freebsd-skq/sbin/growfs/growfs.c

1764 lines
47 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-4-Clause
*
* Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
* Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
* Copyright (c) 2012 The FreeBSD Foundation
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
*
* Portions of this software were developed by Edward Tomasz Napierala
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgment:
* This product includes software developed by the University of
* California, Berkeley and its contributors, as well as Christoph
* Herrmann and Thomas-Henning von Kamptz.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
*
*/
#ifndef lint
static const char copyright[] =
"@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
All rights reserved.\n";
#endif /* not lint */
2005-01-16 14:37:30 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/disk.h>
#include <sys/ucred.h>
#include <sys/mount.h>
#include <stdio.h>
#include <paths.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <fstab.h>
#include <inttypes.h>
#include <limits.h>
#include <mntopts.h>
#include <paths.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ffs/fs.h>
#include <libutil.h>
#include <libufs.h>
#include "debug.h"
#ifdef FS_DEBUG
int _dbg_lvl_ = (DL_INFO); /* DL_TRC */
#endif /* FS_DEBUG */
static union {
struct fs fs;
2012-04-12 16:55:48 +00:00
char pad[SBLOCKSIZE];
} fsun1, fsun2;
#define sblock fsun1.fs /* the new superblock */
#define osblock fsun2.fs /* the old superblock */
static union {
struct cg cg;
2012-04-12 16:55:48 +00:00
char pad[MAXBSIZE];
} cgun1, cgun2;
#define acg cgun1.cg /* a cylinder cgroup (new) */
#define aocg cgun2.cg /* an old cylinder group */
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
static struct csum *fscs; /* cylinder summary */
static void growfs(int, int, unsigned int);
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
static void rdfs(ufs2_daddr_t, size_t, void *, int);
static void wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
static int charsperline(void);
static void usage(void);
static int isblock(struct fs *, unsigned char *, int);
static void clrblock(struct fs *, unsigned char *, int);
static void setblock(struct fs *, unsigned char *, int);
static void initcg(int, time_t, int, unsigned int);
static void updjcg(int, time_t, int, int, unsigned int);
static void updcsloc(time_t, int, int, unsigned int);
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
static void frag_adjust(ufs2_daddr_t, int);
static void updclst(int);
static void mount_reload(const struct statfs *stfs);
static void cgckhash(struct cg *);
/*
* Here we actually start growing the file system. We basically read the
* cylinder summary from the first cylinder group as we want to update
* this on the fly during our various operations. First we handle the
* changes in the former last cylinder group. Afterwards we create all new
* cylinder groups. Now we handle the cylinder group containing the
* cylinder summary which might result in a relocation of the whole
* structure. In the end we write back the updated cylinder summary, the
* new superblock, and slightly patched versions of the super block
* copies.
*/
static void
growfs(int fsi, int fso, unsigned int Nflag)
{
DBG_FUNC("growfs")
time_t modtime;
uint cylno;
int i, j, width;
char tmpbuf[100];
DBG_ENTER;
time(&modtime);
/*
* Get the cylinder summary into the memory.
*/
fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
if (fscs == NULL)
errx(1, "calloc failed");
memcpy(fscs, osblock.fs_csp, osblock.fs_cssize);
free(osblock.fs_csp);
osblock.fs_csp = NULL;
sblock.fs_csp = fscs;
#ifdef FS_DEBUG
{
struct csum *dbg_csp;
u_int32_t dbg_csc;
char dbg_line[80];
dbg_csp = fscs;
for (dbg_csc = 0; dbg_csc < osblock.fs_ncg; dbg_csc++) {
snprintf(dbg_line, sizeof(dbg_line),
"%d. old csum in old location", dbg_csc);
DBG_DUMP_CSUM(&osblock, dbg_line, dbg_csp++);
}
}
#endif /* FS_DEBUG */
DBG_PRINT0("fscs read\n");
/*
* Do all needed changes in the former last cylinder group.
*/
updjcg(osblock.fs_ncg - 1, modtime, fsi, fso, Nflag);
/*
* Dump out summary information about file system.
*/
#ifdef FS_DEBUG
2012-04-15 15:15:16 +00:00
#define B2MBFACTOR (1 / (1024.0 * 1024.0))
printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
(float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
(intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
sblock.fs_fsize);
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
if (sblock.fs_flags & FS_DOSOFTDEP)
printf("\twith soft updates\n");
2012-04-15 15:15:16 +00:00
#undef B2MBFACTOR
#endif /* FS_DEBUG */
/*
* Now build the cylinders group blocks and
* then print out indices of cylinder groups.
*/
printf("super-block backups (for fsck_ffs -b #) at:\n");
i = 0;
width = charsperline();
/*
* Iterate for only the new cylinder groups.
*/
for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
initcg(cylno, modtime, fso, Nflag);
j = sprintf(tmpbuf, " %jd%s",
(intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
cylno < (sblock.fs_ncg - 1) ? "," : "" );
if (i + j >= width) {
printf("\n");
i = 0;
}
i += j;
printf("%s", tmpbuf);
fflush(stdout);
}
printf("\n");
/*
* Do all needed changes in the first cylinder group.
* allocate blocks in new location
*/
updcsloc(modtime, fsi, fso, Nflag);
/*
* Clean up the dynamic fields in our superblock.
*
* XXX
* The following fields are currently distributed from the superblock
* to the copies:
* fs_minfree
* fs_rotdelay
* fs_maxcontig
* fs_maxbpg
* fs_minfree,
* fs_optim
* fs_flags
*
* We probably should rather change the summary for the cylinder group
* statistics here to the value of what would be in there, if the file
* system were created initially with the new size. Therefor we still
* need to find an easy way of calculating that.
* Possibly we can try to read the first superblock copy and apply the
* "diffed" stats between the old and new superblock by still copying
* certain parameters onto that.
*/
sblock.fs_time = modtime;
sblock.fs_fmod = 0;
sblock.fs_clean = 1;
sblock.fs_ronly = 0;
sblock.fs_cgrotor = 0;
sblock.fs_state = 0;
memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
/*
* Now write the new superblock, its summary information,
* and all the alternates back to disk.
