freebsd-skq/sys/dev/stge/if_stge.c

2738 lines
67 KiB
C
Raw Normal View History

/* $NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $ */
/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for the Sundance Tech. TC9021 10/100/1000
* Ethernet controller.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/stge/if_stgereg.h>
#define STGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
MODULE_DEPEND(stge, pci, 1, 1, 1);
MODULE_DEPEND(stge, ether, 1, 1, 1);
MODULE_DEPEND(stge, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/*
* Devices supported by this driver.
*/
static struct stge_product {
uint16_t stge_vendorid;
uint16_t stge_deviceid;
const char *stge_name;
} stge_products[] = {
{ VENDOR_SUNDANCETI, DEVICEID_SUNDANCETI_ST1023,
"Sundance ST-1023 Gigabit Ethernet" },
{ VENDOR_SUNDANCETI, DEVICEID_SUNDANCETI_ST2021,
"Sundance ST-2021 Gigabit Ethernet" },
{ VENDOR_TAMARACK, DEVICEID_TAMARACK_TC9021,
"Tamarack TC9021 Gigabit Ethernet" },
{ VENDOR_TAMARACK, DEVICEID_TAMARACK_TC9021_ALT,
"Tamarack TC9021 Gigabit Ethernet" },
/*
* The Sundance sample boards use the Sundance vendor ID,
* but the Tamarack product ID.
*/
{ VENDOR_SUNDANCETI, DEVICEID_TAMARACK_TC9021,
"Sundance TC9021 Gigabit Ethernet" },
{ VENDOR_SUNDANCETI, DEVICEID_TAMARACK_TC9021_ALT,
"Sundance TC9021 Gigabit Ethernet" },
{ VENDOR_DLINK, DEVICEID_DLINK_DL4000,
"D-Link DL-4000 Gigabit Ethernet" },
{ VENDOR_ANTARES, DEVICEID_ANTARES_TC9021,
"Antares Gigabit Ethernet" }
};
static int stge_probe(device_t);
static int stge_attach(device_t);
static int stge_detach(device_t);
static int stge_shutdown(device_t);
static int stge_suspend(device_t);
static int stge_resume(device_t);
static int stge_encap(struct stge_softc *, struct mbuf **);
static void stge_start(struct ifnet *);
static void stge_start_locked(struct ifnet *);
static void stge_watchdog(struct stge_softc *);
static int stge_ioctl(struct ifnet *, u_long, caddr_t);
static void stge_init(void *);
static void stge_init_locked(struct stge_softc *);
static void stge_vlan_setup(struct stge_softc *);
static void stge_stop(struct stge_softc *);
static void stge_start_tx(struct stge_softc *);
static void stge_start_rx(struct stge_softc *);
static void stge_stop_tx(struct stge_softc *);
static void stge_stop_rx(struct stge_softc *);
static void stge_reset(struct stge_softc *, uint32_t);
static int stge_eeprom_wait(struct stge_softc *);
static void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
static void stge_tick(void *);
static void stge_stats_update(struct stge_softc *);
static void stge_set_filter(struct stge_softc *);
static void stge_set_multi(struct stge_softc *);
static void stge_link_task(void *, int);
static void stge_intr(void *);
static __inline int stge_tx_error(struct stge_softc *);
static void stge_txeof(struct stge_softc *);
static void stge_rxeof(struct stge_softc *);
static __inline void stge_discard_rxbuf(struct stge_softc *, int);
static int stge_newbuf(struct stge_softc *, int);
#ifndef __NO_STRICT_ALIGNMENT
static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
#endif
static void stge_mii_sync(struct stge_softc *);
static void stge_mii_send(struct stge_softc *, uint32_t, int);
static int stge_mii_readreg(struct stge_softc *, struct stge_mii_frame *);
static int stge_mii_writereg(struct stge_softc *, struct stge_mii_frame *);
static int stge_miibus_readreg(device_t, int, int);
static int stge_miibus_writereg(device_t, int, int, int);
static void stge_miibus_statchg(device_t);
static int stge_mediachange(struct ifnet *);
static void stge_mediastatus(struct ifnet *, struct ifmediareq *);
