freebsd-skq/sys/net80211/ieee80211_node.c

629 lines
18 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/endian.h>
#include <sys/errno.h>
#include <sys/bus.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <machine/atomic.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_llc.h>
#include <net80211/ieee80211_var.h>
#include <net/bpf.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
static struct ieee80211_node *ieee80211_node_alloc(struct ieee80211com *);
static void ieee80211_node_free(struct ieee80211com *, struct ieee80211_node *);
static void ieee80211_node_copy(struct ieee80211com *,
struct ieee80211_node *, const struct ieee80211_node *);
static u_int8_t ieee80211_node_getrssi(struct ieee80211com *,
struct ieee80211_node *);
static void ieee80211_setup_node(struct ieee80211com *ic,
struct ieee80211_node *ni, u_int8_t *macaddr);
static void _ieee80211_free_node(struct ieee80211com *,
struct ieee80211_node *);
MALLOC_DEFINE(M_80211_NODE, "node", "802.11 node state");
void
ieee80211_node_attach(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
/* XXX need unit */
IEEE80211_NODE_LOCK_INIT(ic, ifp->if_xname);
TAILQ_INIT(&ic->ic_node);
ic->ic_node_alloc = ieee80211_node_alloc;
ic->ic_node_free = ieee80211_node_free;
ic->ic_node_copy = ieee80211_node_copy;
ic->ic_node_getrssi = ieee80211_node_getrssi;
ic->ic_scangen = 1;
}
void
ieee80211_node_lateattach(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
2004-04-02 22:56:09 +00:00
struct ieee80211_node *ni;
2004-04-02 22:56:09 +00:00
ni = (*ic->ic_node_alloc)(ic);
KASSERT(ni != NULL, ("unable to setup inital BSS node"));
ni->ni_chan = IEEE80211_CHAN_ANYC;
ic->ic_bss = ni;
ic->ic_txpower = IEEE80211_TXPOWER_MAX;
}
void
ieee80211_node_detach(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
if (ic->ic_bss != NULL)
(*ic->ic_node_free)(ic, ic->ic_bss);
ieee80211_free_allnodes(ic);
IEEE80211_NODE_LOCK_DESTROY(ic);
}
/*
* AP scanning support.
*/
/*
* Initialize the active channel set based on the set
* of available channels and the current PHY mode.
*/
static void
ieee80211_reset_scan(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
memcpy(ic->ic_chan_scan, ic->ic_chan_active,
sizeof(ic->ic_chan_active));
/* NB: hack, setup so next_scan starts with the first channel */
if (ic->ic_bss->ni_chan == IEEE80211_CHAN_ANYC)
ic->ic_bss->ni_chan = &ic->ic_channels[IEEE80211_CHAN_MAX];
}
/*
* Begin an active scan.
*/
void
ieee80211_begin_scan(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
/*
* In all but hostap mode scanning starts off in
* an active mode before switching to passive.
*/
if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
ic->ic_flags |= IEEE80211_F_ASCAN;
ic->ic_stats.is_scan_active++;
} else
ic->ic_stats.is_scan_passive++;
if (ifp->if_flags & IFF_DEBUG)
if_printf(ifp, "begin %s scan\n",
(ic->ic_flags & IEEE80211_F_ASCAN) ?
"active" : "passive");
/*
* Clear scan state and flush any previously seen
* AP's. Note that the latter assumes we don't act
* as both an AP and a station, otherwise we'll
* potentially flush state of stations associated
* with us.
*/
ieee80211_reset_scan(ifp);
ieee80211_free_allnodes(ic);
/* Scan the next channel. */
ieee80211_next_scan(ifp);
}
/*
* Switch to the next channel marked for scanning.
*/
void
ieee80211_next_scan(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
struct ieee80211_channel *chan;
chan = ic->ic_bss->ni_chan;
for (;;) {
if (++chan > &ic->ic_channels[IEEE80211_CHAN_MAX])
chan = &ic->ic_channels[0];
if (isset(ic->ic_chan_scan, ieee80211_chan2ieee(ic, chan))) {
/*
* Honor channels marked passive-only
* during an active scan.