*/
if (!Nflag && sbput(fso, &sblock, sblock.fs_ncg) != 0)
errc(2, EIO, "could not write updated superblock");
DBG_PRINT0("fscs written\n");
#ifdef FS_DEBUG
{
struct csum *dbg_csp;
u_int32_t dbg_csc;
char dbg_line[80];
dbg_csp = fscs;
for (dbg_csc = 0; dbg_csc < sblock.fs_ncg; dbg_csc++) {
snprintf(dbg_line, sizeof(dbg_line),
"%d. new csum in new location", dbg_csc);
DBG_DUMP_CSUM(&sblock, dbg_line, dbg_csp++);
}
}
#endif /* FS_DEBUG */
DBG_PRINT0("sblock written\n");
DBG_DUMP_FS(&sblock, "new initial sblock");
DBG_PRINT0("sblock copies written\n");
DBG_DUMP_FS(&sblock, "new other sblocks");
DBG_LEAVE;
return;
}
/*
* This creates a new cylinder group structure, for more details please see
* the source of newfs(8), as this function is taken over almost unchanged.
* As this is never called for the first cylinder group, the special
* provisions for that case are removed here.
*/
static void
initcg(int cylno, time_t modtime, int fso, unsigned int Nflag)
{
DBG_FUNC("initcg")
static caddr_t iobuf;
static long iobufsize;
2010-02-11 06:42:08 +00:00
long blkno, start;
ino_t ino;
ufs2_daddr_t i, cbase, dmax;
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
struct ufs1_dinode *dp1;
struct ufs2_dinode *dp2;
struct csum *cs;
uint j, d, dupper, dlower;
if (iobuf == NULL) {
iobufsize = 2 * sblock.fs_bsize;
if ((iobuf = malloc(iobufsize)) == NULL)
errx(37, "panic: cannot allocate I/O buffer");
memset(iobuf, '\0', iobufsize);
}
/*
* Determine block bounds for cylinder group.
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
* Allow space for super block summary information in first
* cylinder group.
*/
cbase = cgbase(&sblock, cylno);
dmax = cbase + sblock.fs_fpg;
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (dmax > sblock.fs_size)
dmax = sblock.fs_size;
dlower = cgsblock(&sblock, cylno) - cbase;
dupper = cgdmin(&sblock, cylno) - cbase;
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (cylno == 0) /* XXX fscs may be relocated */
dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
cs = &fscs[cylno];
memset(&acg, 0, sblock.fs_cgsize);
acg.cg_time = modtime;
acg.cg_magic = CG_MAGIC;
acg.cg_cgx = cylno;
acg.cg_niblk = sblock.fs_ipg;
acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
acg.cg_ndblk = dmax - cbase;
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (sblock.fs_contigsumsize > 0)
acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
if (sblock.fs_magic == FS_UFS2_MAGIC) {
acg.cg_iusedoff = start;
} else {
acg.cg_old_ncyl = sblock.fs_old_cpg;
acg.cg_old_time = acg.cg_time;
acg.cg_time = 0;
acg.cg_old_niblk = acg.cg_niblk;
acg.cg_niblk = 0;
acg.cg_initediblk = 0;
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
acg.cg_old_btotoff = start;
acg.cg_old_boff = acg.cg_old_btotoff +
sblock.fs_old_cpg * sizeof(int32_t);
acg.cg_iusedoff = acg.cg_old_boff +
sblock.fs_old_cpg * sizeof(u_int16_t);
}
acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (sblock.fs_contigsumsize > 0) {
acg.cg_clustersumoff =
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
acg.cg_clustersumoff -= sizeof(u_int32_t);
acg.cg_clusteroff = acg.cg_clustersumoff +
(sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
acg.cg_nextfreeoff = acg.cg_clusteroff +
howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
}
2010-02-11 06:42:08 +00:00
if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
/*
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
* This should never happen as we would have had that panic
* already on file system creation
*/
errx(37, "panic: cylinder group too big");
}
acg.cg_cs.cs_nifree += sblock.fs_ipg;
if (cylno == 0)
for (ino = 0; ino < UFS_ROOTINO; ino++) {
setbit(cg_inosused(&acg), ino);
acg.cg_cs.cs_nifree--;
}
/*
* Initialize the initial inode blocks.
*/
dp1 = (struct ufs1_dinode *)(void *)iobuf;
dp2 = (struct ufs2_dinode *)(void *)iobuf;
for (i = 0; i < acg.cg_initediblk; i++) {
if (sblock.fs_magic == FS_UFS1_MAGIC) {
dp1->di_gen = arc4random();
dp1++;
} else {
dp2->di_gen = arc4random();
dp2++;
}
}
wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf,
fso, Nflag);
/*
* For the old file system, we have to initialize all the inodes.
*/
if (sblock.fs_magic == FS_UFS1_MAGIC &&
sblock.fs_ipg > 2 * INOPB(&sblock)) {
for (i = 2 * sblock.fs_frag;
i < sblock.fs_ipg / INOPF(&sblock);
i += sblock.fs_frag) {
dp1 = (struct ufs1_dinode *)(void *)iobuf;
for (j = 0; j < INOPB(&sblock); j++) {
dp1->di_gen = arc4random();
dp1++;
}
wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
sblock.fs_bsize, iobuf, fso, Nflag);
}
}
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (cylno > 0) {
/*
* In cylno 0, beginning space is reserved
* for boot and super blocks.
*/
for (d = 0; d < dlower; d += sblock.fs_frag) {
blkno = d / sblock.fs_frag;
setblock(&sblock, cg_blksfree(&acg), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree(&acg), blkno);
acg.cg_cs.cs_nbfree++;
}
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
sblock.fs_dsize += dlower;
}
sblock.fs_dsize += acg.cg_ndblk - dupper;
if ((i = dupper % sblock.fs_frag)) {
acg.cg_frsum[sblock.fs_frag - i]++;
for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
setbit(cg_blksfree(&acg), dupper);
acg.cg_cs.cs_nffree++;
}
}
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
d += sblock.fs_frag) {
blkno = d / sblock.fs_frag;
setblock(&sblock, cg_blksfree(&acg), blkno);
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree(&acg), blkno);
acg.cg_cs.cs_nbfree++;
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
}
if (d < acg.cg_ndblk) {
acg.cg_frsum[acg.cg_ndblk - d]++;
for (; d < acg.cg_ndblk; d++) {
setbit(cg_blksfree(&acg), d);
acg.cg_cs.cs_nffree++;
}
}
if (sblock.fs_contigsumsize > 0) {
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
int32_t *sump = cg_clustersum(&acg);
u_char *mapp = cg_clustersfree(&acg);
int map = *mapp++;
int bit = 1;
int run = 0;
for (i = 0; i < acg.cg_nclusterblks; i++) {
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if ((map & bit) != 0)
run++;
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
else if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
run = 0;
}
if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
bit <<= 1;
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
else {
map = *mapp++;
bit = 1;
}
}
if (run != 0) {
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
}
}
sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
*cs = acg.cg_cs;
cgckhash(&acg);
wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), sblock.fs_cgsize, &acg,
fso, Nflag);
DBG_DUMP_CG(&sblock, "new cg", &acg);
DBG_LEAVE;
return;
}
/*
* Here we add or subtract (sign +1/-1) the available fragments in a given
* block to or from the fragment statistics. By subtracting before and adding
* after an operation on the free frag map we can easy update the fragment
* statistic, which seems to be otherwise a rather complex operation.
