freebsd-skq/sys/dev/bm/if_bm.c

1299 lines
31 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright 2008 Nathan Whitehorn. All rights reserved.
* Copyright 2003 by Peter Grehan. All rights reserved.
* Copyright (C) 1998, 1999, 2000 Tsubai Masanari. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* From:
* NetBSD: if_bm.c,v 1.9.2.1 2000/11/01 15:02:49 tv Exp
*/
/*
* BMAC/BMAC+ Macio cell 10/100 ethernet driver
* The low-cost, low-feature Apple variant of the Sun HME
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <machine/pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/mii/miivar.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/openfirm.h>
#include <machine/dbdma.h>
MODULE_DEPEND(bm, ether, 1, 1, 1);
MODULE_DEPEND(bm, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#include "if_bmreg.h"
#include "if_bmvar.h"
static int bm_probe (device_t);
static int bm_attach (device_t);
static int bm_detach (device_t);
static int bm_shutdown (device_t);
static void bm_start (struct ifnet *);
static void bm_start_locked (struct ifnet *);
static int bm_encap (struct bm_softc *sc, struct mbuf **m_head);
static int bm_ioctl (struct ifnet *, u_long, caddr_t);
static void bm_init (void *);
static void bm_init_locked (struct bm_softc *sc);
static void bm_chip_setup (struct bm_softc *sc);
static void bm_stop (struct bm_softc *sc);
static void bm_setladrf (struct bm_softc *sc);
static void bm_dummypacket (struct bm_softc *sc);
static void bm_txintr (void *xsc);
static void bm_rxintr (void *xsc);
static int bm_add_rxbuf (struct bm_softc *sc, int i);
static int bm_add_rxbuf_dma (struct bm_softc *sc, int i);
static void bm_enable_interrupts (struct bm_softc *sc);
static void bm_disable_interrupts (struct bm_softc *sc);
static void bm_tick (void *xsc);
static int bm_ifmedia_upd (struct ifnet *);
static void bm_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static int bm_miibus_readreg (device_t, int, int);
static int bm_miibus_writereg (device_t, int, int, int);
static void bm_miibus_statchg (device_t);
/*
* MII bit-bang glue
*/
static uint32_t bm_mii_bitbang_read(device_t);
static void bm_mii_bitbang_write(device_t, uint32_t);
static const struct mii_bitbang_ops bm_mii_bitbang_ops = {
bm_mii_bitbang_read,
bm_mii_bitbang_write,
{
BM_MII_DATAOUT, /* MII_BIT_MDO */
BM_MII_DATAIN, /* MII_BIT_MDI */
BM_MII_CLK, /* MII_BIT_MDC */
BM_MII_OENABLE, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
static device_method_t bm_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, bm_probe),
DEVMETHOD(device_attach, bm_attach),
DEVMETHOD(device_detach, bm_detach),
DEVMETHOD(device_shutdown, bm_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, bm_miibus_readreg),
DEVMETHOD(miibus_writereg, bm_miibus_writereg),
DEVMETHOD(miibus_statchg, bm_miibus_statchg),
DEVMETHOD_END
};
static driver_t bm_macio_driver = {
"bm",
bm_methods,
sizeof(struct bm_softc)
};
static devclass_t bm_devclass;
DRIVER_MODULE(bm, macio, bm_macio_driver, bm_devclass, 0, 0);
DRIVER_MODULE(miibus, bm, miibus_driver, miibus_devclass, 0, 0);
/*
* MII internal routines
*/
/*
* Write the MII serial port for the MII bit-bang module.
*/
static void
bm_mii_bitbang_write(device_t dev, uint32_t val)
{
struct bm_softc *sc;
sc = device_get_softc(dev);
CSR_WRITE_2(sc, BM_MII_CSR, val);
CSR_BARRIER(sc, BM_MII_CSR, 2,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
/*
* Read the MII serial port for the MII bit-bang module.