static void stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int stge_dma_alloc(struct stge_softc *);
static void stge_dma_free(struct stge_softc *);
static void stge_dma_wait(struct stge_softc *);
static void stge_init_tx_ring(struct stge_softc *);
static int stge_init_rx_ring(struct stge_softc *);
#ifdef DEVICE_POLLING
static void stge_poll(struct ifnet *, enum poll_cmd, int);
#endif
static void stge_setwol(struct stge_softc *);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
static device_method_t stge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, stge_probe),
DEVMETHOD(device_attach, stge_attach),
DEVMETHOD(device_detach, stge_detach),
DEVMETHOD(device_shutdown, stge_shutdown),
DEVMETHOD(device_suspend, stge_suspend),
DEVMETHOD(device_resume, stge_resume),
/* MII interface */
DEVMETHOD(miibus_readreg, stge_miibus_readreg),
DEVMETHOD(miibus_writereg, stge_miibus_writereg),
DEVMETHOD(miibus_statchg, stge_miibus_statchg),
{ 0, 0 }
};
static driver_t stge_driver = {
"stge",
stge_methods,
sizeof(struct stge_softc)
};
static devclass_t stge_devclass;
DRIVER_MODULE(stge, pci, stge_driver, stge_devclass, 0, 0);
DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
static struct resource_spec stge_res_spec_io[] = {
{ SYS_RES_IOPORT, PCIR_BAR(0), RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
static struct resource_spec stge_res_spec_mem[] = {
{ SYS_RES_MEMORY, PCIR_BAR(1), RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
#define MII_SET(x) \
CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) | (x))
#define MII_CLR(x) \
CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) & ~(x))
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void
stge_mii_sync(struct stge_softc *sc)
{
int i;
MII_SET(PC_MgmtDir | PC_MgmtData);
for (i = 0; i < 32; i++) {
MII_SET(PC_MgmtClk);
DELAY(1);
MII_CLR(PC_MgmtClk);
DELAY(1);
}
}
/*
* Clock a series of bits through the MII.
*/
static void
stge_mii_send(struct stge_softc *sc, uint32_t bits, int cnt)
{
int i;
MII_CLR(PC_MgmtClk);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i)
MII_SET(PC_MgmtData);
else
MII_CLR(PC_MgmtData);
DELAY(1);
MII_CLR(PC_MgmtClk);
DELAY(1);
MII_SET(PC_MgmtClk);
}
}
/*
* Read an PHY register through the MII.
*/
static int
stge_mii_readreg(struct stge_softc *sc, struct stge_mii_frame *frame)
{
int i, ack;
/*
* Set up frame for RX.
*/
frame->mii_stdelim = STGE_MII_STARTDELIM;
frame->mii_opcode = STGE_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
CSR_WRITE_1(sc, STGE_PhyCtrl, 0 | sc->sc_PhyCtrl);
/*
* Turn on data xmit.
*/
MII_SET(PC_MgmtDir);
stge_mii_sync(sc);
/*
* Send command/address info.
*/
stge_mii_send(sc, frame->mii_stdelim, 2);
stge_mii_send(sc, frame->mii_opcode, 2);
stge_mii_send(sc, frame->mii_phyaddr, 5);
stge_mii_send(sc, frame->mii_regaddr, 5);
/* Turn off xmit. */
MII_CLR(PC_MgmtDir);
/* Idle bit */
MII_CLR((PC_MgmtClk | PC_MgmtData));
DELAY(1);
MII_SET(PC_MgmtClk);
DELAY(1);
/* Check for ack */
MII_CLR(PC_MgmtClk);
DELAY(1);
ack = CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData;
MII_SET(PC_MgmtClk);
DELAY(1);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
MII_CLR(PC_MgmtClk);
DELAY(1);
MII_SET(PC_MgmtClk);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
MII_CLR(PC_MgmtClk);
DELAY(1);
if (!ack) {
if (CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData)
frame->mii_data |= i;
DELAY(1);
}
MII_SET(PC_MgmtClk);
DELAY(1);
}
fail:
MII_CLR(PC_MgmtClk);
DELAY(1);
MII_SET(PC_MgmtClk);
DELAY(1);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int
stge_mii_writereg(struct stge_softc *sc, struct stge_mii_frame *frame)
{
/*
* Set up frame for TX.