*/
static void
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
frag_adjust(ufs2_daddr_t frag, int sign)
{
DBG_FUNC("frag_adjust")
int fragsize;
int f;
DBG_ENTER;
2012-04-15 15:15:16 +00:00
fragsize = 0;
/*
* Here frag only needs to point to any fragment in the block we want
* to examine.
*/
for (f = rounddown(frag, sblock.fs_frag);
f < roundup(frag + 1, sblock.fs_frag); f++) {
/*
* Count contiguous free fragments.
*/
if (isset(cg_blksfree(&acg), f)) {
fragsize++;
} else {
if (fragsize && fragsize < sblock.fs_frag) {
/*
* We found something in between.
*/
2012-04-12 16:55:48 +00:00
acg.cg_frsum[fragsize] += sign;
DBG_PRINT2("frag_adjust [%d]+=%d\n",
fragsize, sign);
}
fragsize = 0;
}
}
if (fragsize && fragsize < sblock.fs_frag) {
/*
* We found something.
*/
acg.cg_frsum[fragsize] += sign;
DBG_PRINT2("frag_adjust [%d]+=%d\n", fragsize, sign);
}
DBG_PRINT2("frag_adjust [[%d]]+=%d\n", fragsize, sign);
DBG_LEAVE;
return;
}
/*
* Here we do all needed work for the former last cylinder group. It has to be
* changed in any case, even if the file system ended exactly on the end of
* this group, as there is some slightly inconsistent handling of the number
* of cylinders in the cylinder group. We start again by reading the cylinder
* group from disk. If the last block was not fully available, we first handle
* the missing fragments, then we handle all new full blocks in that file
* system and finally we handle the new last fragmented block in the file
* system. We again have to handle the fragment statistics rotational layout
* tables and cluster summary during all those operations.
*/
static void
updjcg(int cylno, time_t modtime, int fsi, int fso, unsigned int Nflag)
{
DBG_FUNC("updjcg")
ufs2_daddr_t cbase, dmax, dupper;
struct csum *cs;
int i, k;
int j = 0;
DBG_ENTER;
/*
* Read the former last (joining) cylinder group from disk, and make
* a copy.
*/
rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
(size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
DBG_PRINT0("jcg read\n");
DBG_DUMP_CG(&sblock, "old joining cg", &aocg);
memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
/*
* If the cylinder group had already its new final size almost
* nothing is to be done ... except:
* For some reason the value of cg_ncyl in the last cylinder group has
* to be zero instead of fs_cpg. As this is now no longer the last
* cylinder group we have to change that value now to fs_cpg.
*/
if (cgbase(&osblock, cylno + 1) == osblock.fs_size) {
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (sblock.fs_magic == FS_UFS1_MAGIC)
2012-04-15 15:15:16 +00:00
acg.cg_old_ncyl = sblock.fs_old_cpg;
cgckhash(&acg);
wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
(size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
DBG_PRINT0("jcg written\n");
DBG_DUMP_CG(&sblock, "new joining cg", &acg);
DBG_LEAVE;
return;
}
/*
* Set up some variables needed later.
*/
cbase = cgbase(&sblock, cylno);
dmax = cbase + sblock.fs_fpg;
if (dmax > sblock.fs_size)
dmax = sblock.fs_size;
dupper = cgdmin(&sblock, cylno) - cbase;
if (cylno == 0) /* XXX fscs may be relocated */
dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
/*
* Set pointer to the cylinder summary for our cylinder group.
*/
cs = fscs + cylno;
/*
* Touch the cylinder group, update all fields in the cylinder group as
* needed, update the free space in the superblock.
*/
acg.cg_time = modtime;
2010-02-11 06:42:08 +00:00
if ((unsigned)cylno == sblock.fs_ncg - 1) {
/*
* This is still the last cylinder group.
*/
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (sblock.fs_magic == FS_UFS1_MAGIC)
acg.cg_old_ncyl =
sblock.fs_old_ncyl % sblock.fs_old_cpg;
} else {
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
acg.cg_old_ncyl = sblock.fs_old_cpg;
}
DBG_PRINT2("jcg dbg: %d %u", cylno, sblock.fs_ncg);
#ifdef FS_DEBUG
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (sblock.fs_magic == FS_UFS1_MAGIC)
DBG_PRINT2("%d %u", acg.cg_old_ncyl, sblock.fs_old_cpg);
#endif
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
DBG_PRINT0("\n");
acg.cg_ndblk = dmax - cbase;
sblock.fs_dsize += acg.cg_ndblk - aocg.cg_ndblk;
if (sblock.fs_contigsumsize > 0)
acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
/*
* Now we have to update the free fragment bitmap for our new free
* space. There again we have to handle the fragmentation and also
* the rotational layout tables and the cluster summary. This is
* also done per fragment for the first new block if the old file
* system end was not on a block boundary, per fragment for the new
* last block if the new file system end is not on a block boundary,
* and per block for all space in between.
*
* Handle the first new block here if it was partially available
* before.
*/
if (osblock.fs_size % sblock.fs_frag) {
if (roundup(osblock.fs_size, sblock.fs_frag) <=
sblock.fs_size) {
/*
* The new space is enough to fill at least this
* block
*/
j = 0;
for (i = roundup(osblock.fs_size - cbase,
sblock.fs_frag) - 1; i >= osblock.fs_size - cbase;
i--) {
setbit(cg_blksfree(&acg), i);
acg.cg_cs.cs_nffree++;
j++;
}
/*
* Check if the fragment just created could join an
* already existing fragment at the former end of the
* file system.
