freebsd-skq/sys/kern/kern_proc.c

2754 lines
66 KiB
C
Raw Normal View History

/*-
1994-05-24 10:09:53 +00:00
* Copyright (c) 1982, 1986, 1989, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
1994-05-24 10:09:53 +00:00
*/
2003-06-11 00:56:59 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include "opt_ddb.h"
#include "opt_kdtrace.h"
#include "opt_ktrace.h"
#include "opt_kstack_pages.h"
#include "opt_stack.h"
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/elf.h>
#include <sys/exec.h>
1994-05-24 10:09:53 +00:00
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/loginclass.h>
1994-05-24 10:09:53 +00:00
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/refcount.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/sbuf.h>
#include <sys/sysent.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/stack.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/filedesc.h>
1994-05-24 10:09:53 +00:00
#include <sys/tty.h>
#include <sys/signalvar.h>
#include <sys/sdt.h>
#include <sys/sx.h>
#include <sys/user.h>
#include <sys/jail.h>
#include <sys/vnode.h>
#include <sys/eventhandler.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/uma.h>
1994-05-24 10:09:53 +00:00
#ifdef COMPAT_FREEBSD32
#include <compat/freebsd32/freebsd32.h>
#include <compat/freebsd32/freebsd32_util.h>
#endif
SDT_PROVIDER_DEFINE(proc);
SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry);
SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
SDT_PROBE_DEFINE(proc, kernel, ctor, return, return);
SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry);
SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
SDT_PROBE_DEFINE(proc, kernel, dtor, return, return);
SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
SDT_PROBE_DEFINE(proc, kernel, init, entry, entry);
SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
SDT_PROBE_DEFINE(proc, kernel, init, return, return);
SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
MALLOC_DEFINE(M_SESSION, "session", "session header");
static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
static void doenterpgrp(struct proc *, struct pgrp *);
static void orphanpg(struct pgrp *pg);
static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
int preferthread);
static void pgadjustjobc(struct pgrp *pgrp, int entering);
static void pgdelete(struct pgrp *);
static int proc_ctor(void *mem, int size, void *arg, int flags);
static void proc_dtor(void *mem, int size, void *arg);
static int proc_init(void *mem, int size, int flags);
static void proc_fini(void *mem, int size);
static void pargs_free(struct pargs *pa);
static struct proc *zpfind_locked(pid_t pid);
1994-05-24 10:09:53 +00:00
/*
* Other process lists
*/
struct pidhashhead *pidhashtbl;
u_long pidhash;
struct pgrphashhead *pgrphashtbl;
u_long pgrphash;
struct proclist allproc;
struct proclist zombproc;
struct sx allproc_lock;
struct sx proctree_lock;
struct mtx ppeers_lock;
uma_zone_t proc_zone;
int kstack_pages = KSTACK_PAGES;
SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
2010-11-14 16:10:15 +00:00
"Kernel stack size in pages");
CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
#ifdef COMPAT_FREEBSD32
CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
#endif
/*
* Initialize global process hashing structures.
1994-05-24 10:09:53 +00:00
*/
void
procinit()
1994-05-24 10:09:53 +00:00
{
sx_init(&allproc_lock, "allproc");
sx_init(&proctree_lock, "proctree");
mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
LIST_INIT(&allproc);
LIST_INIT(&zombproc);
pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
proc_ctor, proc_dtor, proc_init, proc_fini,
UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
uihashinit();
1994-05-24 10:09:53 +00:00
}
/*
* Prepare a proc for use.
*/
static int
proc_ctor(void *mem, int size, void *arg, int flags)
{
struct proc *p;
p = (struct proc *)mem;
SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
EVENTHANDLER_INVOKE(process_ctor, p);
SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
return (0);
}
/*
* Reclaim a proc after use.
*/
static void
proc_dtor(void *mem, int size, void *arg)
{
struct proc *p;
struct thread *td;
/* INVARIANTS checks go here */
p = (struct proc *)mem;
td = FIRST_THREAD_IN_PROC(p);
SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
if (td != NULL) {
Refactor a bunch of scheduler code to give basically the same behaviour but with slightly cleaned up interfaces. The KSE structure has become the same as the "per thread scheduler private data" structure. In order to not make the diffs too great one is #defined as the other at this time. The KSE (or td_sched) structure is now allocated per thread and has no allocation code of its own. Concurrency for a KSEGRP is now kept track of via a simple pair of counters rather than using KSE structures as tokens. Since the KSE structure is different in each scheduler, kern_switch.c is now included at the end of each scheduler. Nothing outside the scheduler knows the contents of the KSE (aka td_sched) structure. The fields in the ksegrp structure that are to do with the scheduler's queueing mechanisms are now moved to the kg_sched structure. (per ksegrp scheduler private data structure). In other words how the scheduler queues and keeps track of threads is no-one's business except the scheduler's. This should allow people to write experimental schedulers with completely different internal structuring. A scheduler call sched_set_concurrency(kg, N) has been added that notifies teh scheduler that no more than N threads from that ksegrp should be allowed to be on concurrently scheduled. This is also used to enforce 'fainess' at this time so that a ksegrp with 10000 threads can not swamp a the run queue and force out a process with 1 thread, since the current code will not set the concurrency above NCPU, and both schedulers will not allow more than that many onto the system run queue at a time. Each scheduler should eventualy develop their own methods to do this now that they are effectively separated. Rejig libthr's kernel interface to follow the same code paths as linkse for scope system threads. This has slightly hurt libthr's performance but I will work to recover as much of it as I can. Thread exit code has been cleaned up greatly. exit and exec code now transitions a process back to 'standard non-threaded mode' before taking the next step. Reviewed by: scottl, peter MFC after: 1 week
2004-09-05 02:09:54 +00:00
#ifdef INVARIANTS
KASSERT((p->p_numthreads == 1),
("bad number of threads in exiting process"));
KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
Refactor a bunch of scheduler code to give basically the same behaviour but with slightly cleaned up interfaces. The KSE structure has become the same as the "per thread scheduler private data" structure. In order to not make the diffs too great one is #defined as the other at this time. The KSE (or td_sched) structure is now allocated per thread and has no allocation code of its own. Concurrency for a KSEGRP is now kept track of via a simple pair of counters rather than using KSE structures as tokens. Since the KSE structure is different in each scheduler, kern_switch.c is now included at the end of each scheduler. Nothing outside the scheduler knows the contents of the KSE (aka td_sched) structure. The fields in the ksegrp structure that are to do with the scheduler's queueing mechanisms are now moved to the kg_sched structure. (per ksegrp scheduler private data structure). In other words how the scheduler queues and keeps track of threads is no-one's business except the scheduler's. This should allow people to write experimental schedulers with completely different internal structuring. A scheduler call sched_set_concurrency(kg, N) has been added that notifies teh scheduler that no more than N threads from that ksegrp should be allowed to be on concurrently scheduled. This is also used to enforce 'fainess' at this time so that a ksegrp with 10000 threads can not swamp a the run queue and force out a process with 1 thread, since the current code will not set the concurrency above NCPU, and both schedulers will not allow more than that many onto the system run queue at a time. Each scheduler should eventualy develop their own methods to do this now that they are effectively separated. Rejig libthr's kernel interface to follow the same code paths as linkse for scope system threads. This has slightly hurt libthr's performance but I will work to recover as much of it as I can. Thread exit code has been cleaned up greatly. exit and exec code now transitions a process back to 'standard non-threaded mode' before taking the next step. Reviewed by: scottl, peter MFC after: 1 week
2004-09-05 02:09:54 +00:00
#endif
Update ZFS from version 6 to 13 and bring some FreeBSD-specific changes. This bring huge amount of changes, I'll enumerate only user-visible changes: - Delegated Administration Allows regular users to perform ZFS operations, like file system creation, snapshot creation, etc. - L2ARC Level 2 cache for ZFS - allows to use additional disks for cache. Huge performance improvements mostly for random read of mostly static content. - slog Allow to use additional disks for ZFS Intent Log to speed up operations like fsync(2). - vfs.zfs.super_owner Allows regular users to perform privileged operations on files stored on ZFS file systems owned by him. Very careful with this one. - chflags(2) Not all the flags are supported. This still needs work. - ZFSBoot Support to boot off of ZFS pool. Not finished, AFAIK. Submitted by: dfr - Snapshot properties - New failure modes Before if write requested failed, system paniced. Now one can select from one of three failure modes: - panic - panic on write error - wait - wait for disk to reappear - continue - serve read requests if possible, block write requests - Refquota, refreservation properties Just quota and reservation properties, but don't count space consumed by children file systems, clones and snapshots. - Sparse volumes ZVOLs that don't reserve space in the pool. - External attributes Compatible with extattr(2). - NFSv4-ACLs Not sure about the status, might not be complete yet. Submitted by: trasz - Creation-time properties - Regression tests for zpool(8) command. Obtained from: OpenSolaris
2008-11-17 20:49:29 +00:00
/* Free all OSD associated to this thread. */
osd_thread_exit(td);
}
EVENTHANDLER_INVOKE(process_dtor, p);
if (p->p_ksi != NULL)
KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
}
/*
* Initialize type-stable parts of a proc (when newly created).
