR :
isp_prt ( isp , ISP_LOGERR , " DMA error for command on %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
break ;
case RQCS_TRANSPORT_ERROR :
isp_prt ( isp , ISP_LOGERR , " transport error for %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
break ;
case RQCS_RESET_OCCURRED :
isp_prt ( isp , ISP_LOGWARN ,
2009-08-01 01:04:26 +00:00
" reset destroyed command for %d.%d.%d " ,
2006-11-02 03:21:32 +00:00
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
2009-08-01 01:04:26 +00:00
FCPARAM ( isp , chan ) - > sendmarker = 1 ;
2006-11-02 03:21:32 +00:00
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_BUSRESET ) ;
}
return ;
case RQCS_ABORTED :
isp_prt ( isp , ISP_LOGERR , " command aborted for %d.%d.%d " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
2009-08-01 01:04:26 +00:00
FCPARAM ( isp , chan ) - > sendmarker = 1 ;
2006-11-02 03:21:32 +00:00
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_ABORTED ) ;
}
return ;
case RQCS_TIMEOUT :
isp_prt ( isp , ISP_LOGWARN , " command timed out for %d.%d.%d " ,
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
if ( XS_NOERR ( xs ) ) {
2006-11-02 03:21:32 +00:00
XS_SETERR ( xs , HBA_CMDTIMEOUT ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
1998-04-22 17:54:58 +00:00
return ;
2006-11-02 03:21:32 +00:00
case RQCS_DATA_OVERRUN :
2009-08-01 01:04:26 +00:00
XS_SET_RESID ( xs , sp - > req_resid ) ;
2007-07-02 20:08:20 +00:00
isp_prt ( isp , ISP_LOGERR ,
" data overrun for command on %d.%d.%d " ,
2006-11-02 03:21:32 +00:00
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ) ;
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_DATAOVR ) ;
1998-09-15 08:42:56 +00:00
}
2006-11-02 03:21:32 +00:00
return ;
case RQCS_24XX_DRE : /* data reassembly error */
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR ,
" Chan %d data reassembly error for target %d " ,
chan , XS_TGT ( xs ) ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( XS_NOERR ( xs ) ) {
2006-11-02 03:21:32 +00:00
XS_SETERR ( xs , HBA_ABORTED ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
2006-11-02 03:21:32 +00:00
* rp = XS_XFRLEN ( xs ) ;
1998-04-22 17:54:58 +00:00
return ;
2006-11-02 03:21:32 +00:00
case RQCS_24XX_TABORT : /* aborted by target */
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR , " Chan %d target %d sent ABTS " ,
chan , XS_TGT ( xs ) ) ;
2006-11-02 03:21:32 +00:00
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_ABORTED ) ;
1998-09-15 08:42:56 +00:00
}
2006-11-02 03:21:32 +00:00
return ;
1998-09-15 08:42:56 +00:00
2006-11-02 03:21:32 +00:00
case RQCS_DATA_UNDERRUN :
2007-07-02 20:08:20 +00:00
ru_marked = ( sp - > req_scsi_status & RQCS_RU ) ! = 0 ;
/*
2009-08-01 01:04:26 +00:00
* We can get an underrun w / o things being marked
2007-07-02 20:08:20 +00:00
* if we got a non - zero status .
*/
sv_marked = ( sp - > req_scsi_status & ( RQCS_SV | RQCS_RV ) ) ! = 0 ;
if ( ( ru_marked = = 0 & & sv_marked = = 0 ) | |
( sp - > req_resid > XS_XFRLEN ( xs ) ) ) {
isp_prt ( isp , ISP_LOGWARN , bun , XS_TGT ( xs ) ,
XS_LUN ( xs ) , XS_XFRLEN ( xs ) , sp - > req_resid ,
( ru_marked ) ? " marked " : " not marked " ) ;
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_BOTCH ) ;
}
return ;
}
2009-08-01 01:04:26 +00:00
XS_SET_RESID ( xs , sp - > req_resid ) ;
2007-07-02 20:08:20 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 ,
" %d.%d.%d data underrun (%d) for command 0x%x " ,
XS_CHANNEL ( xs ) , XS_TGT ( xs ) , XS_LUN ( xs ) ,
sp - > req_resid , XS_CDBP ( xs ) [ 0 ] & 0xff ) ;
2006-11-02 03:21:32 +00:00
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_NOERROR ) ;
}
return ;
1998-09-15 08:42:56 +00:00
1998-04-22 17:54:58 +00:00
case RQCS_PORT_UNAVAILABLE :
/*
* No such port on the loop . Moral equivalent of SELTIMEO
*/
case RQCS_PORT_LOGGED_OUT :
2006-11-02 03:21:32 +00:00
{
2007-03-22 23:38:32 +00:00
const char * reason ;
2006-11-02 03:21:32 +00:00
uint8_t sts = sp - > req_completion_status & 0xff ;
1998-09-15 08:42:56 +00:00
/*
* It was there ( maybe ) - treat as a selection timeout .
*/
2006-11-02 03:21:32 +00:00
if ( sts = = RQCS_PORT_UNAVAILABLE ) {
reason = " unavailable " ;
} else {
reason = " logout " ;
}
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGINFO , " Chan %d port %s for target %d " ,
chan , reason , XS_TGT ( xs ) ) ;
2006-11-02 03:21:32 +00:00
2002-02-21 01:56:08 +00:00
/*
2009-08-01 01:04:26 +00:00
* There is no MBOX_INIT_LIP for the 24 XX .
2002-02-21 01:56:08 +00:00
*/
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_SELTIMEOUT ) ;
}
1998-09-15 08:42:56 +00:00
return ;
2006-11-02 03:21:32 +00:00
}
1998-04-22 17:54:58 +00:00
case RQCS_PORT_CHANGED :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN ,
2009-08-01 01:04:26 +00:00
" port changed for target %d chan %d " , XS_TGT ( xs ) , chan ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_SELTIMEOUT ) ;
}
2000-02-29 05:52:14 +00:00
return ;
1998-04-22 17:54:58 +00:00
2006-11-02 03:21:32 +00:00
case RQCS_24XX_ENOMEM : /* f/w resource unavailable */
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN ,
2009-08-01 01:04:26 +00:00
" f/w resource unavailable for target %d chan %d " ,
XS_TGT ( xs ) , chan ) ;
2006-11-02 03:21:32 +00:00
if ( XS_NOERR ( xs ) ) {
* XS_STSP ( xs ) = SCSI_BUSY ;
XS_SETERR ( xs , HBA_TGTBSY ) ;
}
return ;
case RQCS_24XX_TMO : /* task management overrun */
isp_prt ( isp , ISP_LOGWARN ,
2009-08-01 01:04:26 +00:00
" command for target %d overlapped task management for "
" chan %d " , XS_TGT ( xs ) , chan ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( XS_NOERR ( xs ) ) {
2006-11-02 03:21:32 +00:00
* XS_STSP ( xs ) = SCSI_BUSY ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
XS_SETERR ( xs , HBA_TGTBSY ) ;
}
1998-04-22 17:54:58 +00:00
return ;
default :
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR ,
" Unknown Completion Status 0x%x on chan %d " ,
sp - > req_completion_status , chan ) ;
1998-04-22 17:54:58 +00:00
break ;
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
if ( XS_NOERR ( xs ) ) {
XS_SETERR ( xs , HBA_BOTCH ) ;
}
1998-04-22 17:54:58 +00:00
}
1999-03-17 05:04:39 +00:00
static void
2006-04-21 18:30:01 +00:00
isp_fastpost_complete ( ispsoftc_t * isp , uint16_t fph )
1999-03-17 05:04:39 +00:00
{
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
XS_T * xs ;
1999-03-17 05:04:39 +00:00
2001-03-02 06:28:55 +00:00
if ( fph = = 0 ) {
1999-03-17 05:04:39 +00:00
return ;
1999-10-17 18:58:22 +00:00
}
xs = isp_find_xs ( isp , fph ) ;
1999-03-17 05:04:39 +00:00
if ( xs = = NULL ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGWARN ,
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
" Command for fast post handle 0x%x not found " , fph ) ;
1999-03-17 05:04:39 +00:00
return ;
}
1999-10-17 18:58:22 +00:00
isp_destroy_handle ( isp , fph ) ;
1999-03-17 05:04:39 +00:00
/*
* Since we don ' t have a result queue entry item ,
* we must believe that SCSI status is zero and
* that all data transferred .
*/
2009-08-01 01:04:26 +00:00
XS_SET_RESID ( xs , 0 ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
* XS_STSP ( xs ) = SCSI_GOOD ;
1999-03-17 05:04:39 +00:00
if ( XS_XFRLEN ( xs ) ) {
1999-10-17 18:58:22 +00:00
ISP_DMAFREE ( isp , xs , fph ) ;
1999-03-17 05:04:39 +00:00
}
2009-08-01 01:04:26 +00:00
if ( isp - > isp_nactive ) {
1999-10-17 18:58:22 +00:00
isp - > isp_nactive - - ;
2009-08-01 01:04:26 +00:00
}
2002-01-03 20:43:22 +00:00
isp - > isp_fphccmplt + + ;
2000-08-27 23:38:44 +00:00
isp_done ( xs ) ;
1999-03-17 05:04:39 +00:00
}
2002-02-04 21:04:25 +00:00
static int
2006-04-21 18:30:01 +00:00
isp_mbox_continue ( ispsoftc_t * isp )
2002-02-04 21:04:25 +00:00
{
mbreg_t mbs ;
2006-02-15 00:31:48 +00:00
uint16_t * ptr ;
2006-08-14 05:42:46 +00:00
uint32_t offset ;
2002-02-04 21:04:25 +00:00
2002-02-17 06:38:22 +00:00
switch ( isp - > isp_lastmbxcmd ) {
case MBOX_WRITE_RAM_WORD :
case MBOX_READ_RAM_WORD :
2006-07-03 08:24:09 +00:00
case MBOX_WRITE_RAM_WORD_EXTENDED :
2002-02-17 06:38:22 +00:00
case MBOX_READ_RAM_WORD_EXTENDED :
break ;
default :
2002-02-04 21:04:25 +00:00
return ( 1 ) ;
}
if ( isp - > isp_mboxtmp [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
isp - > isp_mbxwrk0 = 0 ;
return ( - 1 ) ;
}
/*
* Clear the previous interrupt .
*/
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
ISP_WRITE ( isp , BIU2400_HCCR , HCCR_2400_CMD_CLEAR_RISC_INT ) ;
} else {
ISP_WRITE ( isp , HCCR , HCCR_CMD_CLEAR_RISC_INT ) ;
ISP_WRITE ( isp , BIU_SEMA , 0 ) ;
}
2002-02-04 21:04:25 +00:00
/*
* Continue with next word .
