freebsd-skq/sys/dev/isp/isp_ioctl.h

191 lines
5.3 KiB
C
Raw Normal View History

Spring MegaChange #1. ---- Make a device for each ISP- really usable only with devfs and add an ioctl entry point (this can be used to (re)set debug levels, reset the HBA, rescan the fabric, issue lips, etc). ---- Add in a kernel thread for Fibre Channel cards. The purpose of this thread is to be woken up to clean up after Fibre Channel events block things. Basically, any FC event that casts doubt on the location or identify of FC devices blocks the queues. When, and if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED async event, we activate the kthread which will then, in full thread context, re-evaluate the local loop and/or the fabric. When it's satisfied that things are stable, it can then release the blocked queues and let commands flow again. The prior mechanism was a lazy evaluation. That is, the next command to come down the pipe after change events would pay the full price for re-evaluation. And if this was done off of a softcall, it really could hang up the system. These changes brings the FreeBSD port more in line with the Solaris, Linux and NetBSD ports. It also, more importantly, gets us being more proactive about topology changes which could then be reflected upwards to CAM so that the periph driver can be informed sooner rather than later when things arrive or depart. --- Add in the (correct) usage of locking macros- we now have lock transition macros which allow us to transition from holding the CAM lock (Giant) and grabbing the softc lock and vice versa. Switch over to having this HBA do real locking. Some folks claim this won't be a win. They're right. But you have to start somewhere, and this will begin to teach us how to DTRT for HBAs, etc. -- Start putting in prototype 2300 support. Add back in LIP and Loop Reset as async events that each platform will handle. Add in another int_bogus instrumentation point. Do some more substantial target mode cleanups. MFC after: 8 weeks
2001-05-28 21:20:43 +00:00
/* $FreeBSD$ */
/*-
* Copyright (c) 1997-2006 by Matthew Jacob
* All rights reserved.
Spring MegaChange #1. ---- Make a device for each ISP- really usable only with devfs and add an ioctl entry point (this can be used to (re)set debug levels, reset the HBA, rescan the fabric, issue lips, etc). ---- Add in a kernel thread for Fibre Channel cards. The purpose of this thread is to be woken up to clean up after Fibre Channel events block things. Basically, any FC event that casts doubt on the location or identify of FC devices blocks the queues. When, and if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED async event, we activate the kthread which will then, in full thread context, re-evaluate the local loop and/or the fabric. When it's satisfied that things are stable, it can then release the blocked queues and let commands flow again. The prior mechanism was a lazy evaluation. That is, the next command to come down the pipe after change events would pay the full price for re-evaluation. And if this was done off of a softcall, it really could hang up the system. These changes brings the FreeBSD port more in line with the Solaris, Linux and NetBSD ports. It also, more importantly, gets us being more proactive about topology changes which could then be reflected upwards to CAM so that the periph driver can be informed sooner rather than later when things arrive or depart. --- Add in the (correct) usage of locking macros- we now have lock transition macros which allow us to transition from holding the CAM lock (Giant) and grabbing the softc lock and vice versa. Switch over to having this HBA do real locking. Some folks claim this won't be a win. They're right. But you have to start somewhere, and this will begin to teach us how to DTRT for HBAs, etc. -- Start putting in prototype 2300 support. Add back in LIP and Loop Reset as async events that each platform will handle. Add in another int_bogus instrumentation point. Do some more substantial target mode cleanups. MFC after: 8 weeks
2001-05-28 21:20:43 +00:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
Spring MegaChange #1. ---- Make a device for each ISP- really usable only with devfs and add an ioctl entry point (this can be used to (re)set debug levels, reset the HBA, rescan the fabric, issue lips, etc). ---- Add in a kernel thread for Fibre Channel cards. The purpose of this thread is to be woken up to clean up after Fibre Channel events block things. Basically, any FC event that casts doubt on the location or identify of FC devices blocks the queues. When, and if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED async event, we activate the kthread which will then, in full thread context, re-evaluate the local loop and/or the fabric. When it's satisfied that things are stable, it can then release the blocked queues and let commands flow again. The prior mechanism was a lazy evaluation. That is, the next command to come down the pipe after change events would pay the full price for re-evaluation. And if this was done off of a softcall, it really could hang