freebsd-skq/usr.sbin/bhyve/pci_virtio_console.c

760 lines
18 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2016 iXsystems Inc.
* All rights reserved.
*
* This software was developed by Jakub Klama <jceel@FreeBSD.org>
* under sponsorship from iXsystems Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#ifndef WITHOUT_CAPSICUM
#include <sys/capsicum.h>
#endif
#include <sys/linker_set.h>
#include <sys/uio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#ifndef WITHOUT_CAPSICUM
#include <capsicum_helpers.h>
#endif
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <assert.h>
#include <pthread.h>
#include <libgen.h>
#include <sysexits.h>
#include "bhyverun.h"
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
#include "config.h"
#include "debug.h"
#include "pci_emul.h"
#include "virtio.h"
#include "mevent.h"
#include "sockstream.h"
#define VTCON_RINGSZ 64
#define VTCON_MAXPORTS 16
#define VTCON_MAXQ (VTCON_MAXPORTS * 2 + 2)
#define VTCON_DEVICE_READY 0
#define VTCON_DEVICE_ADD 1
#define VTCON_DEVICE_REMOVE 2
#define VTCON_PORT_READY 3
#define VTCON_CONSOLE_PORT 4
#define VTCON_CONSOLE_RESIZE 5
#define VTCON_PORT_OPEN 6
#define VTCON_PORT_NAME 7
#define VTCON_F_SIZE 0
#define VTCON_F_MULTIPORT 1
#define VTCON_F_EMERG_WRITE 2
#define VTCON_S_HOSTCAPS \
(VTCON_F_SIZE | VTCON_F_MULTIPORT | VTCON_F_EMERG_WRITE)
static int pci_vtcon_debug;
#define DPRINTF(params) if (pci_vtcon_debug) PRINTLN params
#define WPRINTF(params) PRINTLN params
struct pci_vtcon_softc;
struct pci_vtcon_port;
struct pci_vtcon_config;
typedef void (pci_vtcon_cb_t)(struct pci_vtcon_port *, void *, struct iovec *,
int);
struct pci_vtcon_port {
struct pci_vtcon_softc * vsp_sc;
int vsp_id;
const char * vsp_name;
bool vsp_enabled;
bool vsp_console;
bool vsp_rx_ready;
bool vsp_open;
int vsp_rxq;
int vsp_txq;
void * vsp_arg;
pci_vtcon_cb_t * vsp_cb;
};
struct pci_vtcon_sock
{
struct pci_vtcon_port * vss_port;
const char * vss_path;
struct mevent * vss_server_evp;
struct mevent * vss_conn_evp;
int vss_server_fd;
int vss_conn_fd;
bool vss_open;
};
struct pci_vtcon_softc {
struct virtio_softc vsc_vs;
struct vqueue_info vsc_queues[VTCON_MAXQ];
pthread_mutex_t vsc_mtx;
uint64_t vsc_cfg;
uint64_t vsc_features;
char * vsc_rootdir;
int vsc_kq;
bool vsc_ready;
struct pci_vtcon_port vsc_control_port;
struct pci_vtcon_port vsc_ports[VTCON_MAXPORTS];
struct pci_vtcon_config *vsc_config;
};
struct pci_vtcon_config {
uint16_t cols;
uint16_t rows;
uint32_t max_nr_ports;
uint32_t emerg_wr;
} __attribute__((packed));
struct pci_vtcon_control {
uint32_t id;
uint16_t event;
uint16_t value;
} __attribute__((packed));
struct pci_vtcon_console_resize {
uint16_t cols;
uint16_t rows;
} __attribute__((packed));
static void pci_vtcon_reset(void *);
static void pci_vtcon_notify_rx(void *, struct vqueue_info *);
static void pci_vtcon_notify_tx(void *, struct vqueue_info *);
static int pci_vtcon_cfgread(void *, int, int, uint32_t *);
static int pci_vtcon_cfgwrite(void *, int, int, uint32_t);
static void pci_vtcon_neg_features(void *, uint64_t);
static void pci_vtcon_sock_accept(int, enum ev_type, void *);
static void pci_vtcon_sock_rx(int, enum ev_type, void *);
static void pci_vtcon_sock_tx(struct pci_vtcon_port *, void *, struct iovec *,
int);
static void pci_vtcon_control_send(struct pci_vtcon_softc *,
