2007-12-29 19:53:04 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 2002-2006 Rice University
|
2008-04-06 18:09:28 +00:00
|
|
|
* Copyright (c) 2007-2008 Alan L. Cox <alc@cs.rice.edu>
|
2007-12-29 19:53:04 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This software was developed for the FreeBSD Project by Alan L. Cox,
|
|
|
|
* Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
|
|
|
|
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Superpage reservation management module
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
|
|
|
#include "opt_vm.h"
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/lock.h>
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/mutex.h>
|
|
|
|
#include <sys/queue.h>
|
|
|
|
#include <sys/sbuf.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
|
|
|
|
#include <vm/vm.h>
|
|
|
|
#include <vm/vm_param.h>
|
|
|
|
#include <vm/vm_object.h>
|
|
|
|
#include <vm/vm_page.h>
|
|
|
|
#include <vm/vm_phys.h>
|
|
|
|
#include <vm/vm_reserv.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The reservation system supports the speculative allocation of large physical
|
|
|
|
* pages ("superpages"). Speculative allocation enables the fully-automatic
|
|
|
|
* utilization of superpages by the virtual memory system. In other words, no
|
|
|
|
* programmatic directives are required to use superpages.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if VM_NRESERVLEVEL > 0
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The number of small pages that are contained in a level 0 reservation
|
|
|
|
*/
|
|
|
|
#define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The number of bits by which a physical address is shifted to obtain the
|
|
|
|
* reservation number
|
|
|
|
*/
|
|
|
|
#define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The size of a level 0 reservation in bytes
|
|
|
|
*/
|
|
|
|
#define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Computes the index of the small page underlying the given (object, pindex)
|
|
|
|
* within the reservation's array of small pages.
|
|
|
|
*/
|
|
|
|
#define VM_RESERV_INDEX(object, pindex) \
|
|
|
|
(((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The reservation structure
|
|
|
|
*
|
|
|
|
* A reservation structure is constructed whenever a large physical page is
|
|
|
|
* speculatively allocated to an object. The reservation provides the small
|
|
|
|
* physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
|
|
|
|
* within that object. The reservation's "popcnt" tracks the number of these
|
|
|
|
* small physical pages that are in use at any given time. When and if the
|
|
|
|
* reservation is not fully utilized, it appears in the queue of partially-
|
|
|
|
* populated reservations. The reservation always appears on the containing
|
|
|
|
* object's list of reservations.
|
|
|
|
*
|
|
|
|
* A partially-populated reservation can be broken and reclaimed at any time.
|
|
|
|
*/
|
|
|
|
struct vm_reserv {
|
|
|
|
TAILQ_ENTRY(vm_reserv) partpopq;
|
|
|
|
LIST_ENTRY(vm_reserv) objq;
|
|
|
|
vm_object_t object; /* containing object */
|
|
|
|
vm_pindex_t pindex; /* offset within object */
|
|
|
|
vm_page_t pages; /* first page of a superpage */
|
|
|
|
int popcnt; /* # of pages in use */
|
|
|
|
char inpartpopq;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The reservation array
|
|
|
|
*
|
|
|
|
* This array is analoguous in function to vm_page_array. It differs in the
|
|
|
|
* respect that it may contain a greater number of useful reservation
|
|
|
|
* structures than there are (physical) superpages. These "invalid"
|
|
|
|
* reservation structures exist to trade-off space for time in the
|
|
|
|
* implementation of vm_reserv_from_page(). Invalid reservation structures are
|
|
|
|
* distinguishable from "valid" reservation structures by inspecting the
|
|
|
|
* reservation's "pages" field. Invalid reservation structures have a NULL
|
|
|
|
* "pages" field.
|
|
|
|
*
|
|
|
|
* vm_reserv_from_page() maps a small (physical) page to an element of this
|
|
|
|
* array by computing a physical reservation number from the page's physical
|
|
|
|
* address. The physical reservation number is used as the array index.
|
|
|
|
*
|
|
|
|
* An "active" reservation is a valid reservation structure that has a non-NULL
|
|
|
|
* "object" field and a non-zero "popcnt" field. In other words, every active
|
|
|
|
* reservation belongs to a particular object. Moreover, every active
|
|
|
|
* reservation has an entry in the containing object's list of reservations.
|
|
|
|
*/
|
|
|
|
static vm_reserv_t vm_reserv_array;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The partially-populated reservation queue
|
|
|
|
*
|
|
|
|
* This queue enables the fast recovery of an unused cached or free small page
|
Previously, when vm_page_free_toq() was performed on a page belonging to
a reservation, unless all of the reservation's pages were free, the
reservation was moved to the head of the partially-populated reservations
queue, where it would be the next reservation to be broken in case the
free page queues were emptied. Now, instead, I am moving it to the tail.