*/
if (isblock(&sblock, cg_blksfree(&acg),
((osblock.fs_size - cgbase(&sblock, cylno)) /
sblock.fs_frag))) {
/*
* The block is now completely available.
*/
DBG_PRINT0("block was\n");
acg.cg_frsum[osblock.fs_size % sblock.fs_frag]--;
acg.cg_cs.cs_nbfree++;
acg.cg_cs.cs_nffree -= sblock.fs_frag;
k = rounddown(osblock.fs_size - cbase,
sblock.fs_frag);
updclst((osblock.fs_size - cbase) /
sblock.fs_frag);
} else {
/*
* Lets rejoin a possible partially growed
* fragment.
*/
k = 0;
while (isset(cg_blksfree(&acg), i) &&
(i >= rounddown(osblock.fs_size - cbase,
sblock.fs_frag))) {
i--;
k++;
}
if (k)
acg.cg_frsum[k]--;
acg.cg_frsum[k + j]++;
}
} else {
/*
* We only grow by some fragments within this last
* block.
*/
for (i = sblock.fs_size - cbase - 1;
i >= osblock.fs_size - cbase; i--) {
setbit(cg_blksfree(&acg), i);
acg.cg_cs.cs_nffree++;
j++;
}
/*
* Lets rejoin a possible partially growed fragment.
*/
k = 0;
while (isset(cg_blksfree(&acg), i) &&
(i >= rounddown(osblock.fs_size - cbase,
sblock.fs_frag))) {
i--;
k++;
}
if (k)
acg.cg_frsum[k]--;
acg.cg_frsum[k + j]++;
}
}
/*
* Handle all new complete blocks here.
*/
for (i = roundup(osblock.fs_size - cbase, sblock.fs_frag);
i + sblock.fs_frag <= dmax - cbase; /* XXX <= or only < ? */
i += sblock.fs_frag) {
j = i / sblock.fs_frag;
setblock(&sblock, cg_blksfree(&acg), j);
updclst(j);
acg.cg_cs.cs_nbfree++;
}
/*
* Handle the last new block if there are stll some new fragments left.
* Here we don't have to bother about the cluster summary or the even
* the rotational layout table.
*/
if (i < (dmax - cbase)) {
acg.cg_frsum[dmax - cbase - i]++;
for (; i < dmax - cbase; i++) {
setbit(cg_blksfree(&acg), i);
acg.cg_cs.cs_nffree++;
}
}
sblock.fs_cstotal.cs_nffree +=
(acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
sblock.fs_cstotal.cs_nbfree +=
(acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
/*
* The following statistics are not changed here:
* sblock.fs_cstotal.cs_ndir
* sblock.fs_cstotal.cs_nifree
* As the statistics for this cylinder group are ready, copy it to
* the summary information array.
*/
*cs = acg.cg_cs;
/*
* Write the updated "joining" cylinder group back to disk.
*/
cgckhash(&acg);
wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
(void *)&acg, fso, Nflag);
DBG_PRINT0("jcg written\n");
DBG_DUMP_CG(&sblock, "new joining cg", &acg);
DBG_LEAVE;
return;
}
/*
* Here we update the location of the cylinder summary. We have two possible
* ways of growing the cylinder summary:
* (1) We can try to grow the summary in the current location, and relocate
* possibly used blocks within the current cylinder group.
* (2) Alternatively we can relocate the whole cylinder summary to the first
* new completely empty cylinder group. Once the cylinder summary is no
* longer in the beginning of the first cylinder group you should never
* use a version of fsck which is not aware of the possibility to have
* this structure in a non standard place.
* Option (2) is considered to be less intrusive to the structure of the file-
* system, so that's the one being used.
*/
static void
updcsloc(time_t modtime, int fsi, int fso, unsigned int Nflag)
{
DBG_FUNC("updcsloc")
struct csum *cs;
int ocscg, ncscg;
ufs2_daddr_t d;
int lcs = 0;
int block;
DBG_ENTER;
if (howmany(sblock.fs_cssize, sblock.fs_fsize) ==
howmany(osblock.fs_cssize, osblock.fs_fsize)) {
/*
* No new fragment needed.
*/
DBG_LEAVE;
return;
}
ocscg = dtog(&osblock, osblock.fs_csaddr);
cs = fscs + ocscg;
/*
* Read original cylinder group from disk, and make a copy.
* XXX If Nflag is set in some very rare cases we now miss
* some changes done in updjcg by reading the unmodified
* block from disk.
*/
rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
(size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
DBG_PRINT0("oscg read\n");
DBG_DUMP_CG(&sblock, "old summary cg", &aocg);
memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
/*
* Touch the cylinder group, set up local variables needed later
* and update the superblock.
*/
acg.cg_time = modtime;
/*
* XXX In the case of having active snapshots we may need much more
* blocks for the copy on write. We need each block twice, and
* also up to 8*3 blocks for indirect blocks for all possible
* references.
*/
/*
* There is not enough space in the old cylinder group to
* relocate all blocks as needed, so we relocate the whole
* cylinder group summary to a new group. We try to use the
* first complete new cylinder group just created. Within the
* cylinder group we align the area immediately after the
* cylinder group information location in order to be as
* close as possible to the original implementation of ffs.
*
* First we have to make sure we'll find enough space in the
* new cylinder group. If not, then we currently give up.
* We start with freeing everything which was used by the
* fragments of the old cylinder summary in the current group.
* Now we write back the group meta data, read in the needed
* meta data from the new cylinder group, and start allocating
* within that group. Here we can assume, the group to be
* completely empty. Which makes the handling of fragments and
* clusters a lot easier.
*/
DBG_TRC;
if (sblock.fs_ncg - osblock.fs_ncg < 2)
errx(2, "panic: not enough space");
/*
* Point "d" to the first fragment not used by the cylinder
* summary.
*/
d = osblock.fs_csaddr + (osblock.fs_cssize / osblock.fs_fsize);
/*
* Set up last cluster size ("lcs") already here. Calculate
* the size for the trailing cluster just behind where "d"
* points to.
*/
if (sblock.fs_contigsumsize > 0) {
for (block = howmany(d % sblock.fs_fpg, sblock.fs_frag),
2012-04-12 16:55:48 +00:00
lcs = 0; lcs < sblock.fs_contigsumsize; block++, lcs++) {
if (isclr(cg_clustersfree(&acg), block))
break;
}
}
/*
* Point "d" to the last frag used by the cylinder summary.
