2013-08-20 12:33:35 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
|
|
|
|
* Copyright (c) 2011 Ben Gray <ben.r.gray@gmail.com>.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/bus.h>
|
|
|
|
#include <sys/gpio.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/module.h>
|
|
|
|
#include <sys/resource.h>
|
|
|
|
#include <sys/rman.h>
|
|
|
|
#include <sys/taskqueue.h>
|
|
|
|
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <machine/resource.h>
|
|
|
|
#include <machine/intr.h>
|
|
|
|
|
|
|
|
#include <dev/fdt/fdt_common.h>
|
|
|
|
#include <dev/ofw/ofw_bus.h>
|
|
|
|
#include <dev/ofw/ofw_bus_subr.h>
|
|
|
|
|
|
|
|
#include <dev/mmc/bridge.h>
|
|
|
|
#include <dev/mmc/mmcreg.h>
|
|
|
|
#include <dev/mmc/mmcbrvar.h>
|
|
|
|
|
|
|
|
#include <dev/sdhci/sdhci.h>
|
|
|
|
#include "sdhci_if.h"
|
|
|
|
|
|
|
|
#include <arm/ti/ti_cpuid.h>
|
|
|
|
#include <arm/ti/ti_prcm.h>
|
|
|
|
#include "gpio_if.h"
|
|
|
|
|
|
|
|
struct ti_sdhci_softc {
|
|
|
|
device_t dev;
|
|
|
|
device_t gpio_dev;
|
|
|
|
struct resource * mem_res;
|
|
|
|
struct resource * irq_res;
|
|
|
|
void * intr_cookie;
|
|
|
|
struct sdhci_slot slot;
|
|
|
|
uint32_t mmchs_device_id;
|
|
|
|
uint32_t mmchs_reg_off;
|
|
|
|
uint32_t sdhci_reg_off;
|
|
|
|
uint32_t baseclk_hz;
|
|
|
|
uint32_t wp_gpio_pin;
|
|
|
|
uint32_t cmd_and_mode;
|
|
|
|
uint32_t sdhci_clkdiv;
|
|
|
|
};
|
|
|
|
|
MFC r257518, r257519:
TI sdhci driver improvements, mostly related to fdt data...
Use the published compatible strings (our own invention, "ti,mmchs" is
still accepted as well, for now).
Don't blindly turn on 8-bit bus mode, because even though the controller
supports it, the board has to be wired appropriately as well. Use the
published property (bus-width=<n>) and honor all the valid values (1,4,8).
The eMMC device on a Beaglebone Black is wired for 8-bit, update the dts.
The mmchs controller can inherently do both 1.8v and 3.0v on the first
device and 1.8v only on other devices, unless an external transceiver is
used. Set the voltage automatically for the first device and honor
the published fdt property (ti,dualvolt) for other devices.
2013-12-13 22:46:10 +00:00
|
|
|
/*
|
|
|
|
* Table of supported FDT compat strings.
|
|
|
|
*
|
|
|
|
* Note that "ti,mmchs" is our own invention, and should be phased out in favor
|
|
|
|
* of the documented names.
|
|
|
|
*
|
|
|
|
* Note that vendor Beaglebone dtsi files use "ti,omap3-hsmmc" for the am335x.
|
|
|
|
*/
|
|
|
|
static struct ofw_compat_data compat_data[] = {
|
|
|
|
{"ti,omap3-hsmmc", 1},
|
|
|
|
{"ti,omap4-hsmmc", 1},
|
|
|
|
{"ti,mmchs", 1},
|
|
|
|
{NULL, 0},
|
|
|
|
};
|
|
|
|
|
2013-08-20 12:33:35 +00:00
|
|
|
/*
|
|
|
|
* The MMCHS hardware has a few control and status registers at the beginning of
|
|
|
|
* the device's memory map, followed by the standard sdhci register block.
|
|
|
|
* Different SoCs have the register blocks at different offsets from the
|
|
|
|
* beginning of the device. Define some constants to map out the registers we
|
|
|
|
* access, and the various per-SoC offsets. The SDHCI_REG_OFFSET is how far
|
|
|
|
* beyond the MMCHS block the SDHCI block is found; it's the same on all SoCs.
|
|
|
|
*/
|
|
|
|
#define OMAP3_MMCHS_REG_OFFSET 0x000
|
|
|
|
#define OMAP4_MMCHS_REG_OFFSET 0x100
|
|
|
|
#define AM335X_MMCHS_REG_OFFSET 0x100
|
|
|
|
#define SDHCI_REG_OFFSET 0x100
|
|
|
|
|
|
|
|
#define MMCHS_SYSCONFIG 0x010
|
|
|
|
#define MMCHS_SYSCONFIG_RESET (1 << 1)
|
|
|
|
#define MMCHS_SYSSTATUS 0x014
|
|
|
|
#define MMCHS_CON 0x02C
|
|
|
|
#define MMCHS_CON_DW8 (1 << 5)
|
|
|
|
#define MMCHS_CON_DVAL_8_4MS (3 << 9)
|
2013-12-14 00:58:13 +00:00
|
|
|
#define MMCHS_SD_CAPA 0x140
|
MFC r257518, r257519:
TI sdhci driver improvements, mostly related to fdt data...
