freebsd-skq/sys/dev/wb/if_wb.c

1640 lines
38 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-4-Clause
*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Winbond fast ethernet PCI NIC driver
*
* Supports various cheap network adapters based on the Winbond W89C840F
* fast ethernet controller chip. This includes adapters manufactured by
* Winbond itself and some made by Linksys.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Winbond W89C840F chip is a bus master; in some ways it resembles
* a DEC 'tulip' chip, only not as complicated. Unfortunately, it has
* one major difference which is that while the registers do many of
* the same things as a tulip adapter, the offsets are different: where
* tulip registers are typically spaced 8 bytes apart, the Winbond
* registers are spaced 4 bytes apart. The receiver filter is also
* programmed differently.
*
* Like the tulip, the Winbond chip uses small descriptors containing
* a status word, a control word and 32-bit areas that can either be used
* to point to two external data blocks, or to point to a single block
* and another descriptor in a linked list. Descriptors can be grouped
* together in blocks to form fixed length rings or can be chained
* together in linked lists. A single packet may be spread out over
* several descriptors if necessary.
*
* For the receive ring, this driver uses a linked list of descriptors,
* each pointing to a single mbuf cluster buffer, which us large enough
* to hold an entire packet. The link list is looped back to created a
* closed ring.
*
* For transmission, the driver creates a linked list of 'super descriptors'
* which each contain several individual descriptors linked toghether.
* Each 'super descriptor' contains WB_MAXFRAGS descriptors, which we
* abuse as fragment pointers. This allows us to use a buffer managment
* scheme very similar to that used in the ThunderLAN and Etherlink XL
* drivers.
*
* Autonegotiation is performed using the external PHY via the MII bus.
* The sample boards I have all use a Davicom PHY.
*
* Note: the author of the Linux driver for the Winbond chip alludes
* to some sort of flaw in the chip's design that seems to mandate some
* drastic workaround which signigicantly impairs transmit performance.
* I have no idea what he's on about: transmit performance with all
* three of my test boards seems fine.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
2004-05-30 20:00:41 +00:00
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/mii/mii.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/mii/miivar.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#define WB_USEIOSPACE
#include <dev/wb/if_wbreg.h>
MODULE_DEPEND(wb, pci, 1, 1, 1);
MODULE_DEPEND(wb, ether, 1, 1, 1);
MODULE_DEPEND(wb, miibus, 1, 1, 1);
/*
* Various supported device vendors/types and their names.
*/
static const struct wb_type wb_devs[] = {
{ WB_VENDORID, WB_DEVICEID_840F,
"Winbond W89C840F 10/100BaseTX" },
{ CP_VENDORID, CP_DEVICEID_RL100,
"Compex RL100-ATX 10/100baseTX" },
{ 0, 0, NULL }
};
static int wb_probe(device_t);
static int wb_attach(device_t);
static int wb_detach(device_t);
static void wb_bfree(struct mbuf *);
static int wb_newbuf(struct wb_softc *, struct wb_chain_onefrag *,
struct mbuf *);
static int wb_encap(struct wb_softc *, struct wb_chain *, struct mbuf *);
static void wb_rxeof(struct wb_softc *);
static void wb_rxeoc(struct wb_softc *);
static void wb_txeof(struct wb_softc *);
static void wb_txeoc(struct wb_softc *);
static void wb_intr(void *);
static void wb_tick(void *);
static void wb_start(struct ifnet *);
static void wb_start_locked(struct ifnet *);
static int wb_ioctl(struct ifnet *, u_long, caddr_t);
static void wb_init(void *);
static void wb_init_locked(struct wb_softc *);
static void wb_stop(struct wb_softc *);
static void wb_watchdog(struct wb_softc *);
static int wb_shutdown(device_t);
static int wb_ifmedia_upd(struct ifnet *);
static void wb_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void wb_eeprom_putbyte(struct wb_softc *, int);
static void wb_eeprom_getword(struct wb_softc *, int, u_int16_t *);
static void wb_read_eeprom(struct wb_softc *, caddr_t, int, int, int);
static void wb_setcfg(struct wb_softc *, u_int32_t);
static void wb_setmulti(struct wb_softc *);
static void wb_reset(struct wb_softc *);
static void wb_fixmedia(struct wb_softc *);
static int wb_list_rx_init(struct wb_softc *);
static int wb_list_tx_init(struct wb_softc *);
static int wb_miibus_readreg(device_t, int, int);
static int wb_miibus_writereg(device_t, int, int, int);
static void wb_miibus_statchg(device_t);
/*
* MII bit-bang glue
*/
static uint32_t wb_mii_bitbang_read(device_t);
static void wb_mii_bitbang_write(device_t, uint32_t);
static const struct mii_bitbang_ops wb_mii_bitbang_ops = {
wb_mii_bitbang_read,
wb_mii_bitbang_write,
{
WB_SIO_MII_DATAOUT, /* MII_BIT_MDO */
WB_SIO_MII_DATAIN, /* MII_BIT_MDI */
WB_SIO_MII_CLK, /* MII_BIT_MDC */
WB_SIO_MII_DIR, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
#ifdef WB_USEIOSPACE
#define WB_RES SYS_RES_IOPORT
#define WB_RID WB_PCI_LOIO
#else
#define WB_RES SYS_RES_MEMORY
#define WB_RID WB_PCI_LOMEM
#endif
static device_method_t wb_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, wb_probe),
DEVMETHOD(device_attach, wb_attach),
DEVMETHOD(device_detach, wb_detach),
DEVMETHOD(device_shutdown, wb_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, wb_miibus_readreg),
DEVMETHOD(miibus_writereg, wb_miibus_writereg),
DEVMETHOD(miibus_statchg, wb_miibus_statchg),
DEVMETHOD_END
};
static driver_t wb_driver = {
"wb",
wb_methods,
sizeof(struct wb_softc)
};
static devclass_t wb_devclass;
DRIVER_MODULE(wb, pci, wb_driver, wb_devclass, 0, 0);
Un-do the changes to the DRIVER_MODULE() declarations in these drivers. This whole idea isn't going to work until somebody makes the bus/kld code smarter. The idea here is to change the module's internal name from "foo" to "if_foo" so that ifconfig can tell a network driver from a non-network one. However doing this doesn't work correctly no matter how you slice it. For everything to work, you have to change the name in both the driver_t struct and the DRIVER_MODULE() declaration. The problems are: - If you change the name in both places, then the kernel thinks that the device's name is now "if_foo", so you get things like: if_foo0: <FOO ethernet> irq foo at device foo on pcifoo if_foo0: Ethernet address: foo:foo:foo:foo:foo:foo This is bogus. Now the device name doesn't agree with the logical interface name. There's no reason for this, and it violates the principle of least astonishment. - If you leave the name in the driver_t struct as "foo" and only change the names in the DRIVER_MODULE() declaration to "if_foo" then attaching drivers to child devices doesn't work because the names don't agree. This breaks miibus: drivers that need to have miibuses and PHY drivers attached never get them. In other words: damned if you do, damned if you don't. This needs to be thought through some more. Since the drivers that use miibus are broken, I have to change these all back in order to make them work again. Yes this will stop ifconfig from being able to demand load driver modules. On the whole, I'd rather have that than having the drivers not work at all.
