freebsd-skq/sys/netinet/udp_usrreq.c

1637 lines
41 KiB
C
Raw Normal View History

/*-
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California.
* Copyright (c) 2008 Robert N. M. Watson
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
* Copyright (c) 2010-2011 Juniper Networks, Inc.
* All rights reserved.
1994-05-24 10:09:53 +00:00
*
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
* Portions of this software were developed by Robert N. M. Watson under
* contract to Juniper Networks, Inc.
*
1994-05-24 10:09:53 +00:00
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
1994-05-24 10:09:53 +00:00
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ipfw.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ipsec.h"
#include "opt_kdtrace.h"
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/domain.h>
#include <sys/eventhandler.h>
#include <sys/jail.h>
1997-02-24 20:31:25 +00:00
#include <sys/kernel.h>
#include <sys/lock.h>
1994-05-24 10:09:53 +00:00
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/priv.h>
#include <sys/proc.h>
1994-05-24 10:09:53 +00:00
#include <sys/protosw.h>
#include <sys/sdt.h>
#include <sys/signalvar.h>
1994-05-24 10:09:53 +00:00
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <vm/uma.h>
1994-05-24 10:09:53 +00:00
#include <net/if.h>
#include <net/if_var.h>
1994-05-24 10:09:53 +00:00
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_kdtrace.h>
#include <netinet/in_pcb.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
1994-05-24 10:09:53 +00:00
#include <netinet/ip.h>
#ifdef INET6
#include <netinet/ip6.h>
#endif
#include <netinet/ip_icmp.h>
#include <netinet/icmp_var.h>
1994-05-24 10:09:53 +00:00
#include <netinet/ip_var.h>
#include <netinet/ip_options.h>
#ifdef INET6
#include <netinet6/ip6_var.h>
#endif
1994-05-24 10:09:53 +00:00
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#ifdef IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/esp.h>
#endif
#include <machine/in_cksum.h>
#include <security/mac/mac_framework.h>
1994-05-24 10:09:53 +00:00
/*
* UDP protocol implementation.
* Per RFC 768, August, 1980.
*/
/*
* BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums
* removes the only data integrity mechanism for packets and malformed
* packets that would otherwise be discarded due to bad checksums, and may
* cause problems (especially for NFS data blocks).
*/
VNET_DEFINE(int, udp_cksum) = 1;
SYSCTL_VNET_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW,
&VNET_NAME(udp_cksum), 0, "compute udp checksum");
1994-05-24 10:09:53 +00:00
int udp_log_in_vain = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
&udp_log_in_vain, 0, "Log all incoming UDP packets");
VNET_DEFINE(int, udp_blackhole) = 0;
Build on Jeff Roberson's linker-set based dynamic per-CPU allocator (DPCPU), as suggested by Peter Wemm, and implement a new per-virtual network stack memory allocator. Modify vnet to use the allocator instead of monolithic global container structures (vinet, ...). This change solves many binary compatibility problems associated with VIMAGE, and restores ELF symbols for virtualized global variables. Each virtualized global variable exists as a "reference copy", and also once per virtual network stack. Virtualized global variables are tagged at compile-time, placing the in a special linker set, which is loaded into a contiguous region of kernel memory. Virtualized global variables in the base kernel are linked as normal, but those in modules are copied and relocated to a reserved portion of the kernel's vnet region with the help of a the kernel linker. Virtualized global variables exist in per-vnet memory set up when the network stack instance is created, and are initialized statically from the reference copy. Run-time access occurs via an accessor macro, which converts from the current vnet and requested symbol to a per-vnet address. When "options VIMAGE" is not compiled into the kernel, normal global ELF symbols will be used instead and indirection is avoided. This change restores static initialization for network stack global variables, restores support for non-global symbols and types, eliminates the need for many subsystem constructors, eliminates large per-subsystem structures that caused many binary compatibility issues both for monitoring applications (netstat) and kernel modules, removes the per-function INIT_VNET_*() macros throughout the stack, eliminates the need for vnet_symmap ksym(2) munging, and eliminates duplicate definitions of virtualized globals under VIMAGE_GLOBALS. Bump __FreeBSD_version and update UPDATING. Portions submitted by: bz Reviewed by: bz, zec Discussed with: gnn, jamie, jeff, jhb, julian, sam Suggested by: peter Approved by: re (kensmith)
2009-07-14 22:48:30 +00:00
SYSCTL_VNET_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW,
&VNET_NAME(udp_blackhole), 0,
"Do not send port unreachables for refused connects");
u_long udp_sendspace = 9216; /* really max datagram size */
/* 40 1K datagrams */
SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
&udp_sendspace, 0, "Maximum outgoing UDP datagram size");
u_long udp_recvspace = 40 * (1024 +
#ifdef INET6
sizeof(struct sockaddr_in6)
#else
sizeof(struct sockaddr_in)
#endif
);
SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
&udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
Build on Jeff Roberson's linker-set based dynamic per-CPU allocator (DPCPU), as suggested by Peter Wemm, and implement a new per-virtual network stack memory allocator. Modify vnet to use the allocator instead of monolithic global container structures (vinet, ...). This change solves many binary compatibility problems associated with VIMAGE, and restores ELF symbols for virtualized global variables. Each virtualized global variable exists as a "reference copy", and also once per virtual network stack. Virtualized global variables are tagged at compile-time, placing the in a special linker set, which is loaded into a contiguous region of kernel memory. Virtualized global variables in the base kernel are linked as normal, but those in modules are copied and relocated to a reserved portion of the kernel's vnet region with the help of a the kernel linker. Virtualized global variables exist in per-vnet memory set up when the network stack instance is created, and are initialized statically from the reference copy. Run-time access occurs via an accessor macro, which converts from the current vnet and requested symbol to a per-vnet address. When "options VIMAGE" is not compiled into the kernel, normal global ELF symbols will be used instead and indirection is avoided. This change restores static initialization for network stack global variables, restores support for non-global symbols and types, eliminates the need for many subsystem constructors, eliminates large per-subsystem structures that caused many binary compatibility issues both for monitoring applications (netstat) and kernel modules, removes the per-function INIT_VNET_*() macros throughout the stack, eliminates the need for vnet_symmap ksym(2) munging, and eliminates duplicate definitions of virtualized globals under VIMAGE_GLOBALS. Bump __FreeBSD_version and update UPDATING. Portions submitted by: bz Reviewed by: bz, zec Discussed with: gnn, jamie, jeff, jhb, julian, sam Suggested by: peter Approved by: re (kensmith)
2009-07-14 22:48:30 +00:00
VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */
VNET_DEFINE(struct inpcbinfo, udbinfo);
static VNET_DEFINE(uma_zone_t, udpcb_zone);
#define V_udpcb_zone VNET(udpcb_zone)
#ifndef UDBHASHSIZE
#define UDBHASHSIZE 128
#endif
VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */
VNET_PCPUSTAT_SYSINIT(udpstat);
SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
#ifdef VIMAGE
VNET_PCPUSTAT_SYSUNINIT(udpstat);
#endif /* VIMAGE */
#ifdef INET
static void udp_detach(struct socket *so);
static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
struct mbuf *, struct thread *);
#endif
#ifdef IPSEC
#ifdef IPSEC_NAT_T
#define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP)
#ifdef INET
static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int);
#endif
#endif /* IPSEC_NAT_T */
#endif /* IPSEC */
1994-05-24 10:09:53 +00:00
static void
udp_zone_change(void *tag)
{
uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
uma_zone_set_max(V_udpcb_zone, maxsockets);
}
static int
udp_inpcb_init(void *mem, int size, int flags)
{
2007-05-07 13:47:39 +00:00
struct inpcb *inp;
2007-05-07 13:47:39 +00:00
inp = mem;
INP_LOCK_INIT(inp, "inp", "udpinp");
return (0);
}
1994-05-24 10:09:53 +00:00
void
2007-05-07 13:47:39 +00:00
udp_init(void)
1994-05-24 10:09:53 +00:00
{
2007-05-07 13:47:39 +00:00
in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
Implement a CPU-affine TCP and UDP connection lookup data structure, struct inpcbgroup. pcbgroups, or "connection groups", supplement the existing inpcbinfo connection hash table, which when pcbgroups are enabled, might now be thought of more usefully as a per-protocol 4-tuple reservation table. Connections are assigned to connection groups base on a hash of their 4-tuple; wildcard sockets require special handling, and are members of all connection groups. During a connection lookup, a per-connection group lock is employed rather than the global pcbinfo lock. By aligning connection groups with input path processing, connection groups take on an effective CPU affinity, especially when aligned with RSS work placement (see a forthcoming commit for details). This eliminates cache line migration associated with global, protocol-layer data structures in steady state TCP and UDP processing (with the exception of protocol-layer statistics; further commit to follow). Elements of this approach were inspired by Willman, Rixner, and Cox's 2006 USENIX paper, "An Evaluation of Network Stack Parallelization Strategies in Modern Operating Systems". However, there are also significant differences: we maintain the inpcb lock, rather than using the connection group lock for per-connection state. Likewise, the focus of this implementation is alignment with NIC packet distribution strategies such as RSS, rather than pure software strategies. Despite that focus, software distribution is supported through the parallel netisr implementation, and works well in configurations where the number of hardware threads is greater than the number of NIC input queues, such as in the RMI XLR threaded MIPS architecture. Another important difference is the continued maintenance of existing hash tables as "reservation tables" -- these are useful both to distinguish the resource allocation aspect of protocol name management and the more common-case lookup aspect. In configurations where connection tables are aligned with hardware hashes, it is desirable to use the traditional lookup tables for loopback or encapsulated traffic rather than take the expense of hardware hashes that are hard to implement efficiently in software (such as RSS Toeplitz). Connection group support is enabled by compiling "options PCBGROUP" into your kernel configuration; for the time being, this is an experimental feature, and hence is not enabled by default. Subject to the limited MFCability of change dependencies in inpcb, and its change to the inpcbinfo init function signature, this change in principle could be merged to FreeBSD 8.x. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-06-06 12:55:02 +00:00
"udp_inpcb", udp_inpcb_init, NULL, UMA_ZONE_NOFREE,
IPI_HASHFIELDS_2TUPLE);
V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
uma_zone_set_max(V_udpcb_zone, maxsockets);
uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
2007-05-07 13:47:39 +00:00
EVENTHANDLER_PRI_ANY);
1994-05-24 10:09:53 +00:00
}
/*
* Kernel module interface for updating udpstat. The argument is an index
* into udpstat treated as an array of u_long. While this encodes the
* general layout of udpstat into the caller, it doesn't encode its location,
* so that future changes to add, for example, per-CPU stats support won't
* cause binary compatibility problems for kernel modules.
