freebsd-skq/sys/kern/sys_generic.c

1452 lines
31 KiB
C
Raw Normal View History

/*-
1994-05-24 10:09:53 +00:00
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)sys_generic.c 8.5 (Berkeley) 1/21/94
*/
2003-06-11 00:56:59 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include "opt_ktrace.h"
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
1994-05-24 10:09:53 +00:00
#include <sys/filedesc.h>
#include <sys/filio.h>
#include <sys/fcntl.h>
1994-05-24 10:09:53 +00:00
#include <sys/file.h>
#include <sys/proc.h>
#include <sys/signalvar.h>
1994-05-24 10:09:53 +00:00
#include <sys/socketvar.h>
#include <sys/uio.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/limits.h>
1994-05-24 10:09:53 +00:00
#include <sys/malloc.h>
#include <sys/poll.h>
#include <sys/resourcevar.h>
#include <sys/selinfo.h>
Switch the sleep/wakeup and condition variable implementations to use the sleep queue interface: - Sleep queues attempt to merge some of the benefits of both sleep queues and condition variables. Having sleep qeueus in a hash table avoids having to allocate a queue head for each wait channel. Thus, struct cv has shrunk down to just a single char * pointer now. However, the hash table does not hold threads directly, but queue heads. This means that once you have located a queue in the hash bucket, you no longer have to walk the rest of the hash chain looking for threads. Instead, you have a list of all the threads sleeping on that wait channel. - Outside of the sleepq code and the sleep/cv code the kernel no longer differentiates between cv's and sleep/wakeup. For example, calls to abortsleep() and cv_abort() are replaced with a call to sleepq_abort(). Thus, the TDF_CVWAITQ flag is removed. Also, calls to unsleep() and cv_waitq_remove() have been replaced with calls to sleepq_remove(). - The sched_sleep() function no longer accepts a priority argument as sleep's no longer inherently bump the priority. Instead, this is soley a propery of msleep() which explicitly calls sched_prio() before blocking. - The TDF_ONSLEEPQ flag has been dropped as it was never used. The associated TDF_SET_ONSLEEPQ and TDF_CLR_ON_SLEEPQ macros have also been dropped and replaced with a single explicit clearing of td_wchan. TD_SET_ONSLEEPQ() would really have only made sense if it had taken the wait channel and message as arguments anyway. Now that that only happens in one place, a macro would be overkill.
2004-02-27 18:52:44 +00:00
#include <sys/sleepqueue.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/vnode.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/condvar.h>
1994-05-24 10:09:53 +00:00
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
#include <security/audit/audit.h>
static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
MALLOC_DEFINE(M_IOV, "iov", "large iov's");
2002-03-09 22:44:37 +00:00
static int pollscan(struct thread *, struct pollfd *, u_int);
static int pollrescan(struct thread *);
2002-03-09 22:44:37 +00:00
static int selscan(struct thread *, fd_mask **, fd_mask **, int);
static int selrescan(struct thread *, fd_mask **, fd_mask **);
static void selfdalloc(struct thread *, void *);
static void selfdfree(struct seltd *, struct selfd *);
static int dofileread(struct thread *, int, struct file *, struct uio *,
off_t, int);
static int dofilewrite(struct thread *, int, struct file *, struct uio *,
off_t, int);
static void doselwakeup(struct selinfo *, int);
static void seltdinit(struct thread *);
static int seltdwait(struct thread *, int);
static void seltdclear(struct thread *);
/*
* One seltd per-thread allocated on demand as needed.
*
* t - protected by st_mtx
* k - Only accessed by curthread or read-only
*/
struct seltd {
STAILQ_HEAD(, selfd) st_selq; /* (k) List of selfds. */
struct selfd *st_free1; /* (k) free fd for read set. */
struct selfd *st_free2; /* (k) free fd for write set. */
struct mtx st_mtx; /* Protects struct seltd */
struct cv st_wait; /* (t) Wait channel. */
int st_flags; /* (t) SELTD_ flags. */
};
#define SELTD_PENDING 0x0001 /* We have pending events. */
#define SELTD_RESCAN 0x0002 /* Doing a rescan. */
/*
* One selfd allocated per-thread per-file-descriptor.
* f - protected by sf_mtx
*/
struct selfd {
STAILQ_ENTRY(selfd) sf_link; /* (k) fds owned by this td. */
TAILQ_ENTRY(selfd) sf_threads; /* (f) fds on this selinfo. */
struct selinfo *sf_si; /* (f) selinfo when linked. */
struct mtx *sf_mtx; /* Pointer to selinfo mtx. */
struct seltd *sf_td; /* (k) owning seltd. */
void *sf_cookie; /* (k) fd or pollfd. */
};
static uma_zone_t selfd_zone;
#ifndef _SYS_SYSPROTO_H_
1994-05-24 10:09:53 +00:00
struct read_args {
int fd;
void *buf;
size_t nbyte;
1994-05-24 10:09:53 +00:00
};
#endif
int
read(td, uap)
struct thread *td;
struct read_args *uap;
1994-05-24 10:09:53 +00:00
{
struct uio auio;
struct iovec aiov;
int error;
1994-05-24 10:09:53 +00:00
if (uap->nbyte > INT_MAX)
return (EINVAL);
aiov.iov_base = uap->buf;
aiov.iov_len = uap->nbyte;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_resid = uap->nbyte;
auio.uio_segflg = UIO_USERSPACE;
error = kern_readv(td, uap->fd, &auio);
return(error);
1994-05-24 10:09:53 +00:00
}
/*
* Positioned read system call
*/
#ifndef _SYS_SYSPROTO_H_
struct pread_args {
int fd;
void *buf;
size_t nbyte;
int pad;
off_t offset;
};
#endif
int
pread(td, uap)
struct thread *td;
struct pread_args *uap;
{
struct uio auio;
struct iovec aiov;
int error;
if (uap->nbyte > INT_MAX)
return (EINVAL);
aiov.iov_base = uap->buf;
aiov.iov_len = uap->nbyte;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_resid = uap->nbyte;
auio.uio_segflg = UIO_USERSPACE;
error = kern_preadv(td, uap->fd, &auio, uap->offset);
return(error);
}
int
freebsd6_pread(td, uap)
struct thread *td;
struct freebsd6_pread_args *uap;
{
struct pread_args oargs;
oargs.fd = uap->fd;
oargs.buf = uap->buf;
oargs.nbyte = uap->nbyte;
oargs.offset = uap->offset;
return (pread(td, &oargs));
}
1994-05-24 10:09:53 +00:00
/*
* Scatter read system call.
*/
#ifndef _SYS_SYSPROTO_H_
1994-05-24 10:09:53 +00:00
struct readv_args {
int fd;
1994-05-24 10:09:53 +00:00
struct iovec *iovp;
u_int iovcnt;
};
#endif
int
readv(struct thread *td, struct readv_args *uap)
{
struct uio *auio;
int error;
error = copyinuio(uap->iovp, uap->iovcnt, &auio);
if (error)
return (error);
error = kern_readv(td, uap->fd, auio);
free(auio, M_IOV);
return (error);
}
int
kern_readv(struct thread *td, int fd, struct uio *auio)
1994-05-24 10:09:53 +00:00
{
struct file *fp;
int error;
error = fget_read(td, fd, &fp);
if (error)
return (error);
error = dofileread(td, fd, fp, auio, (off_t)-1, 0);
fdrop(fp, td);
return (error);
}
/*
* Scatter positioned read system call.