1999-09-20 19:06:45 +00:00
DRIVER_MODULE(miibus, wb, miibus_driver, miibus_devclass, 0, 0);
#define WB_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | (x))
#define WB_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) \
CSR_WRITE_4(sc, WB_SIO, \
CSR_READ_4(sc, WB_SIO) | (x))
#define SIO_CLR(x) \
CSR_WRITE_4(sc, WB_SIO, \
CSR_READ_4(sc, WB_SIO) & ~(x))
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void
wb_eeprom_putbyte(sc, addr)
struct wb_softc *sc;
int addr;
{
int d, i;
d = addr | WB_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(WB_SIO_EE_DATAIN);
} else {
SIO_CLR(WB_SIO_EE_DATAIN);
}
DELAY(100);
SIO_SET(WB_SIO_EE_CLK);
DELAY(150);
SIO_CLR(WB_SIO_EE_CLK);
DELAY(100);
}
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
wb_eeprom_getword(sc, addr, dest)
struct wb_softc *sc;
int addr;
u_int16_t *dest;
{
int i;
u_int16_t word = 0;
/* Enter EEPROM access mode. */
CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
/*
* Send address of word we want to read.
*/
wb_eeprom_putbyte(sc, addr);
CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(WB_SIO_EE_CLK);
DELAY(100);
if (CSR_READ_4(sc, WB_SIO) & WB_SIO_EE_DATAOUT)
word |= i;
SIO_CLR(WB_SIO_EE_CLK);
DELAY(100);
}
/* Turn off EEPROM access mode. */
CSR_WRITE_4(sc, WB_SIO, 0);
*dest = word;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void
wb_read_eeprom(sc, dest, off, cnt, swap)
struct wb_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
wb_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
}
/*
* Read the MII serial port for the MII bit-bang module.
*/
static uint32_t
wb_mii_bitbang_read(device_t dev)
{
struct wb_softc *sc;
uint32_t val;
sc = device_get_softc(dev);
val = CSR_READ_4(sc, WB_SIO);
CSR_BARRIER(sc, WB_SIO, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (val);
}
/*
* Write the MII serial port for the MII bit-bang module.
*/
static void
wb_mii_bitbang_write(device_t dev, uint32_t val)
{
struct wb_softc *sc;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, WB_SIO, val);
CSR_BARRIER(sc, WB_SIO, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
static int
wb_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
return (mii_bitbang_readreg(dev, &wb_mii_bitbang_ops, phy, reg));
}
static int
wb_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
mii_bitbang_writereg(dev, &wb_mii_bitbang_ops, phy, reg, data);
return(0);
}
static void
wb_miibus_statchg(dev)
device_t dev;
{
struct wb_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
mii = device_get_softc(sc->wb_miibus);
wb_setcfg(sc, mii->mii_media_active);
}
/*
* Program the 64-bit multicast hash filter.
*/
static void
wb_setmulti(sc)
struct wb_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
u_int32_t rxfilt;
int mcnt = 0;
ifp = sc->wb_ifp;
rxfilt = CSR_READ_4(sc, WB_NETCFG);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= WB_NETCFG_RX_MULTI;
CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
CSR_WRITE_4(sc, WB_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, WB_MAR1, 0xFFFFFFFF);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, WB_MAR0, 0);
CSR_WRITE_4(sc, WB_MAR1, 0);
/* now program new ones */
if_maddr_rlock(ifp);
ifnet: Replace if_addr_lock rwlock with epoch + mutex Run on LLNW canaries and tested by pho@ gallatin: Using a 14-core, 28-HTT single socket E5-2697 v3 with a 40GbE MLX5 based ConnectX 4-LX NIC, I see an almost 12% improvement in received packet rate, and a larger improvement in bytes delivered all the way to userspace. When the host receiving 64 streams of netperf -H $DUT -t UDP_STREAM -- -m 1, I see, using nstat -I mce0 1 before the patch: InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree 4.98 0.00 4.42 0.00 4235592 33 83.80 4720653 2149771 1235 247.32 4.73 0.00 4.20 0.00 4025260 33 82.99 4724900 2139833 1204 247.32 4.72 0.00 4.20 0.00 4035252 33 82.14 4719162 2132023 1264 247.32 4.71 0.00 4.21 0.00 4073206 33 83.68 4744973 2123317 1347 247.32 4.72 0.00 4.21 0.00 4061118 33 80.82 4713615 2188091 1490 247.32 4.72 0.00 4.21 0.00 4051675 33 85.29 4727399 2109011 1205 247.32 4.73 0.00 4.21 0.00 4039056 33 84.65 4724735 2102603 1053 247.32 After the patch InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree 5.43 0.00 4.20 0.00 3313143 33 84.96 5434214 1900162 2656 245.51 5.43 0.00 4.20 0.00 3308527 33 85.24 5439695 1809382 2521 245.51 5.42 0.00 4.19 0.00 3316778 33 87.54 5416028 1805835 2256 245.51 5.42 0.00 4.19 0.00 3317673 33 90.44 5426044 1763056 2332 245.51 5.42 0.00 4.19 0.00 3314839 33 88.11 5435732 1792218 2499 245.52 5.44 0.00 4.19 0.00 3293228 33 91.84 5426301 1668597 2121 245.52 Similarly, netperf reports 230Mb/s before the patch, and 270Mb/s after the patch Reviewed by: gallatin Sponsored by: Limelight Networks Differential Revision: https://reviews.freebsd.org/D15366