*/
static int
proc_init(void *mem, int size, int flags)
{
struct proc *p;
p = (struct proc *)mem;
SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
p->p_sched = (struct p_sched *)&p[1];
bzero(&p->p_mtx, sizeof(struct mtx));
mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
cv_init(&p->p_pwait, "ppwait");
cv_init(&p->p_dbgwait, "dbgwait");
TAILQ_INIT(&p->p_threads); /* all threads in proc */
EVENTHANDLER_INVOKE(process_init, p);
p->p_stats = pstats_alloc();
SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
return (0);
}
/*
* UMA should ensure that this function is never called.
* Freeing a proc structure would violate type stability.
*/
static void
proc_fini(void *mem, int size)
{
#ifdef notnow
struct proc *p;
p = (struct proc *)mem;
EVENTHANDLER_INVOKE(process_fini, p);
pstats_free(p->p_stats);
thread_free(FIRST_THREAD_IN_PROC(p));
mtx_destroy(&p->p_mtx);
if (p->p_ksi != NULL)
ksiginfo_free(p->p_ksi);
#else
panic("proc reclaimed");
#endif
}
1994-05-24 10:09:53 +00:00
/*
* Is p an inferior of the current process?
*/
2000-06-23 07:10:34 +00:00
int
1994-05-24 10:09:53 +00:00
inferior(p)
register struct proc *p;
{
sx_assert(&proctree_lock, SX_LOCKED);
for (; p != curproc; p = p->p_pptr)
if (p->p_pid == 0)
return (0);
return (1);
1994-05-24 10:09:53 +00:00
}
struct proc *
pfind_locked(pid_t pid)
1994-05-24 10:09:53 +00:00
{
struct proc *p;
1994-05-24 10:09:53 +00:00
sx_assert(&allproc_lock, SX_LOCKED);
LIST_FOREACH(p, PIDHASH(pid), p_hash) {
if (p->p_pid == pid) {
PROC_LOCK(p);
if (p->p_state == PRS_NEW) {
PROC_UNLOCK(p);
p = NULL;
}
break;
}
}
return (p);
}
/*
* Locate a process by number; return only "live" processes -- i.e., neither
* zombies nor newly born but incompletely initialized processes. By not
* returning processes in the PRS_NEW state, we allow callers to avoid
* testing for that condition to avoid dereferencing p_ucred, et al.
*/
struct proc *
pfind(pid_t pid)
{
struct proc *p;
sx_slock(&allproc_lock);
p = pfind_locked(pid);
2003-01-04 11:45:50 +00:00
sx_sunlock(&allproc_lock);
return (p);
1994-05-24 10:09:53 +00:00
}
static struct proc *
pfind_tid_locked(pid_t tid)
{
struct proc *p;
struct thread *td;
sx_assert(&allproc_lock, SX_LOCKED);
FOREACH_PROC_IN_SYSTEM(p) {
PROC_LOCK(p);
if (p->p_state == PRS_NEW) {
PROC_UNLOCK(p);
continue;
}
FOREACH_THREAD_IN_PROC(p, td) {
if (td->td_tid == tid)
goto found;
}
PROC_UNLOCK(p);
}
found:
return (p);
}
1994-05-24 10:09:53 +00:00
/*
* Locate a process group by number.
* The caller must hold proctree_lock.
1994-05-24 10:09:53 +00:00
*/
struct pgrp *
pgfind(pgid)
register pid_t pgid;
{
register struct pgrp *pgrp;
sx_assert(&proctree_lock, SX_LOCKED);
LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
if (pgrp->pg_id == pgid) {
PGRP_LOCK(pgrp);
1994-05-24 10:09:53 +00:00
return (pgrp);
}
}
1994-05-24 10:09:53 +00:00
return (NULL);
}
/*
* Locate process and do additional manipulations, depending on flags.
*/
int
pget(pid_t pid, int flags, struct proc **pp)
{
struct proc *p;
int error;
sx_slock(&allproc_lock);
if (pid <= PID_MAX) {
p = pfind_locked(pid);
if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
p = zpfind_locked(pid);
} else if ((flags & PGET_NOTID) == 0) {
p = pfind_tid_locked(pid);
} else {
p = NULL;
}
sx_sunlock(&allproc_lock);
if (p == NULL)
return (ESRCH);
if ((flags & PGET_CANSEE) != 0) {
error = p_cansee(curthread, p);
if (error != 0)
goto errout;
}
if ((flags & PGET_CANDEBUG) != 0) {
error = p_candebug(curthread, p);
if (error != 0)
goto errout;
}
if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
error = EPERM;
goto errout;
}
if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
error = ESRCH;
goto errout;
}
if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
/*
* XXXRW: Not clear ESRCH is the right error during proc
* execve().
*/
error = ESRCH;
goto errout;
}
if ((flags & PGET_HOLD) != 0) {
_PHOLD(p);
PROC_UNLOCK(p);
}
*pp = p;
return (0);
errout:
PROC_UNLOCK(p);
return (error);
}
1994-05-24 10:09:53 +00:00
/*
* Create a new process group.
* pgid must be equal to the pid of p.
* Begin a new session if required.
1994-05-24 10:09:53 +00:00
*/
int
enterpgrp(p, pgid, pgrp, sess)
1994-05-24 10:09:53 +00:00
register struct proc *p;
pid_t pgid;
struct pgrp *pgrp;
struct session *sess;
1994-05-24 10:09:53 +00:00
{
sx_assert(&proctree_lock, SX_XLOCKED);
KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
KASSERT(p->p_pid == pgid,
("enterpgrp: new pgrp and pid != pgid"));
KASSERT(pgfind(pgid) == NULL,
("enterpgrp: pgrp with pgid exists"));
KASSERT(!SESS_LEADER(p),
1999-01-10 01:58:29 +00:00
("enterpgrp: session leader attempted setpgrp"));
mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
if (sess != NULL) {
1994-05-24 10:09:53 +00:00
/*
* new session
1994-05-24 10:09:53 +00:00
*/
mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
PROC_LOCK(p);
p->p_flag &= ~P_CONTROLT;
PROC_UNLOCK(p);
PGRP_LOCK(pgrp);
sess->s_leader = p;
sess->s_sid = p->p_pid;
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
refcount_init(&sess->s_count, 1);
sess->s_ttyvp = NULL;
sess->s_ttydp = NULL;
sess->s_ttyp = NULL;
bcopy(p->p_session->s_login, sess->s_login,
1994-05-24 10:09:53 +00:00
sizeof(sess->s_login));
pgrp->pg_session = sess;
KASSERT(p == curproc,
("enterpgrp: mksession and p != curproc"));
} else {
pgrp->pg_session = p->p_session;
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
sess_hold(pgrp->pg_session);
PGRP_LOCK(pgrp);
}
pgrp->pg_id = pgid;
LIST_INIT(&pgrp->pg_members);
/*
* As we have an exclusive lock of proctree_lock,
* this should not deadlock.
*/
LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
pgrp->pg_jobc = 0;
SLIST_INIT(&pgrp->pg_sigiolst);
PGRP_UNLOCK(pgrp);
doenterpgrp(p, pgrp);
return (0);
}
/*
* Move p to an existing process group
*/
int
enterthispgrp(p, pgrp)
register struct proc *p;
struct pgrp *pgrp;
{
sx_assert(&proctree_lock, SX_XLOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
KASSERT(pgrp->pg_session == p->p_session,
("%s: pgrp's session %p, p->p_session %p.\n",
__func__,
pgrp->pg_session,
p->p_session));
KASSERT(pgrp != p->p_pgrp,
("%s: p belongs to pgrp.", __func__));
doenterpgrp(p, pgrp);
return (0);
}
/*
* Move p to a process group
*/
static void
doenterpgrp(p, pgrp)
struct proc *p;
struct pgrp *pgrp;
{
struct pgrp *savepgrp;
sx_assert(&proctree_lock, SX_XLOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
savepgrp = p->p_pgrp;
1994-05-24 10:09:53 +00:00
/*
* Adjust eligibility of affected pgrps to participate in job control.
* Increment eligibility counts before decrementing, otherwise we
* could reach 0 spuriously during the first call.
*/
fixjobc(p, pgrp, 1);
fixjobc(p, p->p_pgrp, 0);
PGRP_LOCK(pgrp);
PGRP_LOCK(savepgrp);
PROC_LOCK(p);
LIST_REMOVE(p, p_pglist);
1994-05-24 10:09:53 +00:00
p->p_pgrp = pgrp;
PROC_UNLOCK(p);
LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
PGRP_UNLOCK(savepgrp);
PGRP_UNLOCK(pgrp);
if (LIST_EMPTY(&savepgrp->pg_members))
pgdelete(savepgrp);
1994-05-24 10:09:53 +00:00
}
/*
* remove process from process group
*/
int
1994-05-24 10:09:53 +00:00
leavepgrp(p)
register struct proc *p;
{
struct pgrp *savepgrp;
1994-05-24 10:09:53 +00:00
sx_assert(&proctree_lock, SX_XLOCKED);
savepgrp = p->p_pgrp;
PGRP_LOCK(savepgrp);
PROC_LOCK(p);
LIST_REMOVE(p, p_pglist);
p->p_pgrp = NULL;
PROC_UNLOCK(p);
PGRP_UNLOCK(savepgrp);
if (LIST_EMPTY(&savepgrp->pg_members))
pgdelete(savepgrp);
1994-05-24 10:09:53 +00:00
return (0);
}
/*
* delete a process group
*/
static void
1994-05-24 10:09:53 +00:00
pgdelete(pgrp)
register struct pgrp *pgrp;
{
struct session *savesess;
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
struct tty *tp;
sx_assert(&proctree_lock, SX_XLOCKED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
/*
* Reset any sigio structures pointing to us as a result of
* F_SETOWN with our pgid.