*/
frame->mii_stdelim = STGE_MII_STARTDELIM;
frame->mii_opcode = STGE_MII_WRITEOP;
frame->mii_turnaround = STGE_MII_TURNAROUND;
/*
* Turn on data output.
*/
MII_SET(PC_MgmtDir);
stge_mii_sync(sc);
stge_mii_send(sc, frame->mii_stdelim, 2);
stge_mii_send(sc, frame->mii_opcode, 2);
stge_mii_send(sc, frame->mii_phyaddr, 5);
stge_mii_send(sc, frame->mii_regaddr, 5);
stge_mii_send(sc, frame->mii_turnaround, 2);
stge_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
MII_SET(PC_MgmtClk);
DELAY(1);
MII_CLR(PC_MgmtClk);
DELAY(1);
/*
* Turn off xmit.
*/
MII_CLR(PC_MgmtDir);
return(0);
}
/*
* sc_miibus_readreg: [mii interface function]
*
* Read a PHY register on the MII of the TC9021.
*/
static int
stge_miibus_readreg(device_t dev, int phy, int reg)
{
struct stge_softc *sc;
struct stge_mii_frame frame;
int error;
sc = device_get_softc(dev);
if (reg == STGE_PhyCtrl) {
/* XXX allow ip1000phy read STGE_PhyCtrl register. */
STGE_MII_LOCK(sc);
error = CSR_READ_1(sc, STGE_PhyCtrl);
STGE_MII_UNLOCK(sc);
return (error);
}
bzero(&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
STGE_MII_LOCK(sc);
error = stge_mii_readreg(sc, &frame);
STGE_MII_UNLOCK(sc);
if (error != 0) {
/* Don't show errors for PHY probe request */
if (reg != 1)
device_printf(sc->sc_dev, "phy read fail\n");
return (0);
}
return (frame.mii_data);
}
/*
* stge_miibus_writereg: [mii interface function]
*
* Write a PHY register on the MII of the TC9021.
*/
static int
stge_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct stge_softc *sc;
struct stge_mii_frame frame;
int error;
sc = device_get_softc(dev);
bzero(&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = val;
STGE_MII_LOCK(sc);
error = stge_mii_writereg(sc, &frame);
STGE_MII_UNLOCK(sc);
if (error != 0)
device_printf(sc->sc_dev, "phy write fail\n");
return (0);
}
/*
* stge_miibus_statchg: [mii interface function]
*
* Callback from MII layer when media changes.
*/
static void
stge_miibus_statchg(device_t dev)
{
struct stge_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
}
/*
* stge_mediastatus: [ifmedia interface function]
*
* Get the current interface media status.
*/
static void
stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct stge_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->sc_miibus);
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
}
/*
* stge_mediachange: [ifmedia interface function]
*
* Set hardware to newly-selected media.
*/
static int
stge_mediachange(struct ifnet *ifp)
{
struct stge_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->sc_miibus);
mii_mediachg(mii);
return (0);
}
static int
stge_eeprom_wait(struct stge_softc *sc)
{
int i;
for (i = 0; i < STGE_TIMEOUT; i++) {
DELAY(1000);
if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
return (0);
}
return (1);
}
/*
* stge_read_eeprom:
*
* Read data from the serial EEPROM.