2018-05-18 20:13:34 +00:00
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
}
if_maddr_runlock(ifp);
if (mcnt)
rxfilt |= WB_NETCFG_RX_MULTI;
else
rxfilt &= ~WB_NETCFG_RX_MULTI;
CSR_WRITE_4(sc, WB_MAR0, hashes[0]);
CSR_WRITE_4(sc, WB_MAR1, hashes[1]);
CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
}
/*
* The Winbond manual states that in order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
static void
wb_setcfg(sc, media)
struct wb_softc *sc;
u_int32_t media;
{
int i, restart = 0;
if (CSR_READ_4(sc, WB_NETCFG) & (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON)) {
restart = 1;
WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON));
for (i = 0; i < WB_TIMEOUT; i++) {
DELAY(10);
if ((CSR_READ_4(sc, WB_ISR) & WB_ISR_TX_IDLE) &&
(CSR_READ_4(sc, WB_ISR) & WB_ISR_RX_IDLE))
break;
}
if (i == WB_TIMEOUT)
device_printf(sc->wb_dev,
"failed to force tx and rx to idle state\n");
}
if (IFM_SUBTYPE(media) == IFM_10_T)
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
else
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
if ((media & IFM_GMASK) == IFM_FDX)
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
else
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
if (restart)
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON|WB_NETCFG_RX_ON);
}
static void
wb_reset(sc)
struct wb_softc *sc;
{
int i;
struct mii_data *mii;
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
struct mii_softc *miisc;
CSR_WRITE_4(sc, WB_NETCFG, 0);
CSR_WRITE_4(sc, WB_BUSCTL, 0);
CSR_WRITE_4(sc, WB_TXADDR, 0);
CSR_WRITE_4(sc, WB_RXADDR, 0);
WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
for (i = 0; i < WB_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, WB_BUSCTL) & WB_BUSCTL_RESET))
break;
}
if (i == WB_TIMEOUT)
device_printf(sc->wb_dev, "reset never completed!\n");
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
if (sc->wb_miibus == NULL)
return;
mii = device_get_softc(sc->wb_miibus);
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
}
static void
wb_fixmedia(sc)
struct wb_softc *sc;
{
struct mii_data *mii = NULL;
struct ifnet *ifp;
u_int32_t media;
mii = device_get_softc(sc->wb_miibus);
ifp = sc->wb_ifp;
mii_pollstat(mii);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
media = mii->mii_media_active & ~IFM_10_T;
media |= IFM_100_TX;
} else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
media = mii->mii_media_active & ~IFM_100_TX;
media |= IFM_10_T;
} else
return;
ifmedia_set(&mii->mii_media, media);
}
/*
* Probe for a Winbond chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
wb_probe(dev)
device_t dev;
{
const struct wb_type *t;
t = wb_devs;
while(t->wb_name != NULL) {
if ((pci_get_vendor(dev) == t->wb_vid) &&
(pci_get_device(dev) == t->wb_did)) {
device_set_desc(dev, t->wb_name);
2005-02-24 21:32:56 +00:00
return (BUS_PROBE_DEFAULT);
}
t++;
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
wb_attach(dev)
device_t dev;
{
u_char eaddr[ETHER_ADDR_LEN];
struct wb_softc *sc;
struct ifnet *ifp;
int error = 0, rid;
sc = device_get_softc(dev);
sc->wb_dev = dev;
mtx_init(&sc->wb_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->wb_stat_callout, &sc->wb_mtx, 0);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
rid = WB_RID;
sc->wb_res = bus_alloc_resource_any(dev, WB_RES, &rid, RF_ACTIVE);
if (sc->wb_res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
error = ENXIO;
goto fail;
}
/* Allocate interrupt */
rid = 0;
sc->wb_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->wb_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/* Save the cache line size. */
sc->wb_cachesize = pci_read_config(dev, WB_PCI_CACHELEN, 4) & 0xFF;
/* Reset the adapter. */
wb_reset(sc);
/*
* Get station address from the EEPROM.
*/
wb_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 0);
sc->wb_ldata = contigmalloc(sizeof(struct wb_list_data) + 8, M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->wb_ldata == NULL) {
device_printf(dev, "no memory for list buffers!\n");
error = ENXIO;
goto fail;
}
bzero(sc->wb_ldata, sizeof(struct wb_list_data));
ifp = sc->wb_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = wb_ioctl;
ifp->if_start = wb_start;
ifp->if_init = wb_init;
ifp->if_snd.ifq_maxlen = WB_TX_LIST_CNT - 1;
/*
* Do MII setup.