*/
if ((ic->ic_flags & IEEE80211_F_ASCAN) == 0 ||
(chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
break;
}
if (chan == ic->ic_bss->ni_chan) {
ieee80211_end_scan(ifp);
return;
}
}
clrbit(ic->ic_chan_scan, ieee80211_chan2ieee(ic, chan));
IEEE80211_DPRINTF(("ieee80211_next_scan: chan %d->%d\n",
ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
ieee80211_chan2ieee(ic, chan)));
ic->ic_bss->ni_chan = chan;
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
}
void
ieee80211_create_ibss(struct ieee80211com* ic, struct ieee80211_channel *chan)
{
struct ieee80211_node *ni;
struct ifnet *ifp = &ic->ic_if;
ni = ic->ic_bss;
if (ifp->if_flags & IFF_DEBUG)
if_printf(ifp, "creating ibss\n");
ic->ic_flags |= IEEE80211_F_SIBSS;
ni->ni_chan = chan;
ni->ni_rates = ic->ic_sup_rates[ieee80211_chan2mode(ic, ni->ni_chan)];
IEEE80211_ADDR_COPY(ni->ni_macaddr, ic->ic_myaddr);
IEEE80211_ADDR_COPY(ni->ni_bssid, ic->ic_myaddr);
if (ic->ic_opmode == IEEE80211_M_IBSS)
ni->ni_bssid[0] |= 0x02; /* local bit for IBSS */
ni->ni_esslen = ic->ic_des_esslen;
memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
ni->ni_rssi = 0;
ni->ni_rstamp = 0;
memset(ni->ni_tstamp, 0, sizeof(ni->ni_tstamp));
ni->ni_intval = ic->ic_lintval;
ni->ni_capinfo = IEEE80211_CAPINFO_IBSS;
if (ic->ic_flags & IEEE80211_F_WEPON)
ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
if (ic->ic_phytype == IEEE80211_T_FH) {
ni->ni_fhdwell = 200; /* XXX */
ni->ni_fhindex = 1;
}
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
}
static int
ieee80211_match_bss(struct ifnet *ifp, struct ieee80211_node *ni)
{
struct ieee80211com *ic = (void *)ifp;
u_int8_t rate;
int fail;
fail = 0;
if (isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ni->ni_chan)))
fail |= 0x01;
if (ic->ic_des_chan != IEEE80211_CHAN_ANYC &&
ni->ni_chan != ic->ic_des_chan)
fail |= 0x01;
if (ic->ic_opmode == IEEE80211_M_IBSS) {
if ((ni->ni_capinfo & IEEE80211_CAPINFO_IBSS) == 0)
fail |= 0x02;
} else {
if ((ni->ni_capinfo & IEEE80211_CAPINFO_ESS) == 0)
fail |= 0x02;
}
if (ic->ic_flags & IEEE80211_F_WEPON) {
if ((ni->ni_capinfo & IEEE80211_CAPINFO_PRIVACY) == 0)
fail |= 0x04;
} else {
/* XXX does this mean privacy is supported or required? */
if (ni->ni_capinfo & IEEE80211_CAPINFO_PRIVACY)
fail |= 0x04;
}
rate = ieee80211_fix_rate(ic, ni, IEEE80211_F_DONEGO);
if (rate & IEEE80211_RATE_BASIC)
fail |= 0x08;
if (ic->ic_des_esslen != 0 &&
(ni->ni_esslen != ic->ic_des_esslen ||
memcmp(ni->ni_essid, ic->ic_des_essid, ic->ic_des_esslen) != 0))
fail |= 0x10;
if ((ic->ic_flags & IEEE80211_F_DESBSSID) &&
!IEEE80211_ADDR_EQ(ic->ic_des_bssid, ni->ni_bssid))
fail |= 0x20;
#ifdef IEEE80211_DEBUG
if (ifp->if_flags & IFF_DEBUG) {
printf(" %c %s", fail ? '-' : '+',
ether_sprintf(ni->ni_macaddr));
printf(" %s%c", ether_sprintf(ni->ni_bssid),
fail & 0x20 ? '!' : ' ');
printf(" %3d%c", ieee80211_chan2ieee(ic, ni->ni_chan),
fail & 0x01 ? '!' : ' ');
printf(" %+4d", ni->ni_rssi);
printf(" %2dM%c", (rate & IEEE80211_RATE_VAL) / 2,
fail & 0x08 ? '!' : ' ');
printf(" %4s%c",
(ni->ni_capinfo & IEEE80211_CAPINFO_ESS) ? "ess" :
(ni->ni_capinfo & IEEE80211_CAPINFO_IBSS) ? "ibss" :
"????",
fail & 0x02 ? '!' : ' ');
printf(" %3s%c ",
(ni->ni_capinfo & IEEE80211_CAPINFO_PRIVACY) ?