up the system. These changes brings the FreeBSD port more in line with the Solaris, Linux and NetBSD ports. It also, more importantly, gets us being more proactive about topology changes which could then be reflected upwards to CAM so that the periph driver can be informed sooner rather than later when things arrive or depart. --- Add in the (correct) usage of locking macros- we now have lock transition macros which allow us to transition from holding the CAM lock (Giant) and grabbing the softc lock and vice versa. Switch over to having this HBA do real locking. Some folks claim this won't be a win. They're right. But you have to start somewhere, and this will begin to teach us how to DTRT for HBAs, etc. -- Start putting in prototype 2300 support. Add back in LIP and Loop Reset as async events that each platform will handle. Add in another int_bogus instrumentation point. Do some more substantial target mode cleanups. MFC after: 8 weeks
2001-05-28 21:20:43 +00:00
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
Spring MegaChange #1. ---- Make a device for each ISP- really usable only with devfs and add an ioctl entry point (this can be used to (re)set debug levels, reset the HBA, rescan the fabric, issue lips, etc). ---- Add in a kernel thread for Fibre Channel cards. The purpose of this thread is to be woken up to clean up after Fibre Channel events block things. Basically, any FC event that casts doubt on the location or identify of FC devices blocks the queues. When, and if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED async event, we activate the kthread which will then, in full thread context, re-evaluate the local loop and/or the fabric. When it's satisfied that things are stable, it can then release the blocked queues and let commands flow again. The prior mechanism was a lazy evaluation. That is, the next command to come down the pipe after change events would pay the full price for re-evaluation. And if this was done off of a softcall, it really could hang up the system. These changes brings the FreeBSD port more in line with the Solaris, Linux and NetBSD ports. It also, more importantly, gets us being more proactive about topology changes which could then be reflected upwards to CAM so that the periph driver can be informed sooner rather than later when things arrive or depart. --- Add in the (correct) usage of locking macros- we now have lock transition macros which allow us to transition from holding the CAM lock (Giant) and grabbing the softc lock and vice versa. Switch over to having this HBA do real locking. Some folks claim this won't be a win. They're right. But you have to start somewhere, and this will begin to teach us how to DTRT for HBAs, etc. -- Start putting in prototype 2300 support. Add back in LIP and Loop Reset as async events that each platform will handle. Add in another int_bogus instrumentation point. Do some more substantial target mode cleanups. MFC after: 8 weeks
2001-05-28 21:20:43 +00:00
*/
Spring MegaChange #1. ---- Make a device for each ISP- really usable only with devfs and add an ioctl entry point (this can be used to (re)set debug levels, reset the HBA, rescan the fabric, issue lips, etc). ---- Add in a kernel thread for Fibre Channel cards. The purpose of this thread is to be woken up to clean up after Fibre Channel events block things. Basically, any FC event that casts doubt on the location or identify of FC devices blocks the queues. When, and if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED async event, we activate the kthread which will then, in full thread context, re-evaluate the local loop and/or the fabric. When it's satisfied that things are stable, it can then release the blocked queues and let commands flow again. The prior mechanism was a lazy evaluation. That is, the next command to come down the pipe after change events would pay the full price for re-evaluation. And if this was done off of a softcall, it really could hang up the system. These changes brings the FreeBSD port more in line with the Solaris, Linux and NetBSD ports. It also, more importantly, gets us being more proactive about topology changes which could then be reflected upwards to CAM so that the periph driver can be informed sooner rather than later when things arrive or depart. --- Add in the (correct) usage of locking macros- we now have lock transition macros which allow us to transition from holding the CAM lock (Giant) and grabbing the softc lock and vice versa. Switch over to having this HBA do real locking. Some folks claim this won't be a win. They're right. But you have to start somewhere, and this will begin to teach us how to DTRT for HBAs, etc. -- Start putting in prototype 2300 support. Add back in LIP and Loop Reset as async events that each platform will handle. Add in another int_bogus instrumentation point. Do some more substantial target mode cleanups. MFC after: 8 weeks
2001-05-28 21:20:43 +00:00
/*
* ioctl definitions for Qlogic FC/SCSI HBA driver
*/
#define ISP_IOC (021) /* 'Ctrl-Q' */
/*
* This ioctl sets/retrieves the debugging level for this hba instance.