Use the published compatible strings (our own invention, "ti,mmchs" is
still accepted as well, for now).
Don't blindly turn on 8-bit bus mode, because even though the controller
supports it, the board has to be wired appropriately as well. Use the
published property (bus-width=<n>) and honor all the valid values (1,4,8).
The eMMC device on a Beaglebone Black is wired for 8-bit, update the dts.
The mmchs controller can inherently do both 1.8v and 3.0v on the first
device and 1.8v only on other devices, unless an external transceiver is
used. Set the voltage automatically for the first device and honor
the published fdt property (ti,dualvolt) for other devices.
2013-12-13 22:46:10 +00:00
|
|
|
#define MMCHS_SD_CAPA_VS18 (1 << 26)
|
|
|
|
#define MMCHS_SD_CAPA_VS30 (1 << 25)
|
|
|
|
#define MMCHS_SD_CAPA_VS33 (1 << 24)
|
2013-08-20 12:33:35 +00:00
|
|
|
|
|
|
|
static inline uint32_t
|
|
|
|
ti_mmchs_read_4(struct ti_sdhci_softc *sc, bus_size_t off)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (bus_read_4(sc->mem_res, off + sc->mmchs_reg_off));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
ti_mmchs_write_4(struct ti_sdhci_softc *sc, bus_size_t off, uint32_t val)
|
|
|
|
{
|
|
|
|
|
|
|
|
bus_write_4(sc->mem_res, off + sc->mmchs_reg_off, val);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32_t
|
|
|
|
RD4(struct ti_sdhci_softc *sc, bus_size_t off)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (bus_read_4(sc->mem_res, off + sc->sdhci_reg_off));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
WR4(struct ti_sdhci_softc *sc, bus_size_t off, uint32_t val)
|
|
|
|
{
|
|
|
|
|
|
|
|
bus_write_4(sc->mem_res, off + sc->sdhci_reg_off, val);
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint8_t
|
|
|
|
ti_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
|
|
|
|
{
|
|
|
|
struct ti_sdhci_softc *sc = device_get_softc(dev);
|
|
|
|
|
|
|
|
return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint16_t
|
|
|
|
ti_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
|
|
|
|
{
|
|
|
|
struct ti_sdhci_softc *sc = device_get_softc(dev);
|
|
|
|
uint32_t clkdiv, val32;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The MMCHS hardware has a non-standard interpretation of the sdclock
|
|
|
|
* divisor bits. It uses the same bit positions as SDHCI 3.0 (15..6)
|
|
|
|
* but doesn't split them into low:high fields. Instead they're a
|
|
|
|
* single number in the range 0..1023 and the number is exactly the
|
|
|
|
* clock divisor (with 0 and 1 both meaning divide by 1). The SDHCI
|
|
|
|
* driver code expects a v2.0 divisor (value N is power of two in the
|
|
|
|
* range 0..128 and clock is divided by 2N). The shifting and masking
|
|
|
|
* here extracts the MMCHS representation from the hardware word, cleans
|
|
|
|
* those bits out, applies the 2N adjustment, and plugs that into the
|
|
|
|
* bit positions for the 2.0 divisor in the returned register value. The
|
|
|
|
* ti_sdhci_write_2() routine performs the opposite transformation when
|
|
|
|
* the SDHCI driver writes to the register.
|
|
|
|
*/
|
|
|
|
if (off == SDHCI_CLOCK_CONTROL) {
|
|
|
|
val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
|
|
|
|
clkdiv = (val32 >> SDHCI_DIVIDER_HI_SHIFT) & 0xff;
|
|
|
|
val32 &= ~(0xff << SDHCI_DIVIDER_HI_SHIFT);
|
|
|
|
val32 |= (clkdiv / 2) << SDHCI_DIVIDER_SHIFT;
|
|
|
|
return (val32 & 0xffff);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Standard 32-bit handling of command and transfer mode.