struct pci_vtcon_control *, const void *, size_t);
static void pci_vtcon_announce_port(struct pci_vtcon_port *);
static void pci_vtcon_open_port(struct pci_vtcon_port *, bool);
static struct virtio_consts vtcon_vi_consts = {
"vtcon", /* our name */
VTCON_MAXQ, /* we support VTCON_MAXQ virtqueues */
sizeof(struct pci_vtcon_config), /* config reg size */
pci_vtcon_reset, /* reset */
NULL, /* device-wide qnotify */
pci_vtcon_cfgread, /* read virtio config */
pci_vtcon_cfgwrite, /* write virtio config */
pci_vtcon_neg_features, /* apply negotiated features */
VTCON_S_HOSTCAPS, /* our capabilities */
};
static void
pci_vtcon_reset(void *vsc)
{
struct pci_vtcon_softc *sc;
sc = vsc;
DPRINTF(("vtcon: device reset requested!"));
vi_reset_dev(&sc->vsc_vs);
}
static void
pci_vtcon_neg_features(void *vsc, uint64_t negotiated_features)
{
struct pci_vtcon_softc *sc = vsc;
sc->vsc_features = negotiated_features;
}
static int
pci_vtcon_cfgread(void *vsc, int offset, int size, uint32_t *retval)
{
struct pci_vtcon_softc *sc = vsc;
void *ptr;
ptr = (uint8_t *)sc->vsc_config + offset;
memcpy(retval, ptr, size);
return (0);
}
static int
pci_vtcon_cfgwrite(void *vsc, int offset, int size, uint32_t val)
{
return (0);
}
static inline struct pci_vtcon_port *
pci_vtcon_vq_to_port(struct pci_vtcon_softc *sc, struct vqueue_info *vq)
{
uint16_t num = vq->vq_num;
if (num == 0 || num == 1)
return (&sc->vsc_ports[0]);
if (num == 2 || num == 3)
return (&sc->vsc_control_port);
return (&sc->vsc_ports[(num / 2) - 1]);
}
static inline struct vqueue_info *
pci_vtcon_port_to_vq(struct pci_vtcon_port *port, bool tx_queue)
{
int qnum;
qnum = tx_queue ? port->vsp_txq : port->vsp_rxq;
return (&port->vsp_sc->vsc_queues[qnum]);
}
static struct pci_vtcon_port *
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
pci_vtcon_port_add(struct pci_vtcon_softc *sc, int port_id, const char *name,
pci_vtcon_cb_t *cb, void *arg)
{
struct pci_vtcon_port *port;
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
port = &sc->vsc_ports[port_id];
if (port->vsp_enabled) {
errno = EBUSY;
return (NULL);
}
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
port->vsp_id = port_id;
port->vsp_sc = sc;
port->vsp_name = name;
port->vsp_cb = cb;
port->vsp_arg = arg;
if (port->vsp_id == 0) {
/* port0 */
port->vsp_txq = 0;
port->vsp_rxq = 1;
} else {
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
port->vsp_txq = (port_id + 1) * 2;
port->vsp_rxq = port->vsp_txq + 1;
}
port->vsp_enabled = true;
return (port);
}
static int
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
pci_vtcon_sock_add(struct pci_vtcon_softc *sc, const char *port_name,
const nvlist_t *nvl)
{
struct pci_vtcon_sock *sock;
struct sockaddr_un sun;
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
const char *name, *path;
char *cp, *pathcopy;
long port;
int s = -1, fd = -1, error = 0;
#ifndef WITHOUT_CAPSICUM
cap_rights_t rights;
#endif
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
port = strtol(port_name, &cp, 0);
if (*cp != '\0' || port < 0 || port >= VTCON_MAXPORTS) {
EPRINTLN("vtcon: Invalid port %s", port_name);
error = -1;
goto out;
}
path = get_config_value_node(nvl, "path");
if (path == NULL) {
EPRINTLN("vtcon: required path missing for port %ld", port);
error = -1;
goto out;
}