*/
void
kmod_udpstat_inc(int statnum)
{
counter_u64_add(VNET(udpstat)[statnum], 1);
}
int
udp_newudpcb(struct inpcb *inp)
{
struct udpcb *up;
up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
if (up == NULL)
return (ENOBUFS);
inp->inp_ppcb = up;
return (0);
}
void
udp_discardcb(struct udpcb *up)
{
uma_zfree(V_udpcb_zone, up);
}
#ifdef VIMAGE
void
udp_destroy(void)
{
in_pcbinfo_destroy(&V_udbinfo);
uma_zdestroy(V_udpcb_zone);
}
#endif
#ifdef INET
/*
* Subroutine of udp_input(), which appends the provided mbuf chain to the
* passed pcb/socket. The caller must provide a sockaddr_in via udp_in that
* contains the source address. If the socket ends up being an IPv6 socket,
* udp_append() will convert to a sockaddr_in6 before passing the address
* into the socket code.
*/
static void
udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
struct sockaddr_in *udp_in)
{
struct sockaddr *append_sa;
struct socket *so;
struct mbuf *opts = 0;
#ifdef INET6
struct sockaddr_in6 udp_in6;
#endif
struct udpcb *up;
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_LOCK_ASSERT(inp);
/*
* Engage the tunneling protocol.
*/
up = intoudpcb(inp);
if (up->u_tun_func != NULL) {
(*up->u_tun_func)(n, off, inp);
return;
}
if (n == NULL)
return;
off += sizeof(struct udphdr);
#ifdef IPSEC
/* Check AH/ESP integrity. */
if (ipsec4_in_reject(n, inp)) {
m_freem(n);
IPSECSTAT_INC(ips_in_polvio);
return;
}
#ifdef IPSEC_NAT_T
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
if (up->u_flags & UF_ESPINUDP_ALL) { /* IPSec UDP encaps. */
n = udp4_espdecap(inp, n, off);
if (n == NULL) /* Consumed. */
return;
}
#endif /* IPSEC_NAT_T */
#endif /* IPSEC */
#ifdef MAC
if (mac_inpcb_check_deliver(inp, n) != 0) {
m_freem(n);
return;
}
#endif /* MAC */
if (inp->inp_flags & INP_CONTROLOPTS ||
inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
else
#endif /* INET6 */
ip_savecontrol(inp, &opts, ip, n);
}
#ifdef INET6
if (inp->inp_vflag & INP_IPV6) {
bzero(&udp_in6, sizeof(udp_in6));
udp_in6.sin6_len = sizeof(udp_in6);
udp_in6.sin6_family = AF_INET6;
in6_sin_2_v4mapsin6(udp_in, &udp_in6);
append_sa = (struct sockaddr *)&udp_in6;
} else
#endif /* INET6 */
append_sa = (struct sockaddr *)udp_in;
m_adj(n, off);
so = inp->inp_socket;
SOCKBUF_LOCK(&so->so_rcv);
if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
SOCKBUF_UNLOCK(&so->so_rcv);
m_freem(n);
if (opts)
m_freem(opts);
UDPSTAT_INC(udps_fullsock);
} else
sorwakeup_locked(so);
}
1994-05-24 10:09:53 +00:00
void
udp_input(struct mbuf *m, int off)
1994-05-24 10:09:53 +00:00
{
int iphlen = off;
struct ip *ip;
struct udphdr *uh;
Import rewrite of IPv4 socket multicast layer to support source-specific and protocol-independent host mode multicast. The code is written to accomodate IPv6, IGMPv3 and MLDv2 with only a little additional work. This change only pertains to FreeBSD's use as a multicast end-station and does not concern multicast routing; for an IGMPv3/MLDv2 router implementation, consider the XORP project. The work is based on Wilbert de Graaf's IGMPv3 code drop for FreeBSD 4.6, which is available at: http://www.kloosterhof.com/wilbert/igmpv3.html Summary * IPv4 multicast socket processing is now moved out of ip_output.c into a new module, in_mcast.c. * The in_mcast.c module implements the IPv4 legacy any-source API in terms of the protocol-independent source-specific API. * Source filters are lazy allocated as the common case does not use them. They are part of per inpcb state and are covered by the inpcb lock. * struct ip_mreqn is now supported to allow applications to specify multicast joins by interface index in the legacy IPv4 any-source API. * In UDP, an incoming multicast datagram only requires that the source port matches the 4-tuple if the socket was already bound by source port. An unbound socket SHOULD be able to receive multicasts sent from an ephemeral source port. * The UDP socket multicast filter mode defaults to exclusive, that is, sources present in the per-socket list will be blocked from delivery. * The RFC 3678 userland functions have been added to libc: setsourcefilter, getsourcefilter, setipv4sourcefilter, getipv4sourcefilter. * Definitions for IGMPv3 are merged but not yet used. * struct sockaddr_storage is now referenced from <netinet/in.h>. It is therefore defined there if not already declared in the same way as for the C99 types. * The RFC 1724 hack (specify 0.0.0.0/8 addresses to IP_MULTICAST_IF which are then interpreted as interface indexes) is now deprecated. * A patch for the Rhyolite.com routed in the FreeBSD base system is available in the -net archives. This only affects individuals running RIPv1 or RIPv2 via point-to-point and/or unnumbered interfaces. * Make IPv6 detach path similar to IPv4's in code flow; functionally same. * Bump __FreeBSD_version to 700048; see UPDATING. This work was financially supported by another FreeBSD committer. Obtained from: p4://bms_netdev Submitted by: Wilbert de Graaf (original work) Reviewed by: rwatson (locking), silence from fenner, net@ (but with encouragement)
2007-06-12 16:24:56 +00:00
struct ifnet *ifp;
struct inpcb *inp;
uint16_t len, ip_len;
1994-05-24 10:09:53 +00:00
struct ip save_ip;
struct sockaddr_in udp_in;
struct m_tag *fwd_tag;
1994-05-24 10:09:53 +00:00
Import rewrite of IPv4 socket multicast layer to support source-specific and protocol-independent host mode multicast. The code is written to accomodate IPv6, IGMPv3 and MLDv2 with only a little additional work. This change only pertains to FreeBSD's use as a multicast end-station and does not concern multicast routing; for an IGMPv3/MLDv2 router implementation, consider the XORP project. The work is based on Wilbert de Graaf's IGMPv3 code drop for FreeBSD 4.6, which is available at: http://www.kloosterhof.com/wilbert/igmpv3.html Summary * IPv4 multicast socket processing is now moved out of ip_output.c into a new module, in_mcast.c. * The in_mcast.c module implements the IPv4 legacy any-source API in terms of the protocol-independent source-specific API. * Source filters are lazy allocated as the common case does not use them. They are part of per inpcb state and are covered by the inpcb lock. * struct ip_mreqn is now supported to allow applications to specify multicast joins by interface index in the legacy IPv4 any-source API. * In UDP, an incoming multicast datagram only requires that the source port matches the 4-tuple if the socket was already bound by source port. An unbound socket SHOULD be able to receive multicasts sent from an ephemeral source port. * The UDP socket multicast filter mode defaults to exclusive, that is, sources present in the per-socket list will be blocked from delivery. * The RFC 3678 userland functions have been added to libc: setsourcefilter, getsourcefilter, setipv4sourcefilter, getipv4sourcefilter. * Definitions for IGMPv3 are merged but not yet used. * struct sockaddr_storage is now referenced from <netinet/in.h>. It is therefore defined there if not already declared in the same way as for the C99 types. * The RFC 1724 hack (specify 0.0.0.0/8 addresses to IP_MULTICAST_IF which are then interpreted as interface indexes) is now deprecated. * A patch for the Rhyolite.com routed in the FreeBSD base system is available in the -net archives. This only affects individuals running RIPv1 or RIPv2 via point-to-point and/or unnumbered interfaces. * Make IPv6 detach path similar to IPv4's in code flow; functionally same. * Bump __FreeBSD_version to 700048; see UPDATING. This work was financially supported by another FreeBSD committer. Obtained from: p4://bms_netdev Submitted by: Wilbert de Graaf (original work) Reviewed by: rwatson (locking), silence from fenner, net@ (but with encouragement)
2007-06-12 16:24:56 +00:00
ifp = m->m_pkthdr.rcvif;
UDPSTAT_INC(udps_ipackets);
1994-05-24 10:09:53 +00:00
/*
* Strip IP options, if any; should skip this, make available to
* user, and use on returned packets, but we don't yet have a way to
* check the checksum with options still present.