*/
error = mii_attach(dev, &sc->wb_miibus, ifp, wb_ifmedia_upd,
wb_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
2010-11-07 12:29:26 +00:00
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
Clean up locking and resource management for pci/if_* - Remove locking of the softc in the attach method, instead depending on bus_setup_intr being at the end of attach (delaying interrupt enable until after ether_ifattach is called) - Call *_detach directly in the error case of attach, depending on checking in detach to only free resources that were allocated. This puts all resource freeing in one place, avoiding thinkos that lead to memory leaks. - Add bus_child_present check to calls to *_stop in the detach method to be sure hw is present before touching its registers. - Remove bzero softc calls since device_t should do this for us. - dc: move interrupt allocation back where it was before. It was unnecessary to move it. This reverts part of 1.88 - rl: move irq allocation before ether_ifattach. Problems might have been caused by allocating the irq after enabling interrupts on the card. - rl: call rl_stop before ether_ifdetach - sf: call sf_stop before ether_ifdetach - sis: add missed free of sis_tag - sis: check errors from tag creation - sis: move dmamem_alloc and dmamap_load to happen at same time as tag creation - sk: remove duplicate initialization of sk_dev - ste: add missed bus_generic_detach - ti: call ti_stop before ether_ifdetach - ti: add missed error setting in ti_rdata alloc failure - vr: add missed error setting in I/O, memory mapping cases - xl: add missed error setting in I/O, memory mapping cases - xl: remove multi-level goto on attach failure - xl: move dmamem_alloc and dmamap_load to happen at same time as tag creation - Calls to free(9) are unconditional because it is valid to call free with a null pointer. Reviewed by: imp, mdodd
2003-03-31 17:29:43 +00:00
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(dev, sc->wb_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, wb_intr, sc, &sc->wb_intrhand);
Clean up locking and resource management for pci/if_* - Remove locking of the softc in the attach method, instead depending on bus_setup_intr being at the end of attach (delaying interrupt enable until after ether_ifattach is called) - Call *_detach directly in the error case of attach, depending on checking in detach to only free resources that were allocated. This puts all resource freeing in one place, avoiding thinkos that lead to memory leaks. - Add bus_child_present check to calls to *_stop in the detach method to be sure hw is present before touching its registers. - Remove bzero softc calls since device_t should do this for us. - dc: move interrupt allocation back where it was before. It was unnecessary to move it. This reverts part of 1.88 - rl: move irq allocation before ether_ifattach. Problems might have been caused by allocating the irq after enabling interrupts on the card. - rl: call rl_stop before ether_ifdetach - sf: call sf_stop before ether_ifdetach - sis: add missed free of sis_tag - sis: check errors from tag creation - sis: move dmamem_alloc and dmamap_load to happen at same time as tag creation - sk: remove duplicate initialization of sk_dev - ste: add missed bus_generic_detach - ti: call ti_stop before ether_ifdetach - ti: add missed error setting in ti_rdata alloc failure - vr: add missed error setting in I/O, memory mapping cases - xl: add missed error setting in I/O, memory mapping cases - xl: remove multi-level goto on attach failure - xl: move dmamem_alloc and dmamap_load to happen at same time as tag creation - Calls to free(9) are unconditional because it is valid to call free with a null pointer. Reviewed by: imp, mdodd
2003-03-31 17:29:43 +00:00
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
Clean up locking and resource management for pci/if_* - Remove locking of the softc in the attach method, instead depending on bus_setup_intr being at the end of attach (delaying interrupt enable until after ether_ifattach is called) - Call *_detach directly in the error case of attach, depending on checking in detach to only free resources that were allocated. This puts all resource freeing in one place, avoiding thinkos that lead to memory leaks. - Add bus_child_present check to calls to *_stop in the detach method to be sure hw is present before touching its registers. - Remove bzero softc calls since device_t should do this for us. - dc: move interrupt allocation back where it was before. It was unnecessary to move it. This reverts part of 1.88 - rl: move irq allocation before ether_ifattach. Problems might have been caused by allocating the irq after enabling interrupts on the card. - rl: call rl_stop before ether_ifdetach - sf: call sf_stop before ether_ifdetach - sis: add missed free of sis_tag - sis: check errors from tag creation - sis: move dmamem_alloc and dmamap_load to happen at same time as tag creation - sk: remove duplicate initialization of sk_dev - ste: add missed bus_generic_detach - ti: call ti_stop before ether_ifdetach - ti: add missed error setting in ti_rdata alloc failure - vr: add missed error setting in I/O, memory mapping cases - xl: add missed error setting in I/O, memory mapping cases - xl: remove multi-level goto on attach failure - xl: move dmamem_alloc and dmamap_load to happen at same time as tag creation - Calls to free(9) are unconditional because it is valid to call free with a null pointer. Reviewed by: imp, mdodd
2003-03-31 17:29:43 +00:00
goto fail;
}
gone_by_fcp101_dev(dev);
fail:
if (error)
Clean up locking and resource management for pci/if_* - Remove locking of the softc in the attach method, instead depending on bus_setup_intr being at the end of attach (delaying interrupt enable until after ether_ifattach is called) - Call *_detach directly in the error case of attach, depending on checking in detach to only free resources that were allocated. This puts all resource freeing in one place, avoiding thinkos that lead to memory leaks. - Add bus_child_present check to calls to *_stop in the detach method to be sure hw is present before touching its registers. - Remove bzero softc calls since device_t should do this for us. - dc: move interrupt allocation back where it was before. It was unnecessary to move it. This reverts part of 1.88 - rl: move irq allocation before ether_ifattach. Problems might have been caused by allocating the irq after enabling interrupts on the card. - rl: call rl_stop before ether_ifdetach - sf: call sf_stop before ether_ifdetach - sis: add missed free of sis_tag - sis: check errors from tag creation - sis: move dmamem_alloc and dmamap_load to happen at same time as tag creation - sk: remove duplicate initialization of sk_dev - ste: add missed bus_generic_detach - ti: call ti_stop before ether_ifdetach - ti: add missed error setting in ti_rdata alloc failure - vr: add missed error setting in I/O, memory mapping cases - xl: add missed error setting in I/O, memory mapping cases - xl: remove multi-level goto on attach failure - xl: move dmamem_alloc and dmamap_load to happen at same time as tag creation - Calls to free(9) are unconditional because it is valid to call free with a null pointer. Reviewed by: imp, mdodd
2003-03-31 17:29:43 +00:00
wb_detach(dev);
return(error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
wb_detach(dev)
device_t dev;
{
struct wb_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->wb_mtx), ("wb mutex not initialized"));
ifp = sc->wb_ifp;
/*
* Delete any miibus and phy devices attached to this interface.
* This should only be done if attach succeeded.