"wep" : "no",
fail & 0x04 ? '!' : ' ');
ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
printf("%s\n", fail & 0x10 ? "!" : "");
}
#endif
return fail;
}
/*
* Complete a scan of potential channels.
*/
void
ieee80211_end_scan(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
struct ieee80211_node *ni, *nextbs, *selbs;
int i, fail;
ic->ic_flags &= ~IEEE80211_F_ASCAN;
ni = TAILQ_FIRST(&ic->ic_node);
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
/* XXX off stack? */
u_char occupied[roundup(IEEE80211_CHAN_MAX, NBBY)];
/*
* The passive scan to look for existing AP's completed,
* select a channel to camp on. Identify the channels
* that already have one or more AP's and try to locate
* an unnoccupied one. If that fails, pick a random
* channel from the active set.
*/
for (; ni != NULL; ni = nextbs) {
ieee80211_ref_node(ni);
nextbs = TAILQ_NEXT(ni, ni_list);
setbit(occupied, ieee80211_chan2ieee(ic, ni->ni_chan));
ieee80211_free_node(ic, ni);
}
for (i = 0; i < IEEE80211_CHAN_MAX; i++)
if (isset(ic->ic_chan_active, i) && isclr(occupied, i))
break;
if (i == IEEE80211_CHAN_MAX) {
fail = arc4random() & 3; /* random 0-3 */
for (i = 0; i < IEEE80211_CHAN_MAX; i++)
if (isset(ic->ic_chan_active, i) && fail-- == 0)
break;
}
ieee80211_create_ibss(ic, &ic->ic_channels[i]);
return;
}
if (ni == NULL) {
IEEE80211_DPRINTF(("%s: no scan candidate\n", __func__));
notfound:
if (ic->ic_opmode == IEEE80211_M_IBSS &&
(ic->ic_flags & IEEE80211_F_IBSSON) &&
ic->ic_des_esslen != 0) {
ieee80211_create_ibss(ic, ic->ic_ibss_chan);
return;
}
/*
* Reset the list of channels to scan and start again.
*/
ieee80211_reset_scan(ifp);
ieee80211_next_scan(ifp);
return;
}
selbs = NULL;
if (ifp->if_flags & IFF_DEBUG)
MFp4 changes to fix locking issues and correct reference count handling of station entries in hostap mode: Input path: o driver is now expected to find the node associated with the sender of a received frame; use ic_bss if none is located o driver passes the (referenced) node into ieee80211_input for use within the wlan module and is responsible for cleaning up on return o the antenna state is no longer passed up with each frame; this is now considered driver-private state and drivers are responsible for keeping it in the driver-private part of a node Output path: Revamp output path for management frames to eliminate redundant locking that causes problems and to correct reference counting bogosity that occurs when stations are timed out due to inactivity (in AP mode). On output the refcnt'd node is stashed in the pkthdr's recvif field (yech) and retrieved by the driver. This eliminates an unref/ref scenario and related node table unlock/lock due to the driver looking up the node. This is particularly important when stations are timed out as this causes a lock order reversal that can result in a deadlock. As a byproduct we also reduce the overhead for sending management frames (minimal). Additional fallout from this is a change to ieee80211_encap to return a refcn't node for tieing to the outbound frame. Node refcnts are not reclaimed until after a frame is completely processed (e.g. in the tx interrupt handler). This is especially important for timed out stations as this deref will be the final one causing the node entry to be reclaimed. Additional semi-related changes: o replace m_copym use with m_copypacket (optimization) o add assert to verify ic_bss is never free'd during normal operation o add comments explaining calling conventions by drivers for frames going in each direction o remove extraneous code that "cannot be executed" (e.g. because pointers may never be null)
2003-08-19 22:17:04 +00:00
if_printf(ifp, "\tmacaddr bssid chan rssi rate flag wep essid\n");
for (; ni != NULL; ni = nextbs) {
ieee80211_ref_node(ni);
nextbs = TAILQ_NEXT(ni, ni_list);
if (ni->ni_fails) {
/*
* The configuration of the access points may change
* during my scan. So delete the entry for the AP
* and retry to associate if there is another beacon.