*/
funsetownlst(&pgrp->pg_sigiolst);
PGRP_LOCK(pgrp);
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
tp = pgrp->pg_session->s_ttyp;
LIST_REMOVE(pgrp, pg_hash);
savesess = pgrp->pg_session;
PGRP_UNLOCK(pgrp);
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
/* Remove the reference to the pgrp before deallocating it. */
if (tp != NULL) {
tty_lock(tp);
tty_rel_pgrp(tp, pgrp);
}
mtx_destroy(&pgrp->pg_mtx);
free(pgrp, M_PGRP);
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
sess_release(savesess);
1994-05-24 10:09:53 +00:00
}
static void
pgadjustjobc(pgrp, entering)
struct pgrp *pgrp;
int entering;
{
PGRP_LOCK(pgrp);
if (entering)
pgrp->pg_jobc++;
else {
--pgrp->pg_jobc;
if (pgrp->pg_jobc == 0)
orphanpg(pgrp);
}
PGRP_UNLOCK(pgrp);
}
1994-05-24 10:09:53 +00:00
/*
* Adjust pgrp jobc counters when specified process changes process group.
* We count the number of processes in each process group that "qualify"
* the group for terminal job control (those with a parent in a different
* process group of the same session). If that count reaches zero, the
* process group becomes orphaned. Check both the specified process'
* process group and that of its children.
* entering == 0 => p is leaving specified group.
* entering == 1 => p is entering specified group.
*/
void
1994-05-24 10:09:53 +00:00
fixjobc(p, pgrp, entering)
register struct proc *p;
register struct pgrp *pgrp;
int entering;
{
register struct pgrp *hispgrp;
register struct session *mysession;
sx_assert(&proctree_lock, SX_LOCKED);
PROC_LOCK_ASSERT(p, MA_NOTOWNED);
PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
1994-05-24 10:09:53 +00:00
/*
* Check p's parent to see whether p qualifies its own process
* group; if so, adjust count for p's process group.
*/
mysession = pgrp->pg_session;
1994-05-24 10:09:53 +00:00
if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
hispgrp->pg_session == mysession)
pgadjustjobc(pgrp, entering);
1994-05-24 10:09:53 +00:00
/*
* Check this process' children to see whether they qualify
* their process groups; if so, adjust counts for children's
* process groups.
*/
LIST_FOREACH(p, &p->p_children, p_sibling) {
hispgrp = p->p_pgrp;
if (hispgrp == pgrp ||
hispgrp->pg_session != mysession)
continue;
PROC_LOCK(p);
if (p->p_state == PRS_ZOMBIE) {
PROC_UNLOCK(p);
continue;
}
PROC_UNLOCK(p);
pgadjustjobc(hispgrp, entering);
}
1994-05-24 10:09:53 +00:00
}
1995-05-30 08:16:23 +00:00
/*
1994-05-24 10:09:53 +00:00
* A process group has become orphaned;
* if there are any stopped processes in the group,
* hang-up all process in that group.
*/
static void
orphanpg(pg)
struct pgrp *pg;
{
register struct proc *p;
PGRP_LOCK_ASSERT(pg, MA_OWNED);
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
PROC_LOCK(p);
if (P_SHOULDSTOP(p)) {
PROC_UNLOCK(p);
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
PROC_LOCK(p);
kern_psignal(p, SIGHUP);
kern_psignal(p, SIGCONT);
PROC_UNLOCK(p);
1994-05-24 10:09:53 +00:00
}
return;
}
PROC_UNLOCK(p);
1994-05-24 10:09:53 +00:00
}
}
void
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
sess_hold(struct session *s)
{
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
refcount_acquire(&s->s_count);
}
void
sess_release(struct session *s)
{
if (refcount_release(&s->s_count)) {
if (s->s_ttyp != NULL) {
tty_lock(s->s_ttyp);
tty_rel_sess(s->s_ttyp, s);
}
mtx_destroy(&s->s_mtx);
free(s, M_SESSION);
}
}
#ifdef DDB
DB_SHOW_COMMAND(pgrpdump, pgrpdump)
1994-05-24 10:09:53 +00:00
{
register struct pgrp *pgrp;
register struct proc *p;
register int i;
1994-05-24 10:09:53 +00:00
for (i = 0; i <= pgrphash; i++) {
if (!LIST_EMPTY(&pgrphashtbl[i])) {
printf("\tindx %d\n", i);
LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
1998-07-11 07:46:16 +00:00
printf(
"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
(void *)pgrp, (long)pgrp->pg_id,
(void *)pgrp->pg_session,
pgrp->pg_session->s_count,
(void *)LIST_FIRST(&pgrp->pg_members));
LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1998-07-11 07:46:16 +00:00
printf("\t\tpid %ld addr %p pgrp %p\n",
(long)p->p_pid, (void *)p,
(void *)p->p_pgrp);
}
}
1994-05-24 10:09:53 +00:00
}
}
}
#endif /* DDB */
/*
* Calculate the kinfo_proc members which contain process-wide
* informations.
* Must be called with the target process locked.
*/
static void
fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
{
struct thread *td;
PROC_LOCK_ASSERT(p, MA_OWNED);
kp->ki_estcpu = 0;
kp->ki_pctcpu = 0;
FOREACH_THREAD_IN_PROC(p, td) {
thread_lock(td);
kp->ki_pctcpu += sched_pctcpu(td);
kp->ki_estcpu += td->td_estcpu;
thread_unlock(td);
}
}
/*
* Clear kinfo_proc and fill in any information that is common
* to all threads in the process.
* Must be called with the target process locked.
*/
static void
fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
{
struct thread *td0;
struct tty *tp;
struct session *sp;
struct ucred *cred;
struct sigacts *ps;
PROC_LOCK_ASSERT(p, MA_OWNED);
bzero(kp, sizeof(*kp));
kp->ki_structsize = sizeof(*kp);
kp->ki_paddr = p;
kp->ki_addr =/* p->p_addr; */0; /* XXX */
kp->ki_args = p->p_args;
kp->ki_textvp = p->p_textvp;
#ifdef KTRACE
kp->ki_tracep = p->p_tracevp;
kp->ki_traceflag = p->p_traceflag;
#endif
kp->ki_fd = p->p_fd;
kp->ki_vmspace = p->p_vmspace;
kp->ki_flag = p->p_flag;
cred = p->p_ucred;
if (cred) {
kp->ki_uid = cred->cr_uid;
kp->ki_ruid = cred->cr_ruid;
kp->ki_svuid = cred->cr_svuid;
kp->ki_cr_flags = 0;
if (cred->cr_flags & CRED_FLAG_CAPMODE)
kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
/* XXX bde doesn't like KI_NGROUPS */
if (cred->cr_ngroups > KI_NGROUPS) {
kp->ki_ngroups = KI_NGROUPS;
kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
} else
kp->ki_ngroups = cred->cr_ngroups;
bcopy(cred->cr_groups, kp->ki_groups,
kp->ki_ngroups * sizeof(gid_t));
kp->ki_rgid = cred->cr_rgid;
kp->ki_svgid = cred->cr_svgid;
/* If jailed(cred), emulate the old P_JAILED flag. */
if (jailed(cred)) {
kp->ki_flag |= P_JAILED;
/* If inside the jail, use 0 as a jail ID. */
if (cred->cr_prison != curthread->td_ucred->cr_prison)