*/
static uint32_t
bm_mii_bitbang_read(device_t dev)
{
struct bm_softc *sc;
uint32_t reg;
sc = device_get_softc(dev);
reg = CSR_READ_2(sc, BM_MII_CSR);
CSR_BARRIER(sc, BM_MII_CSR, 2,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (reg);
}
/*
* MII bus i/f
*/
static int
bm_miibus_readreg(device_t dev, int phy, int reg)
{
return (mii_bitbang_readreg(dev, &bm_mii_bitbang_ops, phy, reg));
}
static int
bm_miibus_writereg(device_t dev, int phy, int reg, int data)
{
mii_bitbang_readreg(dev, &bm_mii_bitbang_ops, phy, reg);
return (0);
}
static void
bm_miibus_statchg(device_t dev)
{
struct bm_softc *sc = device_get_softc(dev);
uint16_t reg;
int new_duplex;
reg = CSR_READ_2(sc, BM_TX_CONFIG);
new_duplex = IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX;
if (new_duplex != sc->sc_duplex) {
/* Turn off TX MAC while we fiddle its settings */
reg &= ~BM_ENABLE;
CSR_WRITE_2(sc, BM_TX_CONFIG, reg);
while (CSR_READ_2(sc, BM_TX_CONFIG) & BM_ENABLE)
DELAY(10);
}
if (new_duplex && !sc->sc_duplex)
reg |= BM_TX_IGNORECOLL | BM_TX_FULLDPX;
else if (!new_duplex && sc->sc_duplex)
reg &= ~(BM_TX_IGNORECOLL | BM_TX_FULLDPX);
if (new_duplex != sc->sc_duplex) {
/* Turn TX MAC back on */
reg |= BM_ENABLE;
CSR_WRITE_2(sc, BM_TX_CONFIG, reg);
sc->sc_duplex = new_duplex;
}
}
/*
* ifmedia/mii callbacks
*/
static int
bm_ifmedia_upd(struct ifnet *ifp)
{
struct bm_softc *sc = ifp->if_softc;
int error;
BM_LOCK(sc);
error = mii_mediachg(sc->sc_mii);
BM_UNLOCK(sc);
return (error);
}
static void
bm_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifm)
{
struct bm_softc *sc = ifp->if_softc;
BM_LOCK(sc);
mii_pollstat(sc->sc_mii);
ifm->ifm_active = sc->sc_mii->mii_media_active;
ifm->ifm_status = sc->sc_mii->mii_media_status;
BM_UNLOCK(sc);
}
/*
* Macio probe/attach
*/
static int
bm_probe(device_t dev)
{
const char *dname = ofw_bus_get_name(dev);
const char *dcompat = ofw_bus_get_compat(dev);
/*
* BMAC+ cells have a name of "ethernet" and
* a compatible property of "bmac+"
*/
if (strcmp(dname, "bmac") == 0) {
device_set_desc(dev, "Apple BMAC Ethernet Adaptor");
} else if (strcmp(dcompat, "bmac+") == 0) {
device_set_desc(dev, "Apple BMAC+ Ethernet Adaptor");
} else
return (ENXIO);
return (0);
}
static int
bm_attach(device_t dev)
{
phandle_t node;
u_char *eaddr;
struct ifnet *ifp;
int error, cellid, i;
struct bm_txsoft *txs;
struct bm_softc *sc = device_get_softc(dev);
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
ifp->if_softc = sc;
sc->sc_dev = dev;
sc->sc_duplex = ~IFM_FDX;
error = 0;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
/* Check for an improved version of Paddington */
sc->sc_streaming = 0;
cellid = -1;
node = ofw_bus_get_node(dev);
OF_getprop(node, "cell-id", &cellid, sizeof(cellid));
if (cellid >= 0xc4)
sc->sc_streaming = 1;
sc->sc_memrid = 0;
sc->sc_memr = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->sc_memrid, RF_ACTIVE);
if (sc->sc_memr == NULL) {
device_printf(dev, "Could not alloc chip registers!\n");
return (ENXIO);
}
sc->sc_txdmarid = BM_TXDMA_REGISTERS;
sc->sc_rxdmarid = BM_RXDMA_REGISTERS;
sc->sc_txdmar = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->sc_txdmarid, RF_ACTIVE);
sc->sc_rxdmar = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->sc_rxdmarid, RF_ACTIVE);
if (sc->sc_txdmar == NULL || sc->sc_rxdmar == NULL) {
device_printf(dev, "Could not map DBDMA registers!\n");
return (ENXIO);
}
error = dbdma_allocate_channel(sc->sc_txdmar, 0, bus_get_dma_tag(dev),
BM_MAX_DMA_COMMANDS, &sc->sc_txdma);
error += dbdma_allocate_channel(sc->sc_rxdmar, 0, bus_get_dma_tag(dev),
BM_MAX_DMA_COMMANDS, &sc->sc_rxdma);
if (error) {
device_printf(dev,"Could not allocate DBDMA channel!\n");
return (ENXIO);
}
/* alloc DMA tags and buffers */
error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL,
NULL, &sc->sc_pdma_tag);
if (error) {
device_printf(dev,"Could not allocate DMA tag!\n");
return (ENXIO);
}