*/
if (ni->ni_fails++ > 2)
ieee80211_free_node(ic, ni);
continue;
}
if (ieee80211_match_bss(ifp, ni) == 0) {
if (selbs == NULL)
selbs = ni;
else if (ni->ni_rssi > selbs->ni_rssi) {
ieee80211_unref_node(&selbs);
selbs = ni;
} else
ieee80211_unref_node(&ni);
} else {
ieee80211_unref_node(&ni);
}
}
if (selbs == NULL)
goto notfound;
(*ic->ic_node_copy)(ic, ic->ic_bss, selbs);
if (ic->ic_opmode == IEEE80211_M_IBSS) {
ieee80211_fix_rate(ic, ic->ic_bss, IEEE80211_F_DOFRATE |
IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
if (ic->ic_bss->ni_rates.rs_nrates == 0) {
selbs->ni_fails++;
ieee80211_unref_node(&selbs);
goto notfound;
}
ieee80211_unref_node(&selbs);
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
} else {
ieee80211_unref_node(&selbs);
ieee80211_new_state(ic, IEEE80211_S_AUTH, -1);
}
}
static struct ieee80211_node *
ieee80211_node_alloc(struct ieee80211com *ic)
{
struct ieee80211_node *ni;
MALLOC(ni, struct ieee80211_node *, sizeof(struct ieee80211_node),
M_80211_NODE, M_NOWAIT | M_ZERO);
return ni;
}
static void
ieee80211_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
{
FREE(ni, M_80211_NODE);
}
static void
ieee80211_node_copy(struct ieee80211com *ic,
struct ieee80211_node *dst, const struct ieee80211_node *src)
{
*dst = *src;
}
static u_int8_t
ieee80211_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
{
return ni->ni_rssi;
}
static void
ieee80211_setup_node(struct ieee80211com *ic,
struct ieee80211_node *ni, u_int8_t *macaddr)
{
int hash;
IEEE80211_ADDR_COPY(ni->ni_macaddr, macaddr);
hash = IEEE80211_NODE_HASH(macaddr);
ni->ni_refcnt = 1; /* mark referenced */
IEEE80211_NODE_LOCK(ic);
TAILQ_INSERT_TAIL(&ic->ic_node, ni, ni_list);
LIST_INSERT_HEAD(&ic->ic_hash[hash], ni, ni_hash);
/*
* Note we don't enable the inactive timer when acting
* as a station. Nodes created in this mode represent
* AP's identified while scanning. If we time them out
* then several things happen: we can't return the data
* to users to show the list of AP's we encountered, and
* more importantly, we'll incorrectly deauthenticate
* ourself because the inactivity timer will kick us off.
*/
if (ic->ic_opmode != IEEE80211_M_STA)
ic->ic_inact_timer = IEEE80211_INACT_WAIT;
IEEE80211_NODE_UNLOCK(ic);
}
struct ieee80211_node *
ieee80211_alloc_node(struct ieee80211com *ic, u_int8_t *macaddr)
{
struct ieee80211_node *ni = (*ic->ic_node_alloc)(ic);
if (ni != NULL)
ieee80211_setup_node(ic, ni, macaddr);
else
ic->ic_stats.is_rx_nodealloc++;
return ni;
}
struct ieee80211_node *
ieee80211_dup_bss(struct ieee80211com *ic, u_int8_t *macaddr)
{
struct ieee80211_node *ni = (*ic->ic_node_alloc)(ic);
if (ni != NULL) {
ieee80211_setup_node(ic, ni, macaddr);
/*
* Inherit from ic_bss.
*/
IEEE80211_ADDR_COPY(ni->ni_bssid, ic->ic_bss->ni_bssid);
ni->ni_chan = ic->ic_bss->ni_chan;
} else
ic->ic_stats.is_rx_nodealloc++;
return ni;
}
struct ieee80211_node *
ieee80211_find_node(struct ieee80211com *ic, u_int8_t *macaddr)
{
struct ieee80211_node *ni;
int hash;
hash = IEEE80211_NODE_HASH(macaddr);
IEEE80211_NODE_LOCK(ic);
LIST_FOREACH(ni, &ic->ic_hash[hash], ni_hash) {
if (IEEE80211_ADDR_EQ(ni->ni_macaddr, macaddr)) {
atomic_add_int(&ni->ni_refcnt, 1); /* mark referenced */
break;
}
}
IEEE80211_NODE_UNLOCK(ic);
return ni;
}
/*
* Like find but search based on the channel too.