|
|
|
|
*/
|
|
|
|
if (off == SDHCI_TRANSFER_MODE) {
|
|
|
|
return (sc->cmd_and_mode >> 16);
|
|
|
|
} else if (off == SDHCI_COMMAND_FLAGS) {
|
|
|
|
return (sc->cmd_and_mode & 0x0000ffff);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint32_t
|
|
|
|
ti_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
|
|
|
|
{
|
|
|
|
struct ti_sdhci_softc *sc = device_get_softc(dev);
|
|
|
|
|
|
|
|
return (RD4(sc, off));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ti_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
|
|
|
|
uint32_t *data, bus_size_t count)
|
|
|
|
{
|
|
|
|
struct ti_sdhci_softc *sc = device_get_softc(dev);
|
|
|
|
|
|
|
|
bus_read_multi_4(sc->mem_res, off + sc->sdhci_reg_off, data, count);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ti_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off,
|
|
|
|
uint8_t val)
|
|
|
|
{
|
|
|
|
struct ti_sdhci_softc *sc = device_get_softc(dev);
|
|
|
|
uint32_t val32;
|
|
|
|
|
|
|
|
val32 = RD4(sc, off & ~3);
|
|
|
|
val32 &= ~(0xff << (off & 3) * 8);
|
|
|
|
val32 |= (val << (off & 3) * 8);
|
|
|
|
|
|
|
|
WR4(sc, off & ~3, val32);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ti_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off,
|
|
|
|
uint16_t val)
|
|
|
|
{
|
|
|
|
struct ti_sdhci_softc *sc = device_get_softc(dev);
|
|
|
|
uint32_t clkdiv, val32;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Translate between the hardware and SDHCI 2.0 representations of the
|
|
|
|
* clock divisor. See the comments in ti_sdhci_read_2() for details.
|
|
|
|
*/
|
|
|
|
if (off == SDHCI_CLOCK_CONTROL) {
|
|
|
|
clkdiv = (val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK;
|
|
|
|
val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
|
|
|
|
val32 &= 0xffff0000;
|
|
|
|
val32 |= val & ~(SDHCI_DIVIDER_MASK << SDHCI_DIVIDER_SHIFT);
|
|
|
|
val32 |= (clkdiv * 2) << SDHCI_DIVIDER_HI_SHIFT;
|
|
|
|
WR4(sc, SDHCI_CLOCK_CONTROL, val32);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Standard 32-bit handling of command and transfer mode.
|
|
|
|
*/
|
|
|
|
if (off == SDHCI_TRANSFER_MODE) {
|
|
|
|
sc->cmd_and_mode = (sc->cmd_and_mode & 0xffff0000) |
|
|
|
|
((uint32_t)val & 0x0000ffff);
|
|
|
|
return;
|
|
|
|
} else if (off == SDHCI_COMMAND_FLAGS) {
|
|
|
|
sc->cmd_and_mode = (sc->cmd_and_mode & 0x0000ffff) |
|
|
|
|
((uint32_t)val << 16);
|
|
|
|
WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
val32 = RD4(sc, off & ~3);
|
|
|
|
val32 &= ~(0xffff << (off & 3) * 8);
|
|
|
|
val32 |= ((val & 0xffff) << (off & 3) * 8);
|
|
|
|
WR4(sc, off & ~3, val32);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ti_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
|
|
|
|
uint32_t val)
|
|
|
|
{
|
|
|
|
struct ti_sdhci_softc *sc = device_get_softc(dev);
|
|
|
|
|
|
|
|
WR4(sc, off, val);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ti_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
|
|
|
|
uint32_t *data, bus_size_t count)
|
|
|
|
{
|
|
|
|
struct ti_sdhci_softc *sc = device_get_softc(dev);
|
|
|
|
|
|
|
|
bus_write_multi_4(sc->mem_res, off + sc->sdhci_reg_off, data, count);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ti_sdhci_intr(void *arg)
|
|
|
|
{
|
|
|
|
struct ti_sdhci_softc *sc = arg;
|
|
|
|
|
|
|
|
sdhci_generic_intr(&sc->slot);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ti_sdhci_update_ios(device_t brdev, device_t reqdev)
|
|
|
|
{
|
|
|
|
struct ti_sdhci_softc *sc = device_get_softc(brdev);
|
|
|
|
struct sdhci_slot *slot;
|
|
|
|
struct mmc_ios *ios;
|
|
|
|
uint32_t val32;
|
|
|
|
|
|
|
|
slot = device_get_ivars(reqdev);
|
|
|
|
ios = &slot->host.ios;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* There is an 8-bit-bus bit in the MMCHS control register which, when
|
|
|
|
* set, overrides the 1 vs 4 bit setting in the standard SDHCI
|
|
|
|
* registers. Set that bit first according to whether an 8-bit bus is
|
|
|
|
* requested, then let the standard driver handle everything else.