Very likely this reservation is in the process of being freed in its
entirety, so placing it at the tail of the queue makes it more likely that
the underlying physical memory will be returned to the free page queues as
one contiguous chunk. If a reservation must be broken, it will, instead,
be the longest unchanged reservation, which is arguably the reservation
that is least likely to ever achieve promotion or be freed in its entirety.
MFC after: 6 weeks
2009-04-11 09:09:00 +00:00
|
|
|
* from a partially-populated reservation. The reservation at the head of
|
|
|
|
* this queue is the least-recently-changed, partially-populated reservation.
|
2007-12-29 19:53:04 +00:00
|
|
|
*
|
|
|
|
* Access to this queue is synchronized by the free page queue lock.
|
|
|
|
*/
|
|
|
|
static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
|
|
|
|
TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
|
|
|
|
|
|
|
|
static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
|
|
|
|
|
|
|
|
static long vm_reserv_broken;
|
|
|
|
SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
|
|
|
|
&vm_reserv_broken, 0, "Cumulative number of broken reservations");
|
|
|
|
|
|
|
|
static long vm_reserv_freed;
|
|
|
|
SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
|
|
|
|
&vm_reserv_freed, 0, "Cumulative number of freed reservations");
|
|
|
|
|
|
|
|
static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
|
|
|
|
|
|
|
|
SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
|
|
|
|
sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues");
|
|
|
|
|
|
|
|
static long vm_reserv_reclaimed;
|
|
|
|
SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
|
|
|
|
&vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
|
|
|
|
|
|
|
|
static void vm_reserv_depopulate(vm_reserv_t rv);
|
|
|
|
static vm_reserv_t vm_reserv_from_page(vm_page_t m);
|
|
|
|
static boolean_t vm_reserv_has_pindex(vm_reserv_t rv,
|
|
|
|
vm_pindex_t pindex);
|
|
|
|
static void vm_reserv_populate(vm_reserv_t rv);
|
2008-04-06 18:09:28 +00:00
|
|
|
static void vm_reserv_reclaim(vm_reserv_t rv);
|
2007-12-29 19:53:04 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Describes the current state of the partially-populated reservation queue.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
|
|
|
|
{
|
|
|
|
struct sbuf sbuf;
|
|
|
|
vm_reserv_t rv;
|
|
|
|
int counter, error, level, unused_pages;
|
|
|
|
|
2011-01-27 00:34:12 +00:00
|
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
2010-09-16 16:13:12 +00:00
|
|
|
sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
|
2007-12-29 19:53:04 +00:00
|
|
|
sbuf_printf(&sbuf, "\nLEVEL SIZE NUMBER\n\n");
|
|
|
|
for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
|
|
|
|
counter = 0;
|
|
|
|
unused_pages = 0;
|
|
|
|
mtx_lock(&vm_page_queue_free_mtx);
|
|
|
|
TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
|
|
|
|
counter++;
|
|
|
|
unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
|
|
|
|
}
|
|
|
|
mtx_unlock(&vm_page_queue_free_mtx);
|
2010-10-30 18:00:53 +00:00
|
|
|
sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
|
2010-11-10 17:57:34 +00:00
|
|
|
unused_pages * ((int)PAGE_SIZE / 1024), counter);
|
2007-12-29 19:53:04 +00:00
|
|
|
}
|
2010-09-16 16:13:12 +00:00
|
|
|
error = sbuf_finish(&sbuf);
|
2007-12-29 19:53:04 +00:00
|
|
|
sbuf_delete(&sbuf);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reduces the given reservation's population count. If the population count
|
|
|
|
* becomes zero, the reservation is destroyed. Additionally, moves the
|
Previously, when vm_page_free_toq() was performed on a page belonging to
a reservation, unless all of the reservation's pages were free, the
reservation was moved to the head of the partially-populated reservations
queue, where it would be the next reservation to be broken in case the
free page queues were emptied. Now, instead, I am moving it to the tail.