*/
if (device_is_attached(dev)) {
ether_ifdetach(ifp);
WB_LOCK(sc);
wb_stop(sc);
WB_UNLOCK(sc);
callout_drain(&sc->wb_stat_callout);
Clean up locking and resource management for pci/if_* - Remove locking of the softc in the attach method, instead depending on bus_setup_intr being at the end of attach (delaying interrupt enable until after ether_ifattach is called) - Call *_detach directly in the error case of attach, depending on checking in detach to only free resources that were allocated. This puts all resource freeing in one place, avoiding thinkos that lead to memory leaks. - Add bus_child_present check to calls to *_stop in the detach method to be sure hw is present before touching its registers. - Remove bzero softc calls since device_t should do this for us. - dc: move interrupt allocation back where it was before. It was unnecessary to move it. This reverts part of 1.88 - rl: move irq allocation before ether_ifattach. Problems might have been caused by allocating the irq after enabling interrupts on the card. - rl: call rl_stop before ether_ifdetach - sf: call sf_stop before ether_ifdetach - sis: add missed free of sis_tag - sis: check errors from tag creation - sis: move dmamem_alloc and dmamap_load to happen at same time as tag creation - sk: remove duplicate initialization of sk_dev - ste: add missed bus_generic_detach - ti: call ti_stop before ether_ifdetach - ti: add missed error setting in ti_rdata alloc failure - vr: add missed error setting in I/O, memory mapping cases - xl: add missed error setting in I/O, memory mapping cases - xl: remove multi-level goto on attach failure - xl: move dmamem_alloc and dmamap_load to happen at same time as tag creation - Calls to free(9) are unconditional because it is valid to call free with a null pointer. Reviewed by: imp, mdodd
2003-03-31 17:29:43 +00:00
}
if (sc->wb_miibus)
device_delete_child(dev, sc->wb_miibus);
bus_generic_detach(dev);
Clean up locking and resource management for pci/if_* - Remove locking of the softc in the attach method, instead depending on bus_setup_intr being at the end of attach (delaying interrupt enable until after ether_ifattach is called) - Call *_detach directly in the error case of attach, depending on checking in detach to only free resources that were allocated. This puts all resource freeing in one place, avoiding thinkos that lead to memory leaks. - Add bus_child_present check to calls to *_stop in the detach method to be sure hw is present before touching its registers. - Remove bzero softc calls since device_t should do this for us. - dc: move interrupt allocation back where it was before. It was unnecessary to move it. This reverts part of 1.88 - rl: move irq allocation before ether_ifattach. Problems might have been caused by allocating the irq after enabling interrupts on the card. - rl: call rl_stop before ether_ifdetach - sf: call sf_stop before ether_ifdetach - sis: add missed free of sis_tag - sis: check errors from tag creation - sis: move dmamem_alloc and dmamap_load to happen at same time as tag creation - sk: remove duplicate initialization of sk_dev - ste: add missed bus_generic_detach - ti: call ti_stop before ether_ifdetach - ti: add missed error setting in ti_rdata alloc failure - vr: add missed error setting in I/O, memory mapping cases - xl: add missed error setting in I/O, memory mapping cases - xl: remove multi-level goto on attach failure - xl: move dmamem_alloc and dmamap_load to happen at same time as tag creation - Calls to free(9) are unconditional because it is valid to call free with a null pointer. Reviewed by: imp, mdodd
2003-03-31 17:29:43 +00:00
if (sc->wb_intrhand)
bus_teardown_intr(dev, sc->wb_irq, sc->wb_intrhand);
if (sc->wb_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
if (sc->wb_res)
bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
if (ifp)
if_free(ifp);
Clean up locking and resource management for pci/if_* - Remove locking of the softc in the attach method, instead depending on bus_setup_intr being at the end of attach (delaying interrupt enable until after ether_ifattach is called) - Call *_detach directly in the error case of attach, depending on checking in detach to only free resources that were allocated. This puts all resource freeing in one place, avoiding thinkos that lead to memory leaks. - Add bus_child_present check to calls to *_stop in the detach method to be sure hw is present before touching its registers. - Remove bzero softc calls since device_t should do this for us. - dc: move interrupt allocation back where it was before. It was unnecessary to move it. This reverts part of 1.88 - rl: move irq allocation before ether_ifattach. Problems might have been caused by allocating the irq after enabling interrupts on the card. - rl: call rl_stop before ether_ifdetach - sf: call sf_stop before ether_ifdetach - sis: add missed free of sis_tag - sis: check errors from tag creation - sis: move dmamem_alloc and dmamap_load to happen at same time as tag creation - sk: remove duplicate initialization of sk_dev - ste: add missed bus_generic_detach - ti: call ti_stop before ether_ifdetach - ti: add missed error setting in ti_rdata alloc failure - vr: add missed error setting in I/O, memory mapping cases - xl: add missed error setting in I/O, memory mapping cases - xl: remove multi-level goto on attach failure - xl: move dmamem_alloc and dmamap_load to happen at same time as tag creation - Calls to free(9) are unconditional because it is valid to call free with a null pointer. Reviewed by: imp, mdodd