|
|
|
|
*/
|
|
|
|
val32 = ti_mmchs_read_4(sc, MMCHS_CON);
|
|
|
|
if (ios->bus_width == bus_width_8)
|
|
|
|
ti_mmchs_write_4(sc, MMCHS_CON, val32 | MMCHS_CON_DW8);
|
|
|
|
else
|
|
|
|
ti_mmchs_write_4(sc, MMCHS_CON, val32 & ~MMCHS_CON_DW8);
|
|
|
|
|
|
|
|
return (sdhci_generic_update_ios(brdev, reqdev));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ti_sdhci_get_ro(device_t brdev, device_t reqdev)
|
|
|
|
{
|
|
|
|
struct ti_sdhci_softc *sc = device_get_softc(brdev);
|
|
|
|
unsigned int readonly = 0;
|
|
|
|
|
|
|
|
/* If a gpio pin is configured, read it. */
|
|
|
|
if (sc->gpio_dev != NULL) {
|
|
|
|
GPIO_PIN_GET(sc->gpio_dev, sc->wp_gpio_pin, &readonly);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (readonly);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ti_sdhci_detach(device_t dev)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (EBUSY);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ti_sdhci_hw_init(device_t dev)
|
|
|
|
{
|
|
|
|
struct ti_sdhci_softc *sc = device_get_softc(dev);
|
|
|
|
clk_ident_t clk;
|
MFC r257518, r257519:
TI sdhci driver improvements, mostly related to fdt data...
Use the published compatible strings (our own invention, "ti,mmchs" is
still accepted as well, for now).
Don't blindly turn on 8-bit bus mode, because even though the controller
supports it, the board has to be wired appropriately as well. Use the
published property (bus-width=<n>) and honor all the valid values (1,4,8).
The eMMC device on a Beaglebone Black is wired for 8-bit, update the dts.
The mmchs controller can inherently do both 1.8v and 3.0v on the first
device and 1.8v only on other devices, unless an external transceiver is
used. Set the voltage automatically for the first device and honor
the published fdt property (ti,dualvolt) for other devices.
2013-12-13 22:46:10 +00:00
|
|
|
uint32_t regval;
|
2013-08-20 12:33:35 +00:00
|
|
|
unsigned long timeout;
|
|
|
|
|
|
|
|
/* Enable the controller and interface/functional clocks */
|
|
|
|
clk = MMC0_CLK + sc->mmchs_device_id;
|
|
|
|
if (ti_prcm_clk_enable(clk) != 0) {
|
|
|
|
device_printf(dev, "Error: failed to enable MMC clock\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get the frequency of the source clock */
|
|
|
|
if (ti_prcm_clk_get_source_freq(clk, &sc->baseclk_hz) != 0) {
|
|
|
|
device_printf(dev, "Error: failed to get source clock freq\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Issue a softreset to the controller */
|
|
|
|
ti_mmchs_write_4(sc, MMCHS_SYSCONFIG, MMCHS_SYSCONFIG_RESET);
|
|
|
|
timeout = 1000;
|
|
|
|
while ((ti_mmchs_read_4(sc, MMCHS_SYSSTATUS) & MMCHS_SYSCONFIG_RESET)) {
|
|
|
|
if (--timeout == 0) {
|
|
|
|
device_printf(dev, "Error: Controller reset operation timed out\n");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
DELAY(100);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Reset both the command and data state machines */
|
|
|
|
ti_sdhci_write_1(dev, NULL, SDHCI_SOFTWARE_RESET, SDHCI_RESET_ALL);
|
|
|
|
timeout = 1000;
|
|
|
|
while ((ti_sdhci_read_1(dev, NULL, SDHCI_SOFTWARE_RESET) & SDHCI_RESET_ALL)) {
|
|
|
|
if (--timeout == 0) {
|
|
|
|
device_printf(dev, "Error: Software reset operation timed out\n");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
DELAY(100);
|
|
|
|
}
|
|
|
|
|
MFC r257518, r257519:
TI sdhci driver improvements, mostly related to fdt data...
Use the published compatible strings (our own invention, "ti,mmchs" is
still accepted as well, for now).
Don't blindly turn on 8-bit bus mode, because even though the controller
supports it, the board has to be wired appropriately as well. Use the
published property (bus-width=<n>) and honor all the valid values (1,4,8).
The eMMC device on a Beaglebone Black is wired for 8-bit, update the dts.
The mmchs controller can inherently do both 1.8v and 3.0v on the first
device and 1.8v only on other devices, unless an external transceiver is
used. Set the voltage automatically for the first device and honor
the published fdt property (ti,dualvolt) for other devices.
