freebsd-skq/lib/libc/net/ether_addr.c

234 lines
5.7 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-4-Clause
*
* Copyright (c) 1995 Bill Paul <wpaul@ctr.columbia.edu>.
* Copyright (c) 2007 Robert N. M. Watson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* ethernet address conversion and lookup routines
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Center for Telecommunications Research
* Columbia University, New York City
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/socket.h>
#include <net/ethernet.h>
#ifdef YP
#include <rpc/rpc.h>
#include <rpcsvc/yp_prot.h>
#include <rpcsvc/ypclnt.h>
#endif
#include <paths.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef _PATH_ETHERS
#define _PATH_ETHERS "/etc/ethers"
#endif
/*
* Parse a string of text containing an ethernet address and hostname and
* separate it into its component parts.
*/
int
ether_line(const char *l, struct ether_addr *e, char *hostname)
{
int i, o[6];
i = sscanf(l, "%x:%x:%x:%x:%x:%x %s", &o[0], &o[1], &o[2], &o[3],
&o[4], &o[5], hostname);
if (i == 7) {
for (i = 0; i < 6; i++)
e->octet[i] = o[i];
return (0);
} else {
return (-1);
}
}
/*
* Convert an ASCII representation of an ethernet address to binary form.
*/
struct ether_addr *
ether_aton_r(const char *a, struct ether_addr *e)
{
int i;
unsigned int o0, o1, o2, o3, o4, o5;
i = sscanf(a, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2, &o3, &o4, &o5);
if (i != 6)
return (NULL);
e->octet[0]=o0;
e->octet[1]=o1;
e->octet[2]=o2;
e->octet[3]=o3;
e->octet[4]=o4;
e->octet[5]=o5;
return (e);
}
struct ether_addr *
ether_aton(const char *a)
{
static struct ether_addr e;
return (ether_aton_r(a, &e));
}
/*
* Convert a binary representation of an ethernet address to an ASCII string.
*/
char *
ether_ntoa_r(const struct ether_addr *n, char *a)
{
int i;
i = sprintf(a, "%02x:%02x:%02x:%02x:%02x:%02x", n->octet[0],
n->octet[1], n->octet[2], n->octet[3], n->octet[4], n->octet[5]);
if (i < 17)
return (NULL);
return (a);
}
char *
ether_ntoa(const struct ether_addr *n)
{
static char a[18];
return (ether_ntoa_r(n, a));
}
/*
* Map an ethernet address to a hostname. Use either /etc/ethers or NIS/YP.
*/
int
ether_ntohost(char *hostname, const struct ether_addr *e)
{
FILE *fp;
char buf[BUFSIZ + 2];
struct ether_addr local_ether;
char local_host[MAXHOSTNAMELEN];
#ifdef YP
char *result;
int resultlen;
char *ether_a;
char *yp_domain;
#endif
if ((fp = fopen(_PATH_ETHERS, "re")) == NULL)
return (1);
while (fgets(buf,BUFSIZ,fp)) {
if (buf[0] == '#')
continue;
#ifdef YP
if (buf[0] == '+') {
if (yp_get_default_domain(&yp_domain))
Just when you thought it was safe... - getnetgrent.c: address some NIS compatibility problems. We really need to use the netgroup.byuser and netgroup.byhost maps to speed up innetgr() when using NIS. Also, change the NIS interaction in the following way: If /etc/netgroup does not exist or is empty (or contains only the NIS '+' token), we now use NIS exclusively. This lets us use the 'reverse netgroup' maps and is more or less the behavior of other platforms. If /etc/netgroup exists and contains local netgroup data (but no '+'). we use only lthe local stuff and ignore NIS. If /etc/netgroup exists and contains both local data and the '+', we use the local data nd the netgroup map as a single combined database (which, unfortunately, can be slow when the netgroup database is large). This is what we have been doing up until now. Head off a potential NULL pointer dereference in the old innetgr() matching code. Also fix the way the NIS netgroup map is incorporated into things: adding the '+' is supposed to make it seem as though the netgroup database is 'inserted' wherever the '+' is placed. We didn't quite do it that way before. (The NetBSD people apparently use a real, honest-to-gosh, netgroup.db database that works just like the password database. This is actually a neat idea since netgroups is the sort of thing that can really benefit from having multi-key search capability, particularly since reverse lookups require more than a trivial amount of processing. Should we do something like this too?) - netgroup.5: document all this stuff. - rcmd.c: some sleuthing with some test programs linked with my own version of innetgr() has revealed that SunOS always passes the NIS domain name to innetgr() in the 'domain' argument. We might as well do the same (if YP is defined). - ether_addr.c: also fix the NIS interaction so that placing the '+' token in the /etc/ethers file makes it seem like the NIS ethers data is 'inserted' at that point. (Chances are nobody will notice the effect of this change, which is just te way I like it. :)
1995-08-07 03:42:14 +00:00
continue;
ether_a = ether_ntoa(e);
if (yp_match(yp_domain, "ethers.byaddr", ether_a,
strlen(ether_a), &result, &resultlen)) {