Very likely this reservation is in the process of being freed in its
entirety, so placing it at the tail of the queue makes it more likely that
the underlying physical memory will be returned to the free page queues as
one contiguous chunk. If a reservation must be broken, it will, instead,
be the longest unchanged reservation, which is arguably the reservation
that is least likely to ever achieve promotion or be freed in its entirety.
MFC after: 6 weeks
2009-04-11 09:09:00 +00:00
|
|
|
* reservation to the tail of the partially-populated reservations queue if the
|
2007-12-29 19:53:04 +00:00
|
|
|
* population count is non-zero.
|
|
|
|
*
|
|
|
|
* The free page queue lock must be held.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
vm_reserv_depopulate(vm_reserv_t rv)
|
|
|
|
{
|
|
|
|
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
|
|
KASSERT(rv->object != NULL,
|
|
|
|
("vm_reserv_depopulate: reserv %p is free", rv));
|
|
|
|
KASSERT(rv->popcnt > 0,
|
|
|
|
("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
|
|
|
|
if (rv->inpartpopq) {
|
|
|
|
TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
|
|
|
|
rv->inpartpopq = FALSE;
|
|
|
|
}
|
|
|
|
rv->popcnt--;
|
|
|
|
if (rv->popcnt == 0) {
|
|
|
|
LIST_REMOVE(rv, objq);
|
|
|
|
rv->object = NULL;
|
|
|
|
vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
|
|
|
|
vm_reserv_freed++;
|
|
|
|
} else {
|
|
|
|
rv->inpartpopq = TRUE;
|
Previously, when vm_page_free_toq() was performed on a page belonging to
a reservation, unless all of the reservation's pages were free, the
reservation was moved to the head of the partially-populated reservations
queue, where it would be the next reservation to be broken in case the
free page queues were emptied. Now, instead, I am moving it to the tail.
Very likely this reservation is in the process of being freed in its
entirety, so placing it at the tail of the queue makes it more likely that
the underlying physical memory will be returned to the free page queues as
one contiguous chunk. If a reservation must be broken, it will, instead,
be the longest unchanged reservation, which is arguably the reservation
that is least likely to ever achieve promotion or be freed in its entirety.
MFC after: 6 weeks
2009-04-11 09:09:00 +00:00
|
|
|
TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
|
2007-12-29 19:53:04 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Returns the reservation to which the given page might belong.
|
|
|
|
*/
|
|
|
|
static __inline vm_reserv_t
|
|
|
|
vm_reserv_from_page(vm_page_t m)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Returns TRUE if the given reservation contains the given page index and
|
|
|
|
* FALSE otherwise.
|
|
|
|
*/
|
|
|
|
static __inline boolean_t
|
|
|
|
vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Increases the given reservation's population count. Moves the reservation
|
|
|
|
* to the tail of the partially-populated reservation queue.
|
|
|
|
*
|
|
|
|
* The free page queue must be locked.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
vm_reserv_populate(vm_reserv_t rv)
|
|
|
|
{
|
|
|
|
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
|
|
KASSERT(rv->object != NULL,
|
|
|
|
("vm_reserv_populate: reserv %p is free", rv));
|
|
|
|
KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
|
|
|
|
("vm_reserv_populate: reserv %p is already full", rv));
|
|
|
|
if (rv->inpartpopq) {
|
|
|
|
TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
|
|
|
|
rv->inpartpopq = FALSE;
|
|
|
|
}
|
|
|
|
rv->popcnt++;
|
|
|
|
if (rv->popcnt < VM_LEVEL_0_NPAGES) {
|
|
|
|
rv->inpartpopq = TRUE;
|
|
|
|
TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocates a page from an existing or newly-created reservation.
|
|
|
|
*
|
|
|
|
* The object and free page queue must be locked.
|
|
|
|
*/
|
|
|
|
vm_page_t
|
|
|
|
vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex)
|
|
|
|
{
|
|
|
|
vm_page_t m, mpred, msucc;
|
|
|
|
vm_pindex_t first, leftcap, rightcap;
|
|
|
|
vm_reserv_t rv;
|
|
|
|
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Is a reservation fundamentally not possible?
|
|
|
|
*/
|
|
|
|
VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
|
|
|
|
if (pindex < VM_RESERV_INDEX(object, pindex) ||
|
|
|
|
pindex >= object->size)
|
|
|
|
return (NULL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Look for an existing reservation.