1994-05-24 10:09:53 +00:00
*/
if (iphlen > sizeof (struct ip)) {
ip_stripoptions(m);
1994-05-24 10:09:53 +00:00
iphlen = sizeof(struct ip);
}
/*
* Get IP and UDP header together in first mbuf.
*/
ip = mtod(m, struct ip *);
if (m->m_len < iphlen + sizeof(struct udphdr)) {
if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) {
UDPSTAT_INC(udps_hdrops);
1994-05-24 10:09:53 +00:00
return;
}
ip = mtod(m, struct ip *);
}
uh = (struct udphdr *)((caddr_t)ip + iphlen);
/*
* Destination port of 0 is illegal, based on RFC768.
*/
if (uh->uh_dport == 0)
goto badunlocked;
/*
* Construct sockaddr format source address. Stuff source address
* and datagram in user buffer.
*/
bzero(&udp_in, sizeof(udp_in));
udp_in.sin_len = sizeof(udp_in);
udp_in.sin_family = AF_INET;
udp_in.sin_port = uh->uh_sport;
udp_in.sin_addr = ip->ip_src;
1994-05-24 10:09:53 +00:00
/*
2007-05-07 13:47:39 +00:00
* Make mbuf data length reflect UDP length. If not enough data to
* reflect UDP length, drop.
1994-05-24 10:09:53 +00:00
*/
len = ntohs((u_short)uh->uh_ulen);
ip_len = ntohs(ip->ip_len) - iphlen;
if (ip_len != len) {
if (len > ip_len || len < sizeof(struct udphdr)) {
UDPSTAT_INC(udps_badlen);
goto badunlocked;
1994-05-24 10:09:53 +00:00
}
m_adj(m, len - ip_len);
1994-05-24 10:09:53 +00:00
}
1994-05-24 10:09:53 +00:00
/*
* Save a copy of the IP header in case we want restore it for
* sending an ICMP error message in response.
1994-05-24 10:09:53 +00:00
*/
if (!V_udp_blackhole)
save_ip = *ip;
else
memset(&save_ip, 0, sizeof(save_ip));
1994-05-24 10:09:53 +00:00
/*
* Checksum extended UDP header and data.
*/
if (uh->uh_sum) {
u_short uh_sum;
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
uh_sum = m->m_pkthdr.csum_data;
else
uh_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htonl((u_short)len +
m->m_pkthdr.csum_data + IPPROTO_UDP));
uh_sum ^= 0xffff;
} else {
char b[9];
2007-05-07 13:47:39 +00:00
bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
bzero(((struct ipovly *)ip)->ih_x1, 9);
((struct ipovly *)ip)->ih_len = uh->uh_ulen;
uh_sum = in_cksum(m, len + sizeof (struct ip));
bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
}
if (uh_sum) {
UDPSTAT_INC(udps_badsum);
1994-05-24 10:09:53 +00:00
m_freem(m);
return;
}
} else
UDPSTAT_INC(udps_nosum);
1994-05-24 10:09:53 +00:00
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
Import rewrite of IPv4 socket multicast layer to support source-specific and protocol-independent host mode multicast. The code is written to accomodate IPv6, IGMPv3 and MLDv2 with only a little additional work. This change only pertains to FreeBSD's use as a multicast end-station and does not concern multicast routing; for an IGMPv3/MLDv2 router implementation, consider the XORP project. The work is based on Wilbert de Graaf's IGMPv3 code drop for FreeBSD 4.6, which is available at: http://www.kloosterhof.com/wilbert/igmpv3.html Summary * IPv4 multicast socket processing is now moved out of ip_output.c into a new module, in_mcast.c. * The in_mcast.c module implements the IPv4 legacy any-source API in terms of the protocol-independent source-specific API. * Source filters are lazy allocated as the common case does not use them. They are part of per inpcb state and are covered by the inpcb lock. * struct ip_mreqn is now supported to allow applications to specify multicast joins by interface index in the legacy IPv4 any-source API. * In UDP, an incoming multicast datagram only requires that the source port matches the 4-tuple if the socket was already bound by source port. An unbound socket SHOULD be able to receive multicasts sent from an ephemeral source port. * The UDP socket multicast filter mode defaults to exclusive, that is, sources present in the per-socket list will be blocked from delivery. * The RFC 3678 userland functions have been added to libc: setsourcefilter, getsourcefilter, setipv4sourcefilter, getipv4sourcefilter. * Definitions for IGMPv3 are merged but not yet used. * struct sockaddr_storage is now referenced from <netinet/in.h>. It is therefore defined there if not already declared in the same way as for the C99 types. * The RFC 1724 hack (specify 0.0.0.0/8 addresses to IP_MULTICAST_IF which are then interpreted as interface indexes) is now deprecated. * A patch for the Rhyolite.com routed in the FreeBSD base system is available in the -net archives. This only affects individuals running RIPv1 or RIPv2 via point-to-point and/or unnumbered interfaces. * Make IPv6 detach path similar to IPv4's in code flow; functionally same. * Bump __FreeBSD_version to 700048; see UPDATING. This work was financially supported by another FreeBSD committer. Obtained from: p4://bms_netdev Submitted by: Wilbert de Graaf (original work) Reviewed by: rwatson (locking), silence from fenner, net@ (but with encouragement)
2007-06-12 16:24:56 +00:00
in_broadcast(ip->ip_dst, ifp)) {
struct inpcb *last;
Import rewrite of IPv4 socket multicast layer to support source-specific and protocol-independent host mode multicast. The code is written to accomodate IPv6, IGMPv3 and MLDv2 with only a little additional work. This change only pertains to FreeBSD's use as a multicast end-station and does not concern multicast routing; for an IGMPv3/MLDv2 router implementation, consider the XORP project. The work is based on Wilbert de Graaf's IGMPv3 code drop for FreeBSD 4.6, which is available at: http://www.kloosterhof.com/wilbert/igmpv3.html Summary * IPv4 multicast socket processing is now moved out of ip_output.c into a new module, in_mcast.c. * The in_mcast.c module implements the IPv4 legacy any-source API in terms of the protocol-independent source-specific API. * Source filters are lazy allocated as the common case does not use them. They are part of per inpcb state and are covered by the inpcb lock. * struct ip_mreqn is now supported to allow applications to specify multicast joins by interface index in the legacy IPv4 any-source API. * In UDP, an incoming multicast datagram only requires that the source port matches the 4-tuple if the socket was already bound by source port. An unbound socket SHOULD be able to receive multicasts sent from an ephemeral source port. * The UDP socket multicast filter mode defaults to exclusive, that is, sources present in the per-socket list will be blocked from delivery. * The RFC 3678 userland functions have been added to libc: setsourcefilter, getsourcefilter, setipv4sourcefilter, getipv4sourcefilter. * Definitions for IGMPv3 are merged but not yet used. * struct sockaddr_storage is now referenced from <netinet/in.h>. It is therefore defined there if not already declared in the same way as for the C99 types. * The RFC 1724 hack (specify 0.0.0.0/8 addresses to IP_MULTICAST_IF which are then interpreted as interface indexes) is now deprecated. * A patch for the Rhyolite.com routed in the FreeBSD base system is available in the -net archives. This only affects individuals running RIPv1 or RIPv2 via point-to-point and/or unnumbered interfaces. * Make IPv6 detach path similar to IPv4's in code flow; functionally same. * Bump __FreeBSD_version to 700048; see UPDATING. This work was financially supported by another FreeBSD committer. Obtained from: p4://bms_netdev Submitted by: Wilbert de Graaf (original work) Reviewed by: rwatson (locking), silence from fenner, net@ (but with encouragement)
2007-06-12 16:24:56 +00:00
struct ip_moptions *imo;
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_INFO_RLOCK(&V_udbinfo);
1994-05-24 10:09:53 +00:00
last = NULL;
LIST_FOREACH(inp, &V_udb, inp_list) {
if (inp->inp_lport != uh->uh_dport)
continue;
#ifdef INET6
1999-12-21 11:14:12 +00:00
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
Import rewrite of IPv4 socket multicast layer to support source-specific and protocol-independent host mode multicast. The code is written to accomodate IPv6, IGMPv3 and MLDv2 with only a little additional work. This change only pertains to FreeBSD's use as a multicast end-station and does not concern multicast routing; for an IGMPv3/MLDv2 router implementation, consider the XORP project. The work is based on Wilbert de Graaf's IGMPv3 code drop for FreeBSD 4.6, which is available at: http://www.kloosterhof.com/wilbert/igmpv3.html Summary * IPv4 multicast socket processing is now moved out of ip_output.c into a new module, in_mcast.c. * The in_mcast.c module implements the IPv4 legacy any-source API in terms of the protocol-independent source-specific API. * Source filters are lazy allocated as the common case does not use them. They are part of per inpcb state and are covered by the inpcb lock. * struct ip_mreqn is now supported to allow applications to specify multicast joins by interface index in the legacy IPv4 any-source API. * In UDP, an incoming multicast datagram only requires that the source port matches the 4-tuple if the socket was already bound by source port. An unbound socket SHOULD be able to receive multicasts sent from an ephemeral source port. * The UDP socket multicast filter mode defaults to exclusive, that is, sources present in the per-socket list will be blocked from delivery. * The RFC 3678 userland functions have been added to libc: setsourcefilter, getsourcefilter, setipv4sourcefilter, getipv4sourcefilter. * Definitions for IGMPv3 are merged but not yet used. * struct sockaddr_storage is now referenced from <netinet/in.h>. It is therefore defined there if not already declared in the same way as for the C99 types. * The RFC 1724 hack (specify 0.0.0.0/8 addresses to IP_MULTICAST_IF which are then interpreted as interface indexes) is now deprecated. * A patch for the Rhyolite.com routed in the FreeBSD base system is available in the -net archives. This only affects individuals running RIPv1 or RIPv2 via point-to-point and/or unnumbered interfaces. * Make IPv6 detach path similar to IPv4's in code flow; functionally same. * Bump __FreeBSD_version to 700048; see UPDATING. This work was financially supported by another FreeBSD committer. Obtained from: p4://bms_netdev Submitted by: Wilbert de Graaf (original work) Reviewed by: rwatson (locking), silence from fenner, net@ (but with encouragement)
2007-06-12 16:24:56 +00:00
if (inp->inp_laddr.s_addr != INADDR_ANY &&
inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
continue;