error = bus_dma_tag_create(sc->sc_pdma_tag, 1, 0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES,
BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_rdma_tag);
if (error) {
device_printf(dev,"Could not allocate RX DMA channel!\n");
return (ENXIO);
}
error = bus_dma_tag_create(sc->sc_pdma_tag, 1, 0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * BM_NTXSEGS, BM_NTXSEGS,
MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdma_tag);
if (error) {
device_printf(dev,"Could not allocate TX DMA tag!\n");
return (ENXIO);
}
/* init transmit descriptors */
STAILQ_INIT(&sc->sc_txfreeq);
STAILQ_INIT(&sc->sc_txdirtyq);
/* create TX DMA maps */
error = ENOMEM;
for (i = 0; i < BM_MAX_TX_PACKETS; i++) {
txs = &sc->sc_txsoft[i];
txs->txs_mbuf = NULL;
error = bus_dmamap_create(sc->sc_tdma_tag, 0, &txs->txs_dmamap);
if (error) {
device_printf(sc->sc_dev,
"unable to create TX DMA map %d, error = %d\n",
i, error);
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/* Create the receive buffer DMA maps. */
for (i = 0; i < BM_MAX_RX_PACKETS; i++) {
error = bus_dmamap_create(sc->sc_rdma_tag, 0,
&sc->sc_rxsoft[i].rxs_dmamap);
if (error) {
device_printf(sc->sc_dev,
"unable to create RX DMA map %d, error = %d\n",
i, error);
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
/* alloc interrupt */
bm_disable_interrupts(sc);
sc->sc_txdmairqid = BM_TXDMA_INTERRUPT;
sc->sc_txdmairq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->sc_txdmairqid, RF_ACTIVE);
if (error) {
device_printf(dev,"Could not allocate TX interrupt!\n");
return (ENXIO);
}
bus_setup_intr(dev,sc->sc_txdmairq,
INTR_TYPE_MISC | INTR_MPSAFE | INTR_ENTROPY, NULL, bm_txintr, sc,
&sc->sc_txihtx);
sc->sc_rxdmairqid = BM_RXDMA_INTERRUPT;
sc->sc_rxdmairq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&sc->sc_rxdmairqid, RF_ACTIVE);
if (error) {
device_printf(dev,"Could not allocate RX interrupt!\n");
return (ENXIO);
}
bus_setup_intr(dev,sc->sc_rxdmairq,
INTR_TYPE_MISC | INTR_MPSAFE | INTR_ENTROPY, NULL, bm_rxintr, sc,
&sc->sc_rxih);
/*
* Get the ethernet address from OpenFirmware
*/
eaddr = sc->sc_enaddr;
OF_getprop(node, "local-mac-address", eaddr, ETHER_ADDR_LEN);
/*
* Setup MII
* On Apple BMAC controllers, we end up in a weird state of
* partially-completed autonegotiation on boot. So we force
* autonegotation to try again.
*/
error = mii_attach(dev, &sc->sc_miibus, ifp, bm_ifmedia_upd,
bm_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
MIIF_FORCEANEG);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
return (error);
}
/* reset the adapter */
bm_chip_setup(sc);
sc->sc_mii = device_get_softc(sc->sc_miibus);
if_initname(ifp, device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = bm_start;
ifp->if_ioctl = bm_ioctl;
ifp->if_init = bm_init;
IFQ_SET_MAXLEN(&ifp->if_snd, BM_MAX_TX_PACKETS);
ifp->if_snd.ifq_drv_maxlen = BM_MAX_TX_PACKETS;
IFQ_SET_READY(&ifp->if_snd);
/* Attach the interface. */
ether_ifattach(ifp, sc->sc_enaddr);
ifp->if_hwassist = 0;
return (0);
}
static int
bm_detach(device_t dev)
{
struct bm_softc *sc = device_get_softc(dev);
BM_LOCK(sc);
bm_stop(sc);
BM_UNLOCK(sc);
callout_drain(&sc->sc_tick_ch);
ether_ifdetach(sc->sc_ifp);
bus_teardown_intr(dev, sc->sc_txdmairq, sc->sc_txihtx);
bus_teardown_intr(dev, sc->sc_rxdmairq, sc->sc_rxih);
dbdma_free_channel(sc->sc_txdma);
dbdma_free_channel(sc->sc_rxdma);
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_memrid, sc->sc_memr);
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_txdmarid,
sc->sc_txdmar);
bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rxdmarid,
sc->sc_rxdmar);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_txdmairqid,
sc->sc_txdmairq);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_rxdmairqid,
sc->sc_rxdmairq);
mtx_destroy(&sc->sc_mtx);
if_free(sc->sc_ifp);
return (0);
}
static int
bm_shutdown(device_t dev)
{
struct bm_softc *sc;
sc = device_get_softc(dev);
BM_LOCK(sc);