kp->ki_jid = cred->cr_prison->pr_id;
}
strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
sizeof(kp->ki_loginclass));
}
ps = p->p_sigacts;
if (ps) {
mtx_lock(&ps->ps_mtx);
kp->ki_sigignore = ps->ps_sigignore;
kp->ki_sigcatch = ps->ps_sigcatch;
mtx_unlock(&ps->ps_mtx);
}
if (p->p_state != PRS_NEW &&
p->p_state != PRS_ZOMBIE &&
p->p_vmspace != NULL) {
struct vmspace *vm = p->p_vmspace;
kp->ki_size = vm->vm_map.size;
kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
FOREACH_THREAD_IN_PROC(p, td0) {
if (!TD_IS_SWAPPED(td0))
kp->ki_rssize += td0->td_kstack_pages;
}
kp->ki_swrss = vm->vm_swrss;
kp->ki_tsize = vm->vm_tsize;
kp->ki_dsize = vm->vm_dsize;
kp->ki_ssize = vm->vm_ssize;
} else if (p->p_state == PRS_ZOMBIE)
kp->ki_stat = SZOMB;
if (kp->ki_flag & P_INMEM)
kp->ki_sflag = PS_INMEM;
else
kp->ki_sflag = 0;
/* Calculate legacy swtime as seconds since 'swtick'. */
kp->ki_swtime = (ticks - p->p_swtick) / hz;
kp->ki_pid = p->p_pid;
kp->ki_nice = p->p_nice;
kp->ki_start = p->p_stats->p_start;
timevaladd(&kp->ki_start, &boottime);
PROC_SLOCK(p);
rufetch(p, &kp->ki_rusage);
kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
PROC_SUNLOCK(p);
calccru(p, &kp->ki_childutime, &kp->ki_childstime);
2010-11-11 21:53:46 +00:00
/* Some callers want child times in a single value. */
kp->ki_childtime = kp->ki_childstime;
timevaladd(&kp->ki_childtime, &kp->ki_childutime);
2010-11-11 21:53:46 +00:00
FOREACH_THREAD_IN_PROC(p, td0)
kp->ki_cow += td0->td_cow;
tp = NULL;
if (p->p_pgrp) {
kp->ki_pgid = p->p_pgrp->pg_id;
kp->ki_jobc = p->p_pgrp->pg_jobc;
sp = p->p_pgrp->pg_session;
if (sp != NULL) {
kp->ki_sid = sp->s_sid;
SESS_LOCK(sp);
strlcpy(kp->ki_login, sp->s_login,
sizeof(kp->ki_login));
if (sp->s_ttyvp)
kp->ki_kiflag |= KI_CTTY;
if (SESS_LEADER(p))
kp->ki_kiflag |= KI_SLEADER;
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
/* XXX proctree_lock */
tp = sp->s_ttyp;
SESS_UNLOCK(sp);
}
}
if ((p->p_flag & P_CONTROLT) && tp != NULL) {
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
kp->ki_tdev = tty_udev(tp);
kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
if (tp->t_session)
kp->ki_tsid = tp->t_session->s_sid;
} else
kp->ki_tdev = NODEV;
if (p->p_comm[0] != '\0')
strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
if (p->p_sysent && p->p_sysent->sv_name != NULL &&
p->p_sysent->sv_name[0] != '\0')
strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
kp->ki_siglist = p->p_siglist;
kp->ki_xstat = p->p_xstat;
kp->ki_acflag = p->p_acflag;
kp->ki_lock = p->p_lock;
if (p->p_pptr)
kp->ki_ppid = p->p_pptr->p_pid;
}
/*
* Fill in information that is thread specific. Must be called with
* target process locked. If 'preferthread' is set, overwrite certain
* process-related fields that are maintained for both threads and
* processes.
*/
static void
fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
{
struct proc *p;
p = td->td_proc;
kp->ki_tdaddr = td;
PROC_LOCK_ASSERT(p, MA_OWNED);
if (preferthread)
PROC_SLOCK(p);
thread_lock(td);
if (td->td_wmesg != NULL)
strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
else
bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
if (TD_ON_LOCK(td)) {
kp->ki_kiflag |= KI_LOCKBLOCK;
strlcpy(kp->ki_lockname, td->td_lockname,
sizeof(kp->ki_lockname));
} else {
kp->ki_kiflag &= ~KI_LOCKBLOCK;
bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
}
if (p->p_state == PRS_NORMAL) { /* approximate. */
if (TD_ON_RUNQ(td) ||
TD_CAN_RUN(td) ||
TD_IS_RUNNING(td)) {
kp->ki_stat = SRUN;
} else if (P_SHOULDSTOP(p)) {
kp->ki_stat = SSTOP;
} else if (TD_IS_SLEEPING(td)) {
kp->ki_stat = SSLEEP;
} else if (TD_ON_LOCK(td)) {
kp->ki_stat = SLOCK;
} else {
kp->ki_stat = SWAIT;
}
} else if (p->p_state == PRS_ZOMBIE) {
kp->ki_stat = SZOMB;
} else {
kp->ki_stat = SIDL;
}
/* Things in the thread */
kp->ki_wchan = td->td_wchan;
kp->ki_pri.pri_level = td->td_priority;
kp->ki_pri.pri_native = td->td_base_pri;
kp->ki_lastcpu = td->td_lastcpu;
kp->ki_oncpu = td->td_oncpu;
kp->ki_tdflags = td->td_flags;
kp->ki_tid = td->td_tid;
kp->ki_numthreads = p->p_numthreads;
kp->ki_pcb = td->td_pcb;
kp->ki_kstack = (void *)td->td_kstack;
kp->ki_slptime = (ticks - td->td_slptick) / hz;
kp->ki_pri.pri_class = td->td_pri_class;
kp->ki_pri.pri_user = td->td_user_pri;
if (preferthread) {
rufetchtd(td, &kp->ki_rusage);
kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
kp->ki_pctcpu = sched_pctcpu(td);
kp->ki_estcpu = td->td_estcpu;
kp->ki_cow = td->td_cow;
}
/* We can't get this anymore but ps etc never used it anyway. */
kp->ki_rqindex = 0;
if (preferthread)
kp->ki_siglist = td->td_siglist;
kp->ki_sigmask = td->td_sigmask;
thread_unlock(td);
if (preferthread)
PROC_SUNLOCK(p);
}
/*
* Fill in a kinfo_proc structure for the specified process.
* Must be called with the target process locked.
*/
void
fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
{
MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
fill_kinfo_proc_only(p, kp);
fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
fill_kinfo_aggregate(p, kp);
}
struct pstats *
pstats_alloc(void)
{
return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
}
/*
* Copy parts of p_stats; zero the rest of p_stats (statistics).
*/
void
pstats_fork(struct pstats *src, struct pstats *dst)
{
bzero(&dst->pstat_startzero,
__rangeof(struct pstats, pstat_startzero, pstat_endzero));
bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
__rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
}
void
pstats_free(struct pstats *ps)
{
free(ps, M_SUBPROC);
}
static struct proc *
zpfind_locked(pid_t pid)
{
struct proc *p;
sx_assert(&allproc_lock, SX_LOCKED);
LIST_FOREACH(p, &zombproc, p_list) {
if (p->p_pid == pid) {
PROC_LOCK(p);
break;
}
}
return (p);
}
/*
* Locate a zombie process by number
*/
struct proc *
zpfind(pid_t pid)
{
struct proc *p;
sx_slock(&allproc_lock);
p = zpfind_locked(pid);
sx_sunlock(&allproc_lock);
return (p);
}
#ifdef COMPAT_FREEBSD32
/*
* This function is typically used to copy out the kernel address, so
* it can be replaced by assignment of zero.