*/
#ifndef _SYS_SYSPROTO_H_
struct preadv_args {
int fd;
struct iovec *iovp;
u_int iovcnt;
off_t offset;
};
1994-05-24 10:09:53 +00:00
#endif
int
preadv(struct thread *td, struct preadv_args *uap)
{
struct uio *auio;
int error;
error = copyinuio(uap->iovp, uap->iovcnt, &auio);
if (error)
return (error);
error = kern_preadv(td, uap->fd, auio, uap->offset);
free(auio, M_IOV);
return (error);
}
int
kern_preadv(td, fd, auio, offset)
struct thread *td;
int fd;
struct uio *auio;
off_t offset;
{
struct file *fp;
int error;
1994-05-24 10:09:53 +00:00
error = fget_read(td, fd, &fp);
if (error)
return (error);
if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
error = ESPIPE;
else if (offset < 0 && fp->f_vnode->v_type != VCHR)
error = EINVAL;
else
error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET);
fdrop(fp, td);
return (error);
}
/*
* Common code for readv and preadv that reads data in
* from a file using the passed in uio, offset, and flags.
*/
static int
dofileread(td, fd, fp, auio, offset, flags)
struct thread *td;
int fd;
struct file *fp;
struct uio *auio;
off_t offset;
int flags;
{
ssize_t cnt;
int error;
#ifdef KTRACE
struct uio *ktruio = NULL;
#endif
/* Finish zero length reads right here */
if (auio->uio_resid == 0) {
td->td_retval[0] = 0;
return(0);
}
auio->uio_rw = UIO_READ;
auio->uio_offset = offset;
auio->uio_td = td;
1994-05-24 10:09:53 +00:00
#ifdef KTRACE
if (KTRPOINT(td, KTR_GENIO))
ktruio = cloneuio(auio);
1994-05-24 10:09:53 +00:00
#endif
cnt = auio->uio_resid;
if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) {
if (auio->uio_resid != cnt && (error == ERESTART ||
1994-05-24 10:09:53 +00:00
error == EINTR || error == EWOULDBLOCK))
error = 0;
}
cnt -= auio->uio_resid;
1994-05-24 10:09:53 +00:00
#ifdef KTRACE
if (ktruio != NULL) {
ktruio->uio_resid = cnt;
ktrgenio(fd, UIO_READ, ktruio, error);
1994-05-24 10:09:53 +00:00
}
#endif
td->td_retval[0] = cnt;
1994-05-24 10:09:53 +00:00
return (error);
}
#ifndef _SYS_SYSPROTO_H_
1994-05-24 10:09:53 +00:00
struct write_args {
int fd;
const void *buf;
size_t nbyte;
1994-05-24 10:09:53 +00:00
};
#endif
int
write(td, uap)
struct thread *td;
struct write_args *uap;
1994-05-24 10:09:53 +00:00
{
struct uio auio;
struct iovec aiov;
int error;
1994-05-24 10:09:53 +00:00
if (uap->nbyte > INT_MAX)
return (EINVAL);
aiov.iov_base = (void *)(uintptr_t)uap->buf;
aiov.iov_len = uap->nbyte;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_resid = uap->nbyte;
auio.uio_segflg = UIO_USERSPACE;
error = kern_writev(td, uap->fd, &auio);
return(error);
1994-05-24 10:09:53 +00:00
}
/*
* Positioned write system call.
*/
#ifndef _SYS_SYSPROTO_H_
struct pwrite_args {
int fd;
const void *buf;
size_t nbyte;
int pad;
off_t offset;
};
#endif
int
pwrite(td, uap)
struct thread *td;
struct pwrite_args *uap;
{
struct uio auio;
struct iovec aiov;
int error;
if (uap->nbyte > INT_MAX)
return (EINVAL);
aiov.iov_base = (void *)(uintptr_t)uap->buf;
aiov.iov_len = uap->nbyte;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_resid = uap->nbyte;
auio.uio_segflg = UIO_USERSPACE;
error = kern_pwritev(td, uap->fd, &auio, uap->offset);
return(error);
}
int
freebsd6_pwrite(td, uap)
struct thread *td;
struct freebsd6_pwrite_args *uap;
{
struct pwrite_args oargs;
oargs.fd = uap->fd;
oargs.buf = uap->buf;
oargs.nbyte = uap->nbyte;
oargs.offset = uap->offset;
return (pwrite(td, &oargs));
}
1994-05-24 10:09:53 +00:00
/*
* Gather write system call.
1994-05-24 10:09:53 +00:00
*/
#ifndef _SYS_SYSPROTO_H_
1994-05-24 10:09:53 +00:00
struct writev_args {
int fd;
struct iovec *iovp;
u_int iovcnt;
};
#endif
int
writev(struct thread *td, struct writev_args *uap)
{
struct uio *auio;
int error;
error = copyinuio(uap->iovp, uap->iovcnt, &auio);
if (error)
return (error);
error = kern_writev(td, uap->fd, auio);
free(auio, M_IOV);
return (error);
}
int
kern_writev(struct thread *td, int fd, struct uio *auio)
1994-05-24 10:09:53 +00:00
{
struct file *fp;
int error;
error = fget_write(td, fd, &fp);
if (error)
return (error);
error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0);
fdrop(fp, td);
return (error);
}
/*
* Gather positioned write system call.
*/
#ifndef _SYS_SYSPROTO_H_
struct pwritev_args {
int fd;
struct iovec *iovp;
u_int iovcnt;
off_t offset;
};
1994-05-24 10:09:53 +00:00
#endif
int
pwritev(struct thread *td, struct pwritev_args *uap)
{
struct uio *auio;
int error;
error = copyinuio(uap->iovp, uap->iovcnt, &auio);
if (error)
return (error);
error = kern_pwritev(td, uap->fd, auio, uap->offset);
free(auio, M_IOV);
return (error);
}
int
kern_pwritev(td, fd, auio, offset)
struct thread *td;
struct uio *auio;
int fd;
off_t offset;
{
struct file *fp;
int error;
1994-05-24 10:09:53 +00:00
error = fget_write(td, fd, &fp);
if (error)
return (error);
if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
error = ESPIPE;
else if (offset < 0 && fp->f_vnode->v_type != VCHR)
error = EINVAL;
else
error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET);
fdrop(fp, td);
return (error);
}
/*
* Common code for writev and pwritev that writes data to
* a file using the passed in uio, offset, and flags.
*/
static int
dofilewrite(td, fd, fp, auio, offset, flags)
struct thread *td;
int fd;
struct file *fp;
struct uio *auio;
off_t offset;
int flags;
{
ssize_t cnt;
int error;
#ifdef KTRACE
struct uio *ktruio = NULL;
#endif
auio->uio_rw = UIO_WRITE;
auio->uio_td = td;
auio->uio_offset = offset;
1994-05-24 10:09:53 +00:00
#ifdef KTRACE
if (KTRPOINT(td, KTR_GENIO))
ktruio = cloneuio(auio);
1994-05-24 10:09:53 +00:00
#endif
cnt = auio->uio_resid;
if (fp->f_type == DTYPE_VNODE)
bwillwrite();
if ((error = fo_write(fp, auio, td->td_ucred, flags, td))) {
if (auio->uio_resid != cnt && (error == ERESTART ||
1994-05-24 10:09:53 +00:00
error == EINTR || error == EWOULDBLOCK))
error = 0;
/* Socket layer is responsible for issuing SIGPIPE. */
if (fp->f_type != DTYPE_SOCKET && error == EPIPE) {
PROC_LOCK(td->td_proc);
psignal(td->td_proc, SIGPIPE);
PROC_UNLOCK(td->td_proc);
}
1994-05-24 10:09:53 +00:00
}
cnt -= auio->uio_resid;
1994-05-24 10:09:53 +00:00
#ifdef KTRACE
if (ktruio != NULL) {
ktruio->uio_resid = cnt;
ktrgenio(fd, UIO_WRITE, ktruio, error);
1994-05-24 10:09:53 +00:00
}
#endif
td->td_retval[0] = cnt;
1994-05-24 10:09:53 +00:00
return (error);
}
/*
* Truncate a file given a file descriptor.