*/
static void
stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
{
if (stge_eeprom_wait(sc))
device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
CSR_WRITE_2(sc, STGE_EepromCtrl,
EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
if (stge_eeprom_wait(sc))
device_printf(sc->sc_dev, "EEPROM read timed out\n");
*data = CSR_READ_2(sc, STGE_EepromData);
}
static int
stge_probe(device_t dev)
{
struct stge_product *sp;
int i;
uint16_t vendor, devid;
vendor = pci_get_vendor(dev);
devid = pci_get_device(dev);
sp = stge_products;
for (i = 0; i < sizeof(stge_products)/sizeof(stge_products[0]);
i++, sp++) {
if (vendor == sp->stge_vendorid &&
devid == sp->stge_deviceid) {
device_set_desc(dev, sp->stge_name);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static int
stge_attach(device_t dev)
{
struct stge_softc *sc;
struct ifnet *ifp;
uint8_t enaddr[ETHER_ADDR_LEN];
int error, i;
uint16_t cmd;
uint32_t val;
error = 0;
sc = device_get_softc(dev);
sc->sc_dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
/*
* Map the device.
*/
pci_enable_busmaster(dev);
cmd = pci_read_config(dev, PCIR_COMMAND, 2);
val = pci_read_config(dev, PCIR_BAR(1), 4);
if ((val & 0x01) != 0)
sc->sc_spec = stge_res_spec_mem;
else {
val = pci_read_config(dev, PCIR_BAR(0), 4);
if ((val & 0x01) == 0) {
device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
error = ENXIO;
goto fail;
}
sc->sc_spec = stge_res_spec_io;
}
error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
if (error != 0) {
device_printf(dev, "couldn't allocate %s resources\n",
sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
goto fail;
}
sc->sc_rev = pci_get_revid(dev);
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"rxint_nframe", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_nframe, 0,
sysctl_hw_stge_rxint_nframe, "I", "stge rx interrupt nframe");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"rxint_dmawait", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_dmawait, 0,
sysctl_hw_stge_rxint_dmawait, "I", "stge rx interrupt dmawait");
/* Pull in device tunables. */
sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
"rxint_nframe", &sc->sc_rxint_nframe);
if (error == 0) {
if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
device_printf(dev, "rxint_nframe value out of range; "
"using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
}
}
sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
"rxint_dmawait", &sc->sc_rxint_dmawait);
if (error == 0) {
if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
device_printf(dev, "rxint_dmawait value out of range; "
"using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
}
}
if ((error = stge_dma_alloc(sc) != 0))
goto fail;
/*
* Determine if we're copper or fiber. It affects how we
* reset the card.
*/
if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
sc->sc_usefiber = 1;
else
sc->sc_usefiber = 0;
/* Load LED configuration from EEPROM. */
stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
/*
* Reset the chip to a known state.
*/
STGE_LOCK(sc);
stge_reset(sc, STGE_RESET_FULL);
STGE_UNLOCK(sc);
/*
* Reading the station address from the EEPROM doesn't seem
* to work, at least on my sample boards. Instead, since
* the reset sequence does AutoInit, read it from the station
* address registers. For Sundance 1023 you can only read it
* from EEPROM.
*/
if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
uint16_t v;
v = CSR_READ_2(sc, STGE_StationAddress0);
enaddr[0] = v & 0xff;
enaddr[1] = v >> 8;
v = CSR_READ_2(sc, STGE_StationAddress1);
enaddr[2] = v & 0xff;
enaddr[3] = v >> 8;
v = CSR_READ_2(sc, STGE_StationAddress2);
enaddr[4] = v & 0xff;
enaddr[5] = v >> 8;
sc->sc_stge1023 = 0;
} else {
uint16_t myaddr[ETHER_ADDR_LEN / 2];
for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
&myaddr[i]);
myaddr[i] = le16toh(myaddr[i]);
}
bcopy(myaddr, enaddr, sizeof(enaddr));
sc->sc_stge1023 = 1;
}
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(sc->sc_dev, "failed to if_alloc()\n");
error = ENXIO;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = stge_ioctl;
ifp->if_start = stge_start;
ifp->if_timer = 0;
ifp->if_watchdog = NULL;
ifp->if_init = stge_init;
ifp->if_mtu = ETHERMTU;
ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
/* Revision B3 and earlier chips have checksum bug. */
if (sc->sc_rev >= 0x0c) {
ifp->if_hwassist = STGE_CSUM_FEATURES;
ifp->if_capabilities = IFCAP_HWCSUM;
} else {
ifp->if_hwassist = 0;
ifp->if_capabilities = 0;
}
ifp->if_capabilities |= IFCAP_WOL_MAGIC;
ifp->if_capenable = ifp->if_capabilities;
/*
* Read some important bits from the PhyCtrl register.