|
|
|
|
*/
|
|
|
|
msucc = NULL;
|
|
|
|
mpred = object->root;
|
|
|
|
while (mpred != NULL) {
|
|
|
|
KASSERT(mpred->pindex != pindex,
|
|
|
|
("vm_reserv_alloc_page: pindex already allocated"));
|
|
|
|
rv = vm_reserv_from_page(mpred);
|
|
|
|
if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) {
|
|
|
|
m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
|
|
|
|
/* Handle vm_page_rename(m, new_object, ...). */
|
|
|
|
if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
|
|
|
|
return (NULL);
|
|
|
|
vm_reserv_populate(rv);
|
|
|
|
return (m);
|
|
|
|
} else if (mpred->pindex < pindex) {
|
|
|
|
if (msucc != NULL ||
|
|
|
|
(msucc = TAILQ_NEXT(mpred, listq)) == NULL)
|
|
|
|
break;
|
|
|
|
KASSERT(msucc->pindex != pindex,
|
|
|
|
("vm_reserv_alloc_page: pindex already allocated"));
|
|
|
|
rv = vm_reserv_from_page(msucc);
|
|
|
|
if (rv->object == object &&
|
|
|
|
vm_reserv_has_pindex(rv, pindex)) {
|
|
|
|
m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
|
|
|
|
/* Handle vm_page_rename(m, new_object, ...). */
|
|
|
|
if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
|
|
|
|
return (NULL);
|
|
|
|
vm_reserv_populate(rv);
|
|
|
|
return (m);
|
|
|
|
} else if (pindex < msucc->pindex)
|
|
|
|
break;
|
|
|
|
} else if (msucc == NULL) {
|
|
|
|
msucc = mpred;
|
|
|
|
mpred = TAILQ_PREV(msucc, pglist, listq);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
msucc = NULL;
|
|
|
|
mpred = object->root = vm_page_splay(pindex, object->root);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine the first index to the left that can be used.
|
|
|
|
*/
|
|
|
|
if (mpred == NULL)
|
|
|
|
leftcap = 0;
|
|
|
|
else if ((rv = vm_reserv_from_page(mpred))->object != object)
|
|
|
|
leftcap = mpred->pindex + 1;
|
|
|
|
else
|
|
|
|
leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine the first index to the right that cannot be used.
|
|
|
|
*/
|
|
|
|
if (msucc == NULL)
|
|
|
|
rightcap = pindex + VM_LEVEL_0_NPAGES;
|
|
|
|
else if ((rv = vm_reserv_from_page(msucc))->object != object)
|
|
|
|
rightcap = msucc->pindex;
|
|
|
|
else
|
|
|
|
rightcap = rv->pindex;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine if a reservation fits between the first index to
|
|
|
|
* the left that can be used and the first index to the right
|
|
|
|
* that cannot be used.
|
|
|
|
*/
|
|
|
|
first = pindex - VM_RESERV_INDEX(object, pindex);
|
|
|
|
if (first < leftcap || first + VM_LEVEL_0_NPAGES > rightcap)
|
|
|
|
return (NULL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Would a new reservation extend past the end of the given object?
|
|
|
|
*/
|
|
|
|
if (object->size < first + VM_LEVEL_0_NPAGES) {
|
|
|
|
/*
|
|
|
|
* Don't allocate a new reservation if the object is a vnode or
|
|
|
|
* backed by another object that is a vnode.
|
|
|
|
*/
|
|
|
|
if (object->type == OBJT_VNODE ||
|
|
|
|
(object->backing_object != NULL &&
|
|
|
|
object->backing_object->type == OBJT_VNODE))
|
|
|
|
return (NULL);
|
|
|
|
/* Speculate that the object may grow. */
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate a new reservation.