Import rewrite of IPv4 socket multicast layer to support source-specific and protocol-independent host mode multicast. The code is written to accomodate IPv6, IGMPv3 and MLDv2 with only a little additional work. This change only pertains to FreeBSD's use as a multicast end-station and does not concern multicast routing; for an IGMPv3/MLDv2 router implementation, consider the XORP project. The work is based on Wilbert de Graaf's IGMPv3 code drop for FreeBSD 4.6, which is available at: http://www.kloosterhof.com/wilbert/igmpv3.html Summary * IPv4 multicast socket processing is now moved out of ip_output.c into a new module, in_mcast.c. * The in_mcast.c module implements the IPv4 legacy any-source API in terms of the protocol-independent source-specific API. * Source filters are lazy allocated as the common case does not use them. They are part of per inpcb state and are covered by the inpcb lock. * struct ip_mreqn is now supported to allow applications to specify multicast joins by interface index in the legacy IPv4 any-source API. * In UDP, an incoming multicast datagram only requires that the source port matches the 4-tuple if the socket was already bound by source port. An unbound socket SHOULD be able to receive multicasts sent from an ephemeral source port. * The UDP socket multicast filter mode defaults to exclusive, that is, sources present in the per-socket list will be blocked from delivery. * The RFC 3678 userland functions have been added to libc: setsourcefilter, getsourcefilter, setipv4sourcefilter, getipv4sourcefilter. * Definitions for IGMPv3 are merged but not yet used. * struct sockaddr_storage is now referenced from <netinet/in.h>. It is therefore defined there if not already declared in the same way as for the C99 types. * The RFC 1724 hack (specify 0.0.0.0/8 addresses to IP_MULTICAST_IF which are then interpreted as interface indexes) is now deprecated. * A patch for the Rhyolite.com routed in the FreeBSD base system is available in the -net archives. This only affects individuals running RIPv1 or RIPv2 via point-to-point and/or unnumbered interfaces. * Make IPv6 detach path similar to IPv4's in code flow; functionally same. * Bump __FreeBSD_version to 700048; see UPDATING. This work was financially supported by another FreeBSD committer. Obtained from: p4://bms_netdev Submitted by: Wilbert de Graaf (original work) Reviewed by: rwatson (locking), silence from fenner, net@ (but with encouragement)
2007-06-12 16:24:56 +00:00
if (inp->inp_faddr.s_addr != INADDR_ANY &&
inp->inp_faddr.s_addr != ip->ip_src.s_addr)
continue;
Import rewrite of IPv4 socket multicast layer to support source-specific and protocol-independent host mode multicast. The code is written to accomodate IPv6, IGMPv3 and MLDv2 with only a little additional work. This change only pertains to FreeBSD's use as a multicast end-station and does not concern multicast routing; for an IGMPv3/MLDv2 router implementation, consider the XORP project. The work is based on Wilbert de Graaf's IGMPv3 code drop for FreeBSD 4.6, which is available at: http://www.kloosterhof.com/wilbert/igmpv3.html Summary * IPv4 multicast socket processing is now moved out of ip_output.c into a new module, in_mcast.c. * The in_mcast.c module implements the IPv4 legacy any-source API in terms of the protocol-independent source-specific API. * Source filters are lazy allocated as the common case does not use them. They are part of per inpcb state and are covered by the inpcb lock. * struct ip_mreqn is now supported to allow applications to specify multicast joins by interface index in the legacy IPv4 any-source API. * In UDP, an incoming multicast datagram only requires that the source port matches the 4-tuple if the socket was already bound by source port. An unbound socket SHOULD be able to receive multicasts sent from an ephemeral source port. * The UDP socket multicast filter mode defaults to exclusive, that is, sources present in the per-socket list will be blocked from delivery. * The RFC 3678 userland functions have been added to libc: setsourcefilter, getsourcefilter, setipv4sourcefilter, getipv4sourcefilter. * Definitions for IGMPv3 are merged but not yet used. * struct sockaddr_storage is now referenced from <netinet/in.h>. It is therefore defined there if not already declared in the same way as for the C99 types. * The RFC 1724 hack (specify 0.0.0.0/8 addresses to IP_MULTICAST_IF which are then interpreted as interface indexes) is now deprecated. * A patch for the Rhyolite.com routed in the FreeBSD base system is available in the -net archives. This only affects individuals running RIPv1 or RIPv2 via point-to-point and/or unnumbered interfaces. * Make IPv6 detach path similar to IPv4's in code flow; functionally same. * Bump __FreeBSD_version to 700048; see UPDATING. This work was financially supported by another FreeBSD committer. Obtained from: p4://bms_netdev Submitted by: Wilbert de Graaf (original work) Reviewed by: rwatson (locking), silence from fenner, net@ (but with encouragement)
2007-06-12 16:24:56 +00:00
if (inp->inp_fport != 0 &&
inp->inp_fport != uh->uh_sport)
continue;
Import rewrite of IPv4 socket multicast layer to support source-specific and protocol-independent host mode multicast. The code is written to accomodate IPv6, IGMPv3 and MLDv2 with only a little additional work. This change only pertains to FreeBSD's use as a multicast end-station and does not concern multicast routing; for an IGMPv3/MLDv2 router implementation, consider the XORP project. The work is based on Wilbert de Graaf's IGMPv3 code drop for FreeBSD 4.6, which is available at: http://www.kloosterhof.com/wilbert/igmpv3.html Summary * IPv4 multicast socket processing is now moved out of ip_output.c into a new module, in_mcast.c. * The in_mcast.c module implements the IPv4 legacy any-source API in terms of the protocol-independent source-specific API. * Source filters are lazy allocated as the common case does not use them. They are part of per inpcb state and are covered by the inpcb lock. * struct ip_mreqn is now supported to allow applications to specify multicast joins by interface index in the legacy IPv4 any-source API. * In UDP, an incoming multicast datagram only requires that the source port matches the 4-tuple if the socket was already bound by source port. An unbound socket SHOULD be able to receive multicasts sent from an ephemeral source port. * The UDP socket multicast filter mode defaults to exclusive, that is, sources present in the per-socket list will be blocked from delivery. * The RFC 3678 userland functions have been added to libc: setsourcefilter, getsourcefilter, setipv4sourcefilter, getipv4sourcefilter. * Definitions for IGMPv3 are merged but not yet used. * struct sockaddr_storage is now referenced from <netinet/in.h>. It is therefore defined there if not already declared in the same way as for the C99 types. * The RFC 1724 hack (specify 0.0.0.0/8 addresses to IP_MULTICAST_IF which are then interpreted as interface indexes) is now deprecated. * A patch for the Rhyolite.com routed in the FreeBSD base system is available in the -net archives. This only affects individuals running RIPv1 or RIPv2 via point-to-point and/or unnumbered interfaces. * Make IPv6 detach path similar to IPv4's in code flow; functionally same. * Bump __FreeBSD_version to 700048; see UPDATING. This work was financially supported by another FreeBSD committer. Obtained from: p4://bms_netdev Submitted by: Wilbert de Graaf (original work) Reviewed by: rwatson (locking), silence from fenner, net@ (but with encouragement)
2007-06-12 16:24:56 +00:00
INP_RLOCK(inp);
Import rewrite of IPv4 socket multicast layer to support source-specific and protocol-independent host mode multicast. The code is written to accomodate IPv6, IGMPv3 and MLDv2 with only a little additional work. This change only pertains to FreeBSD's use as a multicast end-station and does not concern multicast routing; for an IGMPv3/MLDv2 router implementation, consider the XORP project. The work is based on Wilbert de Graaf's IGMPv3 code drop for FreeBSD 4.6, which is available at: http://www.kloosterhof.com/wilbert/igmpv3.html Summary * IPv4 multicast socket processing is now moved out of ip_output.c into a new module, in_mcast.c. * The in_mcast.c module implements the IPv4 legacy any-source API in terms of the protocol-independent source-specific API. * Source filters are lazy allocated as the common case does not use them. They are part of per inpcb state and are covered by the inpcb lock. * struct ip_mreqn is now supported to allow applications to specify multicast joins by interface index in the legacy IPv4 any-source API. * In UDP, an incoming multicast datagram only requires that the source port matches the 4-tuple if the socket was already bound by source port. An unbound socket SHOULD be able to receive multicasts sent from an ephemeral source port. * The UDP socket multicast filter mode defaults to exclusive, that is, sources present in the per-socket list will be blocked from delivery. * The RFC 3678 userland functions have been added to libc: setsourcefilter, getsourcefilter, setipv4sourcefilter, getipv4sourcefilter. * Definitions for IGMPv3 are merged but not yet used. * struct sockaddr_storage is now referenced from <netinet/in.h>. It is therefore defined there if not already declared in the same way as for the C99 types. * The RFC 1724 hack (specify 0.0.0.0/8 addresses to IP_MULTICAST_IF which are then interpreted as interface indexes) is now deprecated. * A patch for the Rhyolite.com routed in the FreeBSD base system is available in the -net archives. This only affects individuals running RIPv1 or RIPv2 via point-to-point and/or unnumbered interfaces. * Make IPv6 detach path similar to IPv4's in code flow; functionally same. * Bump __FreeBSD_version to 700048; see UPDATING. This work was financially supported by another FreeBSD committer. Obtained from: p4://bms_netdev Submitted by: Wilbert de Graaf (original work) Reviewed by: rwatson (locking), silence from fenner, net@ (but with encouragement)
2007-06-12 16:24:56 +00:00
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
/*
* XXXRW: Because we weren't holding either the inpcb
* or the hash lock when we checked for a match
* before, we should probably recheck now that the
* inpcb lock is held.