*/
sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
(PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
/* Set up MII bus. */
if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, stge_mediachange,
stge_mediastatus)) != 0) {
device_printf(sc->sc_dev, "no PHY found!\n");
goto fail;
}
ether_ifattach(ifp, enaddr);
/* VLAN capability setup */
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
if (sc->sc_rev >= 0x0c)
ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/*
* Tell the upper layer(s) we support long frames.
* Must appear after the call to ether_ifattach() because
* ether_ifattach() sets ifi_hdrlen to the default value.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
/*
* The manual recommends disabling early transmit, so we
* do. It's disabled anyway, if using IP checksumming,
* since the entire packet must be in the FIFO in order
* for the chip to perform the checksum.
*/
sc->sc_txthresh = 0x0fff;
/*
* Disable MWI if the PCI layer tells us to.
*/
sc->sc_DMACtrl = 0;
if ((cmd & PCIM_CMD_MWRICEN) == 0)
sc->sc_DMACtrl |= DMAC_MWIDisable;
/*
* Hookup IRQ
*/
error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
NULL, stge_intr, sc, &sc->sc_ih);
if (error != 0) {
ether_ifdetach(ifp);
device_printf(sc->sc_dev, "couldn't set up IRQ\n");
sc->sc_ifp = NULL;
goto fail;
}
fail:
if (error != 0)
stge_detach(dev);
return (error);
}
static int
stge_detach(device_t dev)
{
struct stge_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->sc_ifp;
#ifdef DEVICE_POLLING
if (ifp && ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
if (device_is_attached(dev)) {
STGE_LOCK(sc);
/* XXX */
sc->sc_detach = 1;
stge_stop(sc);
STGE_UNLOCK(sc);
callout_drain(&sc->sc_tick_ch);
taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
ether_ifdetach(ifp);
}
if (sc->sc_miibus != NULL) {
device_delete_child(dev, sc->sc_miibus);
sc->sc_miibus = NULL;
}
bus_generic_detach(dev);
stge_dma_free(sc);
if (ifp != NULL) {
if_free(ifp);
sc->sc_ifp = NULL;
}
if (sc->sc_ih) {
bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
sc->sc_ih = NULL;
}
bus_release_resources(dev, sc->sc_spec, sc->sc_res);
mtx_destroy(&sc->sc_mii_mtx);
mtx_destroy(&sc->sc_mtx);
return (0);
}
struct stge_dmamap_arg {
bus_addr_t stge_busaddr;
};
static void
stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct stge_dmamap_arg *ctx;
if (error != 0)
return;
ctx = (struct stge_dmamap_arg *)arg;
ctx->stge_busaddr = segs[0].ds_addr;
}
static int
stge_dma_alloc(struct stge_softc *sc)
{
struct stge_dmamap_arg ctx;
struct stge_txdesc *txd;
struct stge_rxdesc *rxd;
int error, i;
/* create parent tag. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
1, 0, /* algnmnt, boundary */
STGE_DMA_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sc_cdata.stge_parent_tag);
if (error != 0) {
device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
goto fail;
}
/* create tag for Tx ring. */
error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
STGE_RING_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
STGE_TX_RING_SZ, /* maxsize */
1, /* nsegments */
STGE_TX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sc_cdata.stge_tx_ring_tag);
if (error != 0) {
device_printf(sc->sc_dev,
"failed to allocate Tx ring DMA tag\n");
goto fail;
}
/* create tag for Rx ring. */
error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
STGE_RING_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
STGE_RX_RING_SZ, /* maxsize */
1, /* nsegments */
STGE_RX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sc_cdata.stge_rx_ring_tag);