Just when you thought it was safe... - getnetgrent.c: address some NIS compatibility problems. We really need to use the netgroup.byuser and netgroup.byhost maps to speed up innetgr() when using NIS. Also, change the NIS interaction in the following way: If /etc/netgroup does not exist or is empty (or contains only the NIS '+' token), we now use NIS exclusively. This lets us use the 'reverse netgroup' maps and is more or less the behavior of other platforms. If /etc/netgroup exists and contains local netgroup data (but no '+'). we use only lthe local stuff and ignore NIS. If /etc/netgroup exists and contains both local data and the '+', we use the local data nd the netgroup map as a single combined database (which, unfortunately, can be slow when the netgroup database is large). This is what we have been doing up until now. Head off a potential NULL pointer dereference in the old innetgr() matching code. Also fix the way the NIS netgroup map is incorporated into things: adding the '+' is supposed to make it seem as though the netgroup database is 'inserted' wherever the '+' is placed. We didn't quite do it that way before. (The NetBSD people apparently use a real, honest-to-gosh, netgroup.db database that works just like the password database. This is actually a neat idea since netgroups is the sort of thing that can really benefit from having multi-key search capability, particularly since reverse lookups require more than a trivial amount of processing. Should we do something like this too?) - netgroup.5: document all this stuff. - rcmd.c: some sleuthing with some test programs linked with my own version of innetgr() has revealed that SunOS always passes the NIS domain name to innetgr() in the 'domain' argument. We might as well do the same (if YP is defined). - ether_addr.c: also fix the NIS interaction so that placing the '+' token in the /etc/ethers file makes it seem like the NIS ethers data is 'inserted' at that point. (Chances are nobody will notice the effect of this change, which is just te way I like it. :)
1995-08-07 03:42:14 +00:00
continue;
}
strncpy(buf, result, resultlen);
buf[resultlen] = '\0';
free(result);
}
#endif
if (!ether_line(buf, &local_ether, local_host)) {
if (!bcmp((char *)&local_ether.octet[0],
(char *)&e->octet[0], 6)) {
/* We have a match. */
strcpy(hostname, local_host);
fclose(fp);
return(0);
}
}
}
fclose(fp);
return (1);
}
/*
* Map a hostname to an ethernet address using /etc/ethers or NIS/YP.
*/
int
ether_hostton(const char *hostname, struct ether_addr *e)
{
FILE *fp;
char buf[BUFSIZ + 2];
struct ether_addr local_ether;
char local_host[MAXHOSTNAMELEN];
#ifdef YP
char *result;
int resultlen;
char *yp_domain;
#endif
if ((fp = fopen(_PATH_ETHERS, "re")) == NULL)
return (1);
while (fgets(buf,BUFSIZ,fp)) {
if (buf[0] == '#')
continue;
#ifdef YP
if (buf[0] == '+') {
if (yp_get_default_domain(&yp_domain))
Just when you thought it was safe... - getnetgrent.c: address some NIS compatibility problems. We really need to use the netgroup.byuser and netgroup.byhost maps to speed up innetgr() when using NIS. Also, change the NIS interaction in the following way: If /etc/netgroup does not exist or is empty (or contains only the NIS '+' token), we now use NIS exclusively. This lets us use the 'reverse netgroup' maps and is more or less the behavior of other platforms. If /etc/netgroup exists and contains local netgroup data (but no '+'). we use only lthe local stuff and ignore NIS. If /etc/netgroup exists and contains both local data and the '+', we use the local data nd the netgroup map as a single combined database (which, unfortunately, can be slow when the netgroup database is large). This is what we have been doing up until now. Head off a potential NULL pointer dereference in the old innetgr() matching code. Also fix the way the NIS netgroup map is incorporated into things: adding the '+' is supposed to make it seem as though the netgroup database is 'inserted' wherever the '+' is placed. We didn't quite do it that way before. (The NetBSD people apparently use a real, honest-to-gosh, netgroup.db database that works just like the password database. This is actually a neat idea since netgroups is the sort of thing that can really benefit from having multi-key search capability, particularly since reverse lookups require more than a trivial amount of processing. Should we do something like this too?) - netgroup.5: document all this stuff. - rcmd.c: some sleuthing with some test programs linked with my own version of innetgr() has revealed that SunOS always passes the NIS domain name to innetgr() in the 'domain' argument. We might as well do the same (if YP is defined). - ether_addr.c: also fix the NIS interaction so that placing the '+' token in the /etc/ethers file makes it seem like the NIS ethers data is 'inserted' at that point. (Chances are nobody will notice the effect of this change, which is just te way I like it. :)