2013-12-13 22:46:10 +00:00
|
|
|
/*
|
|
|
|
* The attach() routine has examined fdt data and set flags in
|
|
|
|
* slot.host.caps to reflect what voltages we can handle. Set those
|
|
|
|
* values in the CAPA register. The manual says that these values can
|
|
|
|
* only be set once, "before initialization" whatever that means, and
|
|
|
|
* that they survive a reset. So maybe doing this will be a no-op if
|
|
|
|
* u-boot has already initialized the hardware.
|
|
|
|
*/
|
|
|
|
regval = ti_mmchs_read_4(sc, MMCHS_SD_CAPA);
|
|
|
|
if (sc->slot.host.caps & MMC_OCR_LOW_VOLTAGE)
|
|
|
|
regval |= MMCHS_SD_CAPA_VS18;
|
|
|
|
if (sc->slot.host.caps & (MMC_OCR_290_300 | MMC_OCR_300_310))
|
|
|
|
regval |= MMCHS_SD_CAPA_VS30;
|
|
|
|
ti_mmchs_write_4(sc, MMCHS_SD_CAPA, regval);
|
|
|
|
|
2013-08-20 12:33:35 +00:00
|
|
|
/* Set initial host configuration (1-bit, std speed, pwr off). */
|
|
|
|
ti_sdhci_write_1(dev, NULL, SDHCI_HOST_CONTROL, 0);
|
|
|
|
ti_sdhci_write_1(dev, NULL, SDHCI_POWER_CONTROL, 0);
|
|
|
|
|
|
|
|
/* Set the initial controller configuration. */
|
|
|
|
ti_mmchs_write_4(sc, MMCHS_CON, MMCHS_CON_DVAL_8_4MS);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ti_sdhci_attach(device_t dev)
|
|
|
|
{
|
|
|
|
struct ti_sdhci_softc *sc = device_get_softc(dev);
|
|
|
|
int rid, err;
|
|
|
|
pcell_t prop;
|
|
|
|
phandle_t node;
|
|
|
|
|
|
|
|
sc->dev = dev;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the MMCHS device id from FDT. If it's not there use the newbus
|
|
|
|
* unit number (which will work as long as the devices are in order and
|
MFC r257518, r257519:
TI sdhci driver improvements, mostly related to fdt data...
Use the published compatible strings (our own invention, "ti,mmchs" is
still accepted as well, for now).
Don't blindly turn on 8-bit bus mode, because even though the controller
supports it, the board has to be wired appropriately as well. Use the
published property (bus-width=<n>) and honor all the valid values (1,4,8).
The eMMC device on a Beaglebone Black is wired for 8-bit, update the dts.
The mmchs controller can inherently do both 1.8v and 3.0v on the first
device and 1.8v only on other devices, unless an external transceiver is
used. Set the voltage automatically for the first device and honor
the published fdt property (ti,dualvolt) for other devices.
2013-12-13 22:46:10 +00:00
|
|
|
* none are skipped in the fdt). Note that this is a property we made
|
|
|
|
* up and added in freebsd, it doesn't exist in the published bindings.
|
2013-08-20 12:33:35 +00:00
|
|
|
*/
|
|
|
|
node = ofw_bus_get_node(dev);
|
|
|
|
if ((OF_getprop(node, "mmchs-device-id", &prop, sizeof(prop))) <= 0) {
|
|
|
|
sc->mmchs_device_id = device_get_unit(dev);
|
|
|
|
device_printf(dev, "missing mmchs-device-id attribute in FDT, "
|
|
|
|
"using unit number (%d)", sc->mmchs_device_id);
|
|
|
|
} else
|
|
|
|
sc->mmchs_device_id = fdt32_to_cpu(prop);
|
|
|
|
|
MFC r257518, r257519:
TI sdhci driver improvements, mostly related to fdt data...
Use the published compatible strings (our own invention, "ti,mmchs" is
still accepted as well, for now).
Don't blindly turn on 8-bit bus mode, because even though the controller
supports it, the board has to be wired appropriately as well. Use the
published property (bus-width=<n>) and honor all the valid values (1,4,8).
The eMMC device on a Beaglebone Black is wired for 8-bit, update the dts.
The mmchs controller can inherently do both 1.8v and 3.0v on the first
device and 1.8v only on other devices, unless an external transceiver is
used. Set the voltage automatically for the first device and honor
the published fdt property (ti,dualvolt) for other devices.
2013-12-13 22:46:10 +00:00
|
|
|
/*
|
|
|
|
* The hardware can inherently do dual-voltage (1p8v, 3p0v) on the first
|
|
|
|
* device, and only 1p8v on other devices unless an external transceiver
|
|
|
|
* is used. The only way we could know about a transceiver is fdt data.
|
|
|
|
* Note that we have to do this before calling ti_sdhci_hw_init() so
|
|
|
|
* that it can set the right values in the CAPA register, which can only
|
|
|
|
* be done once and never reset.
|
|
|
|
*/
|
2013-12-14 00:58:13 +00:00
|
|
|
sc->slot.host.caps |= MMC_OCR_LOW_VOLTAGE;
|
MFC r257518, r257519:
TI sdhci driver improvements, mostly related to fdt data...
Use the published compatible strings (our own invention, "ti,mmchs" is
still accepted as well, for now).
Don't blindly turn on 8-bit bus mode, because even though the controller
supports it, the board has to be wired appropriately as well. Use the
published property (bus-width=<n>) and honor all the valid values (1,4,8).