*/
struct ieee80211_node *
ieee80211_lookup_node(struct ieee80211com *ic,
u_int8_t *macaddr, struct ieee80211_channel *chan)
{
struct ieee80211_node *ni;
int hash;
hash = IEEE80211_NODE_HASH(macaddr);
IEEE80211_NODE_LOCK(ic);
LIST_FOREACH(ni, &ic->ic_hash[hash], ni_hash) {
if (IEEE80211_ADDR_EQ(ni->ni_macaddr, macaddr) && ni->ni_chan == chan) {
atomic_add_int(&ni->ni_refcnt, 1);/* mark referenced */
break;
}
}
IEEE80211_NODE_UNLOCK(ic);
return ni;
}
static void
_ieee80211_free_node(struct ieee80211com *ic, struct ieee80211_node *ni)
{
MFp4 changes to fix locking issues and correct reference count handling of station entries in hostap mode: Input path: o driver is now expected to find the node associated with the sender of a received frame; use ic_bss if none is located o driver passes the (referenced) node into ieee80211_input for use within the wlan module and is responsible for cleaning up on return o the antenna state is no longer passed up with each frame; this is now considered driver-private state and drivers are responsible for keeping it in the driver-private part of a node Output path: Revamp output path for management frames to eliminate redundant locking that causes problems and to correct reference counting bogosity that occurs when stations are timed out due to inactivity (in AP mode). On output the refcnt'd node is stashed in the pkthdr's recvif field (yech) and retrieved by the driver. This eliminates an unref/ref scenario and related node table unlock/lock due to the driver looking up the node. This is particularly important when stations are timed out as this causes a lock order reversal that can result in a deadlock. As a byproduct we also reduce the overhead for sending management frames (minimal). Additional fallout from this is a change to ieee80211_encap to return a refcn't node for tieing to the outbound frame. Node refcnts are not reclaimed until after a frame is completely processed (e.g. in the tx interrupt handler). This is especially important for timed out stations as this deref will be the final one causing the node entry to be reclaimed. Additional semi-related changes: o replace m_copym use with m_copypacket (optimization) o add assert to verify ic_bss is never free'd during normal operation o add comments explaining calling conventions by drivers for frames going in each direction o remove extraneous code that "cannot be executed" (e.g. because pointers may never be null)
2003-08-19 22:17:04 +00:00
KASSERT(ni != ic->ic_bss, ("freeing bss node"));
TAILQ_REMOVE(&ic->ic_node, ni, ni_list);
LIST_REMOVE(ni, ni_hash);
if (TAILQ_EMPTY(&ic->ic_node))
ic->ic_inact_timer = 0;
(*ic->ic_node_free)(ic, ni);
}
void
ieee80211_free_node(struct ieee80211com *ic, struct ieee80211_node *ni)
{
MFp4 changes to fix locking issues and correct reference count handling of station entries in hostap mode: Input path: o driver is now expected to find the node associated with the sender of a received frame; use ic_bss if none is located o driver passes the (referenced) node into ieee80211_input for use within the wlan module and is responsible for cleaning up on return o the antenna state is no longer passed up with each frame; this is now considered driver-private state and drivers are responsible for keeping it in the driver-private part of a node Output path: Revamp output path for management frames to eliminate redundant locking that causes problems and to correct reference counting bogosity that occurs when stations are timed out due to inactivity (in AP mode). On output the refcnt'd node is stashed in the pkthdr's recvif field (yech) and retrieved by the driver. This eliminates an unref/ref scenario and related node table unlock/lock due to the driver looking up the node. This is particularly important when stations are timed out as this causes a lock order reversal that can result in a deadlock. As a byproduct we also reduce the overhead for sending management frames (minimal). Additional fallout from this is a change to ieee80211_encap to return a refcn't node for tieing to the outbound frame. Node refcnts are not reclaimed until after a frame is completely processed (e.g. in the tx interrupt handler). This is especially important for timed out stations as this deref will be the final one causing the node entry to be reclaimed. Additional semi-related changes: o replace m_copym use with m_copypacket (optimization) o add assert to verify ic_bss is never free'd during normal operation o add comments explaining calling conventions by drivers for frames going in each direction o remove extraneous code that "cannot be executed" (e.g. because pointers may never be null)
2003-08-19 22:17:04 +00:00
KASSERT(ni != ic->ic_bss, ("freeing ic_bss"));
/* XXX need equivalent of atomic_dec_and_test */
atomic_subtract_int(&ni->ni_refcnt, 1);
if (atomic_cmpset_int(&ni->ni_refcnt, 0, 1)) {
IEEE80211_NODE_LOCK(ic);
_ieee80211_free_node(ic, ni);
IEEE80211_NODE_UNLOCK(ic);
}
}
void
ieee80211_free_allnodes(struct ieee80211com *ic)
{
struct ieee80211_node *ni;
IEEE80211_NODE_LOCK(ic);
while ((ni = TAILQ_FIRST(&ic->ic_node)) != NULL)
_ieee80211_free_node(ic, ni);
IEEE80211_NODE_UNLOCK(ic);
}
/*
* Timeout inactive nodes. Note that we cannot hold the node
* lock while sending a frame as this would lead to a LOR.