*/
Import rewrite of IPv4 socket multicast layer to support source-specific and protocol-independent host mode multicast. The code is written to accomodate IPv6, IGMPv3 and MLDv2 with only a little additional work. This change only pertains to FreeBSD's use as a multicast end-station and does not concern multicast routing; for an IGMPv3/MLDv2 router implementation, consider the XORP project. The work is based on Wilbert de Graaf's IGMPv3 code drop for FreeBSD 4.6, which is available at: http://www.kloosterhof.com/wilbert/igmpv3.html Summary * IPv4 multicast socket processing is now moved out of ip_output.c into a new module, in_mcast.c. * The in_mcast.c module implements the IPv4 legacy any-source API in terms of the protocol-independent source-specific API. * Source filters are lazy allocated as the common case does not use them. They are part of per inpcb state and are covered by the inpcb lock. * struct ip_mreqn is now supported to allow applications to specify multicast joins by interface index in the legacy IPv4 any-source API. * In UDP, an incoming multicast datagram only requires that the source port matches the 4-tuple if the socket was already bound by source port. An unbound socket SHOULD be able to receive multicasts sent from an ephemeral source port. * The UDP socket multicast filter mode defaults to exclusive, that is, sources present in the per-socket list will be blocked from delivery. * The RFC 3678 userland functions have been added to libc: setsourcefilter, getsourcefilter, setipv4sourcefilter, getipv4sourcefilter. * Definitions for IGMPv3 are merged but not yet used. * struct sockaddr_storage is now referenced from <netinet/in.h>. It is therefore defined there if not already declared in the same way as for the C99 types. * The RFC 1724 hack (specify 0.0.0.0/8 addresses to IP_MULTICAST_IF which are then interpreted as interface indexes) is now deprecated. * A patch for the Rhyolite.com routed in the FreeBSD base system is available in the -net archives. This only affects individuals running RIPv1 or RIPv2 via point-to-point and/or unnumbered interfaces. * Make IPv6 detach path similar to IPv4's in code flow; functionally same. * Bump __FreeBSD_version to 700048; see UPDATING. This work was financially supported by another FreeBSD committer. Obtained from: p4://bms_netdev Submitted by: Wilbert de Graaf (original work) Reviewed by: rwatson (locking), silence from fenner, net@ (but with encouragement)
2007-06-12 16:24:56 +00:00
/*
* Handle socket delivery policy for any-source
* and source-specific multicast. [RFC3678]
*/
imo = inp->inp_moptions;
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
struct sockaddr_in group;
int blocked;
if (imo == NULL) {
INP_RUNLOCK(inp);
continue;
}
bzero(&group, sizeof(struct sockaddr_in));
group.sin_len = sizeof(struct sockaddr_in);
group.sin_family = AF_INET;
group.sin_addr = ip->ip_dst;
blocked = imo_multi_filter(imo, ifp,
(struct sockaddr *)&group,
(struct sockaddr *)&udp_in);
if (blocked != MCAST_PASS) {
if (blocked == MCAST_NOTGMEMBER)
IPSTAT_INC(ips_notmember);
if (blocked == MCAST_NOTSMEMBER ||
blocked == MCAST_MUTED)
UDPSTAT_INC(udps_filtermcast);
INP_RUNLOCK(inp);
continue;
}
}
1994-05-24 10:09:53 +00:00
if (last != NULL) {
struct mbuf *n;
n = m_copy(m, 0, M_COPYALL);
udp_append(last, ip, n, iphlen, &udp_in);
INP_RUNLOCK(last);
1994-05-24 10:09:53 +00:00
}
last = inp;
1994-05-24 10:09:53 +00:00
/*
* Don't look for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids
* searching through all pcbs in the common case of a
* non-shared port. It assumes that an application
* will never clear these options after setting them.
1994-05-24 10:09:53 +00:00
*/
if ((last->inp_socket->so_options &
(SO_REUSEPORT|SO_REUSEADDR)) == 0)
1994-05-24 10:09:53 +00:00
break;
}
if (last == NULL) {
/*
* No matching pcb found; discard datagram. (No need
* to send an ICMP Port Unreachable for a broadcast
* or multicast datgram.)
1994-05-24 10:09:53 +00:00
*/
UDPSTAT_INC(udps_noportbcast);
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
if (inp)
INP_RUNLOCK(inp);
INP_INFO_RUNLOCK(&V_udbinfo);
goto badunlocked;
1994-05-24 10:09:53 +00:00
}
udp_append(last, ip, m, iphlen, &udp_in);
INP_RUNLOCK(last);
INP_INFO_RUNLOCK(&V_udbinfo);
1994-05-24 10:09:53 +00:00
return;
}
1994-05-24 10:09:53 +00:00
/*
* Locate pcb for datagram.
1994-05-24 10:09:53 +00:00
*/
/*
* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
*/
if ((m->m_flags & M_IP_NEXTHOP) &&
(fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
struct sockaddr_in *next_hop;
next_hop = (struct sockaddr_in *)(fwd_tag + 1);
/*
* Transparently forwarded. Pretend to be the destination.
* Already got one like this?
*/
inp = in_pcblookup_mbuf(&V_udbinfo, ip->ip_src, uh->uh_sport,
ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
if (!inp) {
/*
* It's new. Try to find the ambushing socket.
* Because we've rewritten the destination address,
* any hardware-generated hash is ignored.
*/
inp = in_pcblookup(&V_udbinfo, ip->ip_src,
uh->uh_sport, next_hop->sin_addr,
next_hop->sin_port ? htons(next_hop->sin_port) :
uh->uh_dport, INPLOOKUP_WILDCARD |
INPLOOKUP_RLOCKPCB, ifp);
}
/* Remove the tag from the packet. We don't need it anymore. */
m_tag_delete(m, fwd_tag);
m->m_flags &= ~M_IP_NEXTHOP;
} else
inp = in_pcblookup_mbuf(&V_udbinfo, ip->ip_src, uh->uh_sport,
ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
INPLOOKUP_RLOCKPCB, ifp, m);
if (inp == NULL) {
if (udp_log_in_vain) {
char buf[4*sizeof "123"];
strcpy(buf, inet_ntoa(ip->ip_dst));
log(LOG_INFO,
"Connection attempt to UDP %s:%d from %s:%d\n",
buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
ntohs(uh->uh_sport));
}
UDPSTAT_INC(udps_noport);
1994-05-24 10:09:53 +00:00
if (m->m_flags & (M_BCAST | M_MCAST)) {
UDPSTAT_INC(udps_noportbcast);
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
goto badunlocked;
1994-05-24 10:09:53 +00:00
}
if (V_udp_blackhole)
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
goto badunlocked;
if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
goto badunlocked;
Fixed broken ICMP error generation, unified conversion of IP header fields between host and network byte order. The details: o icmp_error() now does not add IP header length. This fixes the problem when icmp_error() is called from ip_forward(). In this case the ip_len of the original IP datagram returned with ICMP error was wrong. o icmp_error() expects all three fields, ip_len, ip_id and ip_off in host byte order, so DTRT and convert these fields back to network byte order before sending a message. This fixes the problem described in PR 16240 and PR 20877 (ip_id field was returned in host byte order). o ip_ttl decrement operation in ip_forward() was moved down to make sure that it does not corrupt the copy of original IP datagram passed later to icmp_error(). o A copy of original IP datagram in ip_forward() was made a read-write, independent copy. This fixes the problem I first reported to Garrett Wollman and Bill Fenner and later put in audit trail of PR 16240: ip_output() (not always) converts fields of original datagram to network byte order, but because copy (mcopy) and its original (m) most likely share the same mbuf cluster, ip_output()'s manipulations on original also corrupted the copy. o ip_output() now expects all three fields, ip_len, ip_off and (what is significant) ip_id in host byte order. It was a headache for years that ip_id was handled differently. The only compatibility issue here is the raw IP socket interface with IP_HDRINCL socket option set and a non-zero ip_id field, but ip.4 manual page was unclear on whether in this case ip_id field should be in host or network byte order.
2000-09-01 12:33:03 +00:00
*ip = save_ip;
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
1994-05-24 10:09:53 +00:00
return;
}
/*
* Check the minimum TTL for socket.