|
|
|
|
*/
|
|
|
|
m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
|
|
|
|
if (m != NULL) {
|
|
|
|
rv = vm_reserv_from_page(m);
|
|
|
|
KASSERT(rv->pages == m,
|
|
|
|
("vm_reserv_alloc_page: reserv %p's pages is corrupted",
|
|
|
|
rv));
|
|
|
|
KASSERT(rv->object == NULL,
|
|
|
|
("vm_reserv_alloc_page: reserv %p isn't free", rv));
|
|
|
|
LIST_INSERT_HEAD(&object->rvq, rv, objq);
|
|
|
|
rv->object = object;
|
|
|
|
rv->pindex = first;
|
|
|
|
KASSERT(rv->popcnt == 0,
|
|
|
|
("vm_reserv_alloc_page: reserv %p's popcnt is corrupted",
|
|
|
|
rv));
|
|
|
|
KASSERT(!rv->inpartpopq,
|
|
|
|
("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE",
|
|
|
|
rv));
|
|
|
|
vm_reserv_populate(rv);
|
|
|
|
m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
|
|
|
|
}
|
|
|
|
return (m);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Breaks all reservations belonging to the given object.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vm_reserv_break_all(vm_object_t object)
|
|
|
|
{
|
|
|
|
vm_reserv_t rv;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
mtx_lock(&vm_page_queue_free_mtx);
|
|
|
|
while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
|
|
|
|
KASSERT(rv->object == object,
|
|
|
|
("vm_reserv_break_all: reserv %p is corrupted", rv));
|
|
|
|
if (rv->inpartpopq) {
|
|
|
|
TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
|
|
|
|
rv->inpartpopq = FALSE;
|
|
|
|
}
|
|
|
|
LIST_REMOVE(rv, objq);
|
|
|
|
rv->object = NULL;
|
|
|
|
for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
|
|
|
|
if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
|
|
|
|
vm_phys_free_pages(&rv->pages[i], 0);
|
|
|
|
else
|
|
|
|
rv->popcnt--;
|
|
|
|
}
|
|
|
|
KASSERT(rv->popcnt == 0,
|
|
|
|
("vm_reserv_break_all: reserv %p's popcnt is corrupted",
|
|
|
|
rv));
|
|
|
|
vm_reserv_broken++;
|
|
|
|
}
|
|
|
|
mtx_unlock(&vm_page_queue_free_mtx);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Frees the given page if it belongs to a reservation. Returns TRUE if the
|
|
|
|
* page is freed and FALSE otherwise.
|
|
|
|
*
|
|
|
|
* The free page queue lock must be held.
|
|
|
|
*/
|
|
|
|
boolean_t
|
|
|
|
vm_reserv_free_page(vm_page_t m)
|
|
|
|
{
|
|
|
|
vm_reserv_t rv;
|
|
|
|
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
|
|
rv = vm_reserv_from_page(m);
|
|
|
|
if (rv->object != NULL) {
|
|
|
|
vm_reserv_depopulate(rv);
|
|
|
|
return (TRUE);
|
|
|
|
}
|
|
|
|
return (FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initializes the reservation management system. Specifically, initializes
|
|
|
|
* the reservation array.
|
|
|
|
*
|
|
|
|
* Requires that vm_page_array and first_page are initialized!
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vm_reserv_init(void)
|
|
|
|
{
|
|
|
|
vm_paddr_t paddr;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize the reservation array. Specifically, initialize the
|
|
|
|
* "pages" field for every element that has an underlying superpage.
|
|
|
|
*/
|
|
|
|
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
|
|
|
|
paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE);
|
|
|
|
while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) {
|
|
|
|
vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
|
|
|
|
PHYS_TO_VM_PAGE(paddr);
|
|
|
|
paddr += VM_LEVEL_0_SIZE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Returns a reservation level if the given page belongs to a fully-populated
|
|
|
|
* reservation and -1 otherwise.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
vm_reserv_level_iffullpop(vm_page_t m)
|
|
|
|
{
|
|
|
|
vm_reserv_t rv;
|
|
|
|
|
|
|
|
rv = vm_reserv_from_page(m);
|
|
|
|
return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Prepare for the reactivation of a cached page.
|
|
|
|
*
|
|
|
|
* First, suppose that the given page "m" was allocated individually, i.e., not
|
|
|
|
* as part of a reservation, and cached. Then, suppose a reservation
|
|
|
|
* containing "m" is allocated by the same object. Although "m" and the
|
|
|
|
* reservation belong to the same object, "m"'s pindex may not match the
|
|
|
|
* reservation's.
|
|
|
|
*
|
|
|
|
* The free page queue must be locked.