1995-08-07 03:42:14 +00:00
continue;
if (yp_match(yp_domain, "ethers.byname", hostname,
strlen(hostname), &result, &resultlen)) {
Just when you thought it was safe... - getnetgrent.c: address some NIS compatibility problems. We really need to use the netgroup.byuser and netgroup.byhost maps to speed up innetgr() when using NIS. Also, change the NIS interaction in the following way: If /etc/netgroup does not exist or is empty (or contains only the NIS '+' token), we now use NIS exclusively. This lets us use the 'reverse netgroup' maps and is more or less the behavior of other platforms. If /etc/netgroup exists and contains local netgroup data (but no '+'). we use only lthe local stuff and ignore NIS. If /etc/netgroup exists and contains both local data and the '+', we use the local data nd the netgroup map as a single combined database (which, unfortunately, can be slow when the netgroup database is large). This is what we have been doing up until now. Head off a potential NULL pointer dereference in the old innetgr() matching code. Also fix the way the NIS netgroup map is incorporated into things: adding the '+' is supposed to make it seem as though the netgroup database is 'inserted' wherever the '+' is placed. We didn't quite do it that way before. (The NetBSD people apparently use a real, honest-to-gosh, netgroup.db database that works just like the password database. This is actually a neat idea since netgroups is the sort of thing that can really benefit from having multi-key search capability, particularly since reverse lookups require more than a trivial amount of processing. Should we do something like this too?) - netgroup.5: document all this stuff. - rcmd.c: some sleuthing with some test programs linked with my own version of innetgr() has revealed that SunOS always passes the NIS domain name to innetgr() in the 'domain' argument. We might as well do the same (if YP is defined). - ether_addr.c: also fix the NIS interaction so that placing the '+' token in the /etc/ethers file makes it seem like the NIS ethers data is 'inserted' at that point. (Chances are nobody will notice the effect of this change, which is just te way I like it. :)
1995-08-07 03:42:14 +00:00
continue;
}
strncpy(buf, result, resultlen);
buf[resultlen] = '\0';
Just when you thought it was safe... - getnetgrent.c: address some NIS compatibility problems. We really need to use the netgroup.byuser and netgroup.byhost maps to speed up innetgr() when using NIS. Also, change the NIS interaction in the following way: If /etc/netgroup does not exist or is empty (or contains only the NIS '+' token), we now use NIS exclusively. This lets us use the 'reverse netgroup' maps and is more or less the behavior of other platforms. If /etc/netgroup exists and contains local netgroup data (but no '+'). we use only lthe local stuff and ignore NIS. If /etc/netgroup exists and contains both local data and the '+', we use the local data nd the netgroup map as a single combined database (which, unfortunately, can be slow when the netgroup database is large). This is what we have been doing up until now. Head off a potential NULL pointer dereference in the old innetgr() matching code. Also fix the way the NIS netgroup map is incorporated into things: adding the '+' is supposed to make it seem as though the netgroup database is 'inserted' wherever the '+' is placed. We didn't quite do it that way before. (The NetBSD people apparently use a real, honest-to-gosh, netgroup.db database that works just like the password database. This is actually a neat idea since netgroups is the sort of thing that can really benefit from having multi-key search capability, particularly since reverse lookups require more than a trivial amount of processing. Should we do something like this too?) - netgroup.5: document all this stuff. - rcmd.c: some sleuthing with some test programs linked with my own version of innetgr() has revealed that SunOS always passes the NIS domain name to innetgr() in the 'domain' argument. We might as well do the same (if YP is defined). - ether_addr.c: also fix the NIS interaction so that placing the '+' token in the /etc/ethers file makes it seem like the NIS ethers data is 'inserted' at that point. (Chances are nobody will notice the effect of this change, which is just te way I like it. :)
1995-08-07 03:42:14 +00:00
free(result);
}
#endif
if (!ether_line(buf, &local_ether, local_host)) {
if (!strcmp(hostname, local_host)) {
/* We have a match. */
bcopy((char *)&local_ether.octet[0],
(char *)&e->octet[0], 6);
fclose(fp);
return(0);
}
}
}
fclose(fp);
return (1);
}