The eMMC device on a Beaglebone Black is wired for 8-bit, update the dts.
The mmchs controller can inherently do both 1.8v and 3.0v on the first
device and 1.8v only on other devices, unless an external transceiver is
used. Set the voltage automatically for the first device and honor
the published fdt property (ti,dualvolt) for other devices.
2013-12-13 22:46:10 +00:00
|
|
|
if (sc->mmchs_device_id == 0 || OF_hasprop(node, "ti,dual-volt")) {
|
2013-12-14 00:58:13 +00:00
|
|
|
sc->slot.host.caps |= MMC_OCR_290_300 | MMC_OCR_300_310;
|
MFC r257518, r257519:
TI sdhci driver improvements, mostly related to fdt data...
Use the published compatible strings (our own invention, "ti,mmchs" is
still accepted as well, for now).
Don't blindly turn on 8-bit bus mode, because even though the controller
supports it, the board has to be wired appropriately as well. Use the
published property (bus-width=<n>) and honor all the valid values (1,4,8).
The eMMC device on a Beaglebone Black is wired for 8-bit, update the dts.
The mmchs controller can inherently do both 1.8v and 3.0v on the first
device and 1.8v only on other devices, unless an external transceiver is
used. Set the voltage automatically for the first device and honor
the published fdt property (ti,dualvolt) for other devices.
2013-12-13 22:46:10 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* See if we've got a GPIO-based write detect pin. This is not the
|
|
|
|
* standard documented property for this, we added it in freebsd.
|
|
|
|
*/
|
2013-08-20 12:33:35 +00:00
|
|
|
if ((OF_getprop(node, "mmchs-wp-gpio-pin", &prop, sizeof(prop))) <= 0)
|
|
|
|
sc->wp_gpio_pin = 0xffffffff;
|
|
|
|
else
|
|
|
|
sc->wp_gpio_pin = fdt32_to_cpu(prop);
|
|
|
|
|
|
|
|
if (sc->wp_gpio_pin != 0xffffffff) {
|
|
|
|
sc->gpio_dev = devclass_get_device(devclass_find("gpio"), 0);
|
|
|
|
if (sc->gpio_dev == NULL)
|
|
|
|
device_printf(dev, "Error: No GPIO device, "
|
|
|
|
"Write Protect pin will not function\n");
|
|
|
|
else
|
|
|
|
GPIO_PIN_SETFLAGS(sc->gpio_dev, sc->wp_gpio_pin,
|
|
|
|
GPIO_PIN_INPUT);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the offset from the device's memory start to the MMCHS registers.
|
|
|
|
*/
|
|
|
|
if (ti_chip() == CHIP_OMAP_3)
|
|
|
|
sc->mmchs_reg_off = OMAP3_MMCHS_REG_OFFSET;
|
|
|
|
else if (ti_chip() == CHIP_OMAP_4)
|
|
|
|
sc->mmchs_reg_off = OMAP4_MMCHS_REG_OFFSET;
|
|
|
|
else if (ti_chip() == CHIP_AM335X)
|
|
|
|
sc->mmchs_reg_off = AM335X_MMCHS_REG_OFFSET;
|
|
|
|
else
|
|
|
|
panic("Unknown OMAP device\n");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The standard SDHCI registers are at a fixed offset (the same on all
|
|
|
|
* SoCs) beyond the MMCHS registers.
|
|
|
|
*/
|
|
|
|
sc->sdhci_reg_off = sc->mmchs_reg_off + SDHCI_REG_OFFSET;
|
|
|
|
|
|
|
|
/* Resource setup. */
|
|
|
|
rid = 0;
|
|
|
|
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
|
|
|
|
RF_ACTIVE);
|
|
|
|
if (!sc->mem_res) {
|
|
|
|
device_printf(dev, "cannot allocate memory window\n");
|
|
|
|
err = ENXIO;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
rid = 0;
|
|
|
|
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
|
|
RF_ACTIVE);
|
|
|
|
if (!sc->irq_res) {
|
|
|
|
device_printf(dev, "cannot allocate interrupt\n");
|
|
|
|
err = ENXIO;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
|
|
|
|
NULL, ti_sdhci_intr, sc, &sc->intr_cookie)) {
|
|
|
|
device_printf(dev, "cannot setup interrupt handler\n");
|
|
|
|
err = ENXIO;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Initialise the MMCHS hardware. */
|
|
|
|
ti_sdhci_hw_init(dev);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The capabilities register can only express base clock frequencies in
|
|
|
|
* the range of 0-63MHz for a v2.0 controller. Since our clock runs
|
|
|
|
* faster than that, the hardware sets the frequency to zero in the
|
|
|
|
* register. When the register contains zero, the sdhci driver expects
|
|
|
|
* slot.max_clk to already have the right value in it.