*/
static inline uint32_t
ptr32_trim(void *ptr)
{
uintptr_t uptr;
uptr = (uintptr_t)ptr;
return ((uptr > UINT_MAX) ? 0 : uptr);
}
#define PTRTRIM_CP(src,dst,fld) \
do { (dst).fld = ptr32_trim((src).fld); } while (0)
static void
freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
{
int i;
bzero(ki32, sizeof(struct kinfo_proc32));
ki32->ki_structsize = sizeof(struct kinfo_proc32);
CP(*ki, *ki32, ki_layout);
PTRTRIM_CP(*ki, *ki32, ki_args);
PTRTRIM_CP(*ki, *ki32, ki_paddr);
PTRTRIM_CP(*ki, *ki32, ki_addr);
PTRTRIM_CP(*ki, *ki32, ki_tracep);
PTRTRIM_CP(*ki, *ki32, ki_textvp);
PTRTRIM_CP(*ki, *ki32, ki_fd);
PTRTRIM_CP(*ki, *ki32, ki_vmspace);
PTRTRIM_CP(*ki, *ki32, ki_wchan);
CP(*ki, *ki32, ki_pid);
CP(*ki, *ki32, ki_ppid);
CP(*ki, *ki32, ki_pgid);
CP(*ki, *ki32, ki_tpgid);
CP(*ki, *ki32, ki_sid);
CP(*ki, *ki32, ki_tsid);
CP(*ki, *ki32, ki_jobc);
CP(*ki, *ki32, ki_tdev);
CP(*ki, *ki32, ki_siglist);
CP(*ki, *ki32, ki_sigmask);
CP(*ki, *ki32, ki_sigignore);
CP(*ki, *ki32, ki_sigcatch);
CP(*ki, *ki32, ki_uid);
CP(*ki, *ki32, ki_ruid);
CP(*ki, *ki32, ki_svuid);
CP(*ki, *ki32, ki_rgid);
CP(*ki, *ki32, ki_svgid);
CP(*ki, *ki32, ki_ngroups);
for (i = 0; i < KI_NGROUPS; i++)
CP(*ki, *ki32, ki_groups[i]);
CP(*ki, *ki32, ki_size);
CP(*ki, *ki32, ki_rssize);
CP(*ki, *ki32, ki_swrss);
CP(*ki, *ki32, ki_tsize);
CP(*ki, *ki32, ki_dsize);
CP(*ki, *ki32, ki_ssize);
CP(*ki, *ki32, ki_xstat);
CP(*ki, *ki32, ki_acflag);
CP(*ki, *ki32, ki_pctcpu);
CP(*ki, *ki32, ki_estcpu);
CP(*ki, *ki32, ki_slptime);
CP(*ki, *ki32, ki_swtime);
CP(*ki, *ki32, ki_cow);
CP(*ki, *ki32, ki_runtime);
TV_CP(*ki, *ki32, ki_start);
TV_CP(*ki, *ki32, ki_childtime);
CP(*ki, *ki32, ki_flag);
CP(*ki, *ki32, ki_kiflag);
CP(*ki, *ki32, ki_traceflag);
CP(*ki, *ki32, ki_stat);
CP(*ki, *ki32, ki_nice);
CP(*ki, *ki32, ki_lock);
CP(*ki, *ki32, ki_rqindex);
CP(*ki, *ki32, ki_oncpu);
CP(*ki, *ki32, ki_lastcpu);
bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
CP(*ki, *ki32, ki_cr_flags);
CP(*ki, *ki32, ki_jid);
CP(*ki, *ki32, ki_numthreads);
CP(*ki, *ki32, ki_tid);
CP(*ki, *ki32, ki_pri);
freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
PTRTRIM_CP(*ki, *ki32, ki_pcb);
PTRTRIM_CP(*ki, *ki32, ki_kstack);
PTRTRIM_CP(*ki, *ki32, ki_udata);
CP(*ki, *ki32, ki_sflag);
CP(*ki, *ki32, ki_tdflags);
}
#endif
int
kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
{
struct thread *td;
struct kinfo_proc ki;
#ifdef COMPAT_FREEBSD32
struct kinfo_proc32 ki32;
#endif
int error;
PROC_LOCK_ASSERT(p, MA_OWNED);
MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
error = 0;
fill_kinfo_proc(p, &ki);
if ((flags & KERN_PROC_NOTHREADS) != 0) {
#ifdef COMPAT_FREEBSD32
if ((flags & KERN_PROC_MASK32) != 0) {
freebsd32_kinfo_proc_out(&ki, &ki32);
error = sbuf_bcat(sb, &ki32, sizeof(ki32));
} else
#endif
error = sbuf_bcat(sb, &ki, sizeof(ki));
} else {
FOREACH_THREAD_IN_PROC(p, td) {
fill_kinfo_thread(td, &ki, 1);
#ifdef COMPAT_FREEBSD32
if ((flags & KERN_PROC_MASK32) != 0) {
freebsd32_kinfo_proc_out(&ki, &ki32);
error = sbuf_bcat(sb, &ki32, sizeof(ki32));
} else
#endif
error = sbuf_bcat(sb, &ki, sizeof(ki));
if (error)
break;
}
}
PROC_UNLOCK(p);
return (error);
}
static int
sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
int doingzomb)
{
struct sbuf sb;
struct kinfo_proc ki;
struct proc *np;
int error, error2;
pid_t pid;
pid = p->p_pid;
sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
error = kern_proc_out(p, &sb, flags);
error2 = sbuf_finish(&sb);
sbuf_delete(&sb);
if (error != 0)
return (error);
else if (error2 != 0)
return (error2);
if (doingzomb)
np = zpfind(pid);
else {
if (pid == 0)
return (0);
np = pfind(pid);
}
if (np == NULL)
return (ESRCH);
if (np != p) {
PROC_UNLOCK(np);
return (ESRCH);
}
PROC_UNLOCK(np);
return (0);
}
static int
sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct proc *p;
int flags, doingzomb, oid_number;
int error = 0;
oid_number = oidp->oid_number;
if (oid_number != KERN_PROC_ALL &&
(oid_number & KERN_PROC_INC_THREAD) == 0)
flags = KERN_PROC_NOTHREADS;
else {
flags = 0;
oid_number &= ~KERN_PROC_INC_THREAD;
}
#ifdef COMPAT_FREEBSD32
if (req->flags & SCTL_MASK32)
flags |= KERN_PROC_MASK32;
#endif
if (oid_number == KERN_PROC_PID) {
if (namelen != 1)
return (EINVAL);
error = sysctl_wire_old_buffer(req, 0);
if (error)
return (error);
error = pget((pid_t)name[0], PGET_CANSEE, &p);
if (error != 0)
return (error);
error = sysctl_out_proc(p, req, flags, 0);
return (error);
}
switch (oid_number) {
case KERN_PROC_ALL:
if (namelen != 0)
return (EINVAL);
break;
case KERN_PROC_PROC:
if (namelen != 0 && namelen != 1)
return (EINVAL);
break;
default:
if (namelen != 1)
return (EINVAL);
break;
}
if (!req->oldptr) {
/* overestimate by 5 procs */
error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
if (error)
return (error);
}
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sx_slock(&allproc_lock);
for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
if (!doingzomb)
p = LIST_FIRST(&allproc);
else
p = LIST_FIRST(&zombproc);
for (; p != 0; p = LIST_NEXT(p, p_list)) {
/*
* Skip embryonic processes.
*/
PROC_LOCK(p);
if (p->p_state == PRS_NEW) {
PROC_UNLOCK(p);
continue;
}
KASSERT(p->p_ucred != NULL,
("process credential is NULL for non-NEW proc"));
/*
* Show a user only appropriate processes.
*/
if (p_cansee(curthread, p)) {
PROC_UNLOCK(p);
continue;
}
/*
* TODO - make more efficient (see notes below).
* do by session.
*/
switch (oid_number) {
case KERN_PROC_GID:
if (p->p_ucred->cr_gid != (gid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_PGRP:
/* could do this by traversing pgrp */
if (p->p_pgrp == NULL ||
p->p_pgrp->pg_id != (pid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_RGID:
if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_SESSION:
if (p->p_session == NULL ||
p->p_session->s_sid != (pid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_TTY:
if ((p->p_flag & P_CONTROLT) == 0 ||
p->p_session == NULL) {
PROC_UNLOCK(p);
continue;
}
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
/* XXX proctree_lock */
SESS_LOCK(p->p_session);
if (p->p_session->s_ttyp == NULL ||
tty_udev(p->p_session->s_ttyp) !=
(dev_t)name[0]) {
SESS_UNLOCK(p->p_session);
PROC_UNLOCK(p);
continue;
}
SESS_UNLOCK(p->p_session);
break;
case KERN_PROC_UID:
if (p->p_ucred->cr_uid != (uid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_RUID:
if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
PROC_UNLOCK(p);
continue;
}
break;
case KERN_PROC_PROC:
break;
default:
break;
}
error = sysctl_out_proc(p, req, flags, doingzomb);
if (error) {
sx_sunlock(&allproc_lock);
return (error);
}
}
}
sx_sunlock(&allproc_lock);
return (0);
}
struct pargs *
pargs_alloc(int len)
{
struct pargs *pa;
pa = malloc(sizeof(struct pargs) + len, M_PARGS,
M_WAITOK);
refcount_init(&pa->ar_ref, 1);
pa->ar_length = len;
return (pa);
}
static void
pargs_free(struct pargs *pa)
{
free(pa, M_PARGS);
}
void
pargs_hold(struct pargs *pa)
{
if (pa == NULL)
return;
refcount_acquire(&pa->ar_ref);
}
void
pargs_drop(struct pargs *pa)
{
if (pa == NULL)
return;
if (refcount_release(&pa->ar_ref))
pargs_free(pa);
}
static int
proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
size_t len)
{
struct iovec iov;
struct uio uio;
iov.iov_base = (caddr_t)buf;
iov.iov_len = len;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_offset = offset;
uio.uio_resid = (ssize_t)len;
uio.uio_segflg = UIO_SYSSPACE;
uio.uio_rw = UIO_READ;
uio.uio_td = td;
return (proc_rwmem(p, &uio));
}
static int
proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
size_t len)
{
size_t i;
int error;
error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
/*
* Reading the chunk may validly return EFAULT if the string is shorter
* than the chunk and is aligned at the end of the page, assuming the
* next page is not mapped. So if EFAULT is returned do a fallback to
* one byte read loop.