*
* Can't use fget_write() here, since must return EINVAL and not EBADF if the
* descriptor isn't writable.
*/
int
kern_ftruncate(td, fd, length)
struct thread *td;
int fd;
off_t length;
{
struct file *fp;
int error;
AUDIT_ARG(fd, fd);
if (length < 0)
return (EINVAL);
error = fget(td, fd, &fp);
if (error)
return (error);
AUDIT_ARG(file, td->td_proc, fp);
if (!(fp->f_flag & FWRITE)) {
fdrop(fp, td);
return (EINVAL);
}
error = fo_truncate(fp, length, td->td_ucred, td);
fdrop(fp, td);
return (error);
}
#ifndef _SYS_SYSPROTO_H_
struct ftruncate_args {
int fd;
int pad;
off_t length;
};
#endif
int
ftruncate(td, uap)
struct thread *td;
struct ftruncate_args *uap;
{
return (kern_ftruncate(td, uap->fd, uap->length));
}
#if defined(COMPAT_43)
#ifndef _SYS_SYSPROTO_H_
struct oftruncate_args {
int fd;
long length;
};
#endif
int
oftruncate(td, uap)
struct thread *td;
struct oftruncate_args *uap;
{
return (kern_ftruncate(td, uap->fd, uap->length));
}
#endif /* COMPAT_43 */
#ifndef _SYS_SYSPROTO_H_
1994-05-24 10:09:53 +00:00
struct ioctl_args {
int fd;
u_long com;
1994-05-24 10:09:53 +00:00
caddr_t data;
};
#endif
1994-05-24 10:09:53 +00:00
/* ARGSUSED */
int
2004-11-14 12:04:34 +00:00
ioctl(struct thread *td, struct ioctl_args *uap)
1994-05-24 10:09:53 +00:00
{
2004-11-14 12:04:34 +00:00
u_long com;
int arg, error;
2004-11-14 12:04:34 +00:00
u_int size;
caddr_t data;
1994-05-24 10:09:53 +00:00
if (uap->com > 0xffffffff) {
printf(
"WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n",
td->td_proc->p_pid, td->td_name, uap->com);
uap->com &= 0xffffffff;
}
com = uap->com;
1994-05-24 10:09:53 +00:00
/*
* Interpret high order word to find amount of data to be
* copied to/from the user's address space.
*/
size = IOCPARM_LEN(com);
if ((size > IOCPARM_MAX) ||
((com & (IOC_VOID | IOC_IN | IOC_OUT)) == 0) ||
#if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
((com & IOC_OUT) && size == 0) ||
#else
((com & (IOC_IN | IOC_OUT)) && size == 0) ||
#endif
((com & IOC_VOID) && size > 0 && size != sizeof(int)))
return (ENOTTY);
if (size > 0) {
if (!(com & IOC_VOID))
data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
else {
/* Integer argument. */
arg = (intptr_t)uap->data;
data = (void *)&arg;
size = 0;
}
} else
data = (void *)&uap->data;
if (com & IOC_IN) {
error = copyin(uap->data, data, (u_int)size);
if (error) {
if (size > 0)
free(data, M_IOCTLOPS);
return (error);
}
} else if (com & IOC_OUT) {
1994-05-24 10:09:53 +00:00
/*
* Zero the buffer so the user always
* gets back something deterministic.
*/
bzero(data, size);
}
1994-05-24 10:09:53 +00:00
error = kern_ioctl(td, uap->fd, com, data);
if (error == 0 && (com & IOC_OUT))
error = copyout(data, uap->data, (u_int)size);
if (size > 0)
free(data, M_IOCTLOPS);
return (error);
}
int
kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data)
{
struct file *fp;
struct filedesc *fdp;
int error;
int tmp;
if ((error = fget(td, fd, &fp)) != 0)
return (error);
if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
fdrop(fp, td);
return (EBADF);
}
fdp = td->td_proc->p_fd;
switch (com) {
case FIONCLEX:
Replace custom file descriptor array sleep lock constructed using a mutex and flags with an sxlock. This leads to a significant and measurable performance improvement as a result of access to shared locking for frequent lookup operations, reduced general overhead, and reduced overhead in the event of contention. All of these are imported for threaded applications where simultaneous access to a shared file descriptor array occurs frequently. Kris has reported 2x-4x transaction rate improvements on 8-core MySQL benchmarks; smaller improvements can be expected for many workloads as a result of reduced overhead. - Generally eliminate the distinction between "fast" and regular acquisisition of the filedesc lock; the plan is that they will now all be fast. Change all locking instances to either shared or exclusive locks. - Correct a bug (pointed out by kib) in fdfree() where previously msleep() was called without the mutex held; sx_sleep() is now always called with the sxlock held exclusively. - Universally hold the struct file lock over changes to struct file, rather than the filedesc lock or no lock. Always update the f_ops field last. A further memory barrier is required here in the future (discussed with jhb). - Improve locking and reference management in linux_at(), which fails to properly acquire vnode references before using vnode pointers. Annotate improper use of vn_fullpath(), which will be replaced at a future date. In fcntl(), we conservatively acquire an exclusive lock, even though in some cases a shared lock may be sufficient, which should be revisited. The dropping of the filedesc lock in fdgrowtable() is no longer required as the sxlock can be held over the sleep operation; we should consider removing that (pointed out by attilio). Tested by: kris Discussed with: jhb, kris, attilio, jeff
2007-04-04 09:11:34 +00:00
FILEDESC_XLOCK(fdp);
fdp->fd_ofileflags[fd] &= ~UF_EXCLOSE;
Replace custom file descriptor array sleep lock constructed using a mutex and flags with an sxlock. This leads to a significant and measurable performance improvement as a result of access to shared locking for frequent lookup operations, reduced general overhead, and reduced overhead in the event of contention. All of these are imported for threaded applications where simultaneous access to a shared file descriptor array occurs frequently. Kris has reported 2x-4x transaction rate improvements on 8-core MySQL benchmarks; smaller improvements can be expected for many workloads as a result of reduced overhead. - Generally eliminate the distinction between "fast" and regular acquisisition of the filedesc lock; the plan is that they will now all be fast. Change all locking instances to either shared or exclusive locks. - Correct a bug (pointed out by kib) in fdfree() where previously msleep() was called without the mutex held; sx_sleep() is now always called with the sxlock held exclusively. - Universally hold the struct file lock over changes to struct file, rather than the filedesc lock or no lock. Always update the f_ops field last. A further memory barrier is required here in the future (discussed with jhb). - Improve locking and reference management in linux_at(), which fails to properly acquire vnode references before using vnode pointers. Annotate improper use of vn_fullpath(), which will be replaced at a future date. In fcntl(), we conservatively acquire an exclusive lock, even though in some cases a shared lock may be sufficient, which should be revisited. The dropping of the filedesc lock in fdgrowtable() is no longer required as the sxlock can be held over the sleep operation; we should consider removing that (pointed out by attilio). Tested by: kris Discussed with: jhb, kris, attilio, jeff
2007-04-04 09:11:34 +00:00
FILEDESC_XUNLOCK(fdp);
goto out;
case FIOCLEX:
Replace custom file descriptor array sleep lock constructed using a mutex and flags with an sxlock. This leads to a significant and measurable performance improvement as a result of access to shared locking for frequent lookup operations, reduced general overhead, and reduced overhead in the event of contention. All of these are imported for threaded applications where simultaneous access to a shared file descriptor array occurs frequently. Kris has reported 2x-4x transaction rate improvements on 8-core MySQL benchmarks; smaller improvements can be expected for many workloads as a result of reduced overhead. - Generally eliminate the distinction between "fast" and regular acquisisition of the filedesc lock; the plan is that they will now all be fast. Change all locking instances to either shared or exclusive locks. - Correct a bug (pointed out by kib) in fdfree() where previously msleep() was called without the mutex held; sx_sleep() is now always called with the sxlock held exclusively. - Universally hold the struct file lock over changes to struct file, rather than the filedesc lock or no lock. Always update the f_ops field last. A further memory barrier is required here in the future (discussed with jhb). - Improve locking and reference management in linux_at(), which fails to properly acquire vnode references before using vnode pointers. Annotate improper use of vn_fullpath(), which will be replaced at a future date. In fcntl(), we conservatively acquire an exclusive lock, even though in some cases a shared lock may be sufficient, which should be revisited. The dropping of the filedesc lock in fdgrowtable() is no longer required as the sxlock can be held over the sleep operation; we should consider removing that (pointed out by attilio). Tested by: kris Discussed with: jhb, kris, attilio, jeff