sock = calloc(1, sizeof(struct pci_vtcon_sock));
if (sock == NULL) {
error = -1;
goto out;
}
s = socket(AF_UNIX, SOCK_STREAM, 0);
if (s < 0) {
error = -1;
goto out;
}
pathcopy = strdup(path);
if (pathcopy == NULL) {
error = -1;
goto out;
}
fd = open(dirname(pathcopy), O_RDONLY | O_DIRECTORY);
if (fd < 0) {
free(pathcopy);
error = -1;
goto out;
}
sun.sun_family = AF_UNIX;
sun.sun_len = sizeof(struct sockaddr_un);
strcpy(pathcopy, path);
strlcpy(sun.sun_path, basename(pathcopy), sizeof(sun.sun_path));
free(pathcopy);
if (bindat(fd, s, (struct sockaddr *)&sun, sun.sun_len) < 0) {
error = -1;
goto out;
}
if (fcntl(s, F_SETFL, O_NONBLOCK) < 0) {
error = -1;
goto out;
}
if (listen(s, 1) < 0) {
error = -1;
goto out;
}
#ifndef WITHOUT_CAPSICUM
cap_rights_init(&rights, CAP_ACCEPT, CAP_EVENT, CAP_READ, CAP_WRITE);
if (caph_rights_limit(s, &rights) == -1)
errx(EX_OSERR, "Unable to apply rights for sandbox");
#endif
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
name = get_config_value_node(nvl, "name");
if (name == NULL) {
EPRINTLN("vtcon: required name missing for port %ld", port);
error = -1;
goto out;
}
sock->vss_port = pci_vtcon_port_add(sc, port, name, pci_vtcon_sock_tx, sock);
if (sock->vss_port == NULL) {
error = -1;
goto out;
}
sock->vss_open = false;
sock->vss_conn_fd = -1;
sock->vss_server_fd = s;
sock->vss_server_evp = mevent_add(s, EVF_READ, pci_vtcon_sock_accept,
sock);
if (sock->vss_server_evp == NULL) {
error = -1;
goto out;
}
out:
if (fd != -1)
close(fd);
if (error != 0) {
if (s != -1)
close(s);
free(sock);
}
return (error);
}
static void
pci_vtcon_sock_accept(int fd __unused, enum ev_type t __unused, void *arg)
{
struct pci_vtcon_sock *sock = (struct pci_vtcon_sock *)arg;
int s;
s = accept(sock->vss_server_fd, NULL, NULL);
if (s < 0)
return;
if (sock->vss_open) {
close(s);
return;
}
sock->vss_open = true;
sock->vss_conn_fd = s;
sock->vss_conn_evp = mevent_add(s, EVF_READ, pci_vtcon_sock_rx, sock);
pci_vtcon_open_port(sock->vss_port, true);
}
static void
pci_vtcon_sock_rx(int fd __unused, enum ev_type t __unused, void *arg)
{
struct pci_vtcon_port *port;
struct pci_vtcon_sock *sock = (struct pci_vtcon_sock *)arg;
struct vqueue_info *vq;
struct vi_req req;
struct iovec iov;
static char dummybuf[2048];
int len, n;
port = sock->vss_port;
vq = pci_vtcon_port_to_vq(port, true);
if (!sock->vss_open || !port->vsp_rx_ready) {
len = read(sock->vss_conn_fd, dummybuf, sizeof(dummybuf));
if (len == 0)
goto close;
return;
}
if (!vq_has_descs(vq)) {
len = read(sock->vss_conn_fd, dummybuf, sizeof(dummybuf));
vq_endchains(vq, 1);
if (len == 0)
goto close;
return;
}
do {
n = vq_getchain(vq, &iov, 1, &req);
len = readv(sock->vss_conn_fd, &iov, n);
if (len == 0 || (len < 0 && errno == EWOULDBLOCK)) {
vq_retchains(vq, 1);
vq_endchains(vq, 0);
if (len == 0)
goto close;
return;
}
vq_relchain(vq, req.idx, len);
} while (vq_has_descs(vq));
vq_endchains(vq, 1);
close:
mevent_delete_close(sock->vss_conn_evp);
sock->vss_conn_fd = -1;
sock->vss_open = false;
}
static void
pci_vtcon_sock_tx(struct pci_vtcon_port *port, void *arg, struct iovec *iov,
int niov)
{
struct pci_vtcon_sock *sock;
int i, ret;
sock = (struct pci_vtcon_sock *)arg;
if (sock->vss_conn_fd == -1)
return;
for (i = 0; i < niov; i++) {
ret = stream_write(sock->vss_conn_fd, iov[i].iov_base,