* Instead we use a generation number to mark nodes that we've
* scanned and drop the lock and restart a scan if we have to
* time out a node. Since we are single-threaded by virtue of
* controlling the inactivity timer we can be sure this will
* process each node only once.
*/
void
ieee80211_timeout_nodes(struct ieee80211com *ic)
{
struct ieee80211_node *ni;
u_int gen = ic->ic_scangen++; /* NB: ok 'cuz single-threaded*/
restart:
IEEE80211_NODE_LOCK(ic);
TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
if (ni->ni_scangen == gen) /* previously handled */
continue;
ni->ni_scangen = gen;
MFp4 changes to fix locking issues and correct reference count handling of station entries in hostap mode: Input path: o driver is now expected to find the node associated with the sender of a received frame; use ic_bss if none is located o driver passes the (referenced) node into ieee80211_input for use within the wlan module and is responsible for cleaning up on return o the antenna state is no longer passed up with each frame; this is now considered driver-private state and drivers are responsible for keeping it in the driver-private part of a node Output path: Revamp output path for management frames to eliminate redundant locking that causes problems and to correct reference counting bogosity that occurs when stations are timed out due to inactivity (in AP mode). On output the refcnt'd node is stashed in the pkthdr's recvif field (yech) and retrieved by the driver. This eliminates an unref/ref scenario and related node table unlock/lock due to the driver looking up the node. This is particularly important when stations are timed out as this causes a lock order reversal that can result in a deadlock. As a byproduct we also reduce the overhead for sending management frames (minimal). Additional fallout from this is a change to ieee80211_encap to return a refcn't node for tieing to the outbound frame. Node refcnts are not reclaimed until after a frame is completely processed (e.g. in the tx interrupt handler). This is especially important for timed out stations as this deref will be the final one causing the node entry to be reclaimed. Additional semi-related changes: o replace m_copym use with m_copypacket (optimization) o add assert to verify ic_bss is never free'd during normal operation o add comments explaining calling conventions by drivers for frames going in each direction o remove extraneous code that "cannot be executed" (e.g. because pointers may never be null)
2003-08-19 22:17:04 +00:00
if (++ni->ni_inact > IEEE80211_INACT_MAX) {
IEEE80211_DPRINTF(("station %s timed out "
"due to inactivity (%u secs)\n",
ether_sprintf(ni->ni_macaddr),
ni->ni_inact));
MFp4 changes to fix locking issues and correct reference count handling of station entries in hostap mode: Input path: o driver is now expected to find the node associated with the sender of a received frame; use ic_bss if none is located o driver passes the (referenced) node into ieee80211_input for use within the wlan module and is responsible for cleaning up on return o the antenna state is no longer passed up with each frame; this is now considered driver-private state and drivers are responsible for keeping it in the driver-private part of a node Output path: Revamp output path for management frames to eliminate redundant locking that causes problems and to correct reference counting bogosity that occurs when stations are timed out due to inactivity (in AP mode). On output the refcnt'd node is stashed in the pkthdr's recvif field (yech) and retrieved by the driver. This eliminates an unref/ref scenario and related node table unlock/lock due to the driver looking up the node. This is particularly important when stations are timed out as this causes a lock order reversal that can result in a deadlock. As a byproduct we also reduce the overhead for sending management frames (minimal). Additional fallout from this is a change to ieee80211_encap to return a refcn't node for tieing to the outbound frame. Node refcnts are not reclaimed until after a frame is completely processed (e.g. in the tx interrupt handler). This is especially important for timed out stations as this deref will be the final one causing the node entry to be reclaimed. Additional semi-related changes: o replace m_copym use with m_copypacket (optimization) o add assert to verify ic_bss is never free'd during normal operation o add comments explaining calling conventions by drivers for frames going in each direction o remove extraneous code that "cannot be executed" (e.g. because pointers may never be null)
2003-08-19 22:17:04 +00:00
/*
* Send a deauthenticate frame.