2007-04-04 09:11:34 +00:00
FILEDESC_XLOCK(fdp);
fdp->fd_ofileflags[fd] |= UF_EXCLOSE;
Replace custom file descriptor array sleep lock constructed using a mutex and flags with an sxlock. This leads to a significant and measurable performance improvement as a result of access to shared locking for frequent lookup operations, reduced general overhead, and reduced overhead in the event of contention. All of these are imported for threaded applications where simultaneous access to a shared file descriptor array occurs frequently. Kris has reported 2x-4x transaction rate improvements on 8-core MySQL benchmarks; smaller improvements can be expected for many workloads as a result of reduced overhead. - Generally eliminate the distinction between "fast" and regular acquisisition of the filedesc lock; the plan is that they will now all be fast. Change all locking instances to either shared or exclusive locks. - Correct a bug (pointed out by kib) in fdfree() where previously msleep() was called without the mutex held; sx_sleep() is now always called with the sxlock held exclusively. - Universally hold the struct file lock over changes to struct file, rather than the filedesc lock or no lock. Always update the f_ops field last. A further memory barrier is required here in the future (discussed with jhb). - Improve locking and reference management in linux_at(), which fails to properly acquire vnode references before using vnode pointers. Annotate improper use of vn_fullpath(), which will be replaced at a future date. In fcntl(), we conservatively acquire an exclusive lock, even though in some cases a shared lock may be sufficient, which should be revisited. The dropping of the filedesc lock in fdgrowtable() is no longer required as the sxlock can be held over the sleep operation; we should consider removing that (pointed out by attilio). Tested by: kris Discussed with: jhb, kris, attilio, jeff
2007-04-04 09:11:34 +00:00
FILEDESC_XUNLOCK(fdp);
goto out;
case FIONBIO:
if ((tmp = *(int *)data))
atomic_set_int(&fp->f_flag, FNONBLOCK);
1994-05-24 10:09:53 +00:00
else
atomic_clear_int(&fp->f_flag, FNONBLOCK);
data = (void *)&tmp;
break;
case FIOASYNC:
if ((tmp = *(int *)data))
atomic_set_int(&fp->f_flag, FASYNC);
1994-05-24 10:09:53 +00:00
else
atomic_clear_int(&fp->f_flag, FASYNC);
data = (void *)&tmp;
break;
1994-05-24 10:09:53 +00:00
}
error = fo_ioctl(fp, com, data, td->td_ucred, td);
out:
fdrop(fp, td);
1994-05-24 10:09:53 +00:00
return (error);
}
#ifndef _SYS_SYSPROTO_H_
1994-05-24 10:09:53 +00:00
struct select_args {
int nd;
1994-05-24 10:09:53 +00:00
fd_set *in, *ou, *ex;
struct timeval *tv;
};
#endif
int
select(td, uap)
register struct thread *td;
1994-05-24 10:09:53 +00:00
register struct select_args *uap;
{
struct timeval tv, *tvp;
int error;
if (uap->tv != NULL) {
error = copyin(uap->tv, &tv, sizeof(tv));
if (error)
return (error);
tvp = &tv;
} else
tvp = NULL;
return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp));
}
int
kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou,
fd_set *fd_ex, struct timeval *tvp)
1994-05-24 10:09:53 +00:00
{
struct filedesc *fdp;
/*
* The magic 2048 here is chosen to be just enough for FD_SETSIZE
* infds with the new FD_SETSIZE of 1024, and more than enough for
* FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
* of 256.
*/
fd_mask s_selbits[howmany(2048, NFDBITS)];
fd_mask *ibits[3], *obits[3], *selbits, *sbp;
struct timeval atv, rtv, ttv;
int error, timo;
u_int nbufbytes, ncpbytes, nfdbits;
1994-05-24 10:09:53 +00:00
if (nd < 0)
1996-08-20 15:03:41 +00:00
return (EINVAL);
fdp = td->td_proc->p_fd;
Replace custom file descriptor array sleep lock constructed using a mutex and flags with an sxlock. This leads to a significant and measurable performance improvement as a result of access to shared locking for frequent lookup operations, reduced general overhead, and reduced overhead in the event of contention. All of these are imported for threaded applications where simultaneous access to a shared file descriptor array occurs frequently. Kris has reported 2x-4x transaction rate improvements on 8-core MySQL benchmarks; smaller improvements can be expected for many workloads as a result of reduced overhead. - Generally eliminate the distinction between "fast" and regular acquisisition of the filedesc lock; the plan is that they will now all be fast. Change all locking instances to either shared or exclusive locks. - Correct a bug (pointed out by kib) in fdfree() where previously msleep() was called without the mutex held; sx_sleep() is now always called with the sxlock held exclusively. - Universally hold the struct file lock over changes to struct file, rather than the filedesc lock or no lock. Always update the f_ops field last. A further memory barrier is required here in the future (discussed with jhb). - Improve locking and reference management in linux_at(), which fails to properly acquire vnode references before using vnode pointers. Annotate improper use of vn_fullpath(), which will be replaced at a future date. In fcntl(), we conservatively acquire an exclusive lock, even though in some cases a shared lock may be sufficient, which should be revisited. The dropping of the filedesc lock in fdgrowtable() is no longer required as the sxlock can be held over the sleep operation; we should consider removing that (pointed out by attilio). Tested by: kris Discussed with: jhb, kris, attilio, jeff
2007-04-04 09:11:34 +00:00
FILEDESC_SLOCK(fdp);
if (nd > td->td_proc->p_fd->fd_nfiles)
nd = td->td_proc->p_fd->fd_nfiles; /* forgiving; slightly wrong */
Replace custom file descriptor array sleep lock constructed using a mutex and flags with an sxlock. This leads to a significant and measurable performance improvement as a result of access to shared locking for frequent lookup operations, reduced general overhead, and reduced overhead in the event of contention. All of these are imported for threaded applications where simultaneous access to a shared file descriptor array occurs frequently. Kris has reported 2x-4x transaction rate improvements on 8-core MySQL benchmarks; smaller improvements can be expected for many workloads as a result of reduced overhead. - Generally eliminate the distinction between "fast" and regular acquisisition of the filedesc lock; the plan is that they will now all be fast. Change all locking instances to either shared or exclusive locks. - Correct a bug (pointed out by kib) in fdfree() where previously msleep() was called without the mutex held; sx_sleep() is now always called with the sxlock held exclusively. - Universally hold the struct file lock over changes to struct file, rather than the filedesc lock or no lock. Always update the f_ops field last. A further memory barrier is required here in the future (discussed with jhb). - Improve locking and reference management in linux_at(), which fails to properly acquire vnode references before using vnode pointers. Annotate improper use of vn_fullpath(), which will be replaced at a future date. In fcntl(), we conservatively acquire an exclusive lock, even though in some cases a shared lock may be sufficient, which should be revisited. The dropping of the filedesc lock in fdgrowtable() is no longer required as the sxlock can be held over the sleep operation; we should consider removing that (pointed out by attilio). Tested by: kris Discussed with: jhb, kris, attilio, jeff
2007-04-04 09:11:34 +00:00
FILEDESC_SUNLOCK(fdp);
/*
* Allocate just enough bits for the non-null fd_sets. Use the
* preallocated auto buffer if possible.