*/
2009-08-01 01:04:26 +00:00
ISP_MEMZERO ( & mbs , sizeof ( mbs ) ) ;
2002-02-04 21:04:25 +00:00
ptr = isp - > isp_mbxworkp ;
2002-02-17 06:38:22 +00:00
switch ( isp - > isp_lastmbxcmd ) {
case MBOX_WRITE_RAM_WORD :
2006-08-14 05:42:46 +00:00
mbs . param [ 1 ] = isp - > isp_mbxwrk1 + + ; ;
mbs . param [ 2 ] = * ptr + + ; ;
2006-07-03 08:24:09 +00:00
break ;
2002-02-17 06:38:22 +00:00
case MBOX_READ_RAM_WORD :
2006-07-03 08:24:09 +00:00
* ptr + + = isp - > isp_mboxtmp [ 2 ] ;
mbs . param [ 1 ] = isp - > isp_mbxwrk1 + + ;
break ;
2006-08-14 05:42:46 +00:00
case MBOX_WRITE_RAM_WORD_EXTENDED :
offset = isp - > isp_mbxwrk1 ;
2006-11-02 03:21:32 +00:00
offset | = isp - > isp_mbxwrk8 < < 16 ;
2006-08-14 05:42:46 +00:00
mbs . param [ 2 ] = * ptr + + ; ;
mbs . param [ 1 ] = offset ;
mbs . param [ 8 ] = offset > > 16 ;
isp - > isp_mbxwrk1 = + + offset ;
isp - > isp_mbxwrk8 = offset > > 16 ;
break ;
2002-02-17 06:38:22 +00:00
case MBOX_READ_RAM_WORD_EXTENDED :
2006-08-14 05:42:46 +00:00
offset = isp - > isp_mbxwrk1 ;
2006-11-02 03:21:32 +00:00
offset | = isp - > isp_mbxwrk8 < < 16 ;
2006-08-14 05:42:46 +00:00
2002-02-17 06:38:22 +00:00
* ptr + + = isp - > isp_mboxtmp [ 2 ] ;
2006-08-14 05:42:46 +00:00
mbs . param [ 1 ] = offset ;
mbs . param [ 8 ] = offset > > 16 ;
isp - > isp_mbxwrk1 = + + offset ;
isp - > isp_mbxwrk8 = offset > > 16 ;
2002-02-17 06:38:22 +00:00
break ;
}
2002-02-04 21:04:25 +00:00
isp - > isp_mbxworkp = ptr ;
2006-08-14 05:42:46 +00:00
isp - > isp_mbxwrk0 - - ;
2002-02-17 06:38:22 +00:00
mbs . param [ 0 ] = isp - > isp_lastmbxcmd ;
2006-11-02 03:21:32 +00:00
mbs . logval = MBLOGALL ;
2002-02-21 01:56:08 +00:00
isp_mboxcmd_qnw ( isp , & mbs , 0 ) ;
2002-02-04 21:04:25 +00:00
return ( 0 ) ;
}
2006-01-23 06:23:37 +00:00
# define HIWRD(x) ((x) >> 16)
# define LOWRD(x) ((x) & 0xffff)
# define ISPOPMAP(a, b) (((a) << 16) | (b))
2006-02-15 00:31:48 +00:00
static const uint32_t mbpscsi [ ] = {
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISPOPMAP ( 0x01 , 0x01 ) , /* 0x00: MBOX_NO_OP */
ISPOPMAP ( 0x1f , 0x01 ) , /* 0x01: MBOX_LOAD_RAM */
ISPOPMAP ( 0x03 , 0x01 ) , /* 0x02: MBOX_EXEC_FIRMWARE */
ISPOPMAP ( 0x1f , 0x01 ) , /* 0x03: MBOX_DUMP_RAM */
ISPOPMAP ( 0x07 , 0x07 ) , /* 0x04: MBOX_WRITE_RAM_WORD */
ISPOPMAP ( 0x03 , 0x07 ) , /* 0x05: MBOX_READ_RAM_WORD */
ISPOPMAP ( 0x3f , 0x3f ) , /* 0x06: MBOX_MAILBOX_REG_TEST */
2006-08-14 05:42:46 +00:00
ISPOPMAP ( 0x07 , 0x07 ) , /* 0x07: MBOX_VERIFY_CHECKSUM */
2001-09-03 03:09:48 +00:00
ISPOPMAP ( 0x01 , 0x0f ) , /* 0x08: MBOX_ABOUT_FIRMWARE */
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x09: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x0a: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x0b: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x0c: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x0d: */
ISPOPMAP ( 0x01 , 0x05 ) , /* 0x0e: MBOX_CHECK_FIRMWARE */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x0f: */
ISPOPMAP ( 0x1f , 0x1f ) , /* 0x10: MBOX_INIT_REQ_QUEUE */
ISPOPMAP ( 0x3f , 0x3f ) , /* 0x11: MBOX_INIT_RES_QUEUE */
ISPOPMAP ( 0x0f , 0x0f ) , /* 0x12: MBOX_EXECUTE_IOCB */
ISPOPMAP ( 0x03 , 0x03 ) , /* 0x13: MBOX_WAKE_UP */
ISPOPMAP ( 0x01 , 0x3f ) , /* 0x14: MBOX_STOP_FIRMWARE */
ISPOPMAP ( 0x0f , 0x0f ) , /* 0x15: MBOX_ABORT */
ISPOPMAP ( 0x03 , 0x03 ) , /* 0x16: MBOX_ABORT_DEVICE */
ISPOPMAP ( 0x07 , 0x07 ) , /* 0x17: MBOX_ABORT_TARGET */
ISPOPMAP ( 0x07 , 0x07 ) , /* 0x18: MBOX_BUS_RESET */
ISPOPMAP ( 0x03 , 0x07 ) , /* 0x19: MBOX_STOP_QUEUE */
ISPOPMAP ( 0x03 , 0x07 ) , /* 0x1a: MBOX_START_QUEUE */
ISPOPMAP ( 0x03 , 0x07 ) , /* 0x1b: MBOX_SINGLE_STEP_QUEUE */
ISPOPMAP ( 0x03 , 0x07 ) , /* 0x1c: MBOX_ABORT_QUEUE */
ISPOPMAP ( 0x03 , 0x4f ) , /* 0x1d: MBOX_GET_DEV_QUEUE_STATUS */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x1e: */
ISPOPMAP ( 0x01 , 0x07 ) , /* 0x1f: MBOX_GET_FIRMWARE_STATUS */
ISPOPMAP ( 0x01 , 0x07 ) , /* 0x20: MBOX_GET_INIT_SCSI_ID */
ISPOPMAP ( 0x01 , 0x07 ) , /* 0x21: MBOX_GET_SELECT_TIMEOUT */
ISPOPMAP ( 0x01 , 0xc7 ) , /* 0x22: MBOX_GET_RETRY_COUNT */
ISPOPMAP ( 0x01 , 0x07 ) , /* 0x23: MBOX_GET_TAG_AGE_LIMIT */
ISPOPMAP ( 0x01 , 0x03 ) , /* 0x24: MBOX_GET_CLOCK_RATE */
ISPOPMAP ( 0x01 , 0x07 ) , /* 0x25: MBOX_GET_ACT_NEG_STATE */
ISPOPMAP ( 0x01 , 0x07 ) , /* 0x26: MBOX_GET_ASYNC_DATA_SETUP_TIME */
ISPOPMAP ( 0x01 , 0x07 ) , /* 0x27: MBOX_GET_PCI_PARAMS */
ISPOPMAP ( 0x03 , 0x4f ) , /* 0x28: MBOX_GET_TARGET_PARAMS */
ISPOPMAP ( 0x03 , 0x0f ) , /* 0x29: MBOX_GET_DEV_QUEUE_PARAMS */
ISPOPMAP ( 0x01 , 0x07 ) , /* 0x2a: MBOX_GET_RESET_DELAY_PARAMS */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x2b: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x2c: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x2d: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x2e: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x2f: */
ISPOPMAP ( 0x03 , 0x03 ) , /* 0x30: MBOX_SET_INIT_SCSI_ID */
ISPOPMAP ( 0x07 , 0x07 ) , /* 0x31: MBOX_SET_SELECT_TIMEOUT */
ISPOPMAP ( 0xc7 , 0xc7 ) , /* 0x32: MBOX_SET_RETRY_COUNT */
ISPOPMAP ( 0x07 , 0x07 ) , /* 0x33: MBOX_SET_TAG_AGE_LIMIT */
ISPOPMAP ( 0x03 , 0x03 ) , /* 0x34: MBOX_SET_CLOCK_RATE */
ISPOPMAP ( 0x07 , 0x07 ) , /* 0x35: MBOX_SET_ACT_NEG_STATE */
ISPOPMAP ( 0x07 , 0x07 ) , /* 0x36: MBOX_SET_ASYNC_DATA_SETUP_TIME */
ISPOPMAP ( 0x07 , 0x07 ) , /* 0x37: MBOX_SET_PCI_CONTROL_PARAMS */
ISPOPMAP ( 0x4f , 0x4f ) , /* 0x38: MBOX_SET_TARGET_PARAMS */
ISPOPMAP ( 0x0f , 0x0f ) , /* 0x39: MBOX_SET_DEV_QUEUE_PARAMS */
ISPOPMAP ( 0x07 , 0x07 ) , /* 0x3a: MBOX_SET_RESET_DELAY_PARAMS */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x3b: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x3c: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x3d: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x3e: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x3f: */
ISPOPMAP ( 0x01 , 0x03 ) , /* 0x40: MBOX_RETURN_BIOS_BLOCK_ADDR */
ISPOPMAP ( 0x3f , 0x01 ) , /* 0x41: MBOX_WRITE_FOUR_RAM_WORDS */
ISPOPMAP ( 0x03 , 0x07 ) , /* 0x42: MBOX_EXEC_BIOS_IOCB */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x43: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x44: */
ISPOPMAP ( 0x03 , 0x03 ) , /* 0x45: SET SYSTEM PARAMETER */
ISPOPMAP ( 0x01 , 0x03 ) , /* 0x46: GET SYSTEM PARAMETER */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x47: */
ISPOPMAP ( 0x01 , 0xcf ) , /* 0x48: GET SCAM CONFIGURATION */
ISPOPMAP ( 0xcf , 0xcf ) , /* 0x49: SET SCAM CONFIGURATION */
ISPOPMAP ( 0x03 , 0x03 ) , /* 0x4a: MBOX_SET_FIRMWARE_FEATURES */
ISPOPMAP ( 0x01 , 0x03 ) , /* 0x4b: MBOX_GET_FIRMWARE_FEATURES */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x4c: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x4d: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x4e: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x4f: */
ISPOPMAP ( 0xdf , 0xdf ) , /* 0x50: LOAD RAM A64 */
ISPOPMAP ( 0xdf , 0xdf ) , /* 0x51: DUMP RAM A64 */
2002-09-23 04:59:42 +00:00
ISPOPMAP ( 0xdf , 0xff ) , /* 0x52: INITIALIZE REQUEST QUEUE A64 */
ISPOPMAP ( 0xef , 0xff ) , /* 0x53: INITIALIZE RESPONSE QUEUE A64 */
2006-11-02 03:21:32 +00:00
ISPOPMAP ( 0xcf , 0x01 ) , /* 0x54: EXECUCUTE COMMAND IOCB A64 */
2001-04-04 21:42:59 +00:00
ISPOPMAP ( 0x07 , 0x01 ) , /* 0x55: ENABLE TARGET MODE */
ISPOPMAP ( 0x03 , 0x0f ) , /* 0x56: GET TARGET STATUS */
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x57: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x58: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x59: */
ISPOPMAP ( 0x03 , 0x03 ) , /* 0x5a: SET DATA OVERRUN RECOVERY MODE */
ISPOPMAP ( 0x01 , 0x03 ) , /* 0x5b: GET DATA OVERRUN RECOVERY MODE */
ISPOPMAP ( 0x0f , 0x0f ) , /* 0x5c: SET HOST DATA */
ISPOPMAP ( 0x01 , 0x01 ) /* 0x5d: GET NOST DATA */
} ;
2007-03-22 23:38:32 +00:00
static const char * scsi_mbcmd_names [ ] = {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
" NO-OP " ,
" LOAD RAM " ,
" EXEC FIRMWARE " ,
" DUMP RAM " ,
" WRITE RAM WORD " ,
" READ RAM WORD " ,
" MAILBOX REG TEST " ,
" VERIFY CHECKSUM " ,
" ABOUT FIRMWARE " ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
" CHECK FIRMWARE " ,
NULL ,
" INIT REQUEST QUEUE " ,
" INIT RESULT QUEUE " ,
" EXECUTE IOCB " ,
" WAKE UP " ,
" STOP FIRMWARE " ,
" ABORT " ,
" ABORT DEVICE " ,
" ABORT TARGET " ,
" BUS RESET " ,
" STOP QUEUE " ,
" START QUEUE " ,
" SINGLE STEP QUEUE " ,
" ABORT QUEUE " ,
" GET DEV QUEUE STATUS " ,
NULL ,
" GET FIRMWARE STATUS " ,
" GET INIT SCSI ID " ,
" GET SELECT TIMEOUT " ,
" GET RETRY COUNT " ,
" GET TAG AGE LIMIT " ,
" GET CLOCK RATE " ,
" GET ACT NEG STATE " ,
" GET ASYNC DATA SETUP TIME " ,
" GET PCI PARAMS " ,
" GET TARGET PARAMS " ,
" GET DEV QUEUE PARAMS " ,
" GET RESET DELAY PARAMS " ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
" SET INIT SCSI ID " ,
" SET SELECT TIMEOUT " ,
" SET RETRY COUNT " ,
" SET TAG AGE LIMIT " ,
" SET CLOCK RATE " ,
" SET ACT NEG STATE " ,
" SET ASYNC DATA SETUP TIME " ,
" SET PCI CONTROL PARAMS " ,
" SET TARGET PARAMS " ,
" SET DEV QUEUE PARAMS " ,
" SET RESET DELAY PARAMS " ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
" RETURN BIOS BLOCK ADDR " ,
" WRITE FOUR RAM WORDS " ,
" EXEC BIOS IOCB " ,
NULL ,
NULL ,
" SET SYSTEM PARAMETER " ,
" GET SYSTEM PARAMETER " ,
NULL ,
" GET SCAM CONFIGURATION " ,
" SET SCAM CONFIGURATION " ,
" SET FIRMWARE FEATURES " ,
" GET FIRMWARE FEATURES " ,
NULL ,
NULL ,
NULL ,
NULL ,
" LOAD RAM A64 " ,
" DUMP RAM A64 " ,
" INITIALIZE REQUEST QUEUE A64 " ,
" INITIALIZE RESPONSE QUEUE A64 " ,
" EXECUTE IOCB A64 " ,
" ENABLE TARGET MODE " ,
2001-04-04 21:42:59 +00:00
" GET TARGET MODE STATE " ,
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
NULL ,
NULL ,
NULL ,
" SET DATA OVERRUN RECOVERY MODE " ,
" GET DATA OVERRUN RECOVERY MODE " ,
" SET HOST DATA " ,
" GET NOST DATA " ,
} ;
2006-02-15 00:31:48 +00:00
static const uint32_t mbpfc [ ] = {
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISPOPMAP ( 0x01 , 0x01 ) , /* 0x00: MBOX_NO_OP */
ISPOPMAP ( 0x1f , 0x01 ) , /* 0x01: MBOX_LOAD_RAM */
2006-11-02 03:21:32 +00:00
ISPOPMAP ( 0x0f , 0x01 ) , /* 0x02: MBOX_EXEC_FIRMWARE */
2001-02-23 05:35:50 +00:00
ISPOPMAP ( 0xdf , 0x01 ) , /* 0x03: MBOX_DUMP_RAM */
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISPOPMAP ( 0x07 , 0x07 ) , /* 0x04: MBOX_WRITE_RAM_WORD */
ISPOPMAP ( 0x03 , 0x07 ) , /* 0x05: MBOX_READ_RAM_WORD */
ISPOPMAP ( 0xff , 0xff ) , /* 0x06: MBOX_MAILBOX_REG_TEST */
2009-08-01 01:04:26 +00:00
ISPOPMAP ( 0x07 , 0x07 ) , /* 0x07: MBOX_VERIFY_CHECKSUM */
2001-09-03 03:09:48 +00:00
ISPOPMAP ( 0x01 , 0x4f ) , /* 0x08: MBOX_ABOUT_FIRMWARE */
2006-12-17 16:59:19 +00:00
ISPOPMAP ( 0xdf , 0x01 ) , /* 0x09: MBOX_LOAD_RISC_RAM_2100 */
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISPOPMAP ( 0xdf , 0x01 ) , /* 0x0a: DUMP RAM */
2006-11-02 03:21:32 +00:00
ISPOPMAP ( 0x1ff , 0x01 ) , /* 0x0b: MBOX_LOAD_RISC_RAM */
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x0c: */
2006-11-02 03:21:32 +00:00
ISPOPMAP ( 0x10f , 0x01 ) , /* 0x0d: MBOX_WRITE_RAM_WORD_EXTENDED */
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISPOPMAP ( 0x01 , 0x05 ) , /* 0x0e: MBOX_CHECK_FIRMWARE */
2006-08-14 05:42:46 +00:00
ISPOPMAP ( 0x10f , 0x05 ) , /* 0x0f: MBOX_READ_RAM_WORD_EXTENDED */
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISPOPMAP ( 0x1f , 0x11 ) , /* 0x10: MBOX_INIT_REQ_QUEUE */
ISPOPMAP ( 0x2f , 0x21 ) , /* 0x11: MBOX_INIT_RES_QUEUE */
ISPOPMAP ( 0x0f , 0x01 ) , /* 0x12: MBOX_EXECUTE_IOCB */
ISPOPMAP ( 0x03 , 0x03 ) , /* 0x13: MBOX_WAKE_UP */
ISPOPMAP ( 0x01 , 0xff ) , /* 0x14: MBOX_STOP_FIRMWARE */
ISPOPMAP ( 0x4f , 0x01 ) , /* 0x15: MBOX_ABORT */
ISPOPMAP ( 0x07 , 0x01 ) , /* 0x16: MBOX_ABORT_DEVICE */
ISPOPMAP ( 0x07 , 0x01 ) , /* 0x17: MBOX_ABORT_TARGET */
ISPOPMAP ( 0x03 , 0x03 ) , /* 0x18: MBOX_BUS_RESET */
ISPOPMAP ( 0x07 , 0x05 ) , /* 0x19: MBOX_STOP_QUEUE */
ISPOPMAP ( 0x07 , 0x05 ) , /* 0x1a: MBOX_START_QUEUE */
ISPOPMAP ( 0x07 , 0x05 ) , /* 0x1b: MBOX_SINGLE_STEP_QUEUE */
ISPOPMAP ( 0x07 , 0x05 ) , /* 0x1c: MBOX_ABORT_QUEUE */
ISPOPMAP ( 0x07 , 0x03 ) , /* 0x1d: MBOX_GET_DEV_QUEUE_STATUS */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x1e: */
ISPOPMAP ( 0x01 , 0x07 ) , /* 0x1f: MBOX_GET_FIRMWARE_STATUS */
ISPOPMAP ( 0x01 , 0x4f ) , /* 0x20: MBOX_GET_LOOP_ID */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x21: */
ISPOPMAP ( 0x01 , 0x07 ) , /* 0x22: MBOX_GET_RETRY_COUNT */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x23: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x24: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x25: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x26: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x27: */
2001-10-01 03:45:54 +00:00
ISPOPMAP ( 0x01 , 0x03 ) , /* 0x28: MBOX_GET_FIRMWARE_OPTIONS */