*/
d--;
DBG_PRINT1("d=%jd\n", (intmax_t)d);
if ((d + 1) % sblock.fs_frag) {
/*
* The end of the cylinder summary is not a complete
* block.
*/
DBG_TRC;
frag_adjust(d % sblock.fs_fpg, -1);
for (; (d + 1) % sblock.fs_frag; d--) {
DBG_PRINT1("d=%jd\n", (intmax_t)d);
setbit(cg_blksfree(&acg), d % sblock.fs_fpg);
acg.cg_cs.cs_nffree++;
sblock.fs_cstotal.cs_nffree++;
}
/*
* Point "d" to the last fragment of the last
* (incomplete) block of the cylinder summary.
*/
d++;
2012-04-12 16:55:48 +00:00
frag_adjust(d % sblock.fs_fpg, 1);
if (isblock(&sblock, cg_blksfree(&acg),
(d % sblock.fs_fpg) / sblock.fs_frag)) {
DBG_PRINT1("d=%jd\n", (intmax_t)d);
acg.cg_cs.cs_nffree -= sblock.fs_frag;
acg.cg_cs.cs_nbfree++;
sblock.fs_cstotal.cs_nffree -= sblock.fs_frag;
sblock.fs_cstotal.cs_nbfree++;
if (sblock.fs_contigsumsize > 0) {
setbit(cg_clustersfree(&acg),
2012-04-12 16:55:48 +00:00
(d % sblock.fs_fpg) / sblock.fs_frag);
if (lcs < sblock.fs_contigsumsize) {
if (lcs)
cg_clustersum(&acg)[lcs]--;
lcs++;
cg_clustersum(&acg)[lcs]++;
}
}
}
/*
* Point "d" to the first fragment of the block before
* the last incomplete block.
*/
d--;
}
DBG_PRINT1("d=%jd\n", (intmax_t)d);
for (d = rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
d -= sblock.fs_frag) {
DBG_TRC;
DBG_PRINT1("d=%jd\n", (intmax_t)d);
setblock(&sblock, cg_blksfree(&acg),
(d % sblock.fs_fpg) / sblock.fs_frag);
acg.cg_cs.cs_nbfree++;
sblock.fs_cstotal.cs_nbfree++;
if (sblock.fs_contigsumsize > 0) {
setbit(cg_clustersfree(&acg),
(d % sblock.fs_fpg) / sblock.fs_frag);
/*
* The last cluster size is already set up.
*/
if (lcs < sblock.fs_contigsumsize) {
if (lcs)
cg_clustersum(&acg)[lcs]--;
lcs++;
cg_clustersum(&acg)[lcs]++;
}
}
}
*cs = acg.cg_cs;
/*
* Now write the former cylinder group containing the cylinder
* summary back to disk.
*/
cgckhash(&acg);
wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
(size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
DBG_PRINT0("oscg written\n");
DBG_DUMP_CG(&sblock, "old summary cg", &acg);
/*
* Find the beginning of the new cylinder group containing the
* cylinder summary.
*/
sblock.fs_csaddr = cgdmin(&sblock, osblock.fs_ncg);
ncscg = dtog(&sblock, sblock.fs_csaddr);
cs = fscs + ncscg;
/*
* If Nflag is specified, we would now read random data instead
* of an empty cg structure from disk. So we can't simulate that
* part for now.
*/
if (Nflag) {
DBG_PRINT0("nscg update skipped\n");
DBG_LEAVE;
return;
}
/*
* Read the future cylinder group containing the cylinder
* summary from disk, and make a copy.
*/
rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
(size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
DBG_PRINT0("nscg read\n");
DBG_DUMP_CG(&sblock, "new summary cg", &aocg);
memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
/*
* Allocate all complete blocks used by the new cylinder
* summary.
*/
for (d = sblock.fs_csaddr; d + sblock.fs_frag <=
sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize);
d += sblock.fs_frag) {
clrblock(&sblock, cg_blksfree(&acg),
(d % sblock.fs_fpg) / sblock.fs_frag);
acg.cg_cs.cs_nbfree--;
sblock.fs_cstotal.cs_nbfree--;
if (sblock.fs_contigsumsize > 0) {
clrbit(cg_clustersfree(&acg),
(d % sblock.fs_fpg) / sblock.fs_frag);
}
}
/*
* Allocate all fragments used by the cylinder summary in the
* last block.
*/
2012-04-12 16:55:48 +00:00
if (d < sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize)) {
for (; d - sblock.fs_csaddr <
sblock.fs_cssize/sblock.fs_fsize; d++) {
clrbit(cg_blksfree(&acg), d % sblock.fs_fpg);
acg.cg_cs.cs_nffree--;
sblock.fs_cstotal.cs_nffree--;
}
acg.cg_cs.cs_nbfree--;
acg.cg_cs.cs_nffree += sblock.fs_frag;
sblock.fs_cstotal.cs_nbfree--;
sblock.fs_cstotal.cs_nffree += sblock.fs_frag;
if (sblock.fs_contigsumsize > 0)
clrbit(cg_clustersfree(&acg),
(d % sblock.fs_fpg) / sblock.fs_frag);
frag_adjust(d % sblock.fs_fpg, 1);
}
/*
* XXX Handle the cluster statistics here in the case this
* cylinder group is now almost full, and the remaining
* space is less then the maximum cluster size. This is
* probably not needed, as you would hardly find a file
* system which has only MAXCSBUFS+FS_MAXCONTIG of free
* space right behind the cylinder group information in
* any new cylinder group.
*/
/*
* Update our statistics in the cylinder summary.
*/
*cs = acg.cg_cs;
/*
* Write the new cylinder group containing the cylinder summary
* back to disk.
*/
cgckhash(&acg);
wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
(size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
DBG_PRINT0("nscg written\n");
DBG_DUMP_CG(&sblock, "new summary cg", &acg);
DBG_LEAVE;
return;
}
/*
* Here we read some block(s) from disk.
*/
static void
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
{
DBG_FUNC("rdfs")
ssize_t n;
DBG_ENTER;
if (bno < 0)
2005-01-16 14:37:30 +00:00
err(32, "rdfs: attempting to read negative block number");
if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0)
err(33, "rdfs: seek error: %jd", (intmax_t)bno);
n = read(fsi, bf, size);
if (n != (ssize_t)size)
err(34, "rdfs: read error: %jd", (intmax_t)bno);
DBG_LEAVE;
return;
}
/*
* Here we write some block(s) to disk.