2003-03-31 17:29:43 +00:00
if (sc->wb_ldata) {
contigfree(sc->wb_ldata, sizeof(struct wb_list_data) + 8,
M_DEVBUF);
}
mtx_destroy(&sc->wb_mtx);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int
wb_list_tx_init(sc)
struct wb_softc *sc;
{
struct wb_chain_data *cd;
struct wb_list_data *ld;
int i;
cd = &sc->wb_cdata;
ld = sc->wb_ldata;
for (i = 0; i < WB_TX_LIST_CNT; i++) {
cd->wb_tx_chain[i].wb_ptr = &ld->wb_tx_list[i];
if (i == (WB_TX_LIST_CNT - 1)) {
cd->wb_tx_chain[i].wb_nextdesc =
&cd->wb_tx_chain[0];
} else {
cd->wb_tx_chain[i].wb_nextdesc =
&cd->wb_tx_chain[i + 1];
}
}
cd->wb_tx_free = &cd->wb_tx_chain[0];
cd->wb_tx_tail = cd->wb_tx_head = NULL;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
wb_list_rx_init(sc)
struct wb_softc *sc;
{
struct wb_chain_data *cd;
struct wb_list_data *ld;
int i;
cd = &sc->wb_cdata;
ld = sc->wb_ldata;
for (i = 0; i < WB_RX_LIST_CNT; i++) {
cd->wb_rx_chain[i].wb_ptr =
(struct wb_desc *)&ld->wb_rx_list[i];
cd->wb_rx_chain[i].wb_buf = (void *)&ld->wb_rxbufs[i];
if (wb_newbuf(sc, &cd->wb_rx_chain[i], NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (WB_RX_LIST_CNT - 1)) {
cd->wb_rx_chain[i].wb_nextdesc = &cd->wb_rx_chain[0];
ld->wb_rx_list[i].wb_next =
vtophys(&ld->wb_rx_list[0]);
} else {
cd->wb_rx_chain[i].wb_nextdesc =
&cd->wb_rx_chain[i + 1];
ld->wb_rx_list[i].wb_next =
vtophys(&ld->wb_rx_list[i + 1]);
}
}
cd->wb_rx_head = &cd->wb_rx_chain[0];
return(0);
}
static void
wb_bfree(struct mbuf *m)
{
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
wb_newbuf(sc, c, m)
struct wb_softc *sc;
struct wb_chain_onefrag *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_NOWAIT, MT_DATA);
if (m_new == NULL)
return(ENOBUFS);
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
m_new->m_pkthdr.len = m_new->m_len = WB_BUFBYTES;
m_extadd(m_new, c->wb_buf, WB_BUFBYTES, wb_bfree, NULL, NULL,
0, EXT_NET_DRV);
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = WB_BUFBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, sizeof(u_int64_t));
c->wb_mbuf = m_new;
c->wb_ptr->wb_data = vtophys(mtod(m_new, caddr_t));
c->wb_ptr->wb_ctl = WB_RXCTL_RLINK | 1536;
c->wb_ptr->wb_status = WB_RXSTAT;
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
wb_rxeof(sc)
struct wb_softc *sc;
{
struct mbuf *m = NULL;
struct ifnet *ifp;
struct wb_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat;
WB_LOCK_ASSERT(sc);
ifp = sc->wb_ifp;
while(!((rxstat = sc->wb_cdata.wb_rx_head->wb_ptr->wb_status) &
WB_RXSTAT_OWN)) {
struct mbuf *m0 = NULL;
cur_rx = sc->wb_cdata.wb_rx_head;
sc->wb_cdata.wb_rx_head = cur_rx->wb_nextdesc;
m = cur_rx->wb_mbuf;
if ((rxstat & WB_RXSTAT_MIIERR) ||
(WB_RXBYTES(cur_rx->wb_ptr->wb_status) < WB_MIN_FRAMELEN) ||
(WB_RXBYTES(cur_rx->wb_ptr->wb_status) > 1536) ||
!(rxstat & WB_RXSTAT_LASTFRAG) ||
!(rxstat & WB_RXSTAT_RXCMP)) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
wb_newbuf(sc, cur_rx, m);
device_printf(sc->wb_dev,
"receiver babbling: possible chip bug,"
" forcing reset\n");
wb_fixmedia(sc);
wb_reset(sc);
wb_init_locked(sc);
return;
}
if (rxstat & WB_RXSTAT_RXERR) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
wb_newbuf(sc, cur_rx, m);
break;
}
/* No errors; receive the packet. */
total_len = WB_RXBYTES(cur_rx->wb_ptr->wb_status);
/*
* XXX The Winbond chip includes the CRC with every
* received frame, and there's no way to turn this
* behavior off (at least, I can't find anything in
* the manual that explains how to do it) so we have
* to trim off the CRC manually.
*/
total_len -= ETHER_CRC_LEN;
m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, ifp,
NULL);
wb_newbuf(sc, cur_rx, m);
if (m0 == NULL) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
break;
}
m = m0;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
WB_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
WB_LOCK(sc);
}
}
static void
wb_rxeoc(sc)
struct wb_softc *sc;
{
wb_rxeof(sc);
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
if (CSR_READ_4(sc, WB_ISR) & WB_RXSTATE_SUSPEND)
CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
wb_txeof(sc)
struct wb_softc *sc;
{
struct wb_chain *cur_tx;
struct ifnet *ifp;
ifp = sc->wb_ifp;
/* Clear the timeout timer. */
sc->wb_timer = 0;
if (sc->wb_cdata.wb_tx_head == NULL)
return;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
while(sc->wb_cdata.wb_tx_head->wb_mbuf != NULL) {
u_int32_t txstat;
cur_tx = sc->wb_cdata.wb_tx_head;
txstat = WB_TXSTATUS(cur_tx);
if ((txstat & WB_TXSTAT_OWN) || txstat == WB_UNSENT)
break;
if (txstat & WB_TXSTAT_TXERR) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
if (txstat & WB_TXSTAT_ABORT)
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
if (txstat & WB_TXSTAT_LATECOLL)
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
}
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & WB_TXSTAT_COLLCNT) >> 3);
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
m_freem(cur_tx->wb_mbuf);
cur_tx->wb_mbuf = NULL;
if (sc->wb_cdata.wb_tx_head == sc->wb_cdata.wb_tx_tail) {
sc->wb_cdata.wb_tx_head = NULL;
sc->wb_cdata.wb_tx_tail = NULL;
break;
}
sc->wb_cdata.wb_tx_head = cur_tx->wb_nextdesc;
}
}
/*
* TX 'end of channel' interrupt handler.