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISPOPMAP ( 0x03 , 0x07 ) , /* 0x29: MBOX_GET_PORT_QUEUE_PARAMS */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x2a: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x2b: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x2c: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x2d: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x2e: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x2f: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x30: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x31: */
ISPOPMAP ( 0x07 , 0x07 ) , /* 0x32: MBOX_SET_RETRY_COUNT */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x33: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x34: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x35: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x36: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x37: */
ISPOPMAP ( 0x0f , 0x01 ) , /* 0x38: MBOX_SET_FIRMWARE_OPTIONS */
ISPOPMAP ( 0x0f , 0x07 ) , /* 0x39: MBOX_SET_PORT_QUEUE_PARAMS */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x3a: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x3b: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x3c: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x3d: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x3e: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x3f: */
ISPOPMAP ( 0x03 , 0x01 ) , /* 0x40: MBOX_LOOP_PORT_BYPASS */
ISPOPMAP ( 0x03 , 0x01 ) , /* 0x41: MBOX_LOOP_PORT_ENABLE */
2006-11-02 03:21:32 +00:00
ISPOPMAP ( 0x03 , 0x07 ) , /* 0x42: MBOX_GET_RESOURCE_COUNT */
ISPOPMAP ( 0x01 , 0x01 ) , /* 0x43: MBOX_REQUEST_OFFLINE_MODE */
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x44: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x45: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x46: */
ISPOPMAP ( 0xcf , 0x03 ) , /* 0x47: GET PORT_DATABASE ENHANCED */
2009-08-01 01:04:26 +00:00
ISPOPMAP ( 0xcd , 0x01 ) , /* 0x48: MBOX_INIT_FIRMWARE_MULTI_ID */
ISPOPMAP ( 0xcd , 0x01 ) , /* 0x49: MBOX_GET_VP_DATABASE */
ISPOPMAP ( 0x2cd , 0x01 ) , /* 0x4a: MBOX_GET_VP_DATABASE_ENTRY */
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x4b: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x4c: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x4d: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x4e: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x4f: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x50: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x51: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x52: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x53: */
ISPOPMAP ( 0xcf , 0x01 ) , /* 0x54: EXECUTE IOCB A64 */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x55: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x56: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x57: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x58: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x59: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x5a: */
2002-05-01 21:58:36 +00:00
ISPOPMAP ( 0x03 , 0x01 ) , /* 0x5b: MBOX_DRIVER_HEARTBEAT */
ISPOPMAP ( 0xcf , 0x01 ) , /* 0x5c: MBOX_FW_HEARTBEAT */
2001-10-01 03:45:54 +00:00
ISPOPMAP ( 0x07 , 0x03 ) , /* 0x5d: MBOX_GET_SET_DATA_RATE */
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x5e: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x5f: */
2006-11-02 03:21:32 +00:00
ISPOPMAP ( 0xcd , 0x01 ) , /* 0x60: MBOX_INIT_FIRMWARE */
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x61: */
ISPOPMAP ( 0x01 , 0x01 ) , /* 0x62: MBOX_INIT_LIP */
ISPOPMAP ( 0xcd , 0x03 ) , /* 0x63: MBOX_GET_FC_AL_POSITION_MAP */
ISPOPMAP ( 0xcf , 0x01 ) , /* 0x64: MBOX_GET_PORT_DB */
ISPOPMAP ( 0x07 , 0x01 ) , /* 0x65: MBOX_CLEAR_ACA */
ISPOPMAP ( 0x07 , 0x01 ) , /* 0x66: MBOX_TARGET_RESET */
ISPOPMAP ( 0x07 , 0x01 ) , /* 0x67: MBOX_CLEAR_TASK_SET */
ISPOPMAP ( 0x07 , 0x01 ) , /* 0x68: MBOX_ABORT_TASK_SET */
ISPOPMAP ( 0x01 , 0x07 ) , /* 0x69: MBOX_GET_FW_STATE */
ISPOPMAP ( 0x03 , 0xcf ) , /* 0x6a: MBOX_GET_PORT_NAME */
ISPOPMAP ( 0xcf , 0x01 ) , /* 0x6b: MBOX_GET_LINK_STATUS */
ISPOPMAP ( 0x0f , 0x01 ) , /* 0x6c: MBOX_INIT_LIP_RESET */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x6d: */
ISPOPMAP ( 0xcf , 0x03 ) , /* 0x6e: MBOX_SEND_SNS */
ISPOPMAP ( 0x0f , 0x07 ) , /* 0x6f: MBOX_FABRIC_LOGIN */
ISPOPMAP ( 0x03 , 0x01 ) , /* 0x70: MBOX_SEND_CHANGE_REQUEST */
ISPOPMAP ( 0x03 , 0x03 ) , /* 0x71: MBOX_FABRIC_LOGOUT */
ISPOPMAP ( 0x0f , 0x0f ) , /* 0x72: MBOX_INIT_LIP_LOGIN */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x73: */
ISPOPMAP ( 0x07 , 0x01 ) , /* 0x74: LOGIN LOOP PORT */
ISPOPMAP ( 0xcf , 0x03 ) , /* 0x75: GET PORT/NODE NAME LIST */
ISPOPMAP ( 0x4f , 0x01 ) , /* 0x76: SET VENDOR ID */
ISPOPMAP ( 0xcd , 0x01 ) , /* 0x77: INITIALIZE IP MAILBOX */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x78: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x79: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x7a: */
ISPOPMAP ( 0x00 , 0x00 ) , /* 0x7b: */
ISPOPMAP ( 0x4f , 0x03 ) , /* 0x7c: Get ID List */
ISPOPMAP ( 0xcf , 0x01 ) , /* 0x7d: SEND LFA */
2005-10-29 02:46:59 +00:00
ISPOPMAP ( 0x0f , 0x01 ) /* 0x7e: LUN RESET */
1998-04-22 17:54:58 +00:00
} ;
2002-02-17 06:38:22 +00:00
/*
* Footnotes
*
2009-08-01 01:04:26 +00:00
* ( 1 ) : this sets bits 21. .16 in mailbox register # 8 , which we nominally
2002-02-17 06:38:22 +00:00
* do not access at this time in the core driver . The caller is
2006-07-03 08:24:09 +00:00
* responsible for setting this register first ( Gross ! ) . The assumption
* is that we won ' t overflow .
2002-02-17 06:38:22 +00:00
*/
1998-04-22 17:54:58 +00:00
2007-03-22 23:38:32 +00:00
static const char * fc_mbcmd_names [ ] = {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
" NO-OP " ,
" LOAD RAM " ,
" EXEC FIRMWARE " ,
" DUMP RAM " ,
" WRITE RAM WORD " ,
" READ RAM WORD " ,
" MAILBOX REG TEST " ,
" VERIFY CHECKSUM " ,
" ABOUT FIRMWARE " ,
" LOAD RAM " ,
" DUMP RAM " ,
2006-07-03 08:24:09 +00:00
" WRITE RAM WORD EXTENDED " ,
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
NULL ,
2002-02-17 06:38:22 +00:00
" READ RAM WORD EXTENDED " ,
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
" CHECK FIRMWARE " ,
NULL ,
" INIT REQUEST QUEUE " ,
" INIT RESULT QUEUE " ,
" EXECUTE IOCB " ,
" WAKE UP " ,
" STOP FIRMWARE " ,
" ABORT " ,
" ABORT DEVICE " ,
" ABORT TARGET " ,
" BUS RESET " ,
" STOP QUEUE " ,
" START QUEUE " ,
" SINGLE STEP QUEUE " ,
" ABORT QUEUE " ,
" GET DEV QUEUE STATUS " ,
NULL ,
" GET FIRMWARE STATUS " ,
" GET LOOP ID " ,
NULL ,
" GET RETRY COUNT " ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
" GET FIRMWARE OPTIONS " ,
" GET PORT QUEUE PARAMS " ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
" SET RETRY COUNT " ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
" SET FIRMWARE OPTIONS " ,
" SET PORT QUEUE PARAMS " ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
" LOOP PORT BYPASS " ,
" LOOP PORT ENABLE " ,
2006-11-02 03:21:32 +00:00
" GET RESOURCE COUNT " ,
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
" REQUEST NON PARTICIPATING MODE " ,
NULL ,
NULL ,
NULL ,
2006-07-03 08:24:09 +00:00
" GET PORT DATABASE ENHANCED " ,
2009-08-01 01:04:26 +00:00
" INIT FIRMWARE MULTI ID " ,
" GET VP DATABASE " ,
" GET VP DATABASE ENTRY " ,
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
" EXECUTE IOCB A64 " ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
NULL ,
2003-02-16 01:32:52 +00:00
" DRIVER HEARTBEAT " ,
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
NULL ,
2001-10-01 03:45:54 +00:00
" GET/SET DATA RATE " ,
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
NULL ,
NULL ,
" INIT FIRMWARE " ,
NULL ,
" INIT LIP " ,
" GET FC-AL POSITION MAP " ,
" GET PORT DATABASE " ,
" CLEAR ACA " ,
" TARGET RESET " ,
" CLEAR TASK SET " ,
" ABORT TASK SET " ,
" GET FW STATE " ,
" GET PORT NAME " ,
" GET LINK STATUS " ,
" INIT LIP RESET " ,
NULL ,
" SEND SNS " ,
" FABRIC LOGIN " ,
" SEND CHANGE REQUEST " ,
" FABRIC LOGOUT " ,
" INIT LIP LOGIN " ,
NULL ,
" LOGIN LOOP PORT " ,
" GET PORT/NODE NAME LIST " ,
" SET VENDOR ID " ,
" INITIALIZE IP MAILBOX " ,
NULL ,
NULL ,
NULL ,
NULL ,
" Get ID List " ,
" SEND LFA " ,
" Lun RESET "
} ;
2002-02-04 21:04:25 +00:00
static void
2006-04-21 18:30:01 +00:00
isp_mboxcmd_qnw ( ispsoftc_t * isp , mbreg_t * mbp , int nodelay )
2002-02-04 21:04:25 +00:00
{
2003-05-31 19:49:49 +00:00
unsigned int ibits , obits , box , opcode ;
2006-02-15 00:31:48 +00:00
const uint32_t * mcp ;
2002-02-04 21:04:25 +00:00
2003-06-01 19:01:01 +00:00
if ( IS_FC ( isp ) ) {
2002-02-04 21:04:25 +00:00
mcp = mbpfc ;
2003-06-01 19:01:01 +00:00
} else {
2002-02-04 21:04:25 +00:00
mcp = mbpscsi ;
2003-06-01 19:01:01 +00:00
}
2002-02-04 21:04:25 +00:00
opcode = mbp - > param [ 0 ] ;
2006-01-23 06:23:37 +00:00
ibits = HIWRD ( mcp [ opcode ] ) & NMBOX_BMASK ( isp ) ;
obits = LOWRD ( mcp [ opcode ] ) & NMBOX_BMASK ( isp ) ;
ibits | = mbp - > ibits ;
obits | = mbp - > obits ;
for ( box = 0 ; box < MAX_MAILBOX ( isp ) ; box + + ) {
2002-02-04 21:04:25 +00:00
if ( ibits & ( 1 < < box ) ) {
ISP_WRITE ( isp , MBOX_OFF ( box ) , mbp - > param [ box ] ) ;
}
2002-02-21 01:56:08 +00:00
if ( nodelay = = 0 ) {
isp - > isp_mboxtmp [ box ] = mbp - > param [ box ] = 0 ;
}
}
if ( nodelay = = 0 ) {
isp - > isp_lastmbxcmd = opcode ;
isp - > isp_obits = obits ;
isp - > isp_mboxbsy = 1 ;
2002-02-04 21:04:25 +00:00
}
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
ISP_WRITE ( isp , BIU2400_HCCR , HCCR_2400_CMD_SET_HOST_INT ) ;
} else {
ISP_WRITE ( isp , HCCR , HCCR_CMD_SET_HOST_INT ) ;
}
2002-02-21 01:56:08 +00:00
/*
* Oddly enough , if we ' re not delaying for an answer ,
* delay a bit to give the f / w a chance to pick up the
* command .
*/
if ( nodelay ) {
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 1000 ) ;
2002-02-21 01:56:08 +00:00
}
2002-02-04 21:04:25 +00:00
}
1998-04-22 17:54:58 +00:00
static void
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( ispsoftc_t * isp , mbreg_t * mbp )
1998-04-22 17:54:58 +00:00
{
2007-03-22 23:38:32 +00:00
const char * cname , * xname ;
char tname [ 16 ] , mname [ 16 ] ;
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
unsigned int lim , ibits , obits , box , opcode ;
2006-02-15 00:31:48 +00:00
const uint32_t * mcp ;
1998-04-22 17:54:58 +00:00
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
if ( IS_FC ( isp ) ) {
mcp = mbpfc ;
lim = ( sizeof ( mbpfc ) / sizeof ( mbpfc [ 0 ] ) ) ;
} else {
mcp = mbpscsi ;
lim = ( sizeof ( mbpscsi ) / sizeof ( mbpscsi [ 0 ] ) ) ;
1998-04-22 17:54:58 +00:00
}
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
if ( ( opcode = mbp - > param [ 0 ] ) > = lim ) {
mbp - > param [ 0 ] = MBOX_INVALID_COMMAND ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " Unknown Command 0x%x " , opcode ) ;
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
return ;
1998-12-05 01:33:57 +00:00
}
2006-01-23 06:23:37 +00:00
ibits = HIWRD ( mcp [ opcode ] ) & NMBOX_BMASK ( isp ) ;
obits = LOWRD ( mcp [ opcode ] ) & NMBOX_BMASK ( isp ) ;
2006-07-03 08:24:09 +00:00
/*
* Pick up any additional bits that the caller might have set .
*/
2006-01-23 06:23:37 +00:00
ibits | = mbp - > ibits ;
obits | = mbp - > obits ;
1998-09-15 08:42:56 +00:00
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
if ( ibits = = 0 & & obits = = 0 ) {
mbp - > param [ 0 ] = MBOX_COMMAND_PARAM_ERROR ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGERR , " no parameters for 0x%x " , opcode ) ;
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
return ;
1998-04-22 17:54:58 +00:00
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
/*
* Get exclusive usage of mailbox registers .
*/
2006-11-02 03:21:32 +00:00
if ( MBOX_ACQUIRE ( isp ) ) {
mbp - > param [ 0 ] = MBOX_REGS_BUSY ;
goto out ;
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
2006-01-23 06:23:37 +00:00
for ( box = 0 ; box < MAX_MAILBOX ( isp ) ; box + + ) {
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
if ( ibits & ( 1 < < box ) ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGDEBUG3 , " IN mbox %d = 0x%04x " , box ,
2006-07-16 20:11:50 +00:00
mbp - > param [ box ] ) ;
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
ISP_WRITE ( isp , MBOX_OFF ( box ) , mbp - > param [ box ] ) ;
1999-03-25 22:52:45 +00:00
}
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
isp - > isp_mboxtmp [ box ] = mbp - > param [ box ] = 0 ;
1998-04-22 17:54:58 +00:00
}
2001-01-15 18:33:08 +00:00
isp - > isp_lastmbxcmd = opcode ;
1998-04-22 17:54:58 +00:00
/*
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
* We assume that we can ' t overwrite a previous command .