bm_stop(sc);
BM_UNLOCK(sc);
return (0);
}
static void
bm_dummypacket(struct bm_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp;
ifp = sc->sc_ifp;
MGETHDR(m, M_NOWAIT, MT_DATA);
if (m == NULL)
return;
bcopy(sc->sc_enaddr,
mtod(m, struct ether_header *)->ether_dhost, ETHER_ADDR_LEN);
bcopy(sc->sc_enaddr,
mtod(m, struct ether_header *)->ether_shost, ETHER_ADDR_LEN);
mtod(m, struct ether_header *)->ether_type = htons(3);
mtod(m, unsigned char *)[14] = 0;
mtod(m, unsigned char *)[15] = 0;
mtod(m, unsigned char *)[16] = 0xE3;
m->m_len = m->m_pkthdr.len = sizeof(struct ether_header) + 3;
IF_ENQUEUE(&ifp->if_snd, m);
bm_start_locked(ifp);
}
static void
bm_rxintr(void *xsc)
{
struct bm_softc *sc = xsc;
struct ifnet *ifp = sc->sc_ifp;
struct mbuf *m;
int i, prev_stop, new_stop;
uint16_t status;
BM_LOCK(sc);
status = dbdma_get_chan_status(sc->sc_rxdma);
if (status & DBDMA_STATUS_DEAD) {
dbdma_reset(sc->sc_rxdma);
BM_UNLOCK(sc);
return;
}
if (!(status & DBDMA_STATUS_RUN)) {
device_printf(sc->sc_dev,"Bad RX Interrupt!\n");
BM_UNLOCK(sc);
return;
}
prev_stop = sc->next_rxdma_slot - 1;
if (prev_stop < 0)
prev_stop = sc->rxdma_loop_slot - 1;
if (prev_stop < 0) {
BM_UNLOCK(sc);
return;
}
new_stop = -1;
dbdma_sync_commands(sc->sc_rxdma, BUS_DMASYNC_POSTREAD);
for (i = sc->next_rxdma_slot; i < BM_MAX_RX_PACKETS; i++) {
if (i == sc->rxdma_loop_slot)
i = 0;
if (i == prev_stop)
break;
status = dbdma_get_cmd_status(sc->sc_rxdma, i);
if (status == 0)
break;
m = sc->sc_rxsoft[i].rxs_mbuf;
if (bm_add_rxbuf(sc, i)) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
m = NULL;
continue;
}
if (m == NULL)
continue;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
m->m_pkthdr.rcvif = ifp;
m->m_len -= (dbdma_get_residuals(sc->sc_rxdma, i) + 2);
m->m_pkthdr.len = m->m_len;
/* Send up the stack */
BM_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
BM_LOCK(sc);
/* Clear all fields on this command */
bm_add_rxbuf_dma(sc, i);
new_stop = i;
}
/* Change the last packet we processed to the ring buffer terminator,
* and restore a receive buffer to the old terminator */
if (new_stop >= 0) {
dbdma_insert_stop(sc->sc_rxdma, new_stop);
bm_add_rxbuf_dma(sc, prev_stop);
if (i < sc->rxdma_loop_slot)
sc->next_rxdma_slot = i;
else
sc->next_rxdma_slot = 0;
}
dbdma_sync_commands(sc->sc_rxdma, BUS_DMASYNC_PREWRITE);
dbdma_wake(sc->sc_rxdma);
BM_UNLOCK(sc);
}
static void
bm_txintr(void *xsc)
{
struct bm_softc *sc = xsc;
struct ifnet *ifp = sc->sc_ifp;
struct bm_txsoft *txs;
int progress = 0;
BM_LOCK(sc);
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
if (!dbdma_get_cmd_status(sc->sc_txdma, txs->txs_lastdesc))
break;
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
bus_dmamap_unload(sc->sc_tdma_tag, txs->txs_dmamap);
if (txs->txs_mbuf != NULL) {
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
/* Set the first used TXDMA slot to the location of the
* STOP/NOP command associated with this packet. */
sc->first_used_txdma_slot = txs->txs_stopdesc;
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
progress = 1;
}
if (progress) {
/*
* We freed some descriptors, so reset IFF_DRV_OACTIVE
* and restart.
*/
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->sc_wdog_timer = STAILQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bm_start_locked(ifp);
}
BM_UNLOCK(sc);
}
static void
bm_start(struct ifnet *ifp)
{
struct bm_softc *sc = ifp->if_softc;
BM_LOCK(sc);
bm_start_locked(ifp);
BM_UNLOCK(sc);
}
static void
bm_start_locked(struct ifnet *ifp)
{
struct bm_softc *sc = ifp->if_softc;
struct mbuf *mb_head;
int prev_stop;
int txqueued = 0;
/*
* We lay out our DBDMA program in the following manner:
* OUTPUT_MORE
* ...
* OUTPUT_LAST (+ Interrupt)
* STOP
*
* To extend the channel, we append a new program,
* then replace STOP with NOP and wake the channel.
* If we stalled on the STOP already, the program proceeds,
* if not it will sail through the NOP.