*/
nfdbits = roundup(nd, NFDBITS);
ncpbytes = nfdbits / NBBY;
nbufbytes = 0;
if (fd_in != NULL)
nbufbytes += 2 * ncpbytes;
if (fd_ou != NULL)
nbufbytes += 2 * ncpbytes;
if (fd_ex != NULL)
nbufbytes += 2 * ncpbytes;
if (nbufbytes <= sizeof s_selbits)
selbits = &s_selbits[0];
else
selbits = malloc(nbufbytes, M_SELECT, M_WAITOK);
1994-05-24 10:09:53 +00:00
/*
* Assign pointers into the bit buffers and fetch the input bits.
* Put the output buffers together so that they can be bzeroed
* together.
*/
sbp = selbits;
1994-05-24 10:09:53 +00:00
#define getbits(name, x) \
do { \
if (name == NULL) \
ibits[x] = NULL; \
else { \
ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp; \
obits[x] = sbp; \
sbp += ncpbytes / sizeof *sbp; \
error = copyin(name, ibits[x], ncpbytes); \
if (error != 0) \
goto done; \
} \
} while (0)
getbits(fd_in, 0);
getbits(fd_ou, 1);
getbits(fd_ex, 2);
1994-05-24 10:09:53 +00:00
#undef getbits
if (nbufbytes != 0)
bzero(selbits, nbufbytes / 2);
1994-05-24 10:09:53 +00:00
if (tvp != NULL) {
atv = *tvp;
1994-05-24 10:09:53 +00:00
if (itimerfix(&atv)) {
error = EINVAL;
goto done;
1994-05-24 10:09:53 +00:00
}
getmicrouptime(&rtv);
timevaladd(&atv, &rtv);
} else {
atv.tv_sec = 0;
atv.tv_usec = 0;
}
timo = 0;
seltdinit(td);
/* Iterate until the timeout expires or descriptors become ready. */
for (;;) {
error = selscan(td, ibits, obits, nd);
if (error || td->td_retval[0] != 0)
break;
if (atv.tv_sec || atv.tv_usec) {
getmicrouptime(&rtv);
if (timevalcmp(&rtv, &atv, >=))
break;
ttv = atv;
timevalsub(&ttv, &rtv);
timo = ttv.tv_sec > 24 * 60 * 60 ?
24 * 60 * 60 * hz : tvtohz(&ttv);
}
error = seltdwait(td, timo);
if (error)
break;
error = selrescan(td, ibits, obits);
if (error || td->td_retval[0] != 0)
break;
}
seltdclear(td);
1994-05-24 10:09:53 +00:00
done:
/* select is not restarted after signals... */
if (error == ERESTART)
error = EINTR;
if (error == EWOULDBLOCK)
error = 0;
#define putbits(name, x) \
if (name && (error2 = copyout(obits[x], name, ncpbytes))) \
1994-05-24 10:09:53 +00:00
error = error2;
if (error == 0) {
int error2;
putbits(fd_in, 0);
putbits(fd_ou, 1);
putbits(fd_ex, 2);
1994-05-24 10:09:53 +00:00
#undef putbits
}
if (selbits != &s_selbits[0])
free(selbits, M_SELECT);
1994-05-24 10:09:53 +00:00
return (error);
}
/*
* Traverse the list of fds attached to this thread's seltd and check for
* completion.
*/
static int
selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits)
{
struct seltd *stp;
struct selfd *sfp;
struct selfd *sfn;
struct selinfo *si;
struct file *fp;
int msk, fd;
int n = 0;
/* Note: backend also returns POLLHUP/POLLERR if appropriate. */
static int flag[3] = { POLLRDNORM, POLLWRNORM, POLLRDBAND };
struct filedesc *fdp = td->td_proc->p_fd;
stp = td->td_sel;
FILEDESC_SLOCK(fdp);
STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
fd = (int)(uintptr_t)sfp->sf_cookie;
si = sfp->sf_si;
selfdfree(stp, sfp);
/* If the selinfo wasn't cleared the event didn't fire. */
if (si != NULL)
continue;
if ((fp = fget_locked(fdp, fd)) == NULL) {
FILEDESC_SUNLOCK(fdp);
return (EBADF);
}
for (msk = 0; msk < 3; msk++) {
if (ibits[msk] == NULL)
continue;
if ((ibits[msk][fd/NFDBITS] &
((fd_mask) 1 << (fd % NFDBITS))) == 0)
continue;
if (fo_poll(fp, flag[msk], td->td_ucred, td)) {
obits[msk][(fd)/NFDBITS] |=
((fd_mask)1 << ((fd) % NFDBITS));
n++;
}
}
}
FILEDESC_SUNLOCK(fdp);
stp->st_flags = 0;
td->td_retval[0] = n;
return (0);
}
/*
* Perform the initial filedescriptor scan and register ourselves with
* each selinfo.