1998-04-22 17:54:58 +00:00
*/
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
isp - > isp_obits = obits ;
isp - > isp_mboxbsy = 1 ;
1998-04-22 17:54:58 +00:00
/*
* Set Host Interrupt condition so that RISC will pick up mailbox regs .
*/
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
ISP_WRITE ( isp , BIU2400_HCCR , HCCR_2400_CMD_SET_HOST_INT ) ;
} else {
ISP_WRITE ( isp , HCCR , HCCR_CMD_SET_HOST_INT ) ;
}
1998-04-22 17:54:58 +00:00
1999-03-17 05:04:39 +00:00
/*
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
* While we haven ' t finished the command , spin our wheels here .
1999-03-17 05:04:39 +00:00
*/
2006-11-02 03:21:32 +00:00
MBOX_WAIT_COMPLETE ( isp , mbp ) ;
1998-04-22 17:54:58 +00:00
2006-07-03 08:24:09 +00:00
/*
* Did the command time out ?
*/
2006-11-02 03:21:32 +00:00
if ( mbp - > param [ 0 ] = = MBOX_TIMEOUT ) {
2009-08-01 01:04:26 +00:00
isp - > isp_mboxbsy = 0 ;
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
MBOX_RELEASE ( isp ) ;
2006-11-02 03:21:32 +00:00
goto out ;
Major restructuring for swizzling to the request queue and unswizzling from
the response queue. Instead of the ad hoc ISP_SWIZZLE_REQUEST, we now have
a complete set of inline functions in isp_inline.h. Each platform is
responsible for providing just one of a set of ISP_IOX_{GET,PUT}{8,16,32}
macros.
The reason this needs to be done is that we need to have a single set of
functions that will work correctly on multiple architectures for both little
and big endian machines. It also needs to work correctly in the case that
we have the request or response queues in memory that has to be treated
specially (e.g., have ddi_dma_sync called on it for Solaris after we update
it or before we read from it). It also has to handle the SBus cards (for
platforms that have them) which, while on a Big Endian machine, do *not*
require *most* of the request/response queue entry fields to be swizzled
or unswizzled.
One thing that falls out of this is that we no longer build requests in the
request queue itself. Instead, we build the request locally (e.g., on the
stack) and then as part of the swizzling operation, copy it to the request
queue entry we've allocated. I thought long and hard about whether this was
too expensive a change to make as it in a lot of cases requires an extra
copy. On balance, the flexbility is worth it. With any luck, the entry that
we build locally stays in a processor writeback cache (after all, it's only
64 bytes) so that the cost of actually flushing it to the memory area that is
the shared queue with the PCI device is not all that expensive. We may examine
this again and try to get clever in the future to try and avoid copies.
Another change that falls out of this is that MEMORYBARRIER should be taken
a lot more seriously. The macro ISP_ADD_REQUEST does a MEMORYBARRIER on the
entry being added. But there had been many other places this had been missing.
It's now very important that it be done.
Additional changes:
Fix a longstanding buglet of sorts. When we get an entry via isp_getrqentry,
the iptr value that gets returned is the value we intend to eventually plug
into the ISP registers as the entry *one past* the last one we've written-
*not* the current entry we're updating. All along we've been calling sync
functions on the wrong index value. Argh. The 'fix' here is to rename all
'iptr' variables as 'nxti' to remember that this is the 'next' pointer-
not the current pointer.
Devote a single bit to mboxbsy- and set aside bits for output mbox registers
that we need to pick up- we can have at least one command which does not
have any defined output registers (MBOX_EXECUTE_FIRMWARE).
MFC after: 2 weeks
2001-12-11 00:18:45 +00:00
}
1998-04-22 17:54:58 +00:00
/*
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
* Copy back output registers .
1998-04-22 17:54:58 +00:00
*/
2006-01-23 06:23:37 +00:00
for ( box = 0 ; box < MAX_MAILBOX ( isp ) ; box + + ) {
Fix usage of DELAY (SYS_DELAY is the platform independent local
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
2000-06-27 19:44:31 +00:00
if ( obits & ( 1 < < box ) ) {
mbp - > param [ box ] = isp - > isp_mboxtmp [ box ] ;
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGDEBUG3 , " OUT mbox %d = 0x%04x " , box ,
2006-07-16 20:11:50 +00:00
mbp - > param [ box ] ) ;
1999-05-11 05:06:55 +00:00
}
}
2009-08-01 01:04:26 +00:00
isp - > isp_mboxbsy = 0 ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
MBOX_RELEASE ( isp ) ;
2006-11-02 03:21:32 +00:00
out :
if ( mbp - > logval = = 0 | | opcode = = MBOX_EXEC_FIRMWARE ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
return ;
}
cname = ( IS_FC ( isp ) ) ? fc_mbcmd_names [ opcode ] : scsi_mbcmd_names [ opcode ] ;
if ( cname = = NULL ) {
2001-04-04 21:42:59 +00:00
cname = tname ;
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( tname , sizeof tname , " opcode %x " , opcode ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
}
1998-04-22 17:54:58 +00:00
/*
* Just to be chatty here . . .
*/
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
xname = NULL ;
1999-03-25 22:52:45 +00:00
switch ( mbp - > param [ 0 ] ) {
1998-04-22 17:54:58 +00:00
case MBOX_COMMAND_COMPLETE :
break ;
case MBOX_INVALID_COMMAND :
2006-11-02 03:21:32 +00:00
if ( mbp - > logval & MBLOGMASK ( MBOX_COMMAND_COMPLETE ) ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
xname = " INVALID COMMAND " ;
2006-07-14 05:14:48 +00:00
}
1998-04-22 17:54:58 +00:00
break ;
case MBOX_HOST_INTERFACE_ERROR :
2006-11-02 03:21:32 +00:00
if ( mbp - > logval & MBLOGMASK ( MBOX_HOST_INTERFACE_ERROR ) ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
xname = " HOST INTERFACE ERROR " ;
2006-07-14 05:14:48 +00:00
}
1998-04-22 17:54:58 +00:00
break ;
case MBOX_TEST_FAILED :
2006-11-02 03:21:32 +00:00
if ( mbp - > logval & MBLOGMASK ( MBOX_TEST_FAILED ) ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
xname = " TEST FAILED " ;
2006-07-14 05:14:48 +00:00
}
1998-04-22 17:54:58 +00:00
break ;
case MBOX_COMMAND_ERROR :
2006-11-02 03:21:32 +00:00
if ( mbp - > logval & MBLOGMASK ( MBOX_COMMAND_ERROR ) ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
xname = " COMMAND ERROR " ;
2006-07-14 05:14:48 +00:00
}
1998-04-22 17:54:58 +00:00
break ;
case MBOX_COMMAND_PARAM_ERROR :
2006-11-02 03:21:32 +00:00
if ( mbp - > logval & MBLOGMASK ( MBOX_COMMAND_PARAM_ERROR ) ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
xname = " COMMAND PARAMETER ERROR " ;
2006-07-14 05:14:48 +00:00
}
1998-04-22 17:54:58 +00:00
break ;
2000-02-29 05:52:14 +00:00
case MBOX_LOOP_ID_USED :
2006-11-02 03:21:32 +00:00
if ( mbp - > logval & MBLOGMASK ( MBOX_LOOP_ID_USED ) ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
xname = " LOOP ID ALREADY IN USE " ;
2006-07-14 05:14:48 +00:00
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
break ;
2000-02-29 05:52:14 +00:00
case MBOX_PORT_ID_USED :
2006-11-02 03:21:32 +00:00
if ( mbp - > logval & MBLOGMASK ( MBOX_PORT_ID_USED ) ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
xname = " PORT ID ALREADY IN USE " ;
2006-07-14 05:14:48 +00:00
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
break ;
2000-02-29 05:52:14 +00:00
case MBOX_ALL_IDS_USED :
2006-11-02 03:21:32 +00:00
if ( mbp - > logval & MBLOGMASK ( MBOX_ALL_IDS_USED ) ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
xname = " ALL LOOP IDS IN USE " ;
2006-07-14 05:14:48 +00:00
}
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
break ;
2006-11-02 03:21:32 +00:00
case MBOX_REGS_BUSY :
xname = " REGISTERS BUSY " ;
break ;
case MBOX_TIMEOUT :
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
xname = " TIMEOUT " ;
2000-02-29 05:52:14 +00:00
break ;
1998-04-22 17:54:58 +00:00
default :
2009-08-01 01:04:26 +00:00
ISP_SNPRINTF ( mname , sizeof mname , " error 0x%x " , mbp - > param [ 0 ] ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
xname = mname ;
1998-04-22 17:54:58 +00:00
break ;
}
2006-07-14 05:14:48 +00:00
if ( xname ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGALL , " Mailbox Command '%s' failed (%s) " ,
cname , xname ) ;
2006-07-14 05:14:48 +00:00
}
1998-04-22 17:54:58 +00:00
}
1998-09-15 08:42:56 +00:00
static void
2009-08-01 01:04:26 +00:00
isp_fw_state ( ispsoftc_t * isp , int chan )
1998-04-22 17:54:58 +00:00
{
1999-08-16 19:59:55 +00:00
if ( IS_FC ( isp ) ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
mbreg_t mbs ;
2009-08-01 01:04:26 +00:00
fcparam * fcp = FCPARAM ( isp , chan ) ;
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , MBOX_GET_FW_STATE , MBLOGALL , 0 ) ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
2001-02-11 03:44:43 +00:00
if ( mbs . param [ 0 ] = = MBOX_COMMAND_COMPLETE ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
fcp - > isp_fwstate = mbs . param [ 1 ] ;
2001-02-11 03:44:43 +00:00
}
1998-04-22 17:54:58 +00:00
}
}
static void
2009-08-01 01:04:26 +00:00
isp_spi_update ( ispsoftc_t * isp , int chan )
1998-04-22 17:54:58 +00:00
{
1998-09-15 08:42:56 +00:00
int tgt ;
1998-04-22 17:54:58 +00:00
mbreg_t mbs ;
sdparam * sdp ;
1999-08-16 19:59:55 +00:00
if ( IS_FC ( isp ) ) {
2000-08-27 23:38:44 +00:00
/*
* There are no ' per - bus ' settings for Fibre Channel .
*/
1998-04-22 17:54:58 +00:00
return ;
}
2009-08-01 01:04:26 +00:00
sdp = SDPARAM ( isp , chan ) ;
sdp - > update = 0 ;
1999-05-11 05:06:55 +00:00
1998-09-15 08:42:56 +00:00
for ( tgt = 0 ; tgt < MAX_TARGETS ; tgt + + ) {
2006-02-15 00:31:48 +00:00
uint16_t flags , period , offset ;
1999-01-30 07:29:00 +00:00
int get ;
1998-09-15 08:42:56 +00:00
if ( sdp - > isp_devparam [ tgt ] . dev_enable = = 0 ) {
2000-08-27 23:38:44 +00:00
sdp - > isp_devparam [ tgt ] . dev_update = 0 ;
sdp - > isp_devparam [ tgt ] . dev_refresh = 0 ;
2001-04-04 21:42:59 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 ,
2009-08-01 01:04:26 +00:00
" skipping target %d bus %d update " , tgt , chan ) ;
1998-09-15 08:42:56 +00:00
continue ;
}
1999-03-25 22:52:45 +00:00
/*
* If the goal is to update the status of the device ,
2001-07-30 00:59:06 +00:00
* take what ' s in goal_flags and try and set the device
1999-03-25 22:52:45 +00:00
* toward that . Otherwise , if we ' re just refreshing the
* current device state , get the current parameters .
*/
2000-08-27 23:38:44 +00:00
2009-08-01 01:04:26 +00:00
MBSINIT ( & mbs , 0 , MBLOGALL , 0 ) ;
2006-07-16 20:11:50 +00:00
2000-08-27 23:38:44 +00:00
/*
* Refresh overrides set
*/
if ( sdp - > isp_devparam [ tgt ] . dev_refresh ) {
mbs . param [ 0 ] = MBOX_GET_TARGET_PARAMS ;
get = 1 ;
} else if ( sdp - > isp_devparam [ tgt ] . dev_update ) {
1999-01-30 07:29:00 +00:00
mbs . param [ 0 ] = MBOX_SET_TARGET_PARAMS ;
2006-11-02 03:21:32 +00:00
2000-08-27 23:38:44 +00:00
/*
2001-07-30 00:59:06 +00:00
* Make sure goal_flags has " Renegotiate on Error "
2000-08-27 23:38:44 +00:00
* on and " Freeze Queue on Error " off .
*/
2001-07-30 00:59:06 +00:00
sdp - > isp_devparam [ tgt ] . goal_flags | = DPARM_RENEG ;
sdp - > isp_devparam [ tgt ] . goal_flags & = ~ DPARM_QFRZ ;
mbs . param [ 2 ] = sdp - > isp_devparam [ tgt ] . goal_flags ;
2001-07-04 18:42:41 +00:00
1999-05-11 05:06:55 +00:00
/*
2000-08-27 23:38:44 +00:00
* Insist that PARITY must be enabled
* if SYNC or WIDE is enabled .
1999-05-11 05:06:55 +00:00
*/
2000-08-27 23:38:44 +00:00
if ( ( mbs . param [ 2 ] & ( DPARM_SYNC | DPARM_WIDE ) ) ! = 0 ) {
1999-05-11 05:06:55 +00:00
mbs . param [ 2 ] | = DPARM_PARITY ;
}
2000-08-27 23:38:44 +00:00
2006-07-16 20:11:50 +00:00
if ( mbs . param [ 2 ] & DPARM_SYNC ) {
2000-08-27 23:38:44 +00:00
mbs . param [ 3 ] =
2001-07-30 00:59:06 +00:00
( sdp - > isp_devparam [ tgt ] . goal_offset < < 8 ) |
( sdp - > isp_devparam [ tgt ] . goal_period ) ;
2000-08-27 23:38:44 +00:00
}
1999-03-25 22:52:45 +00:00
/*
* A command completion later that has
2001-07-30 00:59:06 +00:00
* RQSTF_NEGOTIATION set can cause
2000-08-27 23:38:44 +00:00
* the dev_refresh / announce cycle also .
1999-03-25 22:52:45 +00:00
*
* Note : It is really important to update our current
* flags with at least the state of TAG capabilities -
* otherwise we might try and send a tagged command
* when we have it all turned off . So change it here
* to say that current already matches goal .