*/
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
if (mb_head == NULL)
break;
prev_stop = sc->next_txdma_slot - 1;
if (bm_encap(sc, &mb_head)) {
/* Put the packet back and stop */
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
break;
}
dbdma_insert_nop(sc->sc_txdma, prev_stop);
txqueued = 1;
BPF_MTAP(ifp, mb_head);
}
dbdma_sync_commands(sc->sc_txdma, BUS_DMASYNC_PREWRITE);
if (txqueued) {
dbdma_wake(sc->sc_txdma);
sc->sc_wdog_timer = 5;
}
}
static int
bm_encap(struct bm_softc *sc, struct mbuf **m_head)
{
bus_dma_segment_t segs[BM_NTXSEGS];
struct bm_txsoft *txs;
struct mbuf *m;
int nsegs = BM_NTXSEGS;
int error = 0;
uint8_t branch_type;
int i;
/* Limit the command size to the number of free DBDMA slots */
if (sc->next_txdma_slot >= sc->first_used_txdma_slot)
nsegs = BM_MAX_DMA_COMMANDS - 2 - sc->next_txdma_slot +
sc->first_used_txdma_slot; /* -2 for branch and indexing */
else
nsegs = sc->first_used_txdma_slot - sc->next_txdma_slot;
/* Remove one slot for the STOP/NOP terminator */
nsegs--;
if (nsegs > BM_NTXSEGS)
nsegs = BM_NTXSEGS;
/* Get a work queue entry. */
if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
/* Ran out of descriptors. */
return (ENOBUFS);
}
error = bus_dmamap_load_mbuf_sg(sc->sc_tdma_tag, txs->txs_dmamap,
*m_head, segs, &nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, nsegs);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->sc_tdma_tag,
txs->txs_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
txs->txs_ndescs = nsegs;
txs->txs_firstdesc = sc->next_txdma_slot;
for (i = 0; i < nsegs; i++) {
/* Loop back to the beginning if this is our last slot */
if (sc->next_txdma_slot == (BM_MAX_DMA_COMMANDS - 1))
branch_type = DBDMA_ALWAYS;
else
branch_type = DBDMA_NEVER;
if (i+1 == nsegs)
txs->txs_lastdesc = sc->next_txdma_slot;
dbdma_insert_command(sc->sc_txdma, sc->next_txdma_slot++,
(i + 1 < nsegs) ? DBDMA_OUTPUT_MORE : DBDMA_OUTPUT_LAST,
0, segs[i].ds_addr, segs[i].ds_len,
(i + 1 < nsegs) ? DBDMA_NEVER : DBDMA_ALWAYS,
branch_type, DBDMA_NEVER, 0);
if (branch_type == DBDMA_ALWAYS)
sc->next_txdma_slot = 0;
}
/* We have a corner case where the STOP command is the last slot,
* but you can't branch in STOP commands. So add a NOP branch here
* and the STOP in slot 0. */
if (sc->next_txdma_slot == (BM_MAX_DMA_COMMANDS - 1)) {
dbdma_insert_branch(sc->sc_txdma, sc->next_txdma_slot, 0);
sc->next_txdma_slot = 0;
}
txs->txs_stopdesc = sc->next_txdma_slot;
dbdma_insert_stop(sc->sc_txdma, sc->next_txdma_slot++);
STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
txs->txs_mbuf = *m_head;
return (0);
}
static int
bm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct bm_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int error;
error = 0;
switch(cmd) {
case SIOCSIFFLAGS:
BM_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->sc_ifpflags) &
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
bm_setladrf(sc);
else
bm_init_locked(sc);
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
bm_stop(sc);
sc->sc_ifpflags = ifp->if_flags;
BM_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
BM_LOCK(sc);
bm_setladrf(sc);
BM_UNLOCK(sc);
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
bm_setladrf(struct bm_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ifmultiaddr *inm;
uint16_t hash[4];
uint16_t reg;
uint32_t crc;
reg = BM_CRC_ENABLE | BM_REJECT_OWN_PKTS;
/* Turn off RX MAC while we fiddle its settings */
CSR_WRITE_2(sc, BM_RX_CONFIG, reg);
while (CSR_READ_2(sc, BM_RX_CONFIG) & BM_ENABLE)
DELAY(10);
if ((ifp->if_flags & IFF_PROMISC) != 0) {
reg |= BM_PROMISC;