*/
static int
selscan(td, ibits, obits, nfd)
struct thread *td;
fd_mask **ibits, **obits;
int nfd;
1994-05-24 10:09:53 +00:00
{
int msk, i, fd;
fd_mask bits;
1994-05-24 10:09:53 +00:00
struct file *fp;
int n = 0;
/* Note: backend also returns POLLHUP/POLLERR if appropriate. */
static int flag[3] = { POLLRDNORM, POLLWRNORM, POLLRDBAND };
struct filedesc *fdp = td->td_proc->p_fd;
1994-05-24 10:09:53 +00:00
Replace custom file descriptor array sleep lock constructed using a mutex and flags with an sxlock. This leads to a significant and measurable performance improvement as a result of access to shared locking for frequent lookup operations, reduced general overhead, and reduced overhead in the event of contention. All of these are imported for threaded applications where simultaneous access to a shared file descriptor array occurs frequently. Kris has reported 2x-4x transaction rate improvements on 8-core MySQL benchmarks; smaller improvements can be expected for many workloads as a result of reduced overhead. - Generally eliminate the distinction between "fast" and regular acquisisition of the filedesc lock; the plan is that they will now all be fast. Change all locking instances to either shared or exclusive locks. - Correct a bug (pointed out by kib) in fdfree() where previously msleep() was called without the mutex held; sx_sleep() is now always called with the sxlock held exclusively. - Universally hold the struct file lock over changes to struct file, rather than the filedesc lock or no lock. Always update the f_ops field last. A further memory barrier is required here in the future (discussed with jhb). - Improve locking and reference management in linux_at(), which fails to properly acquire vnode references before using vnode pointers. Annotate improper use of vn_fullpath(), which will be replaced at a future date. In fcntl(), we conservatively acquire an exclusive lock, even though in some cases a shared lock may be sufficient, which should be revisited. The dropping of the filedesc lock in fdgrowtable() is no longer required as the sxlock can be held over the sleep operation; we should consider removing that (pointed out by attilio). Tested by: kris Discussed with: jhb, kris, attilio, jeff
2007-04-04 09:11:34 +00:00
FILEDESC_SLOCK(fdp);
1994-05-24 10:09:53 +00:00
for (msk = 0; msk < 3; msk++) {
if (ibits[msk] == NULL)
continue;
1994-05-24 10:09:53 +00:00
for (i = 0; i < nfd; i += NFDBITS) {
bits = ibits[msk][i/NFDBITS];
/* ffs(int mask) not portable, fd_mask is long */
for (fd = i; bits && fd < nfd; fd++, bits >>= 1) {
if (!(bits & 1))
continue;
if ((fp = fget_locked(fdp, fd)) == NULL) {
Replace custom file descriptor array sleep lock constructed using a mutex and flags with an sxlock. This leads to a significant and measurable performance improvement as a result of access to shared locking for frequent lookup operations, reduced general overhead, and reduced overhead in the event of contention. All of these are imported for threaded applications where simultaneous access to a shared file descriptor array occurs frequently. Kris has reported 2x-4x transaction rate improvements on 8-core MySQL benchmarks; smaller improvements can be expected for many workloads as a result of reduced overhead. - Generally eliminate the distinction between "fast" and regular acquisisition of the filedesc lock; the plan is that they will now all be fast. Change all locking instances to either shared or exclusive locks. - Correct a bug (pointed out by kib) in fdfree() where previously msleep() was called without the mutex held; sx_sleep() is now always called with the sxlock held exclusively. - Universally hold the struct file lock over changes to struct file, rather than the filedesc lock or no lock. Always update the f_ops field last. A further memory barrier is required here in the future (discussed with jhb). - Improve locking and reference management in linux_at(), which fails to properly acquire vnode references before using vnode pointers. Annotate improper use of vn_fullpath(), which will be replaced at a future date. In fcntl(), we conservatively acquire an exclusive lock, even though in some cases a shared lock may be sufficient, which should be revisited. The dropping of the filedesc lock in fdgrowtable() is no longer required as the sxlock can be held over the sleep operation; we should consider removing that (pointed out by attilio). Tested by: kris Discussed with: jhb, kris, attilio, jeff
2007-04-04 09:11:34 +00:00
FILEDESC_SUNLOCK(fdp);
1994-05-24 10:09:53 +00:00
return (EBADF);
}
selfdalloc(td, (void *)(uintptr_t)fd);
Make similar changes to fo_stat() and fo_poll() as made earlier to fo_read() and fo_write(): explicitly use the cred argument to fo_poll() as "active_cred" using the passed file descriptor's f_cred reference to provide access to the file credential. Add an active_cred argument to fo_stat() so that implementers have access to the active credential as well as the file credential. Generally modify callers of fo_stat() to pass in td->td_ucred rather than fp->f_cred, which was redundantly provided via the fp argument. This set of modifications also permits threads to perform these operations on behalf of another thread without modifying their credential. Trickle this change down into fo_stat/poll() implementations: - badfo_poll(), badfo_stat(): modify/add arguments. - kqueue_poll(), kqueue_stat(): modify arguments. - pipe_poll(), pipe_stat(): modify/add arguments, pass active_cred to MAC checks rather than td->td_ucred. - soo_poll(), soo_stat(): modify/add arguments, pass fp->f_cred rather than cred to pru_sopoll() to maintain current semantics. - sopoll(): moidfy arguments. - vn_poll(), vn_statfile(): modify/add arguments, pass new arguments to vn_stat(). Pass active_cred to MAC and fp->f_cred to VOP_POLL() to maintian current semantics. - vn_close(): rename cred to file_cred to reflect reality while I'm here. - vn_stat(): Add active_cred and file_cred arguments to vn_stat() and consumers so that this distinction is maintained at the VFS as well as 'struct file' layer. Pass active_cred instead of td->td_ucred to MAC and to VOP_GETATTR() to maintain current semantics. - fifofs: modify the creation of a "filetemp" so that the file credential is properly initialized and can be used in the socket code if desired. Pass ap->a_td->td_ucred as the active credential to soo_poll(). If we teach the vnop interface about the distinction between file and active credentials, we would use the active credential here. Note that current inconsistent passing of active_cred vs. file_cred to VOP's is maintained. It's not clear why GETATTR would be authorized using active_cred while POLL would be authorized using file_cred at the file system level. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-08-16 12:52:03 +00:00
if (fo_poll(fp, flag[msk], td->td_ucred,
td)) {
obits[msk][(fd)/NFDBITS] |=
((fd_mask)1 << ((fd) % NFDBITS));
1994-05-24 10:09:53 +00:00
n++;
}
}
}
}
Replace custom file descriptor array sleep lock constructed using a mutex and flags with an sxlock. This leads to a significant and measurable performance improvement as a result of access to shared locking for frequent lookup operations, reduced general overhead, and reduced overhead in the event of contention. All of these are imported for threaded applications where simultaneous access to a shared file descriptor array occurs frequently. Kris has reported 2x-4x transaction rate improvements on 8-core MySQL benchmarks; smaller improvements can be expected for many workloads as a result of reduced overhead. - Generally eliminate the distinction between "fast" and regular acquisisition of the filedesc lock; the plan is that they will now all be fast. Change all locking instances to either shared or exclusive locks. - Correct a bug (pointed out by kib) in fdfree() where previously msleep() was called without the mutex held; sx_sleep() is now always called with the sxlock held exclusively. - Universally hold the struct file lock over changes to struct file, rather than the filedesc lock or no lock. Always update the f_ops field last. A further memory barrier is required here in the future (discussed with jhb). - Improve locking and reference management in linux_at(), which fails to properly acquire vnode references before using vnode pointers. Annotate improper use of vn_fullpath(), which will be replaced at a future date. In fcntl(), we conservatively acquire an exclusive lock, even though in some cases a shared lock may be sufficient, which should be revisited. The dropping of the filedesc lock in fdgrowtable() is no longer required as the sxlock can be held over the sleep operation; we should consider removing that (pointed out by attilio). Tested by: kris Discussed with: jhb, kris, attilio, jeff
2007-04-04 09:11:34 +00:00
FILEDESC_SUNLOCK(fdp);
td->td_retval[0] = n;
1994-05-24 10:09:53 +00:00
return (0);
}
#ifndef _SYS_SYSPROTO_H_
struct poll_args {
struct pollfd *fds;
u_int nfds;
int timeout;
};
#endif
int
poll(td, uap)
struct thread *td;
struct poll_args *uap;
{
struct pollfd *bits;
struct pollfd smallbits[32];
struct timeval atv, rtv, ttv;
int error = 0, timo;
u_int nfds;
size_t ni;
2002-12-14 01:56:26 +00:00
nfds = uap->nfds;
if (nfds > maxfilesperproc && nfds > FD_SETSIZE)
return (EINVAL);
ni = nfds * sizeof(struct pollfd);
if (ni > sizeof(smallbits))
bits = malloc(ni, M_TEMP, M_WAITOK);
else
bits = smallbits;
2002-12-14 01:56:26 +00:00
error = copyin(uap->fds, bits, ni);
if (error)
goto done;
2002-12-14 01:56:26 +00:00
if (uap->timeout != INFTIM) {
atv.tv_sec = uap->timeout / 1000;
atv.tv_usec = (uap->timeout % 1000) * 1000;
if (itimerfix(&atv)) {
error = EINVAL;
goto done;
}
getmicrouptime(&rtv);
timevaladd(&atv, &rtv);
} else {
atv.tv_sec = 0;
atv.tv_usec = 0;
}
timo = 0;
seltdinit(td);
/* Iterate until the timeout expires or descriptors become ready. */
for (;;) {
error = pollscan(td, bits, nfds);
if (error || td->td_retval[0] != 0)
break;
if (atv.tv_sec || atv.tv_usec) {
getmicrouptime(&rtv);
if (timevalcmp(&rtv, &atv, >=))
break;
ttv = atv;
timevalsub(&ttv, &rtv);
timo = ttv.tv_sec > 24 * 60 * 60 ?