*/
2001-07-30 00:59:06 +00:00
sdp - > isp_devparam [ tgt ] . actv_flags & = ~ DPARM_TQING ;
sdp - > isp_devparam [ tgt ] . actv_flags | =
( sdp - > isp_devparam [ tgt ] . goal_flags & DPARM_TQING ) ;
2001-04-04 21:42:59 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 ,
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
" bus %d set tgt %d flags 0x%x off 0x%x period 0x%x " ,
2009-08-01 01:04:26 +00:00
chan , tgt , mbs . param [ 2 ] , mbs . param [ 3 ] > > 8 ,
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
mbs . param [ 3 ] & 0xff ) ;
1999-01-30 07:29:00 +00:00
get = 0 ;
} else {
1998-09-15 08:42:56 +00:00
continue ;
}
2009-08-01 01:04:26 +00:00
mbs . param [ 1 ] = ( chan < < 15 ) | ( tgt < < 8 ) ;
2006-11-02 03:21:32 +00:00
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
continue ;
}
1999-01-30 07:29:00 +00:00
if ( get = = 0 ) {
2009-08-01 01:04:26 +00:00
sdp - > sendmarker = 1 ;
2006-11-02 03:21:32 +00:00
sdp - > isp_devparam [ tgt ] . dev_update = 0 ;
sdp - > isp_devparam [ tgt ] . dev_refresh = 1 ;
} else {
sdp - > isp_devparam [ tgt ] . dev_refresh = 0 ;
flags = mbs . param [ 2 ] ;
period = mbs . param [ 3 ] & 0xff ;
offset = mbs . param [ 3 ] > > 8 ;
sdp - > isp_devparam [ tgt ] . actv_flags = flags ;
sdp - > isp_devparam [ tgt ] . actv_period = period ;
sdp - > isp_devparam [ tgt ] . actv_offset = offset ;
2009-08-01 01:04:26 +00:00
isp_async ( isp , ISPASYNC_NEW_TGT_PARAMS , chan , tgt ) ;
1999-01-30 07:29:00 +00:00
}
1998-04-22 17:54:58 +00:00
}
2000-08-27 23:38:44 +00:00
for ( tgt = 0 ; tgt < MAX_TARGETS ; tgt + + ) {
if ( sdp - > isp_devparam [ tgt ] . dev_update | |
sdp - > isp_devparam [ tgt ] . dev_refresh ) {
2009-08-01 01:04:26 +00:00
sdp - > update = 1 ;
2000-08-27 23:38:44 +00:00
break ;
}
}
1998-09-15 08:42:56 +00:00
}
1998-04-22 17:54:58 +00:00
1998-09-15 08:42:56 +00:00
static void
2009-08-01 01:04:26 +00:00
isp_setdfltsdparm ( ispsoftc_t * isp )
1998-09-15 08:42:56 +00:00
{
1999-03-25 22:52:45 +00:00
int tgt ;
2009-08-01 01:04:26 +00:00
sdparam * sdp , * sdp1 ;
1999-05-11 05:06:55 +00:00
2009-08-01 01:04:26 +00:00
sdp = SDPARAM ( isp , 0 ) ;
sdp - > role = GET_DEFAULT_ROLE ( isp , 0 ) ;
if ( IS_DUALBUS ( isp ) ) {
sdp1 = sdp + 1 ;
sdp1 - > role = GET_DEFAULT_ROLE ( isp , 1 ) ;
} else {
sdp1 = NULL ;
1999-05-11 05:06:55 +00:00
}
2009-08-01 01:04:26 +00:00
2001-04-04 21:42:59 +00:00
/*
* Establish some default parameters .
*/
2001-08-20 17:28:32 +00:00
sdp - > isp_cmd_dma_burst_enable = 0 ;
2001-04-04 21:42:59 +00:00
sdp - > isp_data_dma_burst_enabl = 1 ;
sdp - > isp_fifo_threshold = 0 ;
2009-08-01 01:04:26 +00:00
sdp - > isp_initiator_id = DEFAULT_IID ( isp , 0 ) ;
2001-04-04 21:42:59 +00:00
if ( isp - > isp_type > = ISP_HA_SCSI_1040 ) {
sdp - > isp_async_data_setup = 9 ;
} else {
sdp - > isp_async_data_setup = 6 ;
}
sdp - > isp_selection_timeout = 250 ;
sdp - > isp_max_queue_depth = MAXISPREQUEST ( isp ) ;
sdp - > isp_tag_aging = 8 ;
2001-08-20 17:28:32 +00:00
sdp - > isp_bus_reset_delay = 5 ;
/*
* Don ' t retry selection , busy or queue full automatically - reflect
* these back to us .
*/
sdp - > isp_retry_count = 0 ;
sdp - > isp_retry_delay = 0 ;
2001-04-04 21:42:59 +00:00
for ( tgt = 0 ; tgt < MAX_TARGETS ; tgt + + ) {
sdp - > isp_devparam [ tgt ] . exc_throttle = ISP_EXEC_THROTTLE ;
sdp - > isp_devparam [ tgt ] . dev_enable = 1 ;
}
1999-03-25 22:52:45 +00:00
/*
* The trick here is to establish a default for the default ( honk ! )
2001-07-30 00:59:06 +00:00
* state ( goal_flags ) . Then try and get the current status from
1999-03-25 22:52:45 +00:00
* the card to fill in the current state . We don ' t , in fact , set
* the default to the SAFE default state - that ' s not the goal state .
*/
for ( tgt = 0 ; tgt < MAX_TARGETS ; tgt + + ) {
2006-02-15 00:31:48 +00:00
uint8_t off , per ;
2001-07-30 00:59:06 +00:00
sdp - > isp_devparam [ tgt ] . actv_offset = 0 ;
sdp - > isp_devparam [ tgt ] . actv_period = 0 ;
sdp - > isp_devparam [ tgt ] . actv_flags = 0 ;
sdp - > isp_devparam [ tgt ] . goal_flags =
sdp - > isp_devparam [ tgt ] . nvrm_flags = DPARM_DEFAULT ;
2000-01-15 01:52:01 +00:00
/*
* We default to Wide / Fast for versions less than a 1040
* ( unless it ' s SBus ) .
*/
2001-07-30 00:59:06 +00:00
if ( IS_ULTRA3 ( isp ) ) {
off = ISP_80M_SYNCPARMS > > 8 ;
per = ISP_80M_SYNCPARMS & 0xff ;
} else if ( IS_ULTRA2 ( isp ) ) {
off = ISP_40M_SYNCPARMS > > 8 ;
per = ISP_40M_SYNCPARMS & 0xff ;
} else if ( IS_1240 ( isp ) ) {
off = ISP_20M_SYNCPARMS > > 8 ;
per = ISP_20M_SYNCPARMS & 0xff ;
} else if ( ( isp - > isp_bustype = = ISP_BT_SBUS & &
2000-01-15 01:52:01 +00:00
isp - > isp_type < ISP_HA_SCSI_1020A ) | |
( isp - > isp_bustype = = ISP_BT_PCI & &
isp - > isp_type < ISP_HA_SCSI_1040 ) | |
2000-05-09 01:14:43 +00:00
( isp - > isp_clock & & isp - > isp_clock < 60 ) | |
( sdp - > isp_ultramode = = 0 ) ) {
2001-07-30 00:59:06 +00:00
off = ISP_10M_SYNCPARMS > > 8 ;
per = ISP_10M_SYNCPARMS & 0xff ;
2000-08-27 23:38:44 +00:00
} else {
2001-07-30 00:59:06 +00:00
off = ISP_20M_SYNCPARMS_1040 > > 8 ;
per = ISP_20M_SYNCPARMS_1040 & 0xff ;
1999-02-09 01:07:06 +00:00
}
2001-07-30 00:59:06 +00:00
sdp - > isp_devparam [ tgt ] . goal_offset =
sdp - > isp_devparam [ tgt ] . nvrm_offset = off ;
sdp - > isp_devparam [ tgt ] . goal_period =
2001-08-02 00:34:56 +00:00
sdp - > isp_devparam [ tgt ] . nvrm_period = per ;
1999-02-09 01:07:06 +00:00
1998-04-22 17:54:58 +00:00
}
2009-08-01 01:04:26 +00:00
/*
* If we ' re a dual bus card , just copy the data over
*/
if ( sdp1 ) {
* sdp1 = * sdp ;
sdp1 - > isp_initiator_id = DEFAULT_IID ( isp , 1 ) ;
}
/*
* If we ' ve not been told to avoid reading NVRAM , try and read it .
* If we ' re successful reading it , we can then return because NVRAM
* will tell us what the desired settings are . Otherwise , we establish
* some reasonable ' fake ' nvram and goal defaults .
*/
if ( ( isp - > isp_confopts & ISP_CFG_NONVRAM ) = = 0 ) {
mbreg_t mbs ;
if ( isp_read_nvram ( isp , 0 ) = = 0 ) {
if ( IS_DUALBUS ( isp ) ) {
if ( isp_read_nvram ( isp , 1 ) = = 0 ) {
return ;
}
}
}
MBSINIT ( & mbs , MBOX_GET_ACT_NEG_STATE , MBLOGNONE , 0 ) ;
isp_mboxcmd ( isp , & mbs ) ;
if ( mbs . param [ 0 ] ! = MBOX_COMMAND_COMPLETE ) {
sdp - > isp_req_ack_active_neg = 1 ;
sdp - > isp_data_line_active_neg = 1 ;
if ( sdp1 ) {
sdp1 - > isp_req_ack_active_neg = 1 ;
sdp1 - > isp_data_line_active_neg = 1 ;
}
} else {
sdp - > isp_req_ack_active_neg =
( mbs . param [ 1 ] > > 4 ) & 0x1 ;
sdp - > isp_data_line_active_neg =
( mbs . param [ 1 ] > > 5 ) & 0x1 ;
if ( sdp1 ) {
sdp1 - > isp_req_ack_active_neg =
( mbs . param [ 2 ] > > 4 ) & 0x1 ;
sdp1 - > isp_data_line_active_neg =
( mbs . param [ 2 ] > > 5 ) & 0x1 ;
}
}
}
1998-04-22 17:54:58 +00:00
}
2007-03-22 23:38:32 +00:00
static void
2009-08-01 01:04:26 +00:00
isp_setdfltfcparm ( ispsoftc_t * isp , int chan )
2007-03-22 23:38:32 +00:00
{
2009-08-01 01:04:26 +00:00
fcparam * fcp = FCPARAM ( isp , chan ) ;
2007-03-22 23:38:32 +00:00
2009-08-01 01:04:26 +00:00
/*
* Establish some default parameters .
*/
fcp - > role = GET_DEFAULT_ROLE ( isp , chan ) ;
2007-03-22 23:38:32 +00:00
fcp - > isp_maxalloc = ICB_DFLT_ALLOC ;
fcp - > isp_retry_delay = ICB_DFLT_RDELAY ;
fcp - > isp_retry_count = ICB_DFLT_RCOUNT ;
2009-08-01 01:04:26 +00:00
fcp - > isp_loopid = DEFAULT_LOOPID ( isp , chan ) ;
fcp - > isp_wwnn_nvram = DEFAULT_NODEWWN ( isp , chan ) ;
fcp - > isp_wwpn_nvram = DEFAULT_PORTWWN ( isp , chan ) ;
2007-03-22 23:38:32 +00:00
fcp - > isp_fwoptions = 0 ;
2009-08-01 01:04:26 +00:00
fcp - > isp_lasthdl = NIL_HANDLE ;
if ( IS_24XX ( isp ) ) {
fcp - > isp_fwoptions | = ICB2400_OPT1_FAIRNESS ;
fcp - > isp_fwoptions | = ICB2400_OPT1_HARD_ADDRESS ;
if ( isp - > isp_confopts & ISP_CFG_FULL_DUPLEX ) {
fcp - > isp_fwoptions | = ICB2400_OPT1_FULL_DUPLEX ;
}
fcp - > isp_fwoptions | = ICB2400_OPT1_BOTH_WWNS ;
} else {
fcp - > isp_fwoptions | = ICBOPT_FAIRNESS ;
fcp - > isp_fwoptions | = ICBOPT_PDBCHANGE_AE ;
fcp - > isp_fwoptions | = ICBOPT_HARD_ADDRESS ;
fcp - > isp_fwoptions | = ICBOPT_FAST_POST ;
if ( isp - > isp_confopts & ISP_CFG_FULL_DUPLEX ) {
fcp - > isp_fwoptions | = ICBOPT_FULL_DUPLEX ;
}
/*
* Make sure this is turned off now until we get
* extended options from NVRAM
*/
fcp - > isp_fwoptions & = ~ ICBOPT_EXTENDED ;
2007-03-22 23:38:32 +00:00
}
/*
* Now try and read NVRAM unless told to not do so .
* This will set fcparam ' s isp_wwnn_nvram & & isp_wwpn_nvram .
*/
if ( ( isp - > isp_confopts & ISP_CFG_NONVRAM ) = = 0 ) {
int i , j = 0 ;
/*
* Give a couple of tries at reading NVRAM .
*/
for ( i = 0 ; i < 2 ; i + + ) {
2009-08-01 01:04:26 +00:00
j = isp_read_nvram ( isp , chan ) ;
2007-03-22 23:38:32 +00:00
if ( j = = 0 ) {
break ;
}
}
if ( j ) {
isp - > isp_confopts | = ISP_CFG_NONVRAM ;
}
}
2009-08-01 01:04:26 +00:00
fcp - > isp_wwnn = ACTIVE_NODEWWN ( isp , chan ) ;
fcp - > isp_wwpn = ACTIVE_PORTWWN ( isp , chan ) ;
isp_prt ( isp , ISP_LOGCONFIG , " Chan %d 0x%08x%08x/0x%08x%08x Role %s " ,
chan , ( uint32_t ) ( fcp - > isp_wwnn > > 32 ) , ( uint32_t ) ( fcp - > isp_wwnn ) ,
( uint32_t ) ( fcp - > isp_wwpn > > 32 ) , ( uint32_t ) ( fcp - > isp_wwpn ) ,
isp_class3_roles [ fcp - > role ] ) ;
2007-03-22 23:38:32 +00:00
}
1999-03-25 22:52:45 +00:00
/*
1998-09-15 08:42:56 +00:00
* Re - initialize the ISP and complete all orphaned commands
1999-10-17 18:58:22 +00:00
* with a ' botched ' notice . The reset / init routines should
* not disturb an already active list of commands .
1998-09-15 08:42:56 +00:00
*/
void
2009-08-01 01:04:26 +00:00
isp_reinit ( ispsoftc_t * isp , int do_load_defaults )
1998-04-22 17:54:58 +00:00
{
2009-08-01 01:04:26 +00:00
int i ;
isp_reset ( isp , do_load_defaults ) ;
1998-04-22 17:54:58 +00:00
2001-02-11 03:44:43 +00:00
if ( isp - > isp_state ! = ISP_RESETSTATE ) {
2009-08-01 01:04:26 +00:00
isp_prt ( isp , ISP_LOGERR , " %s: cannot reset card " , __func__ ) ;
ISP_DISABLE_INTS ( isp ) ;
goto cleanup ;
}
isp_init ( isp ) ;
if ( isp - > isp_state = = ISP_INITSTATE ) {
isp - > isp_state = ISP_RUNSTATE ;
}
if ( isp - > isp_state ! = ISP_RUNSTATE ) {
# ifndef ISP_TARGET_MODE
isp_prt ( isp , ISP_LOGWARN , " %s: not at runstate " , __func__ ) ;
# endif
2006-11-02 03:21:32 +00:00
ISP_DISABLE_INTS ( isp ) ;
if ( IS_FC ( isp ) ) {
/*
* If we ' re in ISP_ROLE_NONE , turn off the lasers .