CSR_WRITE_2(sc, BM_RX_CONFIG, reg);
DELAY(15);
reg = CSR_READ_2(sc, BM_RX_CONFIG);
reg |= BM_ENABLE;
CSR_WRITE_2(sc, BM_RX_CONFIG, reg);
return;
}
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
} else {
/* Clear the hash table. */
memset(hash, 0, sizeof(hash));
if_maddr_rlock(ifp);
ifnet: Replace if_addr_lock rwlock with epoch + mutex Run on LLNW canaries and tested by pho@ gallatin: Using a 14-core, 28-HTT single socket E5-2697 v3 with a 40GbE MLX5 based ConnectX 4-LX NIC, I see an almost 12% improvement in received packet rate, and a larger improvement in bytes delivered all the way to userspace. When the host receiving 64 streams of netperf -H $DUT -t UDP_STREAM -- -m 1, I see, using nstat -I mce0 1 before the patch: InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree 4.98 0.00 4.42 0.00 4235592 33 83.80 4720653 2149771 1235 247.32 4.73 0.00 4.20 0.00 4025260 33 82.99 4724900 2139833 1204 247.32 4.72 0.00 4.20 0.00 4035252 33 82.14 4719162 2132023 1264 247.32 4.71 0.00 4.21 0.00 4073206 33 83.68 4744973 2123317 1347 247.32 4.72 0.00 4.21 0.00 4061118 33 80.82 4713615 2188091 1490 247.32 4.72 0.00 4.21 0.00 4051675 33 85.29 4727399 2109011 1205 247.32 4.73 0.00 4.21 0.00 4039056 33 84.65 4724735 2102603 1053 247.32 After the patch InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree 5.43 0.00 4.20 0.00 3313143 33 84.96 5434214 1900162 2656 245.51 5.43 0.00 4.20 0.00 3308527 33 85.24 5439695 1809382 2521 245.51 5.42 0.00 4.19 0.00 3316778 33 87.54 5416028 1805835 2256 245.51 5.42 0.00 4.19 0.00 3317673 33 90.44 5426044 1763056 2332 245.51 5.42 0.00 4.19 0.00 3314839 33 88.11 5435732 1792218 2499 245.52 5.44 0.00 4.19 0.00 3293228 33 91.84 5426301 1668597 2121 245.52 Similarly, netperf reports 230Mb/s before the patch, and 270Mb/s after the patch Reviewed by: gallatin Sponsored by: Limelight Networks Differential Revision: https://reviews.freebsd.org/D15366
2018-05-18 20:13:34 +00:00
CK_STAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) {
if (inm->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
inm->ifma_addr), ETHER_ADDR_LEN);
/* We just want the 6 most significant bits */
crc >>= 26;
/* Set the corresponding bit in the filter. */
hash[crc >> 4] |= 1 << (crc & 0xf);
}
if_maddr_runlock(ifp);
}
/* Write out new hash table */
CSR_WRITE_2(sc, BM_HASHTAB0, hash[0]);
CSR_WRITE_2(sc, BM_HASHTAB1, hash[1]);
CSR_WRITE_2(sc, BM_HASHTAB2, hash[2]);
CSR_WRITE_2(sc, BM_HASHTAB3, hash[3]);
/* And turn the RX MAC back on, this time with the hash bit set */
reg |= BM_HASH_FILTER_ENABLE;
CSR_WRITE_2(sc, BM_RX_CONFIG, reg);
while (!(CSR_READ_2(sc, BM_RX_CONFIG) & BM_HASH_FILTER_ENABLE))
DELAY(10);
reg = CSR_READ_2(sc, BM_RX_CONFIG);
reg |= BM_ENABLE;
CSR_WRITE_2(sc, BM_RX_CONFIG, reg);
}
static void
bm_init(void *xsc)
{
struct bm_softc *sc = xsc;
BM_LOCK(sc);
bm_init_locked(sc);
BM_UNLOCK(sc);
}
static void
bm_chip_setup(struct bm_softc *sc)
{
uint16_t reg;
uint16_t *eaddr_sect;
eaddr_sect = (uint16_t *)(sc->sc_enaddr);
dbdma_stop(sc->sc_txdma);
dbdma_stop(sc->sc_rxdma);
/* Reset chip */
CSR_WRITE_2(sc, BM_RX_RESET, 0x0000);
CSR_WRITE_2(sc, BM_TX_RESET, 0x0001);
do {
DELAY(10);
reg = CSR_READ_2(sc, BM_TX_RESET);
} while (reg & 0x0001);
/* Some random junk. OS X uses the system time. We use
* the low 16 bits of the MAC address. */
CSR_WRITE_2(sc, BM_TX_RANDSEED, eaddr_sect[2]);
/* Enable transmit */
reg = CSR_READ_2(sc, BM_TX_IFC);
reg |= BM_ENABLE;
CSR_WRITE_2(sc, BM_TX_IFC, reg);
CSR_READ_2(sc, BM_TX_PEAKCNT);
}
static void
bm_stop(struct bm_softc *sc)
{
struct bm_txsoft *txs;
uint16_t reg;