|
|
|
|
*/
|
|
|
|
boolean_t
|
|
|
|
vm_reserv_reactivate_page(vm_page_t m)
|
|
|
|
{
|
|
|
|
vm_reserv_t rv;
|
|
|
|
int i, m_index;
|
|
|
|
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
|
|
rv = vm_reserv_from_page(m);
|
|
|
|
if (rv->object == NULL)
|
|
|
|
return (FALSE);
|
|
|
|
KASSERT((m->flags & PG_CACHED) != 0,
|
|
|
|
("vm_reserv_uncache_page: page %p is not cached", m));
|
|
|
|
if (m->object == rv->object &&
|
|
|
|
m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex))
|
|
|
|
vm_reserv_populate(rv);
|
|
|
|
else {
|
|
|
|
KASSERT(rv->inpartpopq,
|
|
|
|
("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE",
|
|
|
|
rv));
|
|
|
|
TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
|
|
|
|
rv->inpartpopq = FALSE;
|
|
|
|
LIST_REMOVE(rv, objq);
|
|
|
|
rv->object = NULL;
|
|
|
|
/* Don't vm_phys_free_pages(m, 0). */
|
|
|
|
m_index = m - rv->pages;
|
|
|
|
for (i = 0; i < m_index; i++) {
|
|
|
|
if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
|
|
|
|
vm_phys_free_pages(&rv->pages[i], 0);
|
|
|
|
else
|
|
|
|
rv->popcnt--;
|
|
|
|
}
|
|
|
|
for (i++; i < VM_LEVEL_0_NPAGES; i++) {
|
|
|
|
if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
|
|
|
|
vm_phys_free_pages(&rv->pages[i], 0);
|
|
|
|
else
|
|
|
|
rv->popcnt--;
|
|
|
|
}
|
|
|
|
KASSERT(rv->popcnt == 0,
|
|
|
|
("vm_reserv_uncache_page: reserv %p's popcnt is corrupted",
|
|
|
|
rv));
|
|
|
|
vm_reserv_broken++;
|
|
|
|
}
|
|
|
|
return (TRUE);
|
|
|
|
}
|
|
|
|
|
2008-04-06 18:09:28 +00:00
|
|
|
/*
|
|
|
|
* Breaks the given partially-populated reservation, releasing its cached and
|
|
|
|
* free pages to the physical memory allocator.
|
|
|
|
*
|
|
|
|
* The free page queue lock must be held.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
vm_reserv_reclaim(vm_reserv_t rv)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
|
|
KASSERT(rv->inpartpopq,
|
|
|
|
("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted", rv));
|
|
|
|
TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
|
|
|
|
rv->inpartpopq = FALSE;
|
|
|
|
KASSERT(rv->object != NULL,
|
|
|
|
("vm_reserv_reclaim: reserv %p is free", rv));
|
|
|
|
LIST_REMOVE(rv, objq);
|
|
|
|
rv->object = NULL;
|
|
|
|
for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
|
|
|
|
if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
|
|
|
|
vm_phys_free_pages(&rv->pages[i], 0);
|
|
|
|
else
|
|
|
|
rv->popcnt--;
|
|
|
|
}
|
|
|
|
KASSERT(rv->popcnt == 0,
|
|
|
|
("vm_reserv_reclaim: reserv %p's popcnt is corrupted", rv));
|
|
|
|
vm_reserv_reclaimed++;
|
|
|
|
}
|
|
|
|
|
2007-12-29 19:53:04 +00:00
|
|
|
/*
|
|
|
|
* Breaks the reservation at the head of the partially-populated reservation
|
|
|
|
* queue, releasing its cached and free pages to the physical memory
|
|
|
|
* allocator. Returns TRUE if a reservation is broken and FALSE otherwise.
|
|
|
|
*
|
|
|
|
* The free page queue lock must be held.
|
|
|
|
*/
|
|
|
|
boolean_t
|
2008-04-06 18:09:28 +00:00
|
|
|
vm_reserv_reclaim_inactive(void)
|
2007-12-29 19:53:04 +00:00
|
|
|
{
|
|
|
|
vm_reserv_t rv;
|
|
|
|
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
|
|
if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
|
2008-04-06 18:09:28 +00:00
|
|
|
vm_reserv_reclaim(rv);
|
2007-12-29 19:53:04 +00:00
|
|
|
return (TRUE);
|
|
|
|
}
|
|
|
|
return (FALSE);
|
|
|
|
}
|
|
|
|
|
2008-04-06 18:09:28 +00:00
|
|
|
/*
|
|
|
|
* Searches the partially-populated reservation queue for the least recently
|
|
|
|
* active reservation with unused pages, i.e., cached or free, that satisfy the
|
|
|
|
* given request for contiguous physical memory. If a satisfactory reservation
|
|
|
|
* is found, it is broken. Returns TRUE if a reservation is broken and FALSE
|
|
|
|
* otherwise.