* Note that this is not a simple integer level- see ispvar.h for definitions.
*
* The arguments is a pointer to an integer with the new debugging level.
* The old value is written into this argument.
*/
#define ISP_SDBLEV _IOWR(ISP_IOC, 1, int)
Spring MegaChange #1. ---- Make a device for each ISP- really usable only with devfs and add an ioctl entry point (this can be used to (re)set debug levels, reset the HBA, rescan the fabric, issue lips, etc). ---- Add in a kernel thread for Fibre Channel cards. The purpose of this thread is to be woken up to clean up after Fibre Channel events block things. Basically, any FC event that casts doubt on the location or identify of FC devices blocks the queues. When, and if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED async event, we activate the kthread which will then, in full thread context, re-evaluate the local loop and/or the fabric. When it's satisfied that things are stable, it can then release the blocked queues and let commands flow again. The prior mechanism was a lazy evaluation. That is, the next command to come down the pipe after change events would pay the full price for re-evaluation. And if this was done off of a softcall, it really could hang up the system. These changes brings the FreeBSD port more in line with the Solaris, Linux and NetBSD ports. It also, more importantly, gets us being more proactive about topology changes which could then be reflected upwards to CAM so that the periph driver can be informed sooner rather than later when things arrive or depart. --- Add in the (correct) usage of locking macros- we now have lock transition macros which allow us to transition from holding the CAM lock (Giant) and grabbing the softc lock and vice versa. Switch over to having this HBA do real locking. Some folks claim this won't be a win. They're right. But you have to start somewhere, and this will begin to teach us how to DTRT for HBAs, etc. -- Start putting in prototype 2300 support. Add back in LIP and Loop Reset as async events that each platform will handle. Add in another int_bogus instrumentation point. Do some more substantial target mode cleanups. MFC after: 8 weeks
2001-05-28 21:20:43 +00:00
/*
* This ioctl resets the HBA. Use with caution.
*/
#define ISP_RESETHBA _IO(ISP_IOC, 2)
Spring MegaChange #1. ---- Make a device for each ISP- really usable only with devfs and add an ioctl entry point (this can be used to (re)set debug levels, reset the HBA, rescan the fabric, issue lips, etc). ---- Add in a kernel thread for Fibre Channel cards. The purpose of this thread is to be woken up to clean up after Fibre Channel events block things. Basically, any FC event that casts doubt on the location or identify of FC devices blocks the queues. When, and if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED async event, we activate the kthread which will then, in full thread context, re-evaluate the local loop and/or the fabric. When it's satisfied that things are stable, it can then release the blocked queues and let commands flow again. The prior mechanism was a lazy evaluation. That is, the next command to come down the pipe after change events would pay the full price for re-evaluation. And if this was done off of a softcall, it really could hang up the system. These changes brings the FreeBSD port more in line with the Solaris, Linux and NetBSD ports. It also, more importantly, gets us being more proactive about topology changes which could then be reflected upwards to CAM so that the periph driver can be informed sooner rather than later when things arrive or depart. --- Add in the (correct) usage of locking macros- we now have lock transition macros which allow us to transition from holding the CAM lock (Giant) and grabbing the softc lock and vice versa. Switch over to having this HBA do real locking. Some folks claim this won't be a win. They're right. But you have to start somewhere, and this will begin to teach us how to DTRT for HBAs, etc. -- Start putting in prototype 2300 support. Add back in LIP and Loop Reset as async events that each platform will handle. Add in another int_bogus instrumentation point. Do some more substantial target mode cleanups. MFC after: 8 weeks
2001-05-28 21:20:43 +00:00
/*
* This ioctl performs a fibre channel rescan.