*
* Drop the node lock before sending the
* deauthentication frame in case the driver takes
* a lock, as this will result in a LOR between the
* node lock and the driver lock.
MFp4 changes to fix locking issues and correct reference count handling of station entries in hostap mode: Input path: o driver is now expected to find the node associated with the sender of a received frame; use ic_bss if none is located o driver passes the (referenced) node into ieee80211_input for use within the wlan module and is responsible for cleaning up on return o the antenna state is no longer passed up with each frame; this is now considered driver-private state and drivers are responsible for keeping it in the driver-private part of a node Output path: Revamp output path for management frames to eliminate redundant locking that causes problems and to correct reference counting bogosity that occurs when stations are timed out due to inactivity (in AP mode). On output the refcnt'd node is stashed in the pkthdr's recvif field (yech) and retrieved by the driver. This eliminates an unref/ref scenario and related node table unlock/lock due to the driver looking up the node. This is particularly important when stations are timed out as this causes a lock order reversal that can result in a deadlock. As a byproduct we also reduce the overhead for sending management frames (minimal). Additional fallout from this is a change to ieee80211_encap to return a refcn't node for tieing to the outbound frame. Node refcnts are not reclaimed until after a frame is completely processed (e.g. in the tx interrupt handler). This is especially important for timed out stations as this deref will be the final one causing the node entry to be reclaimed. Additional semi-related changes: o replace m_copym use with m_copypacket (optimization) o add assert to verify ic_bss is never free'd during normal operation o add comments explaining calling conventions by drivers for frames going in each direction o remove extraneous code that "cannot be executed" (e.g. because pointers may never be null)
2003-08-19 22:17:04 +00:00
*/
IEEE80211_NODE_UNLOCK(ic);
MFp4 changes to fix locking issues and correct reference count handling of station entries in hostap mode: Input path: o driver is now expected to find the node associated with the sender of a received frame; use ic_bss if none is located o driver passes the (referenced) node into ieee80211_input for use within the wlan module and is responsible for cleaning up on return o the antenna state is no longer passed up with each frame; this is now considered driver-private state and drivers are responsible for keeping it in the driver-private part of a node Output path: Revamp output path for management frames to eliminate redundant locking that causes problems and to correct reference counting bogosity that occurs when stations are timed out due to inactivity (in AP mode). On output the refcnt'd node is stashed in the pkthdr's recvif field (yech) and retrieved by the driver. This eliminates an unref/ref scenario and related node table unlock/lock due to the driver looking up the node. This is particularly important when stations are timed out as this causes a lock order reversal that can result in a deadlock. As a byproduct we also reduce the overhead for sending management frames (minimal). Additional fallout from this is a change to ieee80211_encap to return a refcn't node for tieing to the outbound frame. Node refcnts are not reclaimed until after a frame is completely processed (e.g. in the tx interrupt handler). This is especially important for timed out stations as this deref will be the final one causing the node entry to be reclaimed. Additional semi-related changes: o replace m_copym use with m_copypacket (optimization) o add assert to verify ic_bss is never free'd during normal operation o add comments explaining calling conventions by drivers for frames going in each direction o remove extraneous code that "cannot be executed" (e.g. because pointers may never be null)
2003-08-19 22:17:04 +00:00
IEEE80211_SEND_MGMT(ic, ni,
IEEE80211_FC0_SUBTYPE_DEAUTH,
IEEE80211_REASON_AUTH_EXPIRE);
ieee80211_free_node(ic, ni);
ic->ic_stats.is_node_timeout++;
goto restart;
}
}
if (!TAILQ_EMPTY(&ic->ic_node))
ic->ic_inact_timer = IEEE80211_INACT_WAIT;
IEEE80211_NODE_UNLOCK(ic);
}
void
ieee80211_iterate_nodes(struct ieee80211com *ic, ieee80211_iter_func *f, void *arg)
{
struct ieee80211_node *ni;
IEEE80211_NODE_LOCK(ic);
TAILQ_FOREACH(ni, &ic->ic_node, ni_list)
(*f)(arg, ni);
IEEE80211_NODE_UNLOCK(ic);
}