*/
static void
wb_txeoc(sc)
struct wb_softc *sc;
{
struct ifnet *ifp;
ifp = sc->wb_ifp;
sc->wb_timer = 0;
if (sc->wb_cdata.wb_tx_head == NULL) {
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->wb_cdata.wb_tx_tail = NULL;
} else {
if (WB_TXOWN(sc->wb_cdata.wb_tx_head) == WB_UNSENT) {
WB_TXOWN(sc->wb_cdata.wb_tx_head) = WB_TXSTAT_OWN;
sc->wb_timer = 5;
CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
}
}
}
static void
wb_intr(arg)
void *arg;
{
struct wb_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
WB_LOCK(sc);
ifp = sc->wb_ifp;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
WB_UNLOCK(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, WB_IMR, 0x00000000);
for (;;) {
status = CSR_READ_4(sc, WB_ISR);
if (status)
CSR_WRITE_4(sc, WB_ISR, status);
if ((status & WB_INTRS) == 0)
break;
if ((status & WB_ISR_RX_NOBUF) || (status & WB_ISR_RX_ERR)) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
wb_reset(sc);
if (status & WB_ISR_RX_ERR)
wb_fixmedia(sc);
wb_init_locked(sc);
continue;
}
if (status & WB_ISR_RX_OK)
wb_rxeof(sc);
if (status & WB_ISR_RX_IDLE)
wb_rxeoc(sc);
if (status & WB_ISR_TX_OK)
wb_txeof(sc);
if (status & WB_ISR_TX_NOBUF)
wb_txeoc(sc);
if (status & WB_ISR_TX_IDLE) {
wb_txeof(sc);
if (sc->wb_cdata.wb_tx_head != NULL) {
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
}
}
if (status & WB_ISR_TX_UNDERRUN) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
wb_txeof(sc);
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
/* Jack up TX threshold */
sc->wb_txthresh += WB_TXTHRESH_CHUNK;
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
}
if (status & WB_ISR_BUS_ERR) {
wb_reset(sc);
wb_init_locked(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
wb_start_locked(ifp);
}
WB_UNLOCK(sc);
}
static void
wb_tick(xsc)
void *xsc;
{
struct wb_softc *sc;
struct mii_data *mii;
sc = xsc;
WB_LOCK_ASSERT(sc);
mii = device_get_softc(sc->wb_miibus);
mii_tick(mii);
if (sc->wb_timer > 0 && --sc->wb_timer == 0)
wb_watchdog(sc);
callout_reset(&sc->wb_stat_callout, hz, wb_tick, sc);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
wb_encap(sc, c, m_head)
struct wb_softc *sc;
struct wb_chain *c;
struct mbuf *m_head;
{
int frag = 0;
struct wb_desc *f = NULL;
int total_len;
struct mbuf *m;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
total_len = 0;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == WB_MAXFRAGS)
break;
total_len += m->m_len;
f = &c->wb_ptr->wb_frag[frag];
f->wb_ctl = WB_TXCTL_TLINK | m->m_len;
if (frag == 0) {
f->wb_ctl |= WB_TXCTL_FIRSTFRAG;
f->wb_status = 0;
} else
f->wb_status = WB_TXSTAT_OWN;
f->wb_next = vtophys(&c->wb_ptr->wb_frag[frag + 1]);
f->wb_data = vtophys(mtod(m, vm_offset_t));
frag++;
}
}
/*
* Handle special case: we used up all 16 fragments,
* but we have more mbufs left in the chain. Copy the
* data into an mbuf cluster. Note that we don't
* bother clearing the values in the other fragment
* pointers/counters; it wouldn't gain us anything,
* and would waste cycles.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_NOWAIT, MT_DATA);
if (m_new == NULL)
return(1);
if (m_head->m_pkthdr.len > MHLEN) {
if (!(MCLGET(m_new, M_NOWAIT))) {
m_freem(m_new);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->wb_ptr->wb_frag[0];
f->wb_status = 0;
f->wb_data = vtophys(mtod(m_new, caddr_t));
f->wb_ctl = total_len = m_new->m_len;
f->wb_ctl |= WB_TXCTL_TLINK|WB_TXCTL_FIRSTFRAG;
frag = 1;
}
if (total_len < WB_MIN_FRAMELEN) {
f = &c->wb_ptr->wb_frag[frag];
f->wb_ctl = WB_MIN_FRAMELEN - total_len;
f->wb_data = vtophys(&sc->wb_cdata.wb_pad);
f->wb_ctl |= WB_TXCTL_TLINK;
f->wb_status = WB_TXSTAT_OWN;
frag++;
}
c->wb_mbuf = m_head;
c->wb_lastdesc = frag - 1;
WB_TXCTL(c) |= WB_TXCTL_LASTFRAG;
WB_TXNEXT(c) = vtophys(&c->wb_nextdesc->wb_ptr->wb_frag[0]);
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void
wb_start(ifp)
struct ifnet *ifp;
{
struct wb_softc *sc;
sc = ifp->if_softc;
WB_LOCK(sc);
wb_start_locked(ifp);
WB_UNLOCK(sc);
}
static void
wb_start_locked(ifp)
struct ifnet *ifp;
{
struct wb_softc *sc;
struct mbuf *m_head = NULL;
struct wb_chain *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
WB_LOCK_ASSERT(sc);
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->wb_cdata.wb_tx_free->wb_mbuf != NULL) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
return;
}
start_tx = sc->wb_cdata.wb_tx_free;
while(sc->wb_cdata.wb_tx_free->wb_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->wb_cdata.wb_tx_free;
sc->wb_cdata.wb_tx_free = cur_tx->wb_nextdesc;
/* Pack the data into the descriptor. */
wb_encap(sc, cur_tx, m_head);
if (cur_tx != start_tx)
WB_TXOWN(cur_tx) = WB_TXSTAT_OWN;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, cur_tx->wb_mbuf);
}
/*
* If there are no packets queued, bail.
*/
if (cur_tx == NULL)
return;
/*
* Place the request for the upload interrupt
* in the last descriptor in the chain. This way, if
* we're chaining several packets at once, we'll only
2007-10-12 06:03:46 +00:00
* get an interrupt once for the whole chain rather than
* once for each packet.