Spring MegaChange #1. ---- Make a device for each ISP- really usable only with devfs and add an ioctl entry point (this can be used to (re)set debug levels, reset the HBA, rescan the fabric, issue lips, etc). ---- Add in a kernel thread for Fibre Channel cards. The purpose of this thread is to be woken up to clean up after Fibre Channel events block things. Basically, any FC event that casts doubt on the location or identify of FC devices blocks the queues. When, and if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED async event, we activate the kthread which will then, in full thread context, re-evaluate the local loop and/or the fabric. When it's satisfied that things are stable, it can then release the blocked queues and let commands flow again. The prior mechanism was a lazy evaluation. That is, the next command to come down the pipe after change events would pay the full price for re-evaluation. And if this was done off of a softcall, it really could hang up the system. These changes brings the FreeBSD port more in line with the Solaris, Linux and NetBSD ports. It also, more importantly, gets us being more proactive about topology changes which could then be reflected upwards to CAM so that the periph driver can be informed sooner rather than later when things arrive or depart. --- Add in the (correct) usage of locking macros- we now have lock transition macros which allow us to transition from holding the CAM lock (Giant) and grabbing the softc lock and vice versa. Switch over to having this HBA do real locking. Some folks claim this won't be a win. They're right. But you have to start somewhere, and this will begin to teach us how to DTRT for HBAs, etc. -- Start putting in prototype 2300 support. Add back in LIP and Loop Reset as async events that each platform will handle. Add in another int_bogus instrumentation point. Do some more substantial target mode cleanups. MFC after: 8 weeks
2001-05-28 21:20:43 +00:00
*/
#define ISP_RESCAN _IO(ISP_IOC, 3)
Spring MegaChange #1. ---- Make a device for each ISP- really usable only with devfs and add an ioctl entry point (this can be used to (re)set debug levels, reset the HBA, rescan the fabric, issue lips, etc). ---- Add in a kernel thread for Fibre Channel cards. The purpose of this thread is to be woken up to clean up after Fibre Channel events block things. Basically, any FC event that casts doubt on the location or identify of FC devices blocks the queues. When, and if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED async event, we activate the kthread which will then, in full thread context, re-evaluate the local loop and/or the fabric. When it's satisfied that things are stable, it can then release the blocked queues and let commands flow again. The prior mechanism was a lazy evaluation. That is, the next command to come down the pipe after change events would pay the full price for re-evaluation. And if this was done off of a softcall, it really could hang up the system. These changes brings the FreeBSD port more in line with the Solaris, Linux and NetBSD ports. It also, more importantly, gets us being more proactive about topology changes which could then be reflected upwards to CAM so that the periph driver can be informed sooner rather than later when things arrive or depart. --- Add in the (correct) usage of locking macros- we now have lock transition macros which allow us to transition from holding the CAM lock (Giant) and grabbing the softc lock and vice versa. Switch over to having this HBA do real locking. Some folks claim this won't be a win. They're right. But you have to start somewhere, and this will begin to teach us how to DTRT for HBAs, etc. -- Start putting in prototype 2300 support. Add back in LIP and Loop Reset as async events that each platform will handle. Add in another int_bogus instrumentation point. Do some more substantial target mode cleanups. MFC after: 8 weeks
2001-05-28 21:20:43 +00:00
/*
* This ioctl performs a reset and then will set the adapter to the
* role that was passed in (the old role will be returned). It almost
* goes w/o saying: use with caution.
*
* Channel selector stored in bits 8..32 as input to driver.