*/
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_RLOCK_ASSERT(inp);
if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
INP_RUNLOCK(inp);
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
m_freem(m);
return;
}
UDP_PROBE(receive, NULL, inp, ip, inp, uh);
udp_append(inp, ip, m, iphlen, &udp_in);
INP_RUNLOCK(inp);
1994-05-24 10:09:53 +00:00
return;
badunlocked:
1994-05-24 10:09:53 +00:00
m_freem(m);
}
#endif /* INET */
1994-05-24 10:09:53 +00:00
/*
* Notify a udp user of an asynchronous error; just wake up so that they can
* collect error status.
1994-05-24 10:09:53 +00:00
*/
struct inpcb *
udp_notify(struct inpcb *inp, int errno)
1994-05-24 10:09:53 +00:00
{
/*
* While udp_ctlinput() always calls udp_notify() with a read lock
* when invoking it directly, in_pcbnotifyall() currently uses write
* locks due to sharing code with TCP. For now, accept either a read
* or a write lock, but a read lock is sufficient.
*/
INP_LOCK_ASSERT(inp);
1994-05-24 10:09:53 +00:00
inp->inp_socket->so_error = errno;
sorwakeup(inp->inp_socket);
sowwakeup(inp->inp_socket);
return (inp);
1994-05-24 10:09:53 +00:00
}
#ifdef INET
1994-05-24 10:09:53 +00:00
void
udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1994-05-24 10:09:53 +00:00
{
struct ip *ip = vip;
struct udphdr *uh;
struct in_addr faddr;
struct inpcb *inp;
faddr = ((struct sockaddr_in *)sa)->sin_addr;
if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
return;
1994-05-24 10:09:53 +00:00
/*
* Redirects don't need to be handled up here.
*/
if (PRC_IS_REDIRECT(cmd))
return;
/*
* Hostdead is ugly because it goes linearly through all PCBs.
*
* XXX: We never get this from ICMP, otherwise it makes an excellent
* DoS attack on machines with many connections.
*/
if (cmd == PRC_HOSTDEAD)
2007-05-07 13:47:39 +00:00
ip = NULL;
else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1994-05-24 10:09:53 +00:00
return;
2007-05-07 13:47:39 +00:00
if (ip != NULL) {
1994-05-24 10:09:53 +00:00
uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
inp = in_pcblookup(&V_udbinfo, faddr, uh->uh_dport,
ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
if (inp != NULL) {
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_RLOCK_ASSERT(inp);
if (inp->inp_socket != NULL) {
udp_notify(inp, inetctlerrmap[cmd]);
}
INP_RUNLOCK(inp);
}
1994-05-24 10:09:53 +00:00
} else
in_pcbnotifyall(&V_udbinfo, faddr, inetctlerrmap[cmd],
udp_notify);
1994-05-24 10:09:53 +00:00
}
#endif /* INET */
1994-05-24 10:09:53 +00:00
static int
udp_pcblist(SYSCTL_HANDLER_ARGS)
{
2005-06-01 11:24:00 +00:00
int error, i, n;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the PCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
if (req->oldptr == 0) {
n = V_udbinfo.ipi_count;
n += imax(n / 8, 10);
req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
return (0);
}
if (req->newptr != 0)
return (EPERM);
/*
* OK, now we're committed to doing something.
*/
INP_INFO_RLOCK(&V_udbinfo);
gencnt = V_udbinfo.ipi_gencnt;
n = V_udbinfo.ipi_count;
INP_INFO_RUNLOCK(&V_udbinfo);
error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
+ n * sizeof(struct xinpcb));
if (error != 0)
return (error);
xig.xig_len = sizeof xig;
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error)
return (error);
inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
if (inp_list == 0)
return (ENOMEM);
INP_INFO_RLOCK(&V_udbinfo);
for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
inp = LIST_NEXT(inp, inp_list)) {
INP_WLOCK(inp);
if (inp->inp_gencnt <= gencnt &&
cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
in_pcbref(inp);
inp_list[i++] = inp;
}
INP_WUNLOCK(inp);
}
INP_INFO_RUNLOCK(&V_udbinfo);
n = i;
error = 0;
for (i = 0; i < n; i++) {
inp = inp_list[i];
INP_RLOCK(inp);
if (inp->inp_gencnt <= gencnt) {
struct xinpcb xi;
bzero(&xi, sizeof(xi));
xi.xi_len = sizeof xi;
/* XXX should avoid extra copy */
bcopy(inp, &xi.xi_inp, sizeof *inp);
if (inp->inp_socket)
sotoxsocket(inp->inp_socket, &xi.xi_socket);
xi.xi_inp.inp_gencnt = inp->inp_gencnt;
INP_RUNLOCK(inp);
error = SYSCTL_OUT(req, &xi, sizeof xi);
} else
INP_RUNLOCK(inp);
}
INP_INFO_WLOCK(&V_udbinfo);
for (i = 0; i < n; i++) {
inp = inp_list[i];
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_RLOCK(inp);
if (!in_pcbrele_rlocked(inp))
INP_RUNLOCK(inp);
}
INP_INFO_WUNLOCK(&V_udbinfo);
if (!error) {
/*
* Give the user an updated idea of our state. If the
* generation differs from what we told her before, she knows
* that something happened while we were processing this
* request, and it might be necessary to retry.
*/
INP_INFO_RLOCK(&V_udbinfo);
xig.xig_gen = V_udbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = V_udbinfo.ipi_count;
INP_INFO_RUNLOCK(&V_udbinfo);
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
free(inp_list, M_TEMP);
return (error);
}
SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
udp_pcblist, "S,xinpcb", "List of active UDP sockets");
#ifdef INET
static int
udp_getcred(SYSCTL_HANDLER_ARGS)
{
struct xucred xuc;
struct sockaddr_in addrs[2];
struct inpcb *inp;
2005-06-01 11:24:00 +00:00
int error;
error = priv_check(req->td, PRIV_NETINET_GETCRED);
if (error)
return (error);
error = SYSCTL_IN(req, addrs, sizeof(addrs));
if (error)
return (error);
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
addrs[0].sin_addr, addrs[0].sin_port,
INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
if (inp != NULL) {
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_RLOCK_ASSERT(inp);
if (inp->inp_socket == NULL)
error = ENOENT;
if (error == 0)
error = cr_canseeinpcb(req->td->td_ucred, inp);
if (error == 0)
cru2x(inp->inp_cred, &xuc);
INP_RUNLOCK(inp);
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
} else
error = ENOENT;
if (error == 0)
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
return (error);
}
SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
#endif /* INET */
int
udp_ctloutput(struct socket *so, struct sockopt *sopt)
{
int error = 0, optval;
struct inpcb *inp;
#ifdef IPSEC_NAT_T
struct udpcb *up;
#endif
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
INP_WLOCK(inp);
if (sopt->sopt_level != IPPROTO_UDP) {
#ifdef INET6
if (INP_CHECK_SOCKAF(so, AF_INET6)) {
INP_WUNLOCK(inp);
error = ip6_ctloutput(so, sopt);
}
#endif
#if defined(INET) && defined(INET6)
else
#endif
#ifdef INET
{
INP_WUNLOCK(inp);
error = ip_ctloutput(so, sopt);
}
#endif
return (error);
}
switch (sopt->sopt_dir) {
case SOPT_SET:
switch (sopt->sopt_name) {
case UDP_ENCAP:
INP_WUNLOCK(inp);
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
break;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
INP_WLOCK(inp);
#ifdef IPSEC_NAT_T
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: up == NULL", __func__));
#endif
switch (optval) {
case 0:
/* Clear all UDP encap. */
#ifdef IPSEC_NAT_T
up->u_flags &= ~UF_ESPINUDP_ALL;
#endif
break;
#ifdef IPSEC_NAT_T
case UDP_ENCAP_ESPINUDP:
case UDP_ENCAP_ESPINUDP_NON_IKE:
up->u_flags &= ~UF_ESPINUDP_ALL;
if (optval == UDP_ENCAP_ESPINUDP)
up->u_flags |= UF_ESPINUDP;
else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE)
up->u_flags |= UF_ESPINUDP_NON_IKE;
break;
#endif
default:
error = EINVAL;
break;
}
INP_WUNLOCK(inp);
break;
default:
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
break;
case SOPT_GET:
switch (sopt->sopt_name) {
#ifdef IPSEC_NAT_T
case UDP_ENCAP:
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: up == NULL", __func__));
optval = up->u_flags & UF_ESPINUDP_ALL;
INP_WUNLOCK(inp);
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
#endif
default:
INP_WUNLOCK(inp);
error = ENOPROTOOPT;
break;
}
break;
}
return (error);
}
#ifdef INET
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
#define UH_WLOCKED 2
#define UH_RLOCKED 1
#define UH_UNLOCKED 0
static int
udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct thread *td)
1994-05-24 10:09:53 +00:00
{
struct udpiphdr *ui;
int len = m->m_pkthdr.len;
struct in_addr faddr, laddr;
struct cmsghdr *cm;
struct sockaddr_in *sin, src;
int error = 0;
int ipflags;
u_short fport, lport;
int unlock_udbinfo;
u_char tos;
1994-05-24 10:09:53 +00:00
/*
* udp_output() may need to temporarily bind or connect the current
* inpcb. As such, we don't know up front whether we will need the
* pcbinfo lock or not. Do any work to decide what is needed up
* front before acquiring any locks.
*/
if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
if (control)
m_freem(control);
m_freem(m);
return (EMSGSIZE);
}
src.sin_family = 0;
INP_RLOCK(inp);
tos = inp->inp_ip_tos;
if (control != NULL) {
/*
* XXX: Currently, we assume all the optional information is
* stored in a single mbuf.