*/
if (error == EFAULT) {
for (i = 0; i < len; i++, buf++, sptr++) {
error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
if (error != 0)
return (error);
if (*buf == '\0')
break;
}
error = 0;
}
return (error);
}
#define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */
enum proc_vector_type {
PROC_ARG,
PROC_ENV,
PROC_AUX,
};
#ifdef COMPAT_FREEBSD32
static int
get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
size_t *vsizep, enum proc_vector_type type)
{
struct freebsd32_ps_strings pss;
Elf32_Auxinfo aux;
vm_offset_t vptr, ptr;
uint32_t *proc_vector32;
char **proc_vector;
size_t vsize, size;
int i, error;
error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
&pss, sizeof(pss));
if (error != 0)
return (error);
switch (type) {
case PROC_ARG:
vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
vsize = pss.ps_nargvstr;
if (vsize > ARG_MAX)
return (ENOEXEC);
size = vsize * sizeof(int32_t);
break;
case PROC_ENV:
vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
vsize = pss.ps_nenvstr;
if (vsize > ARG_MAX)
return (ENOEXEC);
size = vsize * sizeof(int32_t);
break;
case PROC_AUX:
vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
(pss.ps_nenvstr + 1) * sizeof(int32_t);
if (vptr % 4 != 0)
return (ENOEXEC);
for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
if (error != 0)
return (error);
if (aux.a_type == AT_NULL)
break;
ptr += sizeof(aux);
}
if (aux.a_type != AT_NULL)
return (ENOEXEC);
vsize = i + 1;
size = vsize * sizeof(aux);
break;
default:
KASSERT(0, ("Wrong proc vector type: %d", type));
return (EINVAL);
}
proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
error = proc_read_mem(td, p, vptr, proc_vector32, size);
if (error != 0)
goto done;
if (type == PROC_AUX) {
*proc_vectorp = (char **)proc_vector32;
*vsizep = vsize;
return (0);
}
proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
for (i = 0; i < (int)vsize; i++)
proc_vector[i] = PTRIN(proc_vector32[i]);
*proc_vectorp = proc_vector;
*vsizep = vsize;
done:
free(proc_vector32, M_TEMP);
return (error);
}
#endif
static int
get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
size_t *vsizep, enum proc_vector_type type)
{
struct ps_strings pss;
Elf_Auxinfo aux;
vm_offset_t vptr, ptr;
char **proc_vector;
size_t vsize, size;
int error, i;
#ifdef COMPAT_FREEBSD32
if (SV_PROC_FLAG(p, SV_ILP32) != 0)
return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
#endif
error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
&pss, sizeof(pss));
if (error != 0)
return (error);
switch (type) {
case PROC_ARG:
vptr = (vm_offset_t)pss.ps_argvstr;
vsize = pss.ps_nargvstr;
if (vsize > ARG_MAX)
return (ENOEXEC);
size = vsize * sizeof(char *);
break;
case PROC_ENV:
vptr = (vm_offset_t)pss.ps_envstr;
vsize = pss.ps_nenvstr;
if (vsize > ARG_MAX)
return (ENOEXEC);
size = vsize * sizeof(char *);
break;
case PROC_AUX:
/*
* The aux array is just above env array on the stack. Check
* that the address is naturally aligned.
*/
vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
* sizeof(char *);
#if __ELF_WORD_SIZE == 64
if (vptr % sizeof(uint64_t) != 0)
#else
if (vptr % sizeof(uint32_t) != 0)
#endif
return (ENOEXEC);
/*
* We count the array size reading the aux vectors from the
* stack until AT_NULL vector is returned. So (to keep the code
* simple) we read the process stack twice: the first time here
* to find the size and the second time when copying the vectors
* to the allocated proc_vector.
*/
for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
if (error != 0)
return (error);
if (aux.a_type == AT_NULL)
break;
ptr += sizeof(aux);
}
/*
* If the PROC_AUXV_MAX entries are iterated over, and we have
* not reached AT_NULL, it is most likely we are reading wrong
* data: either the process doesn't have auxv array or data has
* been modified. Return the error in this case.
*/
if (aux.a_type != AT_NULL)
return (ENOEXEC);
vsize = i + 1;
size = vsize * sizeof(aux);
break;
default:
KASSERT(0, ("Wrong proc vector type: %d", type));
return (EINVAL); /* In case we are built without INVARIANTS. */
}
proc_vector = malloc(size, M_TEMP, M_WAITOK);
if (proc_vector == NULL)
return (ENOMEM);
error = proc_read_mem(td, p, vptr, proc_vector, size);
if (error != 0) {
free(proc_vector, M_TEMP);
return (error);
}
*proc_vectorp = proc_vector;
*vsizep = vsize;
return (0);
}
#define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */
static int
get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
enum proc_vector_type type)
{
size_t done, len, nchr, vsize;
int error, i;
char **proc_vector, *sptr;
char pss_string[GET_PS_STRINGS_CHUNK_SZ];
PROC_ASSERT_HELD(p);
/*
* We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
*/
nchr = 2 * (PATH_MAX + ARG_MAX);
error = get_proc_vector(td, p, &proc_vector, &vsize, type);
if (error != 0)
return (error);
for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
/*
* The program may have scribbled into its argv array, e.g. to
* remove some arguments. If that has happened, break out
* before trying to read from NULL.
*/
if (proc_vector[i] == NULL)
break;
for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
error = proc_read_string(td, p, sptr, pss_string,
sizeof(pss_string));
if (error != 0)
goto done;
len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
if (done + len >= nchr)
len = nchr - done - 1;
sbuf_bcat(sb, pss_string, len);
if (len != GET_PS_STRINGS_CHUNK_SZ)
break;
done += GET_PS_STRINGS_CHUNK_SZ;
}
sbuf_bcat(sb, "", 1);
done += len + 1;
}
done:
free(proc_vector, M_TEMP);
return (error);
}
int
proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
{
return (get_ps_strings(curthread, p, sb, PROC_ARG));
}
int
proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
{
return (get_ps_strings(curthread, p, sb, PROC_ENV));
}
int
proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
{
size_t vsize, size;
char **auxv;
int error;
error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
if (error == 0) {
#ifdef COMPAT_FREEBSD32
if (SV_PROC_FLAG(p, SV_ILP32) != 0)
size = vsize * sizeof(Elf32_Auxinfo);
else
#endif
size = vsize * sizeof(Elf_Auxinfo);
error = sbuf_bcat(sb, auxv, size);
free(auxv, M_TEMP);
}
return (error);
}
/*
* This sysctl allows a process to retrieve the argument list or process
* title for another process without groping around in the address space
* of the other process. It also allow a process to set its own "process
* title to a string of its own choice.
*/
static int
sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct pargs *newpa, *pa;
struct proc *p;
struct sbuf sb;
int flags, error = 0, error2;
if (namelen != 1)
return (EINVAL);
flags = PGET_CANSEE;
if (req->newptr != NULL)
flags |= PGET_ISCURRENT;
error = pget((pid_t)name[0], flags, &p);
if (error)
return (error);
pa = p->p_args;
if (pa != NULL) {
pargs_hold(pa);
PROC_UNLOCK(p);
error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
pargs_drop(pa);
} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
_PHOLD(p);
PROC_UNLOCK(p);
sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
error = proc_getargv(curthread, p, &sb);
error2 = sbuf_finish(&sb);
PRELE(p);
sbuf_delete(&sb);
if (error == 0 && error2 != 0)
error = error2;
} else {
PROC_UNLOCK(p);
}
if (error != 0 || req->newptr == NULL)
return (error);
if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
return (ENOMEM);
newpa = pargs_alloc(req->newlen);
error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
if (error != 0) {
pargs_free(newpa);
return (error);
}
PROC_LOCK(p);
pa = p->p_args;
p->p_args = newpa;
PROC_UNLOCK(p);
pargs_drop(pa);
return (0);
}
/*
* This sysctl allows a process to retrieve environment of another process.
*/
static int
sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct proc *p;
struct sbuf sb;
int error, error2;
if (namelen != 1)
return (EINVAL);
error = pget((pid_t)name[0], PGET_WANTREAD, &p);
if (error != 0)
return (error);
if ((p->p_flag & P_SYSTEM) != 0) {
PRELE(p);
return (0);
}
sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
error = proc_getenvv(curthread, p, &sb);
error2 = sbuf_finish(&sb);
PRELE(p);
sbuf_delete(&sb);
return (error != 0 ? error : error2);
}
/*
* This sysctl allows a process to retrieve ELF auxiliary vector of
* another process.
*/
static int
sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct proc *p;
struct sbuf sb;
int error, error2;
if (namelen != 1)
return (EINVAL);
error = pget((pid_t)name[0], PGET_WANTREAD, &p);
if (error != 0)
return (error);
if ((p->p_flag & P_SYSTEM) != 0) {
PRELE(p);
return (0);
}
sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
error = proc_getauxv(curthread, p, &sb);
error2 = sbuf_finish(&sb);
PRELE(p);
sbuf_delete(&sb);
return (error != 0 ? error : error2);
}
/*
* This sysctl allows a process to retrieve the path of the executable for
* itself or another process.