Spring MegaChange #1. ---- Make a device for each ISP- really usable only with devfs and add an ioctl entry point (this can be used to (re)set debug levels, reset the HBA, rescan the fabric, issue lips, etc). ---- Add in a kernel thread for Fibre Channel cards. The purpose of this thread is to be woken up to clean up after Fibre Channel events block things. Basically, any FC event that casts doubt on the location or identify of FC devices blocks the queues. When, and if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED async event, we activate the kthread which will then, in full thread context, re-evaluate the local loop and/or the fabric. When it's satisfied that things are stable, it can then release the blocked queues and let commands flow again. The prior mechanism was a lazy evaluation. That is, the next command to come down the pipe after change events would pay the full price for re-evaluation. And if this was done off of a softcall, it really could hang up the system. These changes brings the FreeBSD port more in line with the Solaris, Linux and NetBSD ports. It also, more importantly, gets us being more proactive about topology changes which could then be reflected upwards to CAM so that the periph driver can be informed sooner rather than later when things arrive or depart. --- Add in the (correct) usage of locking macros- we now have lock transition macros which allow us to transition from holding the CAM lock (Giant) and grabbing the softc lock and vice versa. Switch over to having this HBA do real locking. Some folks claim this won't be a win. They're right. But you have to start somewhere, and this will begin to teach us how to DTRT for HBAs, etc. -- Start putting in prototype 2300 support. Add back in LIP and Loop Reset as async events that each platform will handle. Add in another int_bogus instrumentation point. Do some more substantial target mode cleanups. MFC after: 8 weeks
2001-05-28 21:20:43 +00:00
*/
#define ISP_SETROLE _IOWR(ISP_IOC, 4, int)
#define ISP_ROLE_NONE 0x0
#define ISP_ROLE_TARGET 0x1
#define ISP_ROLE_INITIATOR 0x2
#define ISP_ROLE_BOTH (ISP_ROLE_TARGET|ISP_ROLE_INITIATOR)
Spring MegaChange #1. ---- Make a device for each ISP- really usable only with devfs and add an ioctl entry point (this can be used to (re)set debug levels, reset the HBA, rescan the fabric, issue lips, etc). ---- Add in a kernel thread for Fibre Channel cards. The purpose of this thread is to be woken up to clean up after Fibre Channel events block things. Basically, any FC event that casts doubt on the location or identify of FC devices blocks the queues. When, and if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED async event, we activate the kthread which will then, in full thread context, re-evaluate the local loop and/or the fabric. When it's satisfied that things are stable, it can then release the blocked queues and let commands flow again. The prior mechanism was a lazy evaluation. That is, the next command to come down the pipe after change events would pay the full price for re-evaluation. And if this was done off of a softcall, it really could hang up the system. These changes brings the FreeBSD port more in line with the Solaris, Linux and NetBSD ports. It also, more importantly, gets us being more proactive about topology changes which could then be reflected upwards to CAM so that the periph driver can be informed sooner rather than later when things arrive or depart. --- Add in the (correct) usage of locking macros- we now have lock transition macros which allow us to transition from holding the CAM lock (Giant) and grabbing the softc lock and vice versa. Switch over to having this HBA do real locking. Some folks claim this won't be a win. They're right. But you have to start somewhere, and this will begin to teach us how to DTRT for HBAs, etc. -- Start putting in prototype 2300 support. Add back in LIP and Loop Reset as async events that each platform will handle. Add in another int_bogus instrumentation point. Do some more substantial target mode cleanups. MFC after: 8 weeks
2001-05-28 21:20:43 +00:00
/*
* Get the current adapter role
* Channel selector passed in first argument.