iov[i].iov_len);
if (ret <= 0)
break;
}
if (ret <= 0) {
mevent_delete_close(sock->vss_conn_evp);
sock->vss_conn_fd = -1;
sock->vss_open = false;
}
}
static void
pci_vtcon_control_tx(struct pci_vtcon_port *port, void *arg, struct iovec *iov,
int niov)
{
struct pci_vtcon_softc *sc;
struct pci_vtcon_port *tmp;
struct pci_vtcon_control resp, *ctrl;
int i;
assert(niov == 1);
sc = port->vsp_sc;
ctrl = (struct pci_vtcon_control *)iov->iov_base;
switch (ctrl->event) {
case VTCON_DEVICE_READY:
sc->vsc_ready = true;
/* set port ready events for registered ports */
for (i = 0; i < VTCON_MAXPORTS; i++) {
tmp = &sc->vsc_ports[i];
if (tmp->vsp_enabled)
pci_vtcon_announce_port(tmp);
if (tmp->vsp_open)
pci_vtcon_open_port(tmp, true);
}
break;
case VTCON_PORT_READY:
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
tmp = &sc->vsc_ports[ctrl->id];
if (ctrl->id >= VTCON_MAXPORTS || !tmp->vsp_enabled) {
WPRINTF(("VTCON_PORT_READY event for unknown port %d",
ctrl->id));
return;
}
if (tmp->vsp_console) {
resp.event = VTCON_CONSOLE_PORT;
resp.id = ctrl->id;
resp.value = 1;
pci_vtcon_control_send(sc, &resp, NULL, 0);
}
break;
}
}
static void
pci_vtcon_announce_port(struct pci_vtcon_port *port)
{
struct pci_vtcon_control event;
event.id = port->vsp_id;
event.event = VTCON_DEVICE_ADD;
event.value = 1;
pci_vtcon_control_send(port->vsp_sc, &event, NULL, 0);
event.event = VTCON_PORT_NAME;
pci_vtcon_control_send(port->vsp_sc, &event, port->vsp_name,
strlen(port->vsp_name));
}
static void
pci_vtcon_open_port(struct pci_vtcon_port *port, bool open)
{
struct pci_vtcon_control event;
if (!port->vsp_sc->vsc_ready) {
port->vsp_open = true;
return;
}
event.id = port->vsp_id;
event.event = VTCON_PORT_OPEN;
event.value = (int)open;
pci_vtcon_control_send(port->vsp_sc, &event, NULL, 0);
}
static void
pci_vtcon_control_send(struct pci_vtcon_softc *sc,
struct pci_vtcon_control *ctrl, const void *payload, size_t len)
{
struct vqueue_info *vq;
struct vi_req req;
struct iovec iov;
int n;
vq = pci_vtcon_port_to_vq(&sc->vsc_control_port, true);
if (!vq_has_descs(vq))
return;
n = vq_getchain(vq, &iov, 1, &req);
assert(n == 1);
memcpy(iov.iov_base, ctrl, sizeof(struct pci_vtcon_control));
if (payload != NULL && len > 0)
memcpy(iov.iov_base + sizeof(struct pci_vtcon_control),
payload, len);
vq_relchain(vq, req.idx, sizeof(struct pci_vtcon_control) + len);
vq_endchains(vq, 1);
}
static void
pci_vtcon_notify_tx(void *vsc, struct vqueue_info *vq)
{
struct pci_vtcon_softc *sc;
struct pci_vtcon_port *port;
struct iovec iov[1];
struct vi_req req;
uint16_t n;
sc = vsc;
port = pci_vtcon_vq_to_port(sc, vq);
while (vq_has_descs(vq)) {
n = vq_getchain(vq, iov, 1, &req);
assert(n >= 1);
if (port != NULL)
port->vsp_cb(port, port->vsp_arg, iov, 1);
/*
* Release this chain and handle more
*/
vq_relchain(vq, req.idx, 0);
}
vq_endchains(vq, 1); /* Generate interrupt if appropriate. */
}
static void
pci_vtcon_notify_rx(void *vsc, struct vqueue_info *vq)
{
struct pci_vtcon_softc *sc;
struct pci_vtcon_port *port;
sc = vsc;
port = pci_vtcon_vq_to_port(sc, vq);
if (!port->vsp_rx_ready) {
port->vsp_rx_ready = 1;
vq_kick_disable(vq);
}
}
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
/*
* Each console device has a "port" node which contains nodes for
* each port. Ports are numbered starting at 0.