|
|
|
|
*/
|
|
|
|
sc->slot.max_clk = sc->baseclk_hz;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The MMCHS timeout counter is based on the output sdclock. Tell the
|
|
|
|
* sdhci driver to recalculate the timeout clock whenever the output
|
|
|
|
* sdclock frequency changes.
|
|
|
|
*/
|
|
|
|
sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The MMCHS hardware shifts the 136-bit response data (in violation of
|
|
|
|
* the spec), so tell the sdhci driver not to do the same in software.
|
|
|
|
*/
|
|
|
|
sc->slot.quirks |= SDHCI_QUIRK_DONT_SHIFT_RESPONSE;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* DMA is not really broken, I just haven't implemented it yet.
|
|
|
|
*/
|
|
|
|
sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
|
|
|
|
|
MFC r257518, r257519:
TI sdhci driver improvements, mostly related to fdt data...
Use the published compatible strings (our own invention, "ti,mmchs" is
still accepted as well, for now).
Don't blindly turn on 8-bit bus mode, because even though the controller
supports it, the board has to be wired appropriately as well. Use the
published property (bus-width=<n>) and honor all the valid values (1,4,8).
The eMMC device on a Beaglebone Black is wired for 8-bit, update the dts.
The mmchs controller can inherently do both 1.8v and 3.0v on the first
device and 1.8v only on other devices, unless an external transceiver is
used. Set the voltage automatically for the first device and honor
the published fdt property (ti,dualvolt) for other devices.
2013-12-13 22:46:10 +00:00
|
|
|
/*
|
|
|
|
* Set up the hardware and go. Note that this sets many of the
|
|
|
|
* slot.host.* fields, so we have to do this before overriding any of
|
|
|
|
* those values based on fdt data, below.
|
|
|
|
*/
|
2013-08-20 12:33:35 +00:00
|
|
|
sdhci_init_slot(dev, &sc->slot, 0);
|
|
|
|
|
|
|
|
/*
|
MFC r257518, r257519:
TI sdhci driver improvements, mostly related to fdt data...
Use the published compatible strings (our own invention, "ti,mmchs" is
still accepted as well, for now).
Don't blindly turn on 8-bit bus mode, because even though the controller
supports it, the board has to be wired appropriately as well. Use the
published property (bus-width=<n>) and honor all the valid values (1,4,8).
The eMMC device on a Beaglebone Black is wired for 8-bit, update the dts.
The mmchs controller can inherently do both 1.8v and 3.0v on the first
device and 1.8v only on other devices, unless an external transceiver is
used. Set the voltage automatically for the first device and honor
the published fdt property (ti,dualvolt) for other devices.
2013-12-13 22:46:10 +00:00
|
|
|
* The SDHCI controller doesn't realize it, but we can support 8-bit
|
|
|
|
* even though we're not a v3.0 controller. If there's an fdt bus-width
|
|
|
|
* property, honor it.
|
2013-08-20 12:33:35 +00:00
|
|
|
*/
|
MFC r257518, r257519:
TI sdhci driver improvements, mostly related to fdt data...
Use the published compatible strings (our own invention, "ti,mmchs" is
still accepted as well, for now).
Don't blindly turn on 8-bit bus mode, because even though the controller
supports it, the board has to be wired appropriately as well. Use the
published property (bus-width=<n>) and honor all the valid values (1,4,8).
The eMMC device on a Beaglebone Black is wired for 8-bit, update the dts.
The mmchs controller can inherently do both 1.8v and 3.0v on the first
device and 1.8v only on other devices, unless an external transceiver is
used. Set the voltage automatically for the first device and honor
the published fdt property (ti,dualvolt) for other devices.
2013-12-13 22:46:10 +00:00
|
|
|
if (OF_getencprop(node, "bus-width", &prop, sizeof(prop)) > 0) {
|
|
|
|
sc->slot.host.caps &= ~(MMC_CAP_4_BIT_DATA |
|
|
|
|
MMC_CAP_8_BIT_DATA);
|
|
|
|
switch (prop) {
|
|
|
|
case 8:
|
|
|
|
sc->slot.host.caps |= MMC_CAP_8_BIT_DATA;
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
case 4:
|
|
|
|
sc->slot.host.caps |= MMC_CAP_4_BIT_DATA;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
device_printf(dev, "Bad bus-width value %u\n", prop);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2013-08-20 12:33:35 +00:00
|
|
|
|
|
|
|
bus_generic_probe(dev);
|
|
|
|
bus_generic_attach(dev);
|
|
|
|
|
|
|
|
sdhci_start_slot(&sc->slot);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
fail:
|
|
|
|
if (sc->intr_cookie)
|
|
|
|
bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
|
|
|
|
if (sc->irq_res)
|
|
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
|
|
|
|
if (sc->mem_res)
|
|
|
|
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
|
|
|
|
|
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
ti_sdhci_probe(device_t dev)
|
|
|
|
{
|
|
|
|
|
MFC r257518, r257519:
TI sdhci driver improvements, mostly related to fdt data...