*/
static void
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
{
DBG_FUNC("wtfs")
ssize_t n;
DBG_ENTER;
if (Nflag) {
DBG_LEAVE;
return;
}
if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0)
err(35, "wtfs: seek error: %ld", (long)bno);
n = write(fso, bf, size);
if (n != (ssize_t)size)
err(36, "wtfs: write error: %ld", (long)bno);
DBG_LEAVE;
return;
}
/*
* Here we check if all frags of a block are free. For more details again
* please see the source of newfs(8), as this function is taken over almost
* unchanged.
*/
static int
isblock(struct fs *fs, unsigned char *cp, int h)
{
DBG_FUNC("isblock")
unsigned char mask;
DBG_ENTER;
switch (fs->fs_frag) {
case 8:
DBG_LEAVE;
return (cp[h] == 0xff);
case 4:
mask = 0x0f << ((h & 0x1) << 2);
DBG_LEAVE;
return ((cp[h >> 1] & mask) == mask);
case 2:
mask = 0x03 << ((h & 0x3) << 1);
DBG_LEAVE;
return ((cp[h >> 2] & mask) == mask);
case 1:
mask = 0x01 << (h & 0x7);
DBG_LEAVE;
return ((cp[h >> 3] & mask) == mask);
default:
fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
DBG_LEAVE;
return (0);
}
}
/*
* Here we allocate a complete block in the block map. For more details again
* please see the source of newfs(8), as this function is taken over almost
* unchanged.
*/
static void
clrblock(struct fs *fs, unsigned char *cp, int h)
{
DBG_FUNC("clrblock")
DBG_ENTER;
switch ((fs)->fs_frag) {
case 8:
cp[h] = 0;
break;
case 4:
cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
break;
case 2:
cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
break;
case 1:
cp[h >> 3] &= ~(0x01 << (h & 0x7));
break;
default:
warnx("clrblock bad fs_frag %d", fs->fs_frag);
break;
}
DBG_LEAVE;
return;
}
/*
* Here we free a complete block in the free block map. For more details again
* please see the source of newfs(8), as this function is taken over almost
* unchanged.
*/
static void
setblock(struct fs *fs, unsigned char *cp, int h)
{
DBG_FUNC("setblock")
DBG_ENTER;
switch (fs->fs_frag) {
case 8:
cp[h] = 0xff;
break;
case 4:
cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
break;
case 2:
cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
break;
case 1:
cp[h >> 3] |= (0x01 << (h & 0x7));
break;
default:
warnx("setblock bad fs_frag %d", fs->fs_frag);
break;
}
DBG_LEAVE;
return;
}
/*
* Figure out how many lines our current terminal has. For more details again
* please see the source of newfs(8), as this function is taken over almost
* unchanged.
*/
static int
charsperline(void)
{
DBG_FUNC("charsperline")
int columns;
char *cp;
struct winsize ws;
DBG_ENTER;
columns = 0;
if (ioctl(0, TIOCGWINSZ, &ws) != -1)
columns = ws.ws_col;
if (columns == 0 && (cp = getenv("COLUMNS")))
columns = atoi(cp);
if (columns == 0)
columns = 80; /* last resort */
DBG_LEAVE;
2012-04-18 13:50:17 +00:00
return (columns);
}
static int
is_dev(const char *name)
{
struct stat devstat;
if (stat(name, &devstat) != 0)
return (0);
if (!S_ISCHR(devstat.st_mode))
return (0);
return (1);
}
/*
* Return mountpoint on which the device is currently mounted.
*/
static const struct statfs *
dev_to_statfs(const char *dev)
{
struct stat devstat, mntdevstat;
struct statfs *mntbuf, *statfsp;
char device[MAXPATHLEN];
char *mntdevname;
int i, mntsize;
/*
* First check the mounted filesystems.
*/
if (stat(dev, &devstat) != 0)
return (NULL);
if (!S_ISCHR(devstat.st_mode) && !S_ISBLK(devstat.st_mode))
return (NULL);
mntsize = getmntinfo(&mntbuf, MNT_NOWAIT);
for (i = 0; i < mntsize; i++) {
statfsp = &mntbuf[i];
mntdevname = statfsp->f_mntfromname;
if (*mntdevname != '/') {
strcpy(device, _PATH_DEV);
strcat(device, mntdevname);
mntdevname = device;
}
if (stat(mntdevname, &mntdevstat) == 0 &&
mntdevstat.st_rdev == devstat.st_rdev)
return (statfsp);
}
return (NULL);
}
static const char *
mountpoint_to_dev(const char *mountpoint)
{
struct statfs *mntbuf, *statfsp;
struct fstab *fs;
int i, mntsize;
/*
* First check the mounted filesystems.
*/
mntsize = getmntinfo(&mntbuf, MNT_NOWAIT);
for (i = 0; i < mntsize; i++) {
statfsp = &mntbuf[i];
if (strcmp(statfsp->f_mntonname, mountpoint) == 0)
return (statfsp->f_mntfromname);
}
/*
* Check the fstab.
*/
fs = getfsfile(mountpoint);
if (fs != NULL)
return (fs->fs_spec);
return (NULL);
}
static const char *
getdev(const char *name)
{
static char device[MAXPATHLEN];
const char *cp, *dev;
if (is_dev(name))
return (name);
cp = strrchr(name, '/');
if (cp == NULL) {
snprintf(device, sizeof(device), "%s%s", _PATH_DEV, name);
if (is_dev(device))
return (device);
}
dev = mountpoint_to_dev(name);
if (dev != NULL && is_dev(dev))
return (dev);
return (NULL);
}
/*
* growfs(8) is a utility which allows to increase the size of an existing
* ufs file system. Currently this can only be done on unmounted file system.
* It recognizes some command line options to specify the new desired size,
* and it does some basic checkings. The old file system size is determined
* and after some more checks like we can really access the new last block
* on the disk etc. we calculate the new parameters for the superblock. After
* having done this we just call growfs() which will do the work.
* We still have to provide support for snapshots. Therefore we first have to
* understand what data structures are always replicated in the snapshot on
* creation, for all other blocks we touch during our procedure, we have to
* keep the old blocks unchanged somewhere available for the snapshots. If we
* are lucky, then we only have to handle our blocks to be relocated in that
* way.