Spring MegaChange #1. ---- Make a device for each ISP- really usable only with devfs and add an ioctl entry point (this can be used to (re)set debug levels, reset the HBA, rescan the fabric, issue lips, etc). ---- Add in a kernel thread for Fibre Channel cards. The purpose of this thread is to be woken up to clean up after Fibre Channel events block things. Basically, any FC event that casts doubt on the location or identify of FC devices blocks the queues. When, and if, we get the PORT DATABASE CHANGED or NAME SERVER DATABASE CHANGED async event, we activate the kthread which will then, in full thread context, re-evaluate the local loop and/or the fabric. When it's satisfied that things are stable, it can then release the blocked queues and let commands flow again. The prior mechanism was a lazy evaluation. That is, the next command to come down the pipe after change events would pay the full price for re-evaluation. And if this was done off of a softcall, it really could hang up the system. These changes brings the FreeBSD port more in line with the Solaris, Linux and NetBSD ports. It also, more importantly, gets us being more proactive about topology changes which could then be reflected upwards to CAM so that the periph driver can be informed sooner rather than later when things arrive or depart. --- Add in the (correct) usage of locking macros- we now have lock transition macros which allow us to transition from holding the CAM lock (Giant) and grabbing the softc lock and vice versa. Switch over to having this HBA do real locking. Some folks claim this won't be a win. They're right. But you have to start somewhere, and this will begin to teach us how to DTRT for HBAs, etc. -- Start putting in prototype 2300 support. Add back in LIP and Loop Reset as async events that each platform will handle. Add in another int_bogus instrumentation point. Do some more substantial target mode cleanups. MFC after: 8 weeks
2001-05-28 21:20:43 +00:00
*/
2003-11-14 05:13:00 +00:00
#define ISP_GETROLE _IOR(ISP_IOC, 5, int)
/*
* Get/Clear Stats
*/
#define ISP_STATS_VERSION 0
typedef struct {
uint8_t isp_stat_version;
uint8_t isp_type; /* (ro) reflects chip type */
uint8_t isp_revision; /* (ro) reflects chip version */
uint8_t unused1;
uint32_t unused2;
/*
* Statistics Counters
*/
#define ISP_NSTATS 16
#define ISP_INTCNT 0
#define ISP_INTBOGUS 1
#define ISP_INTMBOXC 2
#define ISP_INGOASYNC 3
#define ISP_RSLTCCMPLT 4
#define ISP_FPHCCMCPLT 5
#define ISP_RSCCHIWAT 6
#define ISP_FPCCHIWAT 7
uint64_t isp_stats[ISP_NSTATS];
} isp_stats_t;
#define ISP_GET_STATS _IOR(ISP_IOC, 6, isp_stats_t)
#define ISP_CLR_STATS _IO(ISP_IOC, 7)
/*
* Initiate a LIP
*/
#define ISP_FC_LIP _IO(ISP_IOC, 8)
/*
* Return the Port Database structure for the named device, or ENODEV if none.
* Caller fills in virtual loopid (0..255), aka 'target'. The driver returns
* ENODEV (if nothing valid there) or the actual loopid (for local loop devices
* only), 24 bit Port ID and Node and Port WWNs.
*/
struct isp_fc_device {
uint32_t loopid; /* 0..255,2047 */
uint32_t
chan : 6,
role : 2,
portid : 24; /* 24 bit Port ID */
uint64_t node_wwn;
uint64_t port_wwn;
};
#define ISP_FC_GETDINFO _IOWR(ISP_IOC, 9, struct isp_fc_device)
/*
* Get F/W crash dump
*/
#define ISP_GET_FW_CRASH_DUMP _IO(ISP_IOC, 10)
#define ISP_FORCE_CRASH_DUMP _IO(ISP_IOC, 11)
/*
* Get information about this Host Adapter, including current connection
* topology and capabilities.
*/
struct isp_hba_device {
uint32_t
: 8,
fc_speed : 4, /* Gbps */
: 1,
fc_topology : 3,
fc_channel : 8,
fc_loopid : 16;
uint8_t fc_fw_major;
uint8_t fc_fw_minor;
uint8_t fc_fw_micro;
uint8_t fc_nchannels; /* number of supported channels */
uint16_t fc_nports; /* number of supported ports */
uint64_t nvram_node_wwn;
uint64_t nvram_port_wwn;
uint64_t active_node_wwn;
uint64_t active_port_wwn;
};
#define ISP_TOPO_UNKNOWN 0 /* connection topology unknown */
#define ISP_TOPO_FCAL 1 /* private or PL_DA */
#define ISP_TOPO_LPORT 2 /* public loop */
#define ISP_TOPO_NPORT 3 /* N-port */
#define ISP_TOPO_FPORT 4 /* F-port */
/* don't use 12 any more */
#define ISP_FC_GETHINFO _IOWR(ISP_IOC, 13, struct isp_hba_device)
/*
* Various Reset Goodies
*/
struct isp_fc_tsk_mgmt {
uint32_t loopid; /* 0..255/2048 */
uint16_t lun;
uint16_t chan;
enum {
IPT_CLEAR_ACA,
IPT_TARGET_RESET,
IPT_LUN_RESET,
IPT_CLEAR_TASK_SET,
IPT_ABORT_TASK_SET
} action;
};
/* don't use 97 any more */
#define ISP_TSK_MGMT _IOWR(ISP_IOC, 98, struct isp_fc_tsk_mgmt)
/*
* Just gimme a list of WWPNs that are logged into us.
*/
typedef struct {
uint16_t count;
uint16_t channel;
struct wwnpair {
uint64_t wwnn;
uint64_t wwpn;
} wwns[1];
} isp_dlist_t;
#define ISP_FC_GETDLIST _IO(ISP_IOC, 14)