/* Disable TX and RX MACs */
reg = CSR_READ_2(sc, BM_TX_CONFIG);
reg &= ~BM_ENABLE;
CSR_WRITE_2(sc, BM_TX_CONFIG, reg);
reg = CSR_READ_2(sc, BM_RX_CONFIG);
reg &= ~BM_ENABLE;
CSR_WRITE_2(sc, BM_RX_CONFIG, reg);
DELAY(100);
/* Stop DMA engine */
dbdma_stop(sc->sc_rxdma);
dbdma_stop(sc->sc_txdma);
sc->next_rxdma_slot = 0;
sc->rxdma_loop_slot = 0;
/* Disable interrupts */
bm_disable_interrupts(sc);
/* Don't worry about pending transmits anymore */
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
if (txs->txs_ndescs != 0) {
bus_dmamap_sync(sc->sc_tdma_tag, txs->txs_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_tdma_tag, txs->txs_dmamap);
if (txs->txs_mbuf != NULL) {
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/* And we're down */
sc->sc_ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->sc_wdog_timer = 0;
callout_stop(&sc->sc_tick_ch);
}
static void
bm_init_locked(struct bm_softc *sc)
{
uint16_t reg;
uint16_t *eaddr_sect;
struct bm_rxsoft *rxs;
int i;
eaddr_sect = (uint16_t *)(sc->sc_enaddr);
/* Zero RX slot info and stop DMA */
dbdma_stop(sc->sc_rxdma);
dbdma_stop(sc->sc_txdma);
sc->next_rxdma_slot = 0;
sc->rxdma_loop_slot = 0;
/* Initialize TX/RX DBDMA programs */
dbdma_insert_stop(sc->sc_rxdma, 0);
dbdma_insert_stop(sc->sc_txdma, 0);
dbdma_set_current_cmd(sc->sc_rxdma, 0);
dbdma_set_current_cmd(sc->sc_txdma, 0);
sc->next_rxdma_slot = 0;
sc->next_txdma_slot = 1;
sc->first_used_txdma_slot = 0;
for (i = 0; i < BM_MAX_RX_PACKETS; i++) {
rxs = &sc->sc_rxsoft[i];
rxs->dbdma_slot = i;
if (rxs->rxs_mbuf == NULL) {
bm_add_rxbuf(sc, i);
if (rxs->rxs_mbuf == NULL) {
/* If we can't add anymore, mark the problem */
rxs->dbdma_slot = -1;
break;
}
}
if (i > 0)
bm_add_rxbuf_dma(sc, i);
}
/*
* Now terminate the RX ring buffer, and follow with the loop to
* the beginning.
*/
dbdma_insert_stop(sc->sc_rxdma, i - 1);
dbdma_insert_branch(sc->sc_rxdma, i, 0);
sc->rxdma_loop_slot = i;
/* Now add in the first element of the RX DMA chain */
bm_add_rxbuf_dma(sc, 0);
dbdma_sync_commands(sc->sc_rxdma, BUS_DMASYNC_PREWRITE);
dbdma_sync_commands(sc->sc_txdma, BUS_DMASYNC_PREWRITE);
/* Zero collision counters */
CSR_WRITE_2(sc, BM_TX_NCCNT, 0);
CSR_WRITE_2(sc, BM_TX_FCCNT, 0);
CSR_WRITE_2(sc, BM_TX_EXCNT, 0);
CSR_WRITE_2(sc, BM_TX_LTCNT, 0);
/* Zero receive counters */
CSR_WRITE_2(sc, BM_RX_FRCNT, 0);
CSR_WRITE_2(sc, BM_RX_LECNT, 0);
CSR_WRITE_2(sc, BM_RX_AECNT, 0);
CSR_WRITE_2(sc, BM_RX_FECNT, 0);
CSR_WRITE_2(sc, BM_RXCV, 0);
/* Prime transmit */
CSR_WRITE_2(sc, BM_TX_THRESH, 0xff);
CSR_WRITE_2(sc, BM_TXFIFO_CSR, 0);
CSR_WRITE_2(sc, BM_TXFIFO_CSR, 0x0001);
/* Prime receive */
CSR_WRITE_2(sc, BM_RXFIFO_CSR, 0);
CSR_WRITE_2(sc, BM_RXFIFO_CSR, 0x0001);
/* Clear status reg */
CSR_READ_2(sc, BM_STATUS);
/* Zero hash filters */
CSR_WRITE_2(sc, BM_HASHTAB0, 0);
CSR_WRITE_2(sc, BM_HASHTAB1, 0);
CSR_WRITE_2(sc, BM_HASHTAB2, 0);
CSR_WRITE_2(sc, BM_HASHTAB3, 0);
/* Write MAC address to chip */
CSR_WRITE_2(sc, BM_MACADDR0, eaddr_sect[0]);
CSR_WRITE_2(sc, BM_MACADDR1, eaddr_sect[1]);
CSR_WRITE_2(sc, BM_MACADDR2, eaddr_sect[2]);
/* Final receive engine setup */
reg = BM_CRC_ENABLE | BM_REJECT_OWN_PKTS | BM_HASH_FILTER_ENABLE;
CSR_WRITE_2(sc, BM_RX_CONFIG, reg);
/* Now turn it all on! */
dbdma_reset(sc->sc_rxdma);
dbdma_reset(sc->sc_txdma);
/* Enable RX and TX MACs. Setting the address filter has
* the side effect of enabling the RX MAC. */
bm_setladrf(sc);
reg = CSR_READ_2(sc, BM_TX_CONFIG);
reg |= BM_ENABLE;
CSR_WRITE_2(sc, BM_TX_CONFIG, reg);
/*
* Enable interrupts, unwedge the controller with a dummy packet,
* and nudge the DMA queue.