* Also we have to consider in what order we actually update the critical
* data structures of the file system to make sure, that in case of a disaster
* fsck(8) is still able to restore any lost data.
* The foreseen last step then will be to provide for growing even mounted
* file systems. There we have to extend the mount() system call to provide
* userland access to the file system locking facility.
*/
int
main(int argc, char **argv)
{
DBG_FUNC("main")
struct fs *fs;
const char *device;
const struct statfs *statfsp;
uint64_t size = 0;
off_t mediasize;
int error, j, fsi, fso, ch, ret, Nflag = 0, yflag = 0;
char *p, reply[5], oldsizebuf[6], newsizebuf[6];
void *testbuf;
DBG_ENTER;
while ((ch = getopt(argc, argv, "Ns:vy")) != -1) {
switch(ch) {
case 'N':
Nflag = 1;
break;
case 's':
size = (off_t)strtoumax(optarg, &p, 0);
if (p == NULL || *p == '\0')
size *= DEV_BSIZE;
else if (*p == 'b' || *p == 'B')
; /* do nothing */
else if (*p == 'k' || *p == 'K')
size <<= 10;
else if (*p == 'm' || *p == 'M')
size <<= 20;
else if (*p == 'g' || *p == 'G')
size <<= 30;
else if (*p == 't' || *p == 'T') {
size <<= 30;
size <<= 10;
} else
errx(1, "unknown suffix on -s argument");
break;
case 'v': /* for compatibility to newfs */
break;
case 'y':
yflag = 1;
break;
case '?':
/* FALLTHROUGH */
default:
usage();
}
}
argc -= optind;
argv += optind;
if (argc != 1)
usage();
/*
* Now try to guess the device name.
*/
device = getdev(*argv);
if (device == NULL)
errx(1, "cannot find special device for %s", *argv);
statfsp = dev_to_statfs(device);
fsi = open(device, O_RDONLY);
if (fsi < 0)
err(1, "%s", device);
/*
* Try to guess the slice size if not specified.
*/
if (ioctl(fsi, DIOCGMEDIASIZE, &mediasize) == -1)
err(1,"DIOCGMEDIASIZE");
/*
* Check if that partition is suitable for growing a file system.
*/
if (mediasize < 1)
errx(1, "partition is unavailable");
/*
* Read the current superblock, and take a backup.
*/
Normally when an attempt is made to mount a UFS/FFS filesystem whose superblock has a check-hash error, an error message noting the superblock check-hash failure is printed and the mount fails. The administrator then runs fsck to repair the filesystem and when successful, the filesystem can once again be mounted. This approach fails if the filesystem in question is a root filesystem from which you are trying to boot. Here, the loader fails when trying to access the filesystem to get the kernel to boot. So it is necessary to allow the loader to ignore the superblock check-hash error and make a best effort to read the kernel. The filesystem may be suffiently corrupted that the read attempt fails, but there is no harm in trying since the loader makes no attempt to write to the filesystem. Once the kernel is loaded and starts to run, it attempts to mount its root filesystem. Once again, failure means that it breaks to its prompt to ask where to get its root filesystem. Unless you have an alternate root filesystem, you are stuck. Since the root filesystem is initially mounted read-only, it is safe to make an attempt to mount the root filesystem with the failed superblock check-hash. Thus, when asked to mount a root filesystem with a failed superblock check-hash, the kernel prints a warning message that the root filesystem superblock check-hash needs repair, but notes that it is ignoring the error and proceeding. It does mark the filesystem as needing an fsck which prevents it from being enabled for writing until fsck has been run on it. The net effect is that the reboot fails to single user, but at least at that point the administrator has the tools at hand to fix the problem. Reported by: Rick Macklem (rmacklem@) Discussed with: Warner Losh (imp@) Sponsored by: Netflix
2018-12-06 00:09:39 +00:00
if ((ret = sbget(fsi, &fs, STDSB)) != 0) {
switch (ret) {
case ENOENT:
errx(1, "superblock not recognized");
default:
errc(1, ret, "unable to read superblock");
}
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
}
/*
* Check for filesystem that was unclean at mount time.
*/
if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) != 0)
errx(1, "%s is not clean - run fsck.\n", *argv);
memcpy(&osblock, fs, fs->fs_sbsize);
free(fs);
memcpy((void *)&fsun1, (void *)&fsun2, osblock.fs_sbsize);
DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
DBG_DUMP_FS(&sblock, "old sblock");
/*
* Determine size to grow to. Default to the device size.
*/
if (size == 0)
size = mediasize;
else {
if (size > (uint64_t)mediasize) {
humanize_number(oldsizebuf, sizeof(oldsizebuf), size,
"B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
humanize_number(newsizebuf, sizeof(newsizebuf),
mediasize,
"B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
errx(1, "requested size %s is larger "
"than the available %s", oldsizebuf, newsizebuf);
}
}
/*
* Make sure the new size is a multiple of fs_fsize; /dev/ufssuspend
* only supports fragment-aligned IO requests.
*/
size -= size % osblock.fs_fsize;
if (size <= (uint64_t)(osblock.fs_size * osblock.fs_fsize)) {
humanize_number(oldsizebuf, sizeof(oldsizebuf),
osblock.fs_size * osblock.fs_fsize,
"B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
humanize_number(newsizebuf, sizeof(newsizebuf), size,
"B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
errx(1, "requested size %s is not larger than the current "
"filesystem size %s", newsizebuf, oldsizebuf);
}
sblock.fs_size = dbtofsb(&osblock, size / DEV_BSIZE);
sblock.fs_providersize = dbtofsb(&osblock, mediasize / DEV_BSIZE);
/*
* Are we really growing?
*/
if (osblock.fs_size >= sblock.fs_size) {
errx(1, "we are not growing (%jd->%jd)",
(intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
}
/*
* Check if we find an active snapshot.