*/
static int
sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
{
pid_t *pidp = (pid_t *)arg1;
unsigned int arglen = arg2;
struct proc *p;
struct vnode *vp;
char *retbuf, *freebuf;
int error;
if (arglen != 1)
return (EINVAL);
if (*pidp == -1) { /* -1 means this process */
p = req->td->td_proc;
} else {
error = pget(*pidp, PGET_CANSEE, &p);
if (error != 0)
return (error);
}
vp = p->p_textvp;
if (vp == NULL) {
if (*pidp != -1)
PROC_UNLOCK(p);
return (0);
}
vref(vp);
if (*pidp != -1)
PROC_UNLOCK(p);
error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
vrele(vp);
if (error)
return (error);
error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
free(freebuf, M_TEMP);
return (error);
}
static int
sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
{
struct proc *p;
char *sv_name;
int *name;
int namelen;
int error;
namelen = arg2;
if (namelen != 1)
return (EINVAL);
name = (int *)arg1;
error = pget((pid_t)name[0], PGET_CANSEE, &p);
if (error != 0)
return (error);
sv_name = p->p_sysent->sv_name;
PROC_UNLOCK(p);
return (sysctl_handle_string(oidp, sv_name, 0, req));
}
#ifdef KINFO_OVMENTRY_SIZE
CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
#endif
#ifdef COMPAT_FREEBSD7
static int
sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
{
vm_map_entry_t entry, tmp_entry;
unsigned int last_timestamp;
char *fullpath, *freepath;
struct kinfo_ovmentry *kve;
struct vattr va;
struct ucred *cred;
int error, *name;
struct vnode *vp;
struct proc *p;
vm_map_t map;
struct vmspace *vm;
name = (int *)arg1;
error = pget((pid_t)name[0], PGET_WANTREAD, &p);
if (error != 0)
return (error);
vm = vmspace_acquire_ref(p);
if (vm == NULL) {
PRELE(p);
return (ESRCH);
}
kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
map = &vm->vm_map;
vm_map_lock_read(map);
for (entry = map->header.next; entry != &map->header;
entry = entry->next) {
vm_object_t obj, tobj, lobj;
vm_offset_t addr;
if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
continue;
bzero(kve, sizeof(*kve));
kve->kve_structsize = sizeof(*kve);
kve->kve_private_resident = 0;
obj = entry->object.vm_object;
if (obj != NULL) {
VM_OBJECT_RLOCK(obj);
if (obj->shadow_count == 1)
kve->kve_private_resident =
obj->resident_page_count;
}
kve->kve_resident = 0;
addr = entry->start;
while (addr < entry->end) {
if (pmap_extract(map->pmap, addr))
kve->kve_resident++;
addr += PAGE_SIZE;
}
for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
if (tobj != obj)
VM_OBJECT_RLOCK(tobj);
if (lobj != obj)
VM_OBJECT_RUNLOCK(lobj);
lobj = tobj;
}
kve->kve_start = (void*)entry->start;
kve->kve_end = (void*)entry->end;
kve->kve_offset = (off_t)entry->offset;
if (entry->protection & VM_PROT_READ)
kve->kve_protection |= KVME_PROT_READ;
if (entry->protection & VM_PROT_WRITE)
kve->kve_protection |= KVME_PROT_WRITE;
if (entry->protection & VM_PROT_EXECUTE)
kve->kve_protection |= KVME_PROT_EXEC;
if (entry->eflags & MAP_ENTRY_COW)
kve->kve_flags |= KVME_FLAG_COW;
if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
last_timestamp = map->timestamp;
vm_map_unlock_read(map);
kve->kve_fileid = 0;
kve->kve_fsid = 0;
freepath = NULL;
fullpath = "";
if (lobj) {
vp = NULL;
switch (lobj->type) {
case OBJT_DEFAULT:
kve->kve_type = KVME_TYPE_DEFAULT;
break;
case OBJT_VNODE:
kve->kve_type = KVME_TYPE_VNODE;
vp = lobj->handle;
vref(vp);
break;
case OBJT_SWAP:
kve->kve_type = KVME_TYPE_SWAP;
break;
case OBJT_DEVICE:
kve->kve_type = KVME_TYPE_DEVICE;
break;
case OBJT_PHYS:
kve->kve_type = KVME_TYPE_PHYS;
break;
case OBJT_DEAD:
kve->kve_type = KVME_TYPE_DEAD;
break;
case OBJT_SG:
kve->kve_type = KVME_TYPE_SG;
break;
default:
kve->kve_type = KVME_TYPE_UNKNOWN;
break;
}
if (lobj != obj)
VM_OBJECT_RUNLOCK(lobj);
kve->kve_ref_count = obj->ref_count;
kve->kve_shadow_count = obj->shadow_count;
VM_OBJECT_RUNLOCK(obj);
if (vp != NULL) {
vn_fullpath(curthread, vp, &fullpath,
&freepath);
cred = curthread->td_ucred;
vn_lock(vp, LK_SHARED | LK_RETRY);
if (VOP_GETATTR(vp, &va, cred) == 0) {
kve->kve_fileid = va.va_fileid;
kve->kve_fsid = va.va_fsid;
}
vput(vp);
}
} else {
kve->kve_type = KVME_TYPE_NONE;
kve->kve_ref_count = 0;
kve->kve_shadow_count = 0;
}
strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
if (freepath != NULL)
free(freepath, M_TEMP);
error = SYSCTL_OUT(req, kve, sizeof(*kve));
vm_map_lock_read(map);
if (error)
break;
if (last_timestamp != map->timestamp) {
vm_map_lookup_entry(map, addr - 1, &tmp_entry);
entry = tmp_entry;
}
}
vm_map_unlock_read(map);
vmspace_free(vm);
PRELE(p);
free(kve, M_TEMP);
return (error);
}
#endif /* COMPAT_FREEBSD7 */
#ifdef KINFO_VMENTRY_SIZE
CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
#endif
/*
* Must be called with the process locked and will return unlocked.
*/
int
kern_proc_vmmap_out(struct proc *p, struct sbuf *sb)
{
vm_map_entry_t entry, tmp_entry;
unsigned int last_timestamp;
char *fullpath, *freepath;
struct kinfo_vmentry *kve;
struct vattr va;
struct ucred *cred;
int error;
struct vnode *vp;
struct vmspace *vm;
vm_map_t map;
PROC_LOCK_ASSERT(p, MA_OWNED);
_PHOLD(p);
PROC_UNLOCK(p);
vm = vmspace_acquire_ref(p);
if (vm == NULL) {
PRELE(p);
return (ESRCH);
}
kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
error = 0;
map = &vm->vm_map;
vm_map_lock_read(map);
for (entry = map->header.next; entry != &map->header;
entry = entry->next) {
vm_object_t obj, tobj, lobj;
vm_offset_t addr;
vm_paddr_t locked_pa;
int mincoreinfo;
if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
continue;
bzero(kve, sizeof(*kve));
kve->kve_private_resident = 0;
obj = entry->object.vm_object;
if (obj != NULL) {
VM_OBJECT_RLOCK(obj);
if (obj->shadow_count == 1)
kve->kve_private_resident =
obj->resident_page_count;
}
kve->kve_resident = 0;
addr = entry->start;
while (addr < entry->end) {
locked_pa = 0;
mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa);
if (locked_pa != 0)
vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa));
if (mincoreinfo & MINCORE_INCORE)
kve->kve_resident++;
if (mincoreinfo & MINCORE_SUPER)
kve->kve_flags |= KVME_FLAG_SUPER;
addr += PAGE_SIZE;
}
for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
if (tobj != obj)
VM_OBJECT_RLOCK(tobj);
if (lobj != obj)
VM_OBJECT_RUNLOCK(lobj);
lobj = tobj;
}
kve->kve_start = entry->start;
kve->kve_end = entry->end;
kve->kve_offset = entry->offset;
if (entry->protection & VM_PROT_READ)
kve->kve_protection |= KVME_PROT_READ;
if (entry->protection & VM_PROT_WRITE)
kve->kve_protection |= KVME_PROT_WRITE;
if (entry->protection & VM_PROT_EXECUTE)
kve->kve_protection |= KVME_PROT_EXEC;
if (entry->eflags & MAP_ENTRY_COW)
kve->kve_flags |= KVME_FLAG_COW;
if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
if (entry->eflags & MAP_ENTRY_GROWS_UP)
kve->kve_flags |= KVME_FLAG_GROWS_UP;
if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
last_timestamp = map->timestamp;
vm_map_unlock_read(map);
freepath = NULL;
fullpath = "";
if (lobj) {
vp = NULL;
switch (lobj->type) {
case OBJT_DEFAULT:
kve->kve_type = KVME_TYPE_DEFAULT;
break;
case OBJT_VNODE:
kve->kve_type = KVME_TYPE_VNODE;
vp = lobj->handle;
vref(vp);
break;
case OBJT_SWAP:
kve->kve_type = KVME_TYPE_SWAP;
break;
case OBJT_DEVICE:
kve->kve_type = KVME_TYPE_DEVICE;
break;
case OBJT_PHYS:
kve->kve_type = KVME_TYPE_PHYS;
break;
case OBJT_DEAD:
kve->kve_type = KVME_TYPE_DEAD;
break;
case OBJT_SG:
kve->kve_type = KVME_TYPE_SG;
break;
default:
kve->kve_type = KVME_TYPE_UNKNOWN;
break;
}
if (lobj != obj)
VM_OBJECT_RUNLOCK(lobj);
kve->kve_ref_count = obj->ref_count;
kve->kve_shadow_count = obj->shadow_count;
VM_OBJECT_RUNLOCK(obj);
if (vp != NULL) {
vn_fullpath(curthread, vp, &fullpath,
&freepath);
kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
cred = curthread->td_ucred;
vn_lock(vp, LK_SHARED | LK_RETRY);
if (VOP_GETATTR(vp, &va, cred) == 0) {
kve->kve_vn_fileid = va.va_fileid;
kve->kve_vn_fsid = va.va_fsid;
kve->kve_vn_mode =
MAKEIMODE(va.va_type, va.va_mode);
kve->kve_vn_size = va.va_size;
kve->kve_vn_rdev = va.va_rdev;
kve->kve_status = KF_ATTR_VALID;
}
vput(vp);
}
} else {
kve->kve_type = KVME_TYPE_NONE;
kve->kve_ref_count = 0;
kve->kve_shadow_count = 0;
}
strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
if (freepath != NULL)
free(freepath, M_TEMP);
/* Pack record size down */
kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
strlen(kve->kve_path) + 1;
kve->kve_structsize = roundup(kve->kve_structsize,
sizeof(uint64_t));
error = sbuf_bcat(sb, kve, kve->kve_structsize);
vm_map_lock_read(map);
if (error)
break;
if (last_timestamp != map->timestamp) {
vm_map_lookup_entry(map, addr - 1, &tmp_entry);
entry = tmp_entry;
}
}
vm_map_unlock_read(map);
vmspace_free(vm);
PRELE(p);
free(kve, M_TEMP);
return (error);
}
static int
sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
{
struct proc *p;
struct sbuf sb;
int error, error2, *name;
name = (int *)arg1;
sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
if (error != 0) {
sbuf_delete(&sb);
return (error);
}
error = kern_proc_vmmap_out(p, &sb);
error2 = sbuf_finish(&sb);
sbuf_delete(&sb);
return (error != 0 ? error : error2);
}
#if defined(STACK) || defined(DDB)
static int
sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
{
struct kinfo_kstack *kkstp;
int error, i, *name, numthreads;
lwpid_t *lwpidarray;
struct thread *td;
struct stack *st;
struct sbuf sb;
struct proc *p;
name = (int *)arg1;
error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
if (error != 0)
return (error);
kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
st = stack_create();
lwpidarray = NULL;
numthreads = 0;
PROC_LOCK(p);
repeat:
if (numthreads < p->p_numthreads) {
if (lwpidarray != NULL) {
free(lwpidarray, M_TEMP);
lwpidarray = NULL;
}
numthreads = p->p_numthreads;
PROC_UNLOCK(p);
lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
M_WAITOK | M_ZERO);
PROC_LOCK(p);
goto repeat;
}
i = 0;
/*
* XXXRW: During the below loop, execve(2) and countless other sorts
* of changes could have taken place. Should we check to see if the
* vmspace has been replaced, or the like, in order to prevent
* giving a snapshot that spans, say, execve(2), with some threads
* before and some after? Among other things, the credentials could
* have changed, in which case the right to extract debug info might
* no longer be assured.