*/
if ( ! IS_24XX ( isp ) ) {
ISP_WRITE ( isp , BIU2100_CSR , BIU2100_FPM0_REGS ) ;
ISP_WRITE ( isp , FPM_DIAG_CONFIG , FPM_SOFT_RESET ) ;
ISP_WRITE ( isp , BIU2100_CSR , BIU2100_FB_REGS ) ;
ISP_WRITE ( isp , FBM_CMD , FBMCMD_FIFO_RESET_ALL ) ;
ISP_WRITE ( isp , BIU2100_CSR , BIU2100_RISC_REGS ) ;
}
}
}
1998-04-22 17:54:58 +00:00
2009-08-01 01:04:26 +00:00
cleanup :
2006-11-02 03:21:32 +00:00
2009-08-01 01:04:26 +00:00
isp - > isp_nactive = 0 ;
isp_clear_commands ( isp ) ;
if ( IS_FC ( isp ) ) {
for ( i = 0 ; i < isp - > isp_nchan ; i + + ) {
ISP_MARK_PORTDB ( isp , i , - 1 ) ;
1999-10-17 18:58:22 +00:00
}
1998-04-22 17:54:58 +00:00
}
}
1998-09-15 08:42:56 +00:00
/*
* NVRAM Routines
*/
static int
2009-08-01 01:04:26 +00:00
isp_read_nvram ( ispsoftc_t * isp , int bus )
1998-09-15 08:42:56 +00:00
{
2006-07-03 08:24:09 +00:00
int i , amt , retval ;
2006-02-15 00:31:48 +00:00
uint8_t csum , minversion ;
1998-09-15 08:42:56 +00:00
union {
2009-08-01 01:04:26 +00:00
uint8_t _x [ ISP2400_NVRAM_SIZE ] ;
uint16_t _s [ ISP2400_NVRAM_SIZE > > 1 ] ;
1998-09-15 08:42:56 +00:00
} _n ;
# define nvram_data _n._x
# define nvram_words _n._s
2006-11-02 03:21:32 +00:00
if ( IS_24XX ( isp ) ) {
2009-08-01 01:04:26 +00:00
return ( isp_read_nvram_2400 ( isp , nvram_data ) ) ;
2006-11-02 03:21:32 +00:00
} else if ( IS_FC ( isp ) ) {
1998-09-15 08:42:56 +00:00
amt = ISP2100_NVRAM_SIZE ;
minversion = 1 ;
1999-12-16 05:42:02 +00:00
} else if ( IS_ULTRA2 ( isp ) ) {
1999-05-11 05:06:55 +00:00
amt = ISP1080_NVRAM_SIZE ;
minversion = 0 ;
1998-09-15 08:42:56 +00:00
} else {
amt = ISP_NVRAM_SIZE ;
minversion = 2 ;
}
2006-11-02 03:21:32 +00:00
for ( i = 0 ; i < amt > > 1 ; i + + ) {
1998-09-15 08:42:56 +00:00
isp_rdnvram_word ( isp , i , & nvram_words [ i ] ) ;
}
2006-11-02 03:21:32 +00:00
1998-09-15 08:42:56 +00:00
if ( nvram_data [ 0 ] ! = ' I ' | | nvram_data [ 1 ] ! = ' S ' | |
nvram_data [ 2 ] ! = ' P ' ) {
if ( isp - > isp_bustype ! = ISP_BT_SBUS ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN , " invalid NVRAM header " ) ;
isp_prt ( isp , ISP_LOGDEBUG0 , " %x %x %x " ,
nvram_data [ 0 ] , nvram_data [ 1 ] , nvram_data [ 2 ] ) ;
1998-09-15 08:42:56 +00:00
}
2006-07-03 08:24:09 +00:00
retval = - 1 ;
goto out ;
1998-09-15 08:42:56 +00:00
}
2006-11-02 03:21:32 +00:00
1998-09-15 08:42:56 +00:00
for ( csum = 0 , i = 0 ; i < amt ; i + + ) {
csum + = nvram_data [ i ] ;
}
if ( csum ! = 0 ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN , " invalid NVRAM checksum " ) ;
2006-07-03 08:24:09 +00:00
retval = - 1 ;
goto out ;
1998-09-15 08:42:56 +00:00
}
2006-11-02 03:21:32 +00:00
1998-09-15 08:42:56 +00:00
if ( ISP_NVRAM_VERSION ( nvram_data ) < minversion ) {
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
isp_prt ( isp , ISP_LOGWARN , " version %d NVRAM not understood " ,
1998-09-15 08:42:56 +00:00
ISP_NVRAM_VERSION ( nvram_data ) ) ;
2006-07-03 08:24:09 +00:00
retval = - 1 ;
goto out ;
1998-09-15 08:42:56 +00:00
}
2000-02-11 19:31:32 +00:00
if ( IS_ULTRA3 ( isp ) ) {
2009-08-01 01:04:26 +00:00
isp_parse_nvram_12160 ( isp , bus , nvram_data ) ;
2000-02-11 19:31:32 +00:00
} else if ( IS_1080 ( isp ) ) {
2009-08-01 01:04:26 +00:00
isp_parse_nvram_1080 ( isp , bus , nvram_data ) ;
2000-02-11 19:31:32 +00:00
} else if ( IS_1280 ( isp ) | | IS_1240 ( isp ) ) {
2009-08-01 01:04:26 +00:00
isp_parse_nvram_1080 ( isp , bus , nvram_data ) ;
1999-05-11 05:06:55 +00:00
} else if ( IS_SCSI ( isp ) ) {
2000-02-11 19:31:32 +00:00
isp_parse_nvram_1020 ( isp , nvram_data ) ;
1998-09-15 08:42:56 +00:00
} else {
2000-02-11 19:31:32 +00:00
isp_parse_nvram_2100 ( isp , nvram_data ) ;
1999-02-09 01:07:06 +00:00
}
2006-07-03 08:24:09 +00:00
retval = 0 ;
out :
return ( retval ) ;
2000-02-11 19:31:32 +00:00
# undef nvram_data
# undef nvram_words
1998-09-15 08:42:56 +00:00
}
2006-11-02 03:21:32 +00:00
static int
2009-08-01 01:04:26 +00:00
isp_read_nvram_2400 ( ispsoftc_t * isp , uint8_t * nvram_data )
2006-11-02 03:21:32 +00:00
{
int retval = 0 ;
uint32_t addr , csum , lwrds , * dptr ;
2009-08-01 01:04:26 +00:00
2006-11-02 03:21:32 +00:00
if ( isp - > isp_port ) {
addr = ISP2400_NVRAM_PORT1_ADDR ;
} else {
addr = ISP2400_NVRAM_PORT0_ADDR ;
}
2009-08-01 01:04:26 +00:00
2006-11-02 03:21:32 +00:00
dptr = ( uint32_t * ) nvram_data ;
for ( lwrds = 0 ; lwrds < ISP2400_NVRAM_SIZE > > 2 ; lwrds + + ) {
isp_rd_2400_nvram ( isp , addr + + , dptr + + ) ;
}
if ( nvram_data [ 0 ] ! = ' I ' | | nvram_data [ 1 ] ! = ' S ' | |
nvram_data [ 2 ] ! = ' P ' ) {
2007-07-02 20:08:20 +00:00
isp_prt ( isp , ISP_LOGWARN , " invalid NVRAM header (%x %x %x) " ,
nvram_data [ 0 ] , nvram_data [ 1 ] , nvram_data [ 2 ] ) ;
2006-11-02 03:21:32 +00:00
retval = - 1 ;
goto out ;
}
dptr = ( uint32_t * ) nvram_data ;
for ( csum = 0 , lwrds = 0 ; lwrds < ISP2400_NVRAM_SIZE > > 2 ; lwrds + + ) {
2007-07-02 20:08:20 +00:00
uint32_t tmp ;
ISP_IOXGET_32 ( isp , & dptr [ lwrds ] , tmp ) ;
csum + = tmp ;
2006-11-02 03:21:32 +00:00
}
if ( csum ! = 0 ) {
isp_prt ( isp , ISP_LOGWARN , " invalid NVRAM checksum " ) ;
retval = - 1 ;
goto out ;
}
isp_parse_nvram_2400 ( isp , nvram_data ) ;
out :
return ( retval ) ;
}
1998-09-15 08:42:56 +00:00
static void
2006-04-21 18:30:01 +00:00
isp_rdnvram_word ( ispsoftc_t * isp , int wo , uint16_t * rp )
1998-09-15 08:42:56 +00:00
{
int i , cbits ;
2006-07-03 08:24:09 +00:00
uint16_t bit , rqst , junk ;
1998-09-15 08:42:56 +00:00
ISP_WRITE ( isp , BIU_NVRAM , BIU_NVRAM_SELECT ) ;
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 10 ) ;
1998-09-15 08:42:56 +00:00
ISP_WRITE ( isp , BIU_NVRAM , BIU_NVRAM_SELECT | BIU_NVRAM_CLOCK ) ;
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 10 ) ;
1998-09-15 08:42:56 +00:00
1999-05-11 05:06:55 +00:00
if ( IS_FC ( isp ) ) {
2009-08-01 01:04:26 +00:00
wo & = ( ( ISP2100_NVRAM_SIZE > > 1 ) - 1 ) ;
2002-02-04 21:04:25 +00:00
if ( IS_2312 ( isp ) & & isp - > isp_port ) {
wo + = 128 ;
}
1998-09-15 08:42:56 +00:00
rqst = ( ISP_NVRAM_READ < < 8 ) | wo ;
1999-05-11 05:06:55 +00:00
cbits = 10 ;
1999-12-16 05:42:02 +00:00
} else if ( IS_ULTRA2 ( isp ) ) {
1999-05-11 05:06:55 +00:00
wo & = ( ( ISP1080_NVRAM_SIZE > > 1 ) - 1 ) ;
rqst = ( ISP_NVRAM_READ < < 8 ) | wo ;
1998-09-15 08:42:56 +00:00
cbits = 10 ;
} else {
wo & = ( ( ISP_NVRAM_SIZE > > 1 ) - 1 ) ;
rqst = ( ISP_NVRAM_READ < < 6 ) | wo ;
cbits = 8 ;
}
/*
* Clock the word select request out . . .
*/
for ( i = cbits ; i > = 0 ; i - - ) {
if ( ( rqst > > i ) & 1 ) {
bit = BIU_NVRAM_SELECT | BIU_NVRAM_DATAOUT ;
} else {
bit = BIU_NVRAM_SELECT ;
}
ISP_WRITE ( isp , BIU_NVRAM , bit ) ;
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 10 ) ;
2006-07-03 08:24:09 +00:00
junk = ISP_READ ( isp , BIU_NVRAM ) ; /* force PCI flush */
1998-09-15 08:42:56 +00:00
ISP_WRITE ( isp , BIU_NVRAM , bit | BIU_NVRAM_CLOCK ) ;
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 10 ) ;
2006-07-03 08:24:09 +00:00
junk = ISP_READ ( isp , BIU_NVRAM ) ; /* force PCI flush */
1998-09-15 08:42:56 +00:00
ISP_WRITE ( isp , BIU_NVRAM , bit ) ;
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 10 ) ;
2006-07-03 08:24:09 +00:00
junk = ISP_READ ( isp , BIU_NVRAM ) ; /* force PCI flush */
1998-09-15 08:42:56 +00:00
}
/*
* Now read the result back in ( bits come back in MSB format ) .
*/
* rp = 0 ;
for ( i = 0 ; i < 16 ; i + + ) {
2006-02-15 00:31:48 +00:00
uint16_t rv ;
1998-09-15 08:42:56 +00:00
* rp < < = 1 ;
ISP_WRITE ( isp , BIU_NVRAM , BIU_NVRAM_SELECT | BIU_NVRAM_CLOCK ) ;
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 10 ) ;
1998-09-15 08:42:56 +00:00
rv = ISP_READ ( isp , BIU_NVRAM ) ;
if ( rv & BIU_NVRAM_DATAIN ) {
* rp | = 1 ;
}
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 10 ) ;
1998-09-15 08:42:56 +00:00
ISP_WRITE ( isp , BIU_NVRAM , BIU_NVRAM_SELECT ) ;
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 10 ) ;
2006-07-03 08:24:09 +00:00
junk = ISP_READ ( isp , BIU_NVRAM ) ; /* force PCI flush */
1998-09-15 08:42:56 +00:00
}
ISP_WRITE ( isp , BIU_NVRAM , 0 ) ;
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 10 ) ;
2006-07-03 08:24:09 +00:00
junk = ISP_READ ( isp , BIU_NVRAM ) ; /* force PCI flush */
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
ISP_SWIZZLE_NVRAM_WORD ( isp , rp ) ;
1998-09-15 08:42:56 +00:00
}
2000-02-11 19:31:32 +00:00
2006-11-02 03:21:32 +00:00
static void
isp_rd_2400_nvram ( ispsoftc_t * isp , uint32_t addr , uint32_t * rp )
{
int loops = 0 ;
2009-08-01 01:04:26 +00:00
uint32_t base = 0x7ffe0000 ;
2007-03-12 04:54:30 +00:00
uint32_t tmp = 0 ;
2006-11-02 03:21:32 +00:00
2009-08-01 01:04:26 +00:00
if ( IS_25XX ( isp ) ) {
base = 0x7ff00000 | 0x48000 ;
}
2006-11-02 03:21:32 +00:00
ISP_WRITE ( isp , BIU2400_FLASH_ADDR , base | addr ) ;
for ( loops = 0 ; loops < 5000 ; loops + + ) {
2009-08-01 01:04:26 +00:00
ISP_DELAY ( 10 ) ;
2006-11-02 03:21:32 +00:00
tmp = ISP_READ ( isp , BIU2400_FLASH_ADDR ) ;
2007-02-23 21:59:21 +00:00
if ( ( tmp & ( 1U < < 31 ) ) ! = 0 ) {
2006-11-02 03:21:32 +00:00
break ;
}
}
2007-02-23 21:59:21 +00:00
if ( tmp & ( 1U < < 31 ) ) {
2007-07-02 20:08:20 +00:00
* rp = ISP_READ ( isp , BIU2400_FLASH_DATA ) ;
ISP_SWIZZLE_NVRAM_LONG ( isp , rp ) ;
2006-11-02 03:21:32 +00:00
} else {
* rp = 0xffffffff ;
}
}
2000-02-11 19:31:32 +00:00
static void
2006-04-21 18:30:01 +00:00
isp_parse_nvram_1020 ( ispsoftc_t * isp , uint8_t * nvram_data )
2000-02-11 19:31:32 +00:00
{
2009-08-01 01:04:26 +00:00
sdparam * sdp = SDPARAM ( isp , 0 ) ;
2001-08-20 17:28:32 +00:00
int tgt ;
2000-02-11 19:31:32 +00:00
sdp - > isp_fifo_threshold =
ISP_NVRAM_FIFO_THRESHOLD ( nvram_data ) |
( ISP_NVRAM_FIFO_THRESHOLD_128 ( nvram_data ) < < 2 ) ;
Remove the 'bogus registrant' hack for fabric searches. It really
turns out that there's something of a hole in our new fabric name
server stuff. We ask the name server for entities that have
registered as a specific type. That type is FC-SCSI. If the entity
hasn't performed a REGISTER FC4 TYPES, the fabric nameserver won't
return it.