*/
if (yflag == 0) {
for (j = 0; j < FSMAXSNAP; j++) {
if (sblock.fs_snapinum[j]) {
errx(1, "active snapshot found in file system; "
"please remove all snapshots before "
2005-01-16 14:37:30 +00:00
"using growfs");
}
if (!sblock.fs_snapinum[j]) /* list is dense */
break;
}
}
if (yflag == 0 && Nflag == 0) {
if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0)
printf("Device is mounted read-write; resizing will "
"result in temporary write suspension for %s.\n",
statfsp->f_mntonname);
printf("It's strongly recommended to make a backup "
"before growing the file system.\n"
"OK to grow filesystem on %s", device);
if (statfsp != NULL)
printf(", mounted on %s,", statfsp->f_mntonname);
humanize_number(oldsizebuf, sizeof(oldsizebuf),
osblock.fs_size * osblock.fs_fsize,
"B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
humanize_number(newsizebuf, sizeof(newsizebuf),
sblock.fs_size * sblock.fs_fsize,
"B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
printf(" from %s to %s? [yes/no] ", oldsizebuf, newsizebuf);
fflush(stdout);
fgets(reply, (int)sizeof(reply), stdin);
if (strcasecmp(reply, "yes\n")){
printf("Response other than \"yes\"; aborting\n");
exit(0);
}
}
/*
* Try to access our device for writing. If it's not mounted,
* or mounted read-only, simply open it; otherwise, use UFS
* suspension mechanism.
*/
if (Nflag) {
fso = -1;
} else {
if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0) {
fso = open(_PATH_UFSSUSPEND, O_RDWR);
if (fso == -1)
err(1, "unable to open %s", _PATH_UFSSUSPEND);
error = ioctl(fso, UFSSUSPEND, &statfsp->f_fsid);
if (error != 0)
err(1, "UFSSUSPEND");
} else {
fso = open(device, O_WRONLY);
if (fso < 0)
err(1, "%s", device);
}
}
/*
* Try to access our new last block in the file system.
*/
testbuf = malloc(sblock.fs_fsize);
if (testbuf == NULL)
err(1, "malloc");
rdfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE),
sblock.fs_fsize, testbuf, fsi);
wtfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE),
sblock.fs_fsize, testbuf, fso, Nflag);
free(testbuf);
/*
* Now calculate new superblock values and check for reasonable
* bound for new file system size:
* fs_size: is derived from user input
* fs_dsize: should get updated in the routines creating or
* updating the cylinder groups on the fly
* fs_cstotal: should get updated in the routines creating or
* updating the cylinder groups
*/
/*
* Update the number of cylinders and cylinder groups in the file system.
*/
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (sblock.fs_magic == FS_UFS1_MAGIC) {
sblock.fs_old_ncyl =
sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
if (sblock.fs_size * sblock.fs_old_nspf >
sblock.fs_old_ncyl * sblock.fs_old_spc)
sblock.fs_old_ncyl++;
}
sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
/*
* Allocate last cylinder group only if there is enough room
* for at least one data block.
*/
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (sblock.fs_size % sblock.fs_fpg != 0 &&
sblock.fs_size <= cgdmin(&sblock, sblock.fs_ncg - 1)) {
humanize_number(oldsizebuf, sizeof(oldsizebuf),
(sblock.fs_size % sblock.fs_fpg) * sblock.fs_fsize,
"B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
warnx("no room to allocate last cylinder group; "
"leaving %s unused", oldsizebuf);
sblock.fs_ncg--;
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
if (sblock.fs_magic == FS_UFS1_MAGIC)
sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
}
/*
* Update the space for the cylinder group summary information in the
* respective cylinder group data area.
*/
sblock.fs_cssize =
fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
if (osblock.fs_size >= sblock.fs_size)
errx(1, "not enough new space");
DBG_PRINT0("sblock calculated\n");
/*
* Ok, everything prepared, so now let's do the tricks.
*/
growfs(fsi, fso, Nflag);
close(fsi);
if (fso > -1) {
if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0) {
error = ioctl(fso, UFSRESUME);
if (error != 0)
err(1, "UFSRESUME");
}
error = close(fso);
if (error != 0)
err(1, "close");
if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) != 0)
mount_reload(statfsp);
}
DBG_CLOSE;
DBG_LEAVE;
2012-04-18 13:50:17 +00:00
return (0);
}
/*
* Dump a line of usage.
*/
static void
usage(void)
{
DBG_FUNC("usage")
DBG_ENTER;
fprintf(stderr, "usage: growfs [-Ny] [-s size] special | filesystem\n");
DBG_LEAVE;
exit(1);
}
/*
* This updates most parameters and the bitmap related to cluster. We have to
* assume that sblock, osblock, acg are set up.
*/
static void
updclst(int block)
{
DBG_FUNC("updclst")
static int lcs = 0;
DBG_ENTER;
if (sblock.fs_contigsumsize < 1) /* no clustering */
return;
/*
* update cluster allocation map
*/
setbit(cg_clustersfree(&acg), block);
/*
* update cluster summary table
*/
if (!lcs) {
/*
* calculate size for the trailing cluster
*/
for (block--; lcs < sblock.fs_contigsumsize; block--, lcs++ ) {
if (isclr(cg_clustersfree(&acg), block))
break;
}
}
if (lcs < sblock.fs_contigsumsize) {
if (lcs)
cg_clustersum(&acg)[lcs]--;
lcs++;
cg_clustersum(&acg)[lcs]++;
}
DBG_LEAVE;
return;
}
static void
mount_reload(const struct statfs *stfs)
{
char errmsg[255];
struct iovec *iov;
int iovlen;
iov = NULL;
iovlen = 0;
*errmsg = '\0';
build_iovec(&iov, &iovlen, "fstype", __DECONST(char *, "ffs"), 4);
build_iovec(&iov, &iovlen, "fspath", __DECONST(char *, stfs->f_mntonname), (size_t)-1);
build_iovec(&iov, &iovlen, "errmsg", errmsg, sizeof(errmsg));
build_iovec(&iov, &iovlen, "update", NULL, 0);
build_iovec(&iov, &iovlen, "reload", NULL, 0);
if (nmount(iov, iovlen, stfs->f_flags) < 0) {
errmsg[sizeof(errmsg) - 1] = '\0';
err(9, "%s: cannot reload filesystem%s%s", stfs->f_mntonname,
*errmsg != '\0' ? ": " : "", errmsg);
}
}
/*
* Calculate the check-hash of the cylinder group.
*/
static void
cgckhash(struct cg *cgp)
{
if ((sblock.fs_metackhash & CK_CYLGRP) == 0)
return;
cgp->cg_ckhash = 0;
cgp->cg_ckhash = calculate_crc32c(~0L, (void *)cgp, sblock.fs_cgsize);
}