*/
if (control->m_next) {
INP_RUNLOCK(inp);
m_freem(control);
m_freem(m);
return (EINVAL);
}
for (; control->m_len > 0;
control->m_data += CMSG_ALIGN(cm->cmsg_len),
control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
cm = mtod(control, struct cmsghdr *);
2007-05-07 13:47:39 +00:00
if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
|| cm->cmsg_len > control->m_len) {
error = EINVAL;
break;
}
if (cm->cmsg_level != IPPROTO_IP)
continue;
switch (cm->cmsg_type) {
case IP_SENDSRCADDR:
if (cm->cmsg_len !=
CMSG_LEN(sizeof(struct in_addr))) {
error = EINVAL;
break;
}
bzero(&src, sizeof(src));
src.sin_family = AF_INET;
src.sin_len = sizeof(src);
src.sin_port = inp->inp_lport;
2007-05-07 13:47:39 +00:00
src.sin_addr =
*(struct in_addr *)CMSG_DATA(cm);
break;
2007-05-07 13:47:39 +00:00
case IP_TOS:
if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
error = EINVAL;
break;
}
tos = *(u_char *)CMSG_DATA(cm);
break;
default:
error = ENOPROTOOPT;
break;
}
if (error)
break;
}
m_freem(control);
}
if (error) {
INP_RUNLOCK(inp);
m_freem(m);
return (error);
}
/*
* Depending on whether or not the application has bound or connected
* the socket, we may have to do varying levels of work. The optimal
* case is for a connected UDP socket, as a global lock isn't
* required at all.
*
* In order to decide which we need, we require stability of the
* inpcb binding, which we ensure by acquiring a read lock on the
* inpcb. This doesn't strictly follow the lock order, so we play
* the trylock and retry game; note that we may end up with more
* conservative locks than required the second time around, so later
* assertions have to accept that. Further analysis of the number of
* misses under contention is required.
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
*
* XXXRW: Check that hash locking update here is correct.
*/
sin = (struct sockaddr_in *)addr;
if (sin != NULL &&
(inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
INP_RUNLOCK(inp);
INP_WLOCK(inp);
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_WLOCK(&V_udbinfo);
unlock_udbinfo = UH_WLOCKED;
} else if ((sin != NULL && (
(sin->sin_addr.s_addr == INADDR_ANY) ||
(sin->sin_addr.s_addr == INADDR_BROADCAST) ||
(inp->inp_laddr.s_addr == INADDR_ANY) ||
(inp->inp_lport == 0))) ||
(src.sin_family == AF_INET)) {
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_RLOCK(&V_udbinfo);
unlock_udbinfo = UH_RLOCKED;
} else
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
unlock_udbinfo = UH_UNLOCKED;
/*
* If the IP_SENDSRCADDR control message was specified, override the
* source address for this datagram. Its use is invalidated if the
* address thus specified is incomplete or clobbers other inpcbs.
*/
laddr = inp->inp_laddr;
lport = inp->inp_lport;
if (src.sin_family == AF_INET) {
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_LOCK_ASSERT(&V_udbinfo);
if ((lport == 0) ||
(laddr.s_addr == INADDR_ANY &&
src.sin_addr.s_addr == INADDR_ANY)) {
error = EINVAL;
goto release;
}
error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
&laddr.s_addr, &lport, td->td_ucred);
if (error)
goto release;
}
/*
* If a UDP socket has been connected, then a local address/port will
* have been selected and bound.
*
* If a UDP socket has not been connected to, then an explicit
* destination address must be used, in which case a local
* address/port may not have been selected and bound.
*/
if (sin != NULL) {
INP_LOCK_ASSERT(inp);
1994-05-24 10:09:53 +00:00
if (inp->inp_faddr.s_addr != INADDR_ANY) {
error = EISCONN;
goto release;
}
/*
* Jail may rewrite the destination address, so let it do
* that before we use it.
*/
error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
if (error)
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
goto release;
/*
* If a local address or port hasn't yet been selected, or if
* the destination address needs to be rewritten due to using
* a special INADDR_ constant, invoke in_pcbconnect_setup()
* to do the heavy lifting. Once a port is selected, we
* commit the binding back to the socket; we also commit the
* binding of the address if in jail.
*
* If we already have a valid binding and we're not
* requesting a destination address rewrite, use a fast path.
*/
if (inp->inp_laddr.s_addr == INADDR_ANY ||
inp->inp_lport == 0 ||
sin->sin_addr.s_addr == INADDR_ANY ||
sin->sin_addr.s_addr == INADDR_BROADCAST) {
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_LOCK_ASSERT(&V_udbinfo);
error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
&lport, &faddr.s_addr, &fport, NULL,
td->td_ucred);
if (error)
goto release;
/*
* XXXRW: Why not commit the port if the address is
* !INADDR_ANY?
*/
/* Commit the local port if newly assigned. */
if (inp->inp_laddr.s_addr == INADDR_ANY &&
inp->inp_lport == 0) {
INP_WLOCK_ASSERT(inp);
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_WLOCK_ASSERT(&V_udbinfo);
/*
* Remember addr if jailed, to prevent
* rebinding.
*/
if (prison_flag(td->td_ucred, PR_IP4))
inp->inp_laddr = laddr;
inp->inp_lport = lport;
if (in_pcbinshash(inp) != 0) {
inp->inp_lport = 0;
error = EAGAIN;
goto release;
}
inp->inp_flags |= INP_ANONPORT;
}
} else {
faddr = sin->sin_addr;
fport = sin->sin_port;
1994-05-24 10:09:53 +00:00
}
} else {
INP_LOCK_ASSERT(inp);
faddr = inp->inp_faddr;
fport = inp->inp_fport;
if (faddr.s_addr == INADDR_ANY) {
1994-05-24 10:09:53 +00:00
error = ENOTCONN;
goto release;
}
}
1994-05-24 10:09:53 +00:00
/*
* Calculate data length and get a mbuf for UDP, IP, and possible
* link-layer headers. Immediate slide the data pointer back forward
* since we won't use that space at this layer.
1994-05-24 10:09:53 +00:00
*/
M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
if (m == NULL) {
1994-05-24 10:09:53 +00:00
error = ENOBUFS;
goto release;
1994-05-24 10:09:53 +00:00
}
m->m_data += max_linkhdr;
m->m_len -= max_linkhdr;
m->m_pkthdr.len -= max_linkhdr;
1994-05-24 10:09:53 +00:00
/*
* Fill in mbuf with extended UDP header and addresses and length put
* into network format.
1994-05-24 10:09:53 +00:00
*/
ui = mtod(m, struct udpiphdr *);
bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */
ui->ui_v = IPVERSION << 4;
1994-05-24 10:09:53 +00:00
ui->ui_pr = IPPROTO_UDP;
ui->ui_src = laddr;
ui->ui_dst = faddr;
ui->ui_sport = lport;
ui->ui_dport = fport;
ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1994-05-24 10:09:53 +00:00
/*
* Set the Don't Fragment bit in the IP header.
*/
if (inp->inp_flags & INP_DONTFRAG) {
struct ip *ip;
ip = (struct ip *)&ui->ui_i;
ip->ip_off |= htons(IP_DF);
}
ipflags = 0;
if (inp->inp_socket->so_options & SO_DONTROUTE)
ipflags |= IP_ROUTETOIF;
if (inp->inp_socket->so_options & SO_BROADCAST)
ipflags |= IP_ALLOWBROADCAST;
if (inp->inp_flags & INP_ONESBCAST)
ipflags |= IP_SENDONES;
#ifdef MAC
mac_inpcb_create_mbuf(inp, m);
#endif
1994-05-24 10:09:53 +00:00
/*
* Set up checksum and output datagram.
1994-05-24 10:09:53 +00:00
*/
if (V_udp_cksum) {
if (inp->inp_flags & INP_ONESBCAST)
faddr.s_addr = INADDR_BROADCAST;
ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP));
m->m_pkthdr.csum_flags = CSUM_UDP;
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
} else
ui->ui_sum = 0;
((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */
((struct ip *)ui)->ip_tos = tos; /* XXX */
UDPSTAT_INC(udps_opackets);
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
if (unlock_udbinfo == UH_WLOCKED)
INP_HASH_WUNLOCK(&V_udbinfo);
else if (unlock_udbinfo == UH_RLOCKED)
INP_HASH_RUNLOCK(&V_udbinfo);
UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
error = ip_output(m, inp->inp_options, NULL, ipflags,
inp->inp_moptions, inp);
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
if (unlock_udbinfo == UH_WLOCKED)
INP_WUNLOCK(inp);
else
INP_RUNLOCK(inp);
1994-05-24 10:09:53 +00:00
return (error);
release:
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
if (unlock_udbinfo == UH_WLOCKED) {
INP_HASH_WUNLOCK(&V_udbinfo);
INP_WUNLOCK(inp);
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
} else if (unlock_udbinfo == UH_RLOCKED) {
INP_HASH_RUNLOCK(&V_udbinfo);
INP_RUNLOCK(inp);
} else
INP_RUNLOCK(inp);
1994-05-24 10:09:53 +00:00
m_freem(m);
return (error);
}
#if defined(IPSEC) && defined(IPSEC_NAT_T)
/*
* Potentially decap ESP in UDP frame. Check for an ESP header
* and optional marker; if present, strip the UDP header and
* push the result through IPSec.
*
* Returns mbuf to be processed (potentially re-allocated) or
* NULL if consumed and/or processed.