*/
WB_TXCTL(cur_tx) |= WB_TXCTL_FINT;
cur_tx->wb_ptr->wb_frag[0].wb_ctl |= WB_TXCTL_FINT;
sc->wb_cdata.wb_tx_tail = cur_tx;
if (sc->wb_cdata.wb_tx_head == NULL) {
sc->wb_cdata.wb_tx_head = start_tx;
WB_TXOWN(start_tx) = WB_TXSTAT_OWN;
CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
} else {
/*
* We need to distinguish between the case where
* the own bit is clear because the chip cleared it
* and where the own bit is clear because we haven't
* set it yet. The magic value WB_UNSET is just some
* ramdomly chosen number which doesn't have the own
* bit set. When we actually transmit the frame, the
* status word will have _only_ the own bit set, so
* the txeoc handler will be able to tell if it needs
* to initiate another transmission to flush out pending
* frames.
*/
WB_TXOWN(start_tx) = WB_UNSENT;
}
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->wb_timer = 5;
}
static void
wb_init(xsc)
void *xsc;
{
struct wb_softc *sc = xsc;
WB_LOCK(sc);
wb_init_locked(sc);
WB_UNLOCK(sc);
}
static void
wb_init_locked(sc)
struct wb_softc *sc;
{
struct ifnet *ifp = sc->wb_ifp;
int i;
struct mii_data *mii;
WB_LOCK_ASSERT(sc);
mii = device_get_softc(sc->wb_miibus);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
wb_stop(sc);
wb_reset(sc);
sc->wb_txthresh = WB_TXTHRESH_INIT;
/*
* Set cache alignment and burst length.
*/
#ifdef foo
CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_CONFIG);
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
#endif
CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_MUSTBEONE|WB_BUSCTL_ARBITRATION);
WB_SETBIT(sc, WB_BUSCTL, WB_BURSTLEN_16LONG);
switch(sc->wb_cachesize) {
case 32:
WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_32LONG);
break;
case 16:
WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_16LONG);
break;
case 8:
WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_8LONG);
break;
case 0:
default:
WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_NONE);
break;
}
/* This doesn't tend to work too well at 100Mbps. */
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_EARLY_ON);
/* Init our MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++) {
CSR_WRITE_1(sc, WB_NODE0 + i, IF_LLADDR(sc->wb_ifp)[i]);
}
/* Init circular RX list. */
if (wb_list_rx_init(sc) == ENOBUFS) {
device_printf(sc->wb_dev,
"initialization failed: no memory for rx buffers\n");
wb_stop(sc);
return;
}
/* Init TX descriptors. */
wb_list_tx_init(sc);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
} else {
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
}
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
} else {
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
}
/*
* Program the multicast filter, if necessary.
*/
wb_setmulti(sc);
/*
* Load the address of the RX list.
*/
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
CSR_WRITE_4(sc, WB_ISR, 0xFFFFFFFF);
/* Enable receiver and transmitter. */
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
CSR_WRITE_4(sc, WB_TXADDR, vtophys(&sc->wb_ldata->wb_tx_list[0]));
WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->wb_stat_callout, hz, wb_tick, sc);
}
/*
* Set media options.
*/
static int
wb_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct wb_softc *sc;
sc = ifp->if_softc;
WB_LOCK(sc);
if (ifp->if_flags & IFF_UP)
wb_init_locked(sc);
WB_UNLOCK(sc);
return(0);
}
/*
* Report current media status.
*/
static void
wb_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct wb_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
WB_LOCK(sc);
mii = device_get_softc(sc->wb_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
WB_UNLOCK(sc);
}
static int
wb_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct wb_softc *sc = ifp->if_softc;
struct mii_data *mii;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0;
switch(command) {
case SIOCSIFFLAGS:
WB_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
wb_init_locked(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
wb_stop(sc);
}
WB_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
WB_LOCK(sc);
wb_setmulti(sc);
WB_UNLOCK(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->wb_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return(error);
}
static void
wb_watchdog(sc)
struct wb_softc *sc;
{
struct ifnet *ifp;
WB_LOCK_ASSERT(sc);
ifp = sc->wb_ifp;
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
if_printf(ifp, "watchdog timeout\n");
#ifdef foo
if (!(wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
if_printf(ifp, "no carrier - transceiver cable problem?\n");
#endif
wb_stop(sc);
wb_reset(sc);
wb_init_locked(sc);
if (ifp->if_snd.ifq_head != NULL)
wb_start_locked(ifp);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
wb_stop(sc)
struct wb_softc *sc;
{
int i;
struct ifnet *ifp;
WB_LOCK_ASSERT(sc);
ifp = sc->wb_ifp;
sc->wb_timer = 0;
callout_stop(&sc->wb_stat_callout);
WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_RX_ON|WB_NETCFG_TX_ON));
CSR_WRITE_4(sc, WB_IMR, 0x00000000);
CSR_WRITE_4(sc, WB_TXADDR, 0x00000000);
CSR_WRITE_4(sc, WB_RXADDR, 0x00000000);
/*
* Free data in the RX lists.
*/
for (i = 0; i < WB_RX_LIST_CNT; i++) {
if (sc->wb_cdata.wb_rx_chain[i].wb_mbuf != NULL) {
m_freem(sc->wb_cdata.wb_rx_chain[i].wb_mbuf);
sc->wb_cdata.wb_rx_chain[i].wb_mbuf = NULL;
}
}
bzero((char *)&sc->wb_ldata->wb_rx_list,
sizeof(sc->wb_ldata->wb_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < WB_TX_LIST_CNT; i++) {
if (sc->wb_cdata.wb_tx_chain[i].wb_mbuf != NULL) {
m_freem(sc->wb_cdata.wb_tx_chain[i].wb_mbuf);
sc->wb_cdata.wb_tx_chain[i].wb_mbuf = NULL;
}
}
bzero((char *)&sc->wb_ldata->wb_tx_list,
sizeof(sc->wb_ldata->wb_tx_list));
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
wb_shutdown(dev)
device_t dev;
{
struct wb_softc *sc;
sc = device_get_softc(dev);
WB_LOCK(sc);
wb_stop(sc);
WB_UNLOCK(sc);
return (0);
}