This brings this driver to a bit of a fork in the road as to what
the right thing to do is. For servicing the needs of accessing
FC-SCSI devices, this method is fine, and to be preferred. It is
extremely unlikely we're interested in fabric devices that *don't*
register correctly. If I ever get around to adding an FC-IP stack,
then asking for devices that have registers as FC-IP types is also
the right thing to do.
So- asking the fabric nameserver for a specific type is fine, *as
long as you are only interested in specific types*. If, on the other
hand, you want to create (as for management tool support) a picture
of everything on the fabric, this is *not* so fine. There are a
large class of FC-SCSI *initiators* who *don't* correctly register,
so we never will *see* them.
Is this a problem? Yes, but only a little one. If we want to do such
management tool support, we should probably run a *different* fabric
nameserver query algorithm. Better yet, we should talk to the management
nameserver in Brocade switches instead of the standard FC-GS-2 fabric
nameserver (which can be unwieldy).
Other changes: if we've overrrides marked, don't set some default
values from reading NVRAM. This allows us to override things like
EXEC throttle without having to ignore NVRAM entirely.
MFC after: 1 week
2002-07-08 17:33:37 +00:00
if ( ( isp - > isp_confopts & ISP_CFG_OWNLOOPID ) = = 0 )
sdp - > isp_initiator_id =
ISP_NVRAM_INITIATOR_ID ( nvram_data ) ;
2000-02-11 19:31:32 +00:00
sdp - > isp_bus_reset_delay =
ISP_NVRAM_BUS_RESET_DELAY ( nvram_data ) ;
sdp - > isp_retry_count =
ISP_NVRAM_BUS_RETRY_COUNT ( nvram_data ) ;
sdp - > isp_retry_delay =
ISP_NVRAM_BUS_RETRY_DELAY ( nvram_data ) ;
sdp - > isp_async_data_setup =
ISP_NVRAM_ASYNC_DATA_SETUP_TIME ( nvram_data ) ;
if ( isp - > isp_type > = ISP_HA_SCSI_1040 ) {
if ( sdp - > isp_async_data_setup < 9 ) {
sdp - > isp_async_data_setup = 9 ;
}
} else {
if ( sdp - > isp_async_data_setup ! = 6 ) {
sdp - > isp_async_data_setup = 6 ;
}
}
sdp - > isp_req_ack_active_neg =
ISP_NVRAM_REQ_ACK_ACTIVE_NEGATION ( nvram_data ) ;
sdp - > isp_data_line_active_neg =
ISP_NVRAM_DATA_LINE_ACTIVE_NEGATION ( nvram_data ) ;
sdp - > isp_data_dma_burst_enabl =
ISP_NVRAM_DATA_DMA_BURST_ENABLE ( nvram_data ) ;
sdp - > isp_cmd_dma_burst_enable =
ISP_NVRAM_CMD_DMA_BURST_ENABLE ( nvram_data ) ;
sdp - > isp_tag_aging =
ISP_NVRAM_TAG_AGE_LIMIT ( nvram_data ) ;
sdp - > isp_selection_timeout =
ISP_NVRAM_SELECTION_TIMEOUT ( nvram_data ) ;
sdp - > isp_max_queue_depth =
ISP_NVRAM_MAX_QUEUE_DEPTH ( nvram_data ) ;
2000-08-27 23:38:44 +00:00
sdp - > isp_fast_mttr = ISP_NVRAM_FAST_MTTR_ENABLE ( nvram_data ) ;
2001-08-20 17:28:32 +00:00
for ( tgt = 0 ; tgt < MAX_TARGETS ; tgt + + ) {
sdp - > isp_devparam [ tgt ] . dev_enable =
ISP_NVRAM_TGT_DEVICE_ENABLE ( nvram_data , tgt ) ;
sdp - > isp_devparam [ tgt ] . exc_throttle =
ISP_NVRAM_TGT_EXEC_THROTTLE ( nvram_data , tgt ) ;
sdp - > isp_devparam [ tgt ] . nvrm_offset =
ISP_NVRAM_TGT_SYNC_OFFSET ( nvram_data , tgt ) ;
sdp - > isp_devparam [ tgt ] . nvrm_period =
ISP_NVRAM_TGT_SYNC_PERIOD ( nvram_data , tgt ) ;
2001-07-30 00:59:06 +00:00
/*
* We probably shouldn ' t lie about this , but it
* it makes it much safer if we limit NVRAM values
* to sanity .
*/
2000-02-11 19:31:32 +00:00
if ( isp - > isp_type < ISP_HA_SCSI_1040 ) {
/*
* If we ' re not ultra , we can ' t possibly
* be a shorter period than this .
*/
2001-08-20 17:28:32 +00:00
if ( sdp - > isp_devparam [ tgt ] . nvrm_period < 0x19 ) {
sdp - > isp_devparam [ tgt ] . nvrm_period = 0x19 ;
2000-02-11 19:31:32 +00:00
}
2001-08-20 17:28:32 +00:00
if ( sdp - > isp_devparam [ tgt ] . nvrm_offset > 0xc ) {
sdp - > isp_devparam [ tgt ] . nvrm_offset = 0x0c ;
2000-02-11 19:31:32 +00:00
}
} else {
2001-08-20 17:28:32 +00:00
if ( sdp - > isp_devparam [ tgt ] . nvrm_offset > 0x8 ) {
sdp - > isp_devparam [ tgt ] . nvrm_offset = 0x8 ;
2000-02-11 19:31:32 +00:00
}
}
2001-08-20 17:28:32 +00:00
sdp - > isp_devparam [ tgt ] . nvrm_flags = 0 ;
if ( ISP_NVRAM_TGT_RENEG ( nvram_data , tgt ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_RENEG ;
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_ARQ ;
if ( ISP_NVRAM_TGT_TQING ( nvram_data , tgt ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_TQING ;
if ( ISP_NVRAM_TGT_SYNC ( nvram_data , tgt ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_SYNC ;
if ( ISP_NVRAM_TGT_WIDE ( nvram_data , tgt ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_WIDE ;
if ( ISP_NVRAM_TGT_PARITY ( nvram_data , tgt ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_PARITY ;
if ( ISP_NVRAM_TGT_DISC ( nvram_data , tgt ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_DISC ;
sdp - > isp_devparam [ tgt ] . actv_flags = 0 ; /* we don't know */
sdp - > isp_devparam [ tgt ] . goal_offset =
sdp - > isp_devparam [ tgt ] . nvrm_offset ;
sdp - > isp_devparam [ tgt ] . goal_period =
sdp - > isp_devparam [ tgt ] . nvrm_period ;
sdp - > isp_devparam [ tgt ] . goal_flags =
sdp - > isp_devparam [ tgt ] . nvrm_flags ;
2000-02-11 19:31:32 +00:00
}
}
static void
2006-04-21 18:30:01 +00:00
isp_parse_nvram_1080 ( ispsoftc_t * isp , int bus , uint8_t * nvram_data )
2000-02-11 19:31:32 +00:00
{
2009-08-01 01:04:26 +00:00
sdparam * sdp = SDPARAM ( isp , bus ) ;
2001-08-20 17:28:32 +00:00
int tgt ;
2001-07-04 18:42:41 +00:00
sdp - > isp_fifo_threshold =
2000-02-11 19:31:32 +00:00
ISP1080_NVRAM_FIFO_THRESHOLD ( nvram_data ) ;
Remove the 'bogus registrant' hack for fabric searches. It really
turns out that there's something of a hole in our new fabric name
server stuff. We ask the name server for entities that have
registered as a specific type. That type is FC-SCSI. If the entity
hasn't performed a REGISTER FC4 TYPES, the fabric nameserver won't
return it.
This brings this driver to a bit of a fork in the road as to what
the right thing to do is. For servicing the needs of accessing
FC-SCSI devices, this method is fine, and to be preferred. It is
extremely unlikely we're interested in fabric devices that *don't*
register correctly. If I ever get around to adding an FC-IP stack,
then asking for devices that have registers as FC-IP types is also
the right thing to do.
So- asking the fabric nameserver for a specific type is fine, *as
long as you are only interested in specific types*. If, on the other
hand, you want to create (as for management tool support) a picture
of everything on the fabric, this is *not* so fine. There are a
large class of FC-SCSI *initiators* who *don't* correctly register,
so we never will *see* them.
Is this a problem? Yes, but only a little one. If we want to do such
management tool support, we should probably run a *different* fabric
nameserver query algorithm. Better yet, we should talk to the management
nameserver in Brocade switches instead of the standard FC-GS-2 fabric
nameserver (which can be unwieldy).
Other changes: if we've overrrides marked, don't set some default
values from reading NVRAM. This allows us to override things like
EXEC throttle without having to ignore NVRAM entirely.
MFC after: 1 week
2002-07-08 17:33:37 +00:00
if ( ( isp - > isp_confopts & ISP_CFG_OWNLOOPID ) = = 0 )
sdp - > isp_initiator_id =
ISP1080_NVRAM_INITIATOR_ID ( nvram_data , bus ) ;
2000-02-11 19:31:32 +00:00
sdp - > isp_bus_reset_delay =
ISP1080_NVRAM_BUS_RESET_DELAY ( nvram_data , bus ) ;
sdp - > isp_retry_count =
ISP1080_NVRAM_BUS_RETRY_COUNT ( nvram_data , bus ) ;
sdp - > isp_retry_delay =
ISP1080_NVRAM_BUS_RETRY_DELAY ( nvram_data , bus ) ;
sdp - > isp_async_data_setup =
2001-08-20 17:28:32 +00:00
ISP1080_NVRAM_ASYNC_DATA_SETUP_TIME ( nvram_data , bus ) ;
2000-02-11 19:31:32 +00:00
sdp - > isp_req_ack_active_neg =
2001-08-20 17:28:32 +00:00
ISP1080_NVRAM_REQ_ACK_ACTIVE_NEGATION ( nvram_data , bus ) ;
2000-02-11 19:31:32 +00:00
sdp - > isp_data_line_active_neg =
2001-08-20 17:28:32 +00:00
ISP1080_NVRAM_DATA_LINE_ACTIVE_NEGATION ( nvram_data , bus ) ;
2000-02-11 19:31:32 +00:00
sdp - > isp_data_dma_burst_enabl =
ISP1080_NVRAM_BURST_ENABLE ( nvram_data ) ;
sdp - > isp_cmd_dma_burst_enable =
ISP1080_NVRAM_BURST_ENABLE ( nvram_data ) ;
sdp - > isp_selection_timeout =
ISP1080_NVRAM_SELECTION_TIMEOUT ( nvram_data , bus ) ;
sdp - > isp_max_queue_depth =
ISP1080_NVRAM_MAX_QUEUE_DEPTH ( nvram_data , bus ) ;
2001-08-20 17:28:32 +00:00
for ( tgt = 0 ; tgt < MAX_TARGETS ; tgt + + ) {
sdp - > isp_devparam [ tgt ] . dev_enable =
ISP1080_NVRAM_TGT_DEVICE_ENABLE ( nvram_data , tgt , bus ) ;
sdp - > isp_devparam [ tgt ] . exc_throttle =
ISP1080_NVRAM_TGT_EXEC_THROTTLE ( nvram_data , tgt , bus ) ;
sdp - > isp_devparam [ tgt ] . nvrm_offset =
ISP1080_NVRAM_TGT_SYNC_OFFSET ( nvram_data , tgt , bus ) ;
sdp - > isp_devparam [ tgt ] . nvrm_period =
ISP1080_NVRAM_TGT_SYNC_PERIOD ( nvram_data , tgt , bus ) ;
sdp - > isp_devparam [ tgt ] . nvrm_flags = 0 ;
if ( ISP1080_NVRAM_TGT_RENEG ( nvram_data , tgt , bus ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_RENEG ;
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_ARQ ;
if ( ISP1080_NVRAM_TGT_TQING ( nvram_data , tgt , bus ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_TQING ;
if ( ISP1080_NVRAM_TGT_SYNC ( nvram_data , tgt , bus ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_SYNC ;
if ( ISP1080_NVRAM_TGT_WIDE ( nvram_data , tgt , bus ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_WIDE ;
if ( ISP1080_NVRAM_TGT_PARITY ( nvram_data , tgt , bus ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_PARITY ;
if ( ISP1080_NVRAM_TGT_DISC ( nvram_data , tgt , bus ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_DISC ;
sdp - > isp_devparam [ tgt ] . actv_flags = 0 ;
sdp - > isp_devparam [ tgt ] . goal_offset =
sdp - > isp_devparam [ tgt ] . nvrm_offset ;
sdp - > isp_devparam [ tgt ] . goal_period =
sdp - > isp_devparam [ tgt ] . nvrm_period ;
sdp - > isp_devparam [ tgt ] . goal_flags =
sdp - > isp_devparam [ tgt ] . nvrm_flags ;
2000-02-11 19:31:32 +00:00
}
}
static void
2006-04-21 18:30:01 +00:00
isp_parse_nvram_12160 ( ispsoftc_t * isp , int bus , uint8_t * nvram_data )
2000-02-11 19:31:32 +00:00
{
2009-08-01 01:04:26 +00:00
sdparam * sdp = SDPARAM ( isp , bus ) ;
2001-08-20 17:28:32 +00:00
int tgt ;
2000-02-11 19:31:32 +00:00
sdp - > isp_fifo_threshold =
ISP12160_NVRAM_FIFO_THRESHOLD ( nvram_data ) ;
Remove the 'bogus registrant' hack for fabric searches. It really
turns out that there's something of a hole in our new fabric name
server stuff. We ask the name server for entities that have
registered as a specific type. That type is FC-SCSI. If the entity
hasn't performed a REGISTER FC4 TYPES, the fabric nameserver won't
return it.
This brings this driver to a bit of a fork in the road as to what
the right thing to do is. For servicing the needs of accessing
FC-SCSI devices, this method is fine, and to be preferred. It is
extremely unlikely we're interested in fabric devices that *don't*
register correctly. If I ever get around to adding an FC-IP stack,
then asking for devices that have registers as FC-IP types is also
the right thing to do.
So- asking the fabric nameserver for a specific type is fine, *as
long as you are only interested in specific types*. If, on the other
hand, you want to create (as for management tool support) a picture
of everything on the fabric, this is *not* so fine. There are a
large class of FC-SCSI *initiators* who *don't* correctly register,
so we never will *see* them.
Is this a problem? Yes, but only a little one. If we want to do such
management tool support, we should probably run a *different* fabric
nameserver query algorithm. Better yet, we should talk to the management
nameserver in Brocade switches instead of the standard FC-GS-2 fabric
nameserver (which can be unwieldy).