*/
FOREACH_THREAD_IN_PROC(p, td) {
KASSERT(i < numthreads,
("sysctl_kern_proc_kstack: numthreads"));
lwpidarray[i] = td->td_tid;
i++;
}
numthreads = i;
for (i = 0; i < numthreads; i++) {
td = thread_find(p, lwpidarray[i]);
if (td == NULL) {
continue;
}
bzero(kkstp, sizeof(*kkstp));
(void)sbuf_new(&sb, kkstp->kkst_trace,
sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
thread_lock(td);
kkstp->kkst_tid = td->td_tid;
if (TD_IS_SWAPPED(td))
kkstp->kkst_state = KKST_STATE_SWAPPED;
else if (TD_IS_RUNNING(td))
kkstp->kkst_state = KKST_STATE_RUNNING;
else {
kkstp->kkst_state = KKST_STATE_STACKOK;
stack_save_td(st, td);
}
thread_unlock(td);
PROC_UNLOCK(p);
stack_sbuf_print(&sb, st);
sbuf_finish(&sb);
sbuf_delete(&sb);
error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
PROC_LOCK(p);
if (error)
break;
}
_PRELE(p);
PROC_UNLOCK(p);
if (lwpidarray != NULL)
free(lwpidarray, M_TEMP);
stack_destroy(st);
free(kkstp, M_TEMP);
return (error);
}
#endif
/*
* This sysctl allows a process to retrieve the full list of groups from
* itself or another process.
*/
static int
sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
{
pid_t *pidp = (pid_t *)arg1;
unsigned int arglen = arg2;
struct proc *p;
struct ucred *cred;
int error;
if (arglen != 1)
return (EINVAL);
if (*pidp == -1) { /* -1 means this process */
p = req->td->td_proc;
} else {
error = pget(*pidp, PGET_CANSEE, &p);
if (error != 0)
return (error);
}
cred = crhold(p->p_ucred);
if (*pidp != -1)
PROC_UNLOCK(p);
error = SYSCTL_OUT(req, cred->cr_groups,
cred->cr_ngroups * sizeof(gid_t));
crfree(cred);
return (error);
}
/*
* This sysctl allows a process to retrieve or/and set the resource limit for
* another process.
*/
static int
sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct rlimit rlim;
struct proc *p;
u_int which;
int flags, error;
if (namelen != 2)
return (EINVAL);
which = (u_int)name[1];
if (which >= RLIM_NLIMITS)
return (EINVAL);
if (req->newptr != NULL && req->newlen != sizeof(rlim))
return (EINVAL);
flags = PGET_HOLD | PGET_NOTWEXIT;
if (req->newptr != NULL)
flags |= PGET_CANDEBUG;
else
flags |= PGET_CANSEE;
error = pget((pid_t)name[0], flags, &p);
if (error != 0)
return (error);
/*
* Retrieve limit.
*/
if (req->oldptr != NULL) {
PROC_LOCK(p);
lim_rlimit(p, which, &rlim);
PROC_UNLOCK(p);
}
error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
if (error != 0)
goto errout;
/*
* Set limit.
*/
if (req->newptr != NULL) {
error = SYSCTL_IN(req, &rlim, sizeof(rlim));
if (error == 0)
error = kern_proc_setrlimit(curthread, p, which, &rlim);
}
errout:
PRELE(p);
return (error);
}
/*
* This sysctl allows a process to retrieve ps_strings structure location of
* another process.
*/
static int
sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct proc *p;
vm_offset_t ps_strings;
int error;
#ifdef COMPAT_FREEBSD32
uint32_t ps_strings32;
#endif
if (namelen != 1)
return (EINVAL);
error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
if (error != 0)
return (error);
#ifdef COMPAT_FREEBSD32
if ((req->flags & SCTL_MASK32) != 0) {
/*
* We return 0 if the 32 bit emulation request is for a 64 bit
* process.
*/
ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
PTROUT(p->p_sysent->sv_psstrings) : 0;
PROC_UNLOCK(p);
error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
return (error);
}
#endif
ps_strings = p->p_sysent->sv_psstrings;
PROC_UNLOCK(p);
error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
return (error);
}
/*
* This sysctl allows a process to retrieve umask of another process.
*/
static int
sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct proc *p;
int error;
u_short fd_cmask;
if (namelen != 1)
return (EINVAL);
error = pget((pid_t)name[0], PGET_WANTREAD, &p);
if (error != 0)
return (error);
FILEDESC_SLOCK(p->p_fd);
fd_cmask = p->p_fd->fd_cmask;
FILEDESC_SUNLOCK(p->p_fd);
PRELE(p);
error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
return (error);
}
/*
* This sysctl allows a process to set and retrieve binary osreldate of
* another process.
*/
static int
sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct proc *p;
int flags, error, osrel;
if (namelen != 1)
return (EINVAL);
if (req->newptr != NULL && req->newlen != sizeof(osrel))
return (EINVAL);
flags = PGET_HOLD | PGET_NOTWEXIT;
if (req->newptr != NULL)
flags |= PGET_CANDEBUG;
else
flags |= PGET_CANSEE;
error = pget((pid_t)name[0], flags, &p);
if (error != 0)
return (error);
error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
if (error != 0)
goto errout;
if (req->newptr != NULL) {
error = SYSCTL_IN(req, &osrel, sizeof(osrel));
if (error != 0)
goto errout;
if (osrel < 0) {
error = EINVAL;
goto errout;
}
p->p_osrel = osrel;
}
errout:
PRELE(p);
return (error);
}
SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table");
SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
"Return entire process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Process table");
static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc, "Return process table, no threads");
2005-02-10 12:15:49 +00:00
static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
sysctl_kern_proc_args, "Process argument list");
static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_kern_proc_env, "Process environment");
static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
"Process syscall vector name (ABI type)");
2005-02-10 12:15:49 +00:00
static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2005-02-10 12:15:49 +00:00
static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2005-02-10 12:15:49 +00:00
static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2005-02-10 12:15:49 +00:00
static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2005-02-10 12:15:49 +00:00
static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2005-02-10 12:15:49 +00:00
static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2005-02-10 12:15:49 +00:00
static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2005-02-10 12:15:49 +00:00
static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2005-02-10 12:15:49 +00:00
static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
"Return process table, no threads");
#ifdef COMPAT_FREEBSD7
static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
#endif
static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
#if defined(STACK) || defined(DDB)
static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
#endif
static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
"Process resource limits");
static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
"Process ps_strings location");
static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
"Process binary osreldate");