24 * 60 * 60 * hz : tvtohz(&ttv);
}
error = seltdwait(td, timo);
if (error)
break;
error = pollrescan(td);
if (error || td->td_retval[0] != 0)
break;
}
seltdclear(td);
done:
/* poll is not restarted after signals... */
if (error == ERESTART)
error = EINTR;
if (error == EWOULDBLOCK)
error = 0;
if (error == 0) {
2002-12-14 01:56:26 +00:00
error = copyout(bits, uap->fds, ni);
if (error)
goto out;
}
out:
if (ni > sizeof(smallbits))
free(bits, M_TEMP);
return (error);
}
static int
pollrescan(struct thread *td)
{
struct seltd *stp;
struct selfd *sfp;
struct selfd *sfn;
struct selinfo *si;
struct filedesc *fdp;
struct file *fp;
struct pollfd *fd;
int n;
n = 0;
fdp = td->td_proc->p_fd;
stp = td->td_sel;
FILEDESC_SLOCK(fdp);
STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
fd = (struct pollfd *)sfp->sf_cookie;
si = sfp->sf_si;
selfdfree(stp, sfp);
/* If the selinfo wasn't cleared the event didn't fire. */
if (si != NULL)
continue;
fp = fdp->fd_ofiles[fd->fd];
if (fp == NULL) {
fd->revents = POLLNVAL;
n++;
continue;
}
/*
* Note: backend also returns POLLHUP and
* POLLERR if appropriate.
*/
fd->revents = fo_poll(fp, fd->events, td->td_ucred, td);
if (fd->revents != 0)
n++;
}
FILEDESC_SUNLOCK(fdp);
stp->st_flags = 0;
td->td_retval[0] = n;
return (0);
}
static int
pollscan(td, fds, nfd)
struct thread *td;
struct pollfd *fds;
u_int nfd;
{
struct filedesc *fdp = td->td_proc->p_fd;
int i;
struct file *fp;
int n = 0;
Replace custom file descriptor array sleep lock constructed using a mutex and flags with an sxlock. This leads to a significant and measurable performance improvement as a result of access to shared locking for frequent lookup operations, reduced general overhead, and reduced overhead in the event of contention. All of these are imported for threaded applications where simultaneous access to a shared file descriptor array occurs frequently. Kris has reported 2x-4x transaction rate improvements on 8-core MySQL benchmarks; smaller improvements can be expected for many workloads as a result of reduced overhead. - Generally eliminate the distinction between "fast" and regular acquisisition of the filedesc lock; the plan is that they will now all be fast. Change all locking instances to either shared or exclusive locks. - Correct a bug (pointed out by kib) in fdfree() where previously msleep() was called without the mutex held; sx_sleep() is now always called with the sxlock held exclusively. - Universally hold the struct file lock over changes to struct file, rather than the filedesc lock or no lock. Always update the f_ops field last. A further memory barrier is required here in the future (discussed with jhb). - Improve locking and reference management in linux_at(), which fails to properly acquire vnode references before using vnode pointers. Annotate improper use of vn_fullpath(), which will be replaced at a future date. In fcntl(), we conservatively acquire an exclusive lock, even though in some cases a shared lock may be sufficient, which should be revisited. The dropping of the filedesc lock in fdgrowtable() is no longer required as the sxlock can be held over the sleep operation; we should consider removing that (pointed out by attilio). Tested by: kris Discussed with: jhb, kris, attilio, jeff
2007-04-04 09:11:34 +00:00
FILEDESC_SLOCK(fdp);
for (i = 0; i < nfd; i++, fds++) {
if (fds->fd >= fdp->fd_nfiles) {
fds->revents = POLLNVAL;
n++;
} else if (fds->fd < 0) {
fds->revents = 0;
} else {
fp = fdp->fd_ofiles[fds->fd];
if (fp == NULL) {
fds->revents = POLLNVAL;
n++;
} else {
/*
* Note: backend also returns POLLHUP and
* POLLERR if appropriate.
*/
selfdalloc(td, fds);
fds->revents = fo_poll(fp, fds->events,
Make similar changes to fo_stat() and fo_poll() as made earlier to fo_read() and fo_write(): explicitly use the cred argument to fo_poll() as "active_cred" using the passed file descriptor's f_cred reference to provide access to the file credential. Add an active_cred argument to fo_stat() so that implementers have access to the active credential as well as the file credential. Generally modify callers of fo_stat() to pass in td->td_ucred rather than fp->f_cred, which was redundantly provided via the fp argument. This set of modifications also permits threads to perform these operations on behalf of another thread without modifying their credential. Trickle this change down into fo_stat/poll() implementations: - badfo_poll(), badfo_stat(): modify/add arguments. - kqueue_poll(), kqueue_stat(): modify arguments. - pipe_poll(), pipe_stat(): modify/add arguments, pass active_cred to MAC checks rather than td->td_ucred. - soo_poll(), soo_stat(): modify/add arguments, pass fp->f_cred rather than cred to pru_sopoll() to maintain current semantics. - sopoll(): moidfy arguments. - vn_poll(), vn_statfile(): modify/add arguments, pass new arguments to vn_stat(). Pass active_cred to MAC and fp->f_cred to VOP_POLL() to maintian current semantics. - vn_close(): rename cred to file_cred to reflect reality while I'm here. - vn_stat(): Add active_cred and file_cred arguments to vn_stat() and consumers so that this distinction is maintained at the VFS as well as 'struct file' layer. Pass active_cred instead of td->td_ucred to MAC and to VOP_GETATTR() to maintain current semantics. - fifofs: modify the creation of a "filetemp" so that the file credential is properly initialized and can be used in the socket code if desired. Pass ap->a_td->td_ucred as the active credential to soo_poll(). If we teach the vnop interface about the distinction between file and active credentials, we would use the active credential here. Note that current inconsistent passing of active_cred vs. file_cred to VOP's is maintained. It's not clear why GETATTR would be authorized using active_cred while POLL would be authorized using file_cred at the file system level. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-08-16 12:52:03 +00:00
td->td_ucred, td);
if (fds->revents != 0)
n++;
}
}
}
Replace custom file descriptor array sleep lock constructed using a mutex and flags with an sxlock. This leads to a significant and measurable performance improvement as a result of access to shared locking for frequent lookup operations, reduced general overhead, and reduced overhead in the event of contention. All of these are imported for threaded applications where simultaneous access to a shared file descriptor array occurs frequently. Kris has reported 2x-4x transaction rate improvements on 8-core MySQL benchmarks; smaller improvements can be expected for many workloads as a result of reduced overhead. - Generally eliminate the distinction between "fast" and regular acquisisition of the filedesc lock; the plan is that they will now all be fast. Change all locking instances to either shared or exclusive locks. - Correct a bug (pointed out by kib) in fdfree() where previously msleep() was called without the mutex held; sx_sleep() is now always called with the sxlock held exclusively. - Universally hold the struct file lock over changes to struct file, rather than the filedesc lock or no lock. Always update the f_ops field last. A further memory barrier is required here in the future (discussed with jhb). - Improve locking and reference management in linux_at(), which fails to properly acquire vnode references before using vnode pointers. Annotate improper use of vn_fullpath(), which will be replaced at a future date. In fcntl(), we conservatively acquire an exclusive lock, even though in some cases a shared lock may be sufficient, which should be revisited. The dropping of the filedesc lock in fdgrowtable() is no longer required as the sxlock can be held over the sleep operation; we should consider removing that (pointed out by attilio). Tested by: kris Discussed with: jhb, kris, attilio, jeff
2007-04-04 09:11:34 +00:00
FILEDESC_SUNLOCK(fdp);
td->td_retval[0] = n;
return (0);
}
/*
* OpenBSD poll system call.