*/
bm_enable_interrupts(sc);
bm_dummypacket(sc);
dbdma_wake(sc->sc_rxdma); /* Nudge RXDMA */
sc->sc_ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->sc_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->sc_ifpflags = sc->sc_ifp->if_flags;
/* Resync PHY and MAC states */
sc->sc_mii = device_get_softc(sc->sc_miibus);
sc->sc_duplex = ~IFM_FDX;
mii_mediachg(sc->sc_mii);
/* Start the one second timer. */
sc->sc_wdog_timer = 0;
callout_reset(&sc->sc_tick_ch, hz, bm_tick, sc);
}
static void
bm_tick(void *arg)
{
struct bm_softc *sc = arg;
/* Read error counters */
if_inc_counter(sc->sc_ifp, IFCOUNTER_COLLISIONS,
CSR_READ_2(sc, BM_TX_NCCNT) + CSR_READ_2(sc, BM_TX_FCCNT) +
CSR_READ_2(sc, BM_TX_EXCNT) + CSR_READ_2(sc, BM_TX_LTCNT));
if_inc_counter(sc->sc_ifp, IFCOUNTER_IERRORS,
CSR_READ_2(sc, BM_RX_LECNT) + CSR_READ_2(sc, BM_RX_AECNT) +
CSR_READ_2(sc, BM_RX_FECNT));
/* Zero collision counters */
CSR_WRITE_2(sc, BM_TX_NCCNT, 0);
CSR_WRITE_2(sc, BM_TX_FCCNT, 0);
CSR_WRITE_2(sc, BM_TX_EXCNT, 0);
CSR_WRITE_2(sc, BM_TX_LTCNT, 0);
/* Zero receive counters */
CSR_WRITE_2(sc, BM_RX_FRCNT, 0);
CSR_WRITE_2(sc, BM_RX_LECNT, 0);
CSR_WRITE_2(sc, BM_RX_AECNT, 0);
CSR_WRITE_2(sc, BM_RX_FECNT, 0);
CSR_WRITE_2(sc, BM_RXCV, 0);
/* Check for link changes and run watchdog */
mii_tick(sc->sc_mii);
bm_miibus_statchg(sc->sc_dev);
if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0) {
callout_reset(&sc->sc_tick_ch, hz, bm_tick, sc);
return;
}
/* Problems */
device_printf(sc->sc_dev, "device timeout\n");
bm_init_locked(sc);
}
static int
bm_add_rxbuf(struct bm_softc *sc, int idx)
{
struct bm_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
bus_dma_segment_t segs[1];
int error, nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_sync(sc->sc_rdma_tag, rxs->rxs_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_rdma_tag, rxs->rxs_dmamap);
}
error = bus_dmamap_load_mbuf_sg(sc->sc_rdma_tag, rxs->rxs_dmamap, m,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev,
"cannot load RS DMA map %d, error = %d\n", idx, error);
m_freem(m);
return (error);
}
/* If nsegs is wrong then the stack is corrupt. */
KASSERT(nsegs == 1,
("%s: too many DMA segments (%d)", __func__, nsegs));
rxs->rxs_mbuf = m;
rxs->segment = segs[0];
bus_dmamap_sync(sc->sc_rdma_tag, rxs->rxs_dmamap, BUS_DMASYNC_PREREAD);
return (0);
}
static int
bm_add_rxbuf_dma(struct bm_softc *sc, int idx)
{
struct bm_rxsoft *rxs = &sc->sc_rxsoft[idx];
dbdma_insert_command(sc->sc_rxdma, idx, DBDMA_INPUT_LAST, 0,
rxs->segment.ds_addr, rxs->segment.ds_len, DBDMA_ALWAYS,
DBDMA_NEVER, DBDMA_NEVER, 0);
return (0);
}
static void
bm_enable_interrupts(struct bm_softc *sc)
{
CSR_WRITE_2(sc, BM_INTR_DISABLE,
(sc->sc_streaming) ? BM_INTR_NONE : BM_INTR_NORMAL);
}
static void
bm_disable_interrupts(struct bm_softc *sc)
{
CSR_WRITE_2(sc, BM_INTR_DISABLE, BM_INTR_NONE);
}