*/
static int
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
pci_vtcon_legacy_config_port(nvlist_t *nvl, int port, char *opt)
{
char *name, *path;
char node_name[sizeof("XX")];
nvlist_t *port_nvl;
name = strsep(&opt, "=");
path = opt;
if (path == NULL) {
EPRINTLN("vtcon: port %s requires a path", name);
return (-1);
}
if (port >= VTCON_MAXPORTS) {
EPRINTLN("vtcon: too many ports");
return (-1);
}
snprintf(node_name, sizeof(node_name), "%d", port);
port_nvl = create_relative_config_node(nvl, node_name);
set_config_value_node(port_nvl, "name", name);
set_config_value_node(port_nvl, "path", path);
return (0);
}
static int
pci_vtcon_legacy_config(nvlist_t *nvl, const char *opts)
{
char *opt, *str, *tofree;
nvlist_t *ports_nvl;
int error, port;
ports_nvl = create_relative_config_node(nvl, "port");
tofree = str = strdup(opts);
error = 0;
port = 0;
while ((opt = strsep(&str, ",")) != NULL) {
error = pci_vtcon_legacy_config_port(ports_nvl, port, opt);
if (error)
break;
port++;
}
free(tofree);
return (error);
}
static int
pci_vtcon_init(struct vmctx *ctx, struct pci_devinst *pi, nvlist_t *nvl)
{
struct pci_vtcon_softc *sc;
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
nvlist_t *ports_nvl;
int i;
sc = calloc(1, sizeof(struct pci_vtcon_softc));
sc->vsc_config = calloc(1, sizeof(struct pci_vtcon_config));
sc->vsc_config->max_nr_ports = VTCON_MAXPORTS;
sc->vsc_config->cols = 80;
sc->vsc_config->rows = 25;
vi_softc_linkup(&sc->vsc_vs, &vtcon_vi_consts, sc, pi, sc->vsc_queues);
sc->vsc_vs.vs_mtx = &sc->vsc_mtx;
for (i = 0; i < VTCON_MAXQ; i++) {
sc->vsc_queues[i].vq_qsize = VTCON_RINGSZ;
sc->vsc_queues[i].vq_notify = i % 2 == 0
? pci_vtcon_notify_rx
: pci_vtcon_notify_tx;
}
/* initialize config space */
pci_set_cfgdata16(pi, PCIR_DEVICE, VIRTIO_DEV_CONSOLE);
pci_set_cfgdata16(pi, PCIR_VENDOR, VIRTIO_VENDOR);
pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_SIMPLECOMM);
pci_set_cfgdata16(pi, PCIR_SUBDEV_0, VIRTIO_ID_CONSOLE);
pci_set_cfgdata16(pi, PCIR_SUBVEND_0, VIRTIO_VENDOR);
if (vi_intr_init(&sc->vsc_vs, 1, fbsdrun_virtio_msix()))
return (1);
vi_set_io_bar(&sc->vsc_vs, 0);
/* create control port */
sc->vsc_control_port.vsp_sc = sc;
sc->vsc_control_port.vsp_txq = 2;
sc->vsc_control_port.vsp_rxq = 3;
sc->vsc_control_port.vsp_cb = pci_vtcon_control_tx;
sc->vsc_control_port.vsp_enabled = true;
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
ports_nvl = find_relative_config_node(nvl, "port");
if (ports_nvl != NULL) {
const char *name;
void *cookie;
int type;
cookie = NULL;
while ((name = nvlist_next(ports_nvl, &type, &cookie)) !=
NULL) {
if (type != NV_TYPE_NVLIST)
continue;
if (pci_vtcon_sock_add(sc, name,
nvlist_get_nvlist(ports_nvl, name)) < 0) {
EPRINTLN("cannot create port %s: %s",
name, strerror(errno));
return (1);
}
}
}
return (0);
}
struct pci_devemu pci_de_vcon = {
.pe_emu = "virtio-console",
.pe_init = pci_vtcon_init,
.pe_barwrite = vi_pci_write,
.pe_barread = vi_pci_read
};
PCI_EMUL_SET(pci_de_vcon);