Other changes: if we've overrrides marked, don't set some default
values from reading NVRAM. This allows us to override things like
EXEC throttle without having to ignore NVRAM entirely.
MFC after: 1 week
2002-07-08 17:33:37 +00:00
if ( ( isp - > isp_confopts & ISP_CFG_OWNLOOPID ) = = 0 )
sdp - > isp_initiator_id =
ISP12160_NVRAM_INITIATOR_ID ( nvram_data , bus ) ;
2000-02-11 19:31:32 +00:00
sdp - > isp_bus_reset_delay =
ISP12160_NVRAM_BUS_RESET_DELAY ( nvram_data , bus ) ;
sdp - > isp_retry_count =
ISP12160_NVRAM_BUS_RETRY_COUNT ( nvram_data , bus ) ;
sdp - > isp_retry_delay =
ISP12160_NVRAM_BUS_RETRY_DELAY ( nvram_data , bus ) ;
sdp - > isp_async_data_setup =
2001-08-20 17:28:32 +00:00
ISP12160_NVRAM_ASYNC_DATA_SETUP_TIME ( nvram_data , bus ) ;
2000-02-11 19:31:32 +00:00
sdp - > isp_req_ack_active_neg =
2001-08-20 17:28:32 +00:00
ISP12160_NVRAM_REQ_ACK_ACTIVE_NEGATION ( nvram_data , bus ) ;
2000-02-11 19:31:32 +00:00
sdp - > isp_data_line_active_neg =
2001-08-20 17:28:32 +00:00
ISP12160_NVRAM_DATA_LINE_ACTIVE_NEGATION ( nvram_data , bus ) ;
2000-02-11 19:31:32 +00:00
sdp - > isp_data_dma_burst_enabl =
ISP12160_NVRAM_BURST_ENABLE ( nvram_data ) ;
sdp - > isp_cmd_dma_burst_enable =
ISP12160_NVRAM_BURST_ENABLE ( nvram_data ) ;
sdp - > isp_selection_timeout =
ISP12160_NVRAM_SELECTION_TIMEOUT ( nvram_data , bus ) ;
sdp - > isp_max_queue_depth =
ISP12160_NVRAM_MAX_QUEUE_DEPTH ( nvram_data , bus ) ;
2001-08-20 17:28:32 +00:00
for ( tgt = 0 ; tgt < MAX_TARGETS ; tgt + + ) {
sdp - > isp_devparam [ tgt ] . dev_enable =
ISP12160_NVRAM_TGT_DEVICE_ENABLE ( nvram_data , tgt , bus ) ;
sdp - > isp_devparam [ tgt ] . exc_throttle =
ISP12160_NVRAM_TGT_EXEC_THROTTLE ( nvram_data , tgt , bus ) ;
sdp - > isp_devparam [ tgt ] . nvrm_offset =
ISP12160_NVRAM_TGT_SYNC_OFFSET ( nvram_data , tgt , bus ) ;
sdp - > isp_devparam [ tgt ] . nvrm_period =
ISP12160_NVRAM_TGT_SYNC_PERIOD ( nvram_data , tgt , bus ) ;
sdp - > isp_devparam [ tgt ] . nvrm_flags = 0 ;
if ( ISP12160_NVRAM_TGT_RENEG ( nvram_data , tgt , bus ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_RENEG ;
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_ARQ ;
if ( ISP12160_NVRAM_TGT_TQING ( nvram_data , tgt , bus ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_TQING ;
if ( ISP12160_NVRAM_TGT_SYNC ( nvram_data , tgt , bus ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_SYNC ;
if ( ISP12160_NVRAM_TGT_WIDE ( nvram_data , tgt , bus ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_WIDE ;
if ( ISP12160_NVRAM_TGT_PARITY ( nvram_data , tgt , bus ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_PARITY ;
if ( ISP12160_NVRAM_TGT_DISC ( nvram_data , tgt , bus ) )
sdp - > isp_devparam [ tgt ] . nvrm_flags | = DPARM_DISC ;
sdp - > isp_devparam [ tgt ] . actv_flags = 0 ;
sdp - > isp_devparam [ tgt ] . goal_offset =
sdp - > isp_devparam [ tgt ] . nvrm_offset ;
sdp - > isp_devparam [ tgt ] . goal_period =
sdp - > isp_devparam [ tgt ] . nvrm_period ;
sdp - > isp_devparam [ tgt ] . goal_flags =
sdp - > isp_devparam [ tgt ] . nvrm_flags ;
2000-02-11 19:31:32 +00:00
}
}
static void
2006-04-21 18:30:01 +00:00
isp_parse_nvram_2100 ( ispsoftc_t * isp , uint8_t * nvram_data )
2000-02-11 19:31:32 +00:00
{
2009-08-01 01:04:26 +00:00
fcparam * fcp = FCPARAM ( isp , 0 ) ;
2006-02-15 00:31:48 +00:00
uint64_t wwn ;
2000-02-11 19:31:32 +00:00
/*
2000-10-12 23:49:09 +00:00
* There is NVRAM storage for both Port and Node entities -
* but the Node entity appears to be unused on all the cards
* I can find . However , we should account for this being set
* at some point in the future .
*
* Qlogic WWNs have an NAA of 2 , but usually nothing shows up in
* bits 48. .60 . In the case of the 2202 , it appears that they do
* use bit 48 to distinguish between the two instances on the card .
* The 2204 , which I ' ve never seen , * probably * extends this method .
2000-02-11 19:31:32 +00:00
*/
Major whacking for core version 2.0. A major motivator for 2.0 and these
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
2000-08-01 06:51:05 +00:00
wwn = ISP2100_NVRAM_PORT_NAME ( nvram_data ) ;
2000-10-12 23:49:09 +00:00
if ( wwn ) {
isp_prt ( isp , ISP_LOGCONFIG , " NVRAM Port WWN 0x%08x%08x " ,
2009-08-01 01:04:26 +00:00
( uint32_t ) ( wwn > > 32 ) , ( uint32_t ) ( wwn ) ) ;
2000-10-12 23:49:09 +00:00
if ( ( wwn > > 60 ) = = 0 ) {
2006-02-15 00:31:48 +00:00
wwn | = ( ( ( uint64_t ) 2 ) < < 60 ) ;
2000-10-12 23:49:09 +00:00
}
}
2007-01-20 04:00:21 +00:00
fcp - > isp_wwpn_nvram = wwn ;
2002-02-04 21:04:25 +00:00
if ( IS_2200 ( isp ) | | IS_23XX ( isp ) ) {
2006-07-03 08:24:09 +00:00
wwn = ISP2100_NVRAM_NODE_NAME ( nvram_data ) ;
2002-02-04 21:04:25 +00:00
if ( wwn ) {
isp_prt ( isp , ISP_LOGCONFIG , " NVRAM Node WWN 0x%08x%08x " ,
2006-02-15 00:31:48 +00:00
( uint32_t ) ( wwn > > 32 ) ,
2009-08-01 01:04:26 +00:00
( uint32_t ) ( wwn ) ) ;
2002-02-04 21:04:25 +00:00
if ( ( wwn > > 60 ) = = 0 ) {
2006-02-15 00:31:48 +00:00
wwn | = ( ( ( uint64_t ) 2 ) < < 60 ) ;
2002-02-04 21:04:25 +00:00
}
2000-05-09 01:14:43 +00:00
}
2002-02-04 21:04:25 +00:00
} else {
2006-02-15 00:31:48 +00:00
wwn & = ~ ( ( uint64_t ) 0xfff < < 48 ) ;
2000-02-11 19:31:32 +00:00
}
2007-01-20 04:00:21 +00:00
fcp - > isp_wwnn_nvram = wwn ;
2000-10-12 23:49:09 +00:00
2006-11-02 03:21:32 +00:00
fcp - > isp_maxalloc = ISP2100_NVRAM_MAXIOCBALLOCATION ( nvram_data ) ;
if ( ( isp - > isp_confopts & ISP_CFG_OWNFSZ ) = = 0 ) {
2009-08-01 01:04:26 +00:00
DEFAULT_FRAMESIZE ( isp ) =
ISP2100_NVRAM_MAXFRAMELENGTH ( nvram_data ) ;
2000-10-12 23:49:09 +00:00
}
2006-11-02 03:21:32 +00:00
fcp - > isp_retry_delay = ISP2100_NVRAM_RETRY_DELAY ( nvram_data ) ;
fcp - > isp_retry_count = ISP2100_NVRAM_RETRY_COUNT ( nvram_data ) ;
if ( ( isp - > isp_confopts & ISP_CFG_OWNLOOPID ) = = 0 ) {
fcp - > isp_loopid = ISP2100_NVRAM_HARDLOOPID ( nvram_data ) ;
}
if ( ( isp - > isp_confopts & ISP_CFG_OWNEXCTHROTTLE ) = = 0 ) {
2009-08-01 01:04:26 +00:00
DEFAULT_EXEC_THROTTLE ( isp ) =
2002-06-16 05:18:22 +00:00
ISP2100_NVRAM_EXECUTION_THROTTLE ( nvram_data ) ;
2006-11-02 03:21:32 +00:00
}
2000-02-11 19:31:32 +00:00
fcp - > isp_fwoptions = ISP2100_NVRAM_OPTIONS ( nvram_data ) ;
2006-07-03 08:24:09 +00:00
isp_prt ( isp , ISP_LOGDEBUG0 ,
" NVRAM 0x%08x%08x 0x%08x%08x maxalloc %d maxframelen %d " ,
2009-08-01 01:04:26 +00:00
( uint32_t ) ( fcp - > isp_wwnn_nvram > > 32 ) ,
( uint32_t ) fcp - > isp_wwnn_nvram ,
( uint32_t ) ( fcp - > isp_wwpn_nvram > > 32 ) ,
( uint32_t ) fcp - > isp_wwpn_nvram ,
2006-07-03 08:24:09 +00:00
ISP2100_NVRAM_MAXIOCBALLOCATION ( nvram_data ) ,
ISP2100_NVRAM_MAXFRAMELENGTH ( nvram_data ) ) ;
isp_prt ( isp , ISP_LOGDEBUG0 ,
" execthrottle %d fwoptions 0x%x hardloop %d tov %d " ,
ISP2100_NVRAM_EXECUTION_THROTTLE ( nvram_data ) ,
ISP2100_NVRAM_OPTIONS ( nvram_data ) ,
ISP2100_NVRAM_HARDLOOPID ( nvram_data ) ,
ISP2100_NVRAM_TOV ( nvram_data ) ) ;
fcp - > isp_xfwoptions = ISP2100_XFW_OPTIONS ( nvram_data ) ;
fcp - > isp_zfwoptions = ISP2100_ZFW_OPTIONS ( nvram_data ) ;
isp_prt ( isp , ISP_LOGDEBUG0 ,
" xfwoptions 0x%x zfw options 0x%x " ,
ISP2100_XFW_OPTIONS ( nvram_data ) , ISP2100_ZFW_OPTIONS ( nvram_data ) ) ;
2000-02-11 19:31:32 +00:00
}
2002-02-17 06:38:22 +00:00
2006-11-02 03:21:32 +00:00
static void
isp_parse_nvram_2400 ( ispsoftc_t * isp , uint8_t * nvram_data )
{
2009-08-01 01:04:26 +00:00
fcparam * fcp = FCPARAM ( isp , 0 ) ;
2006-11-02 03:21:32 +00:00
uint64_t wwn ;
isp_prt ( isp , ISP_LOGDEBUG0 ,
" NVRAM 0x%08x%08x 0x%08x%08x exchg_cnt %d maxframelen %d " ,
( uint32_t ) ( ISP2400_NVRAM_NODE_NAME ( nvram_data ) > > 32 ) ,
( uint32_t ) ( ISP2400_NVRAM_NODE_NAME ( nvram_data ) ) ,
( uint32_t ) ( ISP2400_NVRAM_PORT_NAME ( nvram_data ) > > 32 ) ,
( uint32_t ) ( ISP2400_NVRAM_PORT_NAME ( nvram_data ) ) ,
ISP2400_NVRAM_EXCHANGE_COUNT ( nvram_data ) ,
ISP2400_NVRAM_MAXFRAMELENGTH ( nvram_data ) ) ;
isp_prt ( isp , ISP_LOGDEBUG0 ,
" NVRAM execthr %d loopid %d fwopt1 0x%x fwopt2 0x%x fwopt3 0x%x " ,
ISP2400_NVRAM_EXECUTION_THROTTLE ( nvram_data ) ,
ISP2400_NVRAM_HARDLOOPID ( nvram_data ) ,
ISP2400_NVRAM_FIRMWARE_OPTIONS1 ( nvram_data ) ,
ISP2400_NVRAM_FIRMWARE_OPTIONS2 ( nvram_data ) ,
ISP2400_NVRAM_FIRMWARE_OPTIONS3 ( nvram_data ) ) ;
wwn = ISP2400_NVRAM_PORT_NAME ( nvram_data ) ;
if ( wwn ) {
if ( ( wwn > > 60 ) ! = 2 & & ( wwn > > 60 ) ! = 5 ) {
wwn = 0 ;
}
}
2007-01-20 04:00:21 +00:00
fcp - > isp_wwpn_nvram = wwn ;
2006-11-02 03:21:32 +00:00
wwn = ISP2400_NVRAM_NODE_NAME ( nvram_data ) ;
if ( wwn ) {
if ( ( wwn > > 60 ) ! = 2 & & ( wwn > > 60 ) ! = 5 ) {
wwn = 0 ;
}
}
2007-01-20 04:00:21 +00:00
fcp - > isp_wwnn_nvram = wwn ;
2006-11-02 03:21:32 +00:00
if ( ISP2400_NVRAM_EXCHANGE_COUNT ( nvram_data ) ) {
fcp - > isp_maxalloc = ISP2400_NVRAM_EXCHANGE_COUNT ( nvram_data ) ;
}
if ( ( isp - > isp_confopts & ISP_CFG_OWNFSZ ) = = 0 ) {
2009-08-01 01:04:26 +00:00
DEFAULT_FRAMESIZE ( isp ) =
ISP2400_NVRAM_MAXFRAMELENGTH ( nvram_data ) ;
2006-11-02 03:21:32 +00:00
}
if ( ( isp - > isp_confopts & ISP_CFG_OWNLOOPID ) = = 0 ) {
fcp - > isp_loopid = ISP2400_NVRAM_HARDLOOPID ( nvram_data ) ;
}
if ( ( isp - > isp_confopts & ISP_CFG_OWNEXCTHROTTLE ) = = 0 ) {
2009-08-01 01:04:26 +00:00
DEFAULT_EXEC_THROTTLE ( isp ) =
2006-11-02 03:21:32 +00:00
ISP2400_NVRAM_EXECUTION_THROTTLE ( nvram_data ) ;
}
fcp - > isp_fwoptions = ISP2400_NVRAM_FIRMWARE_OPTIONS1 ( nvram_data ) ;
fcp - > isp_xfwoptions = ISP2400_NVRAM_FIRMWARE_OPTIONS2 ( nvram_data ) ;
fcp - > isp_zfwoptions = ISP2400_NVRAM_FIRMWARE_OPTIONS3 ( nvram_data ) ;
}