Use the published compatible strings (our own invention, "ti,mmchs" is
still accepted as well, for now).
Don't blindly turn on 8-bit bus mode, because even though the controller
supports it, the board has to be wired appropriately as well. Use the
published property (bus-width=<n>) and honor all the valid values (1,4,8).
The eMMC device on a Beaglebone Black is wired for 8-bit, update the dts.
The mmchs controller can inherently do both 1.8v and 3.0v on the first
device and 1.8v only on other devices, unless an external transceiver is
used. Set the voltage automatically for the first device and honor
the published fdt property (ti,dualvolt) for other devices.
2013-12-13 22:46:10 +00:00
|
|
|
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
|
|
|
|
device_set_desc(dev, "TI MMCHS (SDHCI 2.0)");
|
|
|
|
return (BUS_PROBE_DEFAULT);
|
2013-08-20 12:33:35 +00:00
|
|
|
}
|
|
|
|
|
MFC r257518, r257519:
TI sdhci driver improvements, mostly related to fdt data...
Use the published compatible strings (our own invention, "ti,mmchs" is
still accepted as well, for now).
Don't blindly turn on 8-bit bus mode, because even though the controller
supports it, the board has to be wired appropriately as well. Use the
published property (bus-width=<n>) and honor all the valid values (1,4,8).
The eMMC device on a Beaglebone Black is wired for 8-bit, update the dts.
The mmchs controller can inherently do both 1.8v and 3.0v on the first
device and 1.8v only on other devices, unless an external transceiver is
used. Set the voltage automatically for the first device and honor
the published fdt property (ti,dualvolt) for other devices.
2013-12-13 22:46:10 +00:00
|
|
|
return (ENXIO);
|
2013-08-20 12:33:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static device_method_t ti_sdhci_methods[] = {
|
|
|
|
/* Device interface */
|
|
|
|
DEVMETHOD(device_probe, ti_sdhci_probe),
|
|
|
|
DEVMETHOD(device_attach, ti_sdhci_attach),
|
|
|
|
DEVMETHOD(device_detach, ti_sdhci_detach),
|
|
|
|
|
|
|
|
/* Bus interface */
|
|
|
|
DEVMETHOD(bus_read_ivar, sdhci_generic_read_ivar),
|
|
|
|
DEVMETHOD(bus_write_ivar, sdhci_generic_write_ivar),
|
|
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
|
|
|
|
|
|
/* MMC bridge interface */
|
|
|
|
DEVMETHOD(mmcbr_update_ios, ti_sdhci_update_ios),
|
|
|
|
DEVMETHOD(mmcbr_request, sdhci_generic_request),
|
|
|
|
DEVMETHOD(mmcbr_get_ro, ti_sdhci_get_ro),
|
|
|
|
DEVMETHOD(mmcbr_acquire_host, sdhci_generic_acquire_host),
|
|
|
|
DEVMETHOD(mmcbr_release_host, sdhci_generic_release_host),
|
|
|
|
|
|
|
|
/* SDHCI registers accessors */
|
|
|
|
DEVMETHOD(sdhci_read_1, ti_sdhci_read_1),
|
|
|
|
DEVMETHOD(sdhci_read_2, ti_sdhci_read_2),
|
|
|
|
DEVMETHOD(sdhci_read_4, ti_sdhci_read_4),
|
|
|
|
DEVMETHOD(sdhci_read_multi_4, ti_sdhci_read_multi_4),
|
|
|
|
DEVMETHOD(sdhci_write_1, ti_sdhci_write_1),
|
|
|
|
DEVMETHOD(sdhci_write_2, ti_sdhci_write_2),
|
|
|
|
DEVMETHOD(sdhci_write_4, ti_sdhci_write_4),
|
|
|
|
DEVMETHOD(sdhci_write_multi_4, ti_sdhci_write_multi_4),
|
|
|
|
|
|
|
|
DEVMETHOD_END
|
|
|
|
};
|
|
|
|
|
|
|
|
static devclass_t ti_sdhci_devclass;
|
|
|
|
|
|
|
|
static driver_t ti_sdhci_driver = {
|
|
|
|
"sdhci_ti",
|
|
|
|
ti_sdhci_methods,
|
|
|
|
sizeof(struct ti_sdhci_softc),
|
|
|
|
};
|
|
|
|
|
|
|
|
DRIVER_MODULE(sdhci_ti, simplebus, ti_sdhci_driver, ti_sdhci_devclass, 0, 0);
|
|
|
|
MODULE_DEPEND(sdhci_ti, sdhci, 1, 1, 1);
|