|
|
|
|
*
|
|
|
|
* The free page queue lock must be held.
|
|
|
|
*/
|
|
|
|
boolean_t
|
|
|
|
vm_reserv_reclaim_contig(vm_paddr_t size, vm_paddr_t low, vm_paddr_t high,
|
2011-10-30 05:06:14 +00:00
|
|
|
u_long alignment, vm_paddr_t boundary)
|
2008-04-06 18:09:28 +00:00
|
|
|
{
|
|
|
|
vm_paddr_t pa, pa_length;
|
|
|
|
vm_reserv_t rv;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
|
|
if (size > VM_LEVEL_0_SIZE - PAGE_SIZE)
|
|
|
|
return (FALSE);
|
|
|
|
TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
|
|
|
|
pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
|
|
|
|
if (pa + PAGE_SIZE - size < low) {
|
|
|
|
/* this entire reservation is too low; go to next */
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
pa_length = 0;
|
|
|
|
for (i = 0; i < VM_LEVEL_0_NPAGES; i++)
|
|
|
|
if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) {
|
|
|
|
pa_length += PAGE_SIZE;
|
|
|
|
if (pa_length == PAGE_SIZE) {
|
|
|
|
pa = VM_PAGE_TO_PHYS(&rv->pages[i]);
|
|
|
|
if (pa + size > high) {
|
|
|
|
/* skip to next reservation */
|
|
|
|
break;
|
|
|
|
} else if (pa < low ||
|
|
|
|
(pa & (alignment - 1)) != 0 ||
|
|
|
|
((pa ^ (pa + size - 1)) &
|
|
|
|
~(boundary - 1)) != 0)
|
|
|
|
pa_length = 0;
|
2010-11-19 04:30:33 +00:00
|
|
|
}
|
|
|
|
if (pa_length >= size) {
|
2008-04-06 18:09:28 +00:00
|
|
|
vm_reserv_reclaim(rv);
|
|
|
|
return (TRUE);
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
pa_length = 0;
|
|
|
|
}
|
|
|
|
return (FALSE);
|
|
|
|
}
|
|
|
|
|
2007-12-29 19:53:04 +00:00
|
|
|
/*
|
|
|
|
* Transfers the reservation underlying the given page to a new object.
|
|
|
|
*
|
|
|
|
* The object must be locked.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
|
|
|
|
vm_pindex_t old_object_offset)
|
|
|
|
{
|
|
|
|
vm_reserv_t rv;
|
|
|
|
|
|
|
|
VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
|
|
|
|
rv = vm_reserv_from_page(m);
|
|
|
|
if (rv->object == old_object) {
|
|
|
|
mtx_lock(&vm_page_queue_free_mtx);
|
|
|
|
if (rv->object == old_object) {
|
|
|
|
LIST_REMOVE(rv, objq);
|
|
|
|
LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
|
|
|
|
rv->object = new_object;
|
|
|
|
rv->pindex -= old_object_offset;
|
|
|
|
}
|
|
|
|
mtx_unlock(&vm_page_queue_free_mtx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocates the virtual and physical memory required by the reservation
|
|
|
|
* management system's data structures, in particular, the reservation array.
|
|
|
|
*/
|
|
|
|
vm_paddr_t
|
|
|
|
vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
|
|
|
|
{
|
|
|
|
vm_paddr_t new_end;
|
|
|
|
size_t size;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Calculate the size (in bytes) of the reservation array. Round up
|
|
|
|
* from "high_water" because every small page is mapped to an element
|
|
|
|
* in the reservation array based on its physical address. Thus, the
|
|
|
|
* number of elements in the reservation array can be greater than the
|
|
|
|
* number of superpages.
|
|
|
|
*/
|
|
|
|
size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate and map the physical memory for the reservation array. The
|
|
|
|
* next available virtual address is returned by reference.
|
|
|
|
*/
|
|
|
|
new_end = end - round_page(size);
|
|
|
|
vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
|
|
|
|
VM_PROT_READ | VM_PROT_WRITE);
|
|
|
|
bzero(vm_reserv_array, size);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the next available physical address.
|
|
|
|
*/
|
|
|
|
return (new_end);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* VM_NRESERVLEVEL > 0 */
|