*/
static struct mbuf *
udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off)
{
size_t minlen, payload, skip, iphlen;
caddr_t data;
struct udpcb *up;
struct m_tag *tag;
struct udphdr *udphdr;
struct ip *ip;
INP_RLOCK_ASSERT(inp);
/*
* Pull up data so the longest case is contiguous:
* IP/UDP hdr + non ESP marker + ESP hdr.
*/
minlen = off + sizeof(uint64_t) + sizeof(struct esp);
if (minlen > m->m_pkthdr.len)
minlen = m->m_pkthdr.len;
if ((m = m_pullup(m, minlen)) == NULL) {
IPSECSTAT_INC(ips_in_inval);
return (NULL); /* Bypass caller processing. */
}
data = mtod(m, caddr_t); /* Points to ip header. */
payload = m->m_len - off; /* Size of payload. */
if (payload == 1 && data[off] == '\xff')
return (m); /* NB: keepalive packet, no decap. */
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0,
("u_flags 0x%x", up->u_flags));
/*
* Check that the payload is large enough to hold an
* ESP header and compute the amount of data to remove.
*
* NB: the caller has already done a pullup for us.
* XXX can we assume alignment and eliminate bcopys?
*/
if (up->u_flags & UF_ESPINUDP_NON_IKE) {
/*
* draft-ietf-ipsec-nat-t-ike-0[01].txt and
* draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring
* possible AH mode non-IKE marker+non-ESP marker
* from draft-ietf-ipsec-udp-encaps-00.txt.
*/
uint64_t marker;
if (payload <= sizeof(uint64_t) + sizeof(struct esp))
return (m); /* NB: no decap. */
bcopy(data + off, &marker, sizeof(uint64_t));
if (marker != 0) /* Non-IKE marker. */
return (m); /* NB: no decap. */
skip = sizeof(uint64_t) + sizeof(struct udphdr);
} else {
uint32_t spi;
if (payload <= sizeof(struct esp)) {
IPSECSTAT_INC(ips_in_inval);
m_freem(m);
return (NULL); /* Discard. */
}
bcopy(data + off, &spi, sizeof(uint32_t));
if (spi == 0) /* Non-ESP marker. */
return (m); /* NB: no decap. */
skip = sizeof(struct udphdr);
}
/*
* Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
* the UDP ports. This is required if we want to select
* the right SPD for multiple hosts behind same NAT.
*
* NB: ports are maintained in network byte order everywhere
* in the NAT-T code.
*/
tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
2 * sizeof(uint16_t), M_NOWAIT);
if (tag == NULL) {
IPSECSTAT_INC(ips_in_nomem);
m_freem(m);
return (NULL); /* Discard. */
}
iphlen = off - sizeof(struct udphdr);
udphdr = (struct udphdr *)(data + iphlen);
((uint16_t *)(tag + 1))[0] = udphdr->uh_sport;
((uint16_t *)(tag + 1))[1] = udphdr->uh_dport;
m_tag_prepend(m, tag);
/*
* Remove the UDP header (and possibly the non ESP marker)
* IP header length is iphlen
* Before:
* <--- off --->
* +----+------+-----+
* | IP | UDP | ESP |
* +----+------+-----+
* <-skip->
* After:
* +----+-----+
* | IP | ESP |
* +----+-----+
* <-skip->
*/
ovbcopy(data, data + skip, iphlen);
m_adj(m, skip);
ip = mtod(m, struct ip *);
ip->ip_len = htons(ntohs(ip->ip_len) - skip);
ip->ip_p = IPPROTO_ESP;
/*
* We cannot yet update the cksums so clear any
* h/w cksum flags as they are no longer valid.
*/
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)
m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
(void) ipsec4_common_input(m, iphlen, ip->ip_p);
return (NULL); /* NB: consumed, bypass processing. */
}
#endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */
static void
udp_abort(struct socket *so)
1994-05-24 10:09:53 +00:00
{
struct inpcb *inp;
1994-05-24 10:09:53 +00:00
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_WLOCK(&V_udbinfo);
in_pcbdisconnect(inp);
inp->inp_laddr.s_addr = INADDR_ANY;
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_WUNLOCK(&V_udbinfo);
soisdisconnected(so);
}
INP_WUNLOCK(inp);
}
1994-05-24 10:09:53 +00:00
static int
udp_attach(struct socket *so, int proto, struct thread *td)
{
struct inpcb *inp;
2005-06-01 11:24:00 +00:00
int error;
1994-05-24 10:09:53 +00:00
inp = sotoinpcb(so);
KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
error = soreserve(so, udp_sendspace, udp_recvspace);
if (error)
return (error);
INP_INFO_WLOCK(&V_udbinfo);
error = in_pcballoc(so, &V_udbinfo);
if (error) {
INP_INFO_WUNLOCK(&V_udbinfo);
return (error);
}
inp = sotoinpcb(so);
inp->inp_vflag |= INP_IPV4;
inp->inp_ip_ttl = V_ip_defttl;
error = udp_newudpcb(inp);
if (error) {
in_pcbdetach(inp);
in_pcbfree(inp);
INP_INFO_WUNLOCK(&V_udbinfo);
return (error);
}
INP_WUNLOCK(inp);
INP_INFO_WUNLOCK(&V_udbinfo);
return (0);
}
#endif /* INET */
int
udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f)
{
struct inpcb *inp;
struct udpcb *up;
KASSERT(so->so_type == SOCK_DGRAM,
("udp_set_kernel_tunneling: !dgram"));
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
INP_WLOCK(inp);
up = intoudpcb(inp);
if (up->u_tun_func != NULL) {
INP_WUNLOCK(inp);
return (EBUSY);
}
up->u_tun_func = f;
INP_WUNLOCK(inp);
return (0);
}
1994-05-24 10:09:53 +00:00
#ifdef INET
static int
udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct inpcb *inp;
2005-06-01 11:24:00 +00:00
int error;
1994-05-24 10:09:53 +00:00
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
INP_WLOCK(inp);
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_WLOCK(&V_udbinfo);
error = in_pcbbind(inp, nam, td->td_ucred);
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_WUNLOCK(&V_udbinfo);
INP_WUNLOCK(inp);
return (error);
}
1994-05-24 10:09:53 +00:00
static void
udp_close(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_close: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_WLOCK(&V_udbinfo);
in_pcbdisconnect(inp);
inp->inp_laddr.s_addr = INADDR_ANY;
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_WUNLOCK(&V_udbinfo);
soisdisconnected(so);
}
INP_WUNLOCK(inp);
}
static int
udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct inpcb *inp;
2005-06-01 11:24:00 +00:00
int error;
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
struct sockaddr_in *sin;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr != INADDR_ANY) {
INP_WUNLOCK(inp);
return (EISCONN);
}
sin = (struct sockaddr_in *)nam;
error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
if (error != 0) {
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
INP_WUNLOCK(inp);
return (error);
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
}
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_WLOCK(&V_udbinfo);
error = in_pcbconnect(inp, nam, td->td_ucred);
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_WUNLOCK(&V_udbinfo);
if (error == 0)
soisconnected(so);
INP_WUNLOCK(inp);
return (error);
}
1994-05-24 10:09:53 +00:00
static void
udp_detach(struct socket *so)
{
struct inpcb *inp;
struct udpcb *up;
1994-05-24 10:09:53 +00:00
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
("udp_detach: not disconnected"));
INP_INFO_WLOCK(&V_udbinfo);
INP_WLOCK(inp);
up = intoudpcb(inp);
KASSERT(up != NULL, ("%s: up == NULL", __func__));
inp->inp_ppcb = NULL;
in_pcbdetach(inp);
in_pcbfree(inp);
INP_INFO_WUNLOCK(&V_udbinfo);
udp_discardcb(up);
}
1994-05-24 10:09:53 +00:00
static int
udp_disconnect(struct socket *so)
{
struct inpcb *inp;
1994-05-24 10:09:53 +00:00
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
INP_WLOCK(inp);
if (inp->inp_faddr.s_addr == INADDR_ANY) {
INP_WUNLOCK(inp);
return (ENOTCONN);
}
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_WLOCK(&V_udbinfo);
in_pcbdisconnect(inp);
inp->inp_laddr.s_addr = INADDR_ANY;
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
INP_HASH_WUNLOCK(&V_udbinfo);
SOCK_LOCK(so);
so->so_state &= ~SS_ISCONNECTED; /* XXX */
SOCK_UNLOCK(so);
INP_WUNLOCK(inp);
return (0);
}
static int
udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct thread *td)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_send: inp == NULL"));
return (udp_output(inp, m, addr, control, td));
1994-05-24 10:09:53 +00:00
}
#endif /* INET */
1994-05-24 10:09:53 +00:00
int
udp_shutdown(struct socket *so)
{
1994-05-24 10:09:53 +00:00
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
INP_WLOCK(inp);
socantsendmore(so);
INP_WUNLOCK(inp);
return (0);
}
#ifdef INET
struct pr_usrreqs udp_usrreqs = {
.pru_abort = udp_abort,
.pru_attach = udp_attach,
.pru_bind = udp_bind,
.pru_connect = udp_connect,
.pru_control = in_control,
.pru_detach = udp_detach,
.pru_disconnect = udp_disconnect,
.pru_peeraddr = in_getpeeraddr,
.pru_send = udp_send,
.pru_soreceive = soreceive_dgram,
.pru_sosend = sosend_dgram,
.pru_shutdown = udp_shutdown,
.pru_sockaddr = in_getsockaddr,
.pru_sosetlabel = in_pcbsosetlabel,
.pru_close = udp_close,
};
#endif /* INET */