*
* XXX this isn't quite a true representation.. OpenBSD uses select ops.
*/
#ifndef _SYS_SYSPROTO_H_
struct openbsd_poll_args {
struct pollfd *fds;
u_int nfds;
int timeout;
};
#endif
int
openbsd_poll(td, uap)
register struct thread *td;
register struct openbsd_poll_args *uap;
{
return (poll(td, (struct poll_args *)uap));
}
/*
* XXX This was created specifically to support netncp and netsmb. This
* allows the caller to specify a socket to wait for events on. It returns
* 0 if any events matched and an error otherwise. There is no way to
* determine which events fired.
*/
int
selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td)
{
struct timeval atv, rtv, ttv;
int error, timo;
if (tvp != NULL) {
atv = *tvp;
if (itimerfix(&atv))
return (EINVAL);
getmicrouptime(&rtv);
timevaladd(&atv, &rtv);
} else {
atv.tv_sec = 0;
atv.tv_usec = 0;
}
timo = 0;
seltdinit(td);
/*
* Iterate until the timeout expires or the socket becomes ready.
*/
for (;;) {
selfdalloc(td, NULL);
error = sopoll(so, events, NULL, td);
/* error here is actually the ready events. */
if (error)
return (0);
if (atv.tv_sec || atv.tv_usec) {
getmicrouptime(&rtv);
if (timevalcmp(&rtv, &atv, >=)) {
seltdclear(td);
return (EWOULDBLOCK);
}
ttv = atv;
timevalsub(&ttv, &rtv);
timo = ttv.tv_sec > 24 * 60 * 60 ?
24 * 60 * 60 * hz : tvtohz(&ttv);
}
error = seltdwait(td, timo);
seltdclear(td);
if (error)
break;
}
/* XXX Duplicates ncp/smb behavior. */
if (error == ERESTART)
error = 0;
return (error);
}
/*
* Preallocate two selfds associated with 'cookie'. Some fo_poll routines
* have two select sets, one for read and another for write.
*/
static void
selfdalloc(struct thread *td, void *cookie)
{
struct seltd *stp;
stp = td->td_sel;
if (stp->st_free1 == NULL)
stp->st_free1 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO);
stp->st_free1->sf_td = stp;
stp->st_free1->sf_cookie = cookie;
if (stp->st_free2 == NULL)
stp->st_free2 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO);
stp->st_free2->sf_td = stp;
stp->st_free2->sf_cookie = cookie;
}
static void
selfdfree(struct seltd *stp, struct selfd *sfp)
{
STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link);
mtx_lock(sfp->sf_mtx);
if (sfp->sf_si)
TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads);
mtx_unlock(sfp->sf_mtx);
uma_zfree(selfd_zone, sfp);
}
1994-05-24 10:09:53 +00:00
/*
* Record a select request.
*/
void
selrecord(selector, sip)
struct thread *selector;
1994-05-24 10:09:53 +00:00
struct selinfo *sip;
{
struct selfd *sfp;
struct seltd *stp;
struct mtx *mtxp;
1994-05-24 10:09:53 +00:00
stp = selector->td_sel;
/*
* Don't record when doing a rescan.
*/
if (stp->st_flags & SELTD_RESCAN)
return;
/*
* Grab one of the preallocated descriptors.
*/
sfp = NULL;
if ((sfp = stp->st_free1) != NULL)
stp->st_free1 = NULL;
else if ((sfp = stp->st_free2) != NULL)
stp->st_free2 = NULL;
else
panic("selrecord: No free selfd on selq");
mtxp = mtx_pool_find(mtxpool_sleep, sip);
/*
* Initialize the sfp and queue it in the thread.
*/
sfp->sf_si = sip;
sfp->sf_mtx = mtxp;
STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link);
/*
* Now that we've locked the sip, check for initialization.
*/
mtx_lock(mtxp);
if (sip->si_mtx == NULL) {
sip->si_mtx = mtxp;
TAILQ_INIT(&sip->si_tdlist);
}
/*
* Add this thread to the list of selfds listening on this selinfo.
*/
TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads);
mtx_unlock(sip->si_mtx);
1994-05-24 10:09:53 +00:00
}
/* Wake up a selecting thread. */
void
selwakeup(sip)
struct selinfo *sip;
{
doselwakeup(sip, -1);
}
/* Wake up a selecting thread, and set its priority. */
void
selwakeuppri(sip, pri)
struct selinfo *sip;
int pri;
{
doselwakeup(sip, pri);
}
1994-05-24 10:09:53 +00:00
/*
* Do a wakeup when a selectable event occurs.
*/
static void
doselwakeup(sip, pri)
struct selinfo *sip;
int pri;
1994-05-24 10:09:53 +00:00
{
struct selfd *sfp;
struct selfd *sfn;
struct seltd *stp;
1994-05-24 10:09:53 +00:00
/* If it's not initialized there can't be any waiters. */
if (sip->si_mtx == NULL)
return;
/*
* Locking the selinfo locks all selfds associated with it.
*/
mtx_lock(sip->si_mtx);
TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) {
/*
* Once we remove this sfp from the list and clear the
* sf_si seltdclear will know to ignore this si.
*/
TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads);
sfp->sf_si = NULL;
stp = sfp->sf_td;
mtx_lock(&stp->st_mtx);
stp->st_flags |= SELTD_PENDING;
cv_broadcastpri(&stp->st_wait, pri);
mtx_unlock(&stp->st_mtx);
1994-05-24 10:09:53 +00:00
}
mtx_unlock(sip->si_mtx);
1994-05-24 10:09:53 +00:00
}
static void
seltdinit(struct thread *td)
{
struct seltd *stp;
if ((stp = td->td_sel) != NULL)
goto out;
td->td_sel = stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO);
mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF);
cv_init(&stp->st_wait, "select");
out:
stp->st_flags = 0;
STAILQ_INIT(&stp->st_selq);
}
static int
seltdwait(struct thread *td, int timo)
{
struct seltd *stp;
int error;
stp = td->td_sel;
/*
* An event of interest may occur while we do not hold the seltd
* locked so check the pending flag before we sleep.
*/
mtx_lock(&stp->st_mtx);
/*
* Any further calls to selrecord will be a rescan.
*/
stp->st_flags |= SELTD_RESCAN;
if (stp->st_flags & SELTD_PENDING) {
mtx_unlock(&stp->st_mtx);
return (0);
}
if (timo > 0)
error = cv_timedwait_sig(&stp->st_wait, &stp->st_mtx, timo);
else
error = cv_wait_sig(&stp->st_wait, &stp->st_mtx);
mtx_unlock(&stp->st_mtx);
return (error);
}
void
seltdfini(struct thread *td)
{
struct seltd *stp;
stp = td->td_sel;
if (stp == NULL)
return;
if (stp->st_free1)
uma_zfree(selfd_zone, stp->st_free1);
if (stp->st_free2)
uma_zfree(selfd_zone, stp->st_free2);
td->td_sel = NULL;
free(stp, M_SELECT);
}
/*
* Remove the references to the thread from all of the objects we were
* polling.
*/
static void
seltdclear(struct thread *td)
{
struct seltd *stp;
struct selfd *sfp;
struct selfd *sfn;
stp = td->td_sel;
STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn)
selfdfree(stp, sfp);
stp->st_flags = 0;
}
static void selectinit(void *);
SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL);
static void
selectinit(void *dummy __unused)
{
selfd_zone = uma_zcreate("selfd", sizeof(struct selfd), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, 0);
}