if (error != 0) {
device_printf(sc->sc_dev,
"failed to allocate Rx ring DMA tag\n");
goto fail;
}
/* create tag for Tx buffers. */
error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * STGE_MAXTXSEGS, /* maxsize */
STGE_MAXTXSEGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sc_cdata.stge_tx_tag);
if (error != 0) {
device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
goto fail;
}
/* create tag for Rx buffers. */
error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sc_cdata.stge_rx_tag);
if (error != 0) {
device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
goto fail;
}
/* allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
(void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
&sc->sc_cdata.stge_tx_ring_map);
if (error != 0) {
device_printf(sc->sc_dev,
"failed to allocate DMA'able memory for Tx ring\n");
goto fail;
}
ctx.stge_busaddr = 0;
error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
if (error != 0 || ctx.stge_busaddr == 0) {
device_printf(sc->sc_dev,
"failed to load DMA'able memory for Tx ring\n");
goto fail;
}
sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
/* allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
(void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
&sc->sc_cdata.stge_rx_ring_map);
if (error != 0) {
device_printf(sc->sc_dev,
"failed to allocate DMA'able memory for Rx ring\n");
goto fail;
}
ctx.stge_busaddr = 0;
error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
if (error != 0 || ctx.stge_busaddr == 0) {
device_printf(sc->sc_dev,
"failed to load DMA'able memory for Rx ring\n");
goto fail;
}
sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
/* create DMA maps for Tx buffers. */
for (i = 0; i < STGE_TX_RING_CNT; i++) {
txd = &sc->sc_cdata.stge_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = 0;
error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->sc_dev,
"failed to create Tx dmamap\n");
goto fail;
}
}
/* create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
&sc->sc_cdata.stge_rx_sparemap)) != 0) {
device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
goto fail;
}
for (i = 0; i < STGE_RX_RING_CNT; i++) {
rxd = &sc->sc_cdata.stge_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = 0;
error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->sc_dev,
"failed to create Rx dmamap\n");
goto fail;
}
}
fail:
return (error);
}
static void
stge_dma_free(struct stge_softc *sc)
{
struct stge_txdesc *txd;
struct stge_rxdesc *rxd;
int i;
/* Tx ring */
if (sc->sc_cdata.stge_tx_ring_tag) {
if (sc->sc_cdata.stge_tx_ring_map)
bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
sc->sc_cdata.stge_tx_ring_map);
if (sc->sc_cdata.stge_tx_ring_map &&
sc->sc_rdata.stge_tx_ring)
bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
sc->sc_rdata.stge_tx_ring,
sc->sc_cdata.stge_tx_ring_map);
sc->sc_rdata.stge_tx_ring = NULL;
sc->sc_cdata.stge_tx_ring_map = 0;
bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
sc->sc_cdata.stge_tx_ring_tag = NULL;
}
/* Rx ring */
if (sc->sc_cdata.stge_rx_ring_tag) {
if (sc->sc_cdata.stge_rx_ring_map)
bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
sc->sc_cdata.stge_rx_ring_map);
if (sc->sc_cdata.stge_rx_ring_map &&
sc->sc_rdata.stge_rx_ring)
bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
sc->sc_rdata.stge_rx_ring,
sc->sc_cdata.stge_rx_ring_map);
sc->sc_rdata.stge_rx_ring = NULL;
sc->sc_cdata.stge_rx_ring_map = 0;
bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
sc->sc_cdata.stge_rx_ring_tag = NULL;
}
/* Tx buffers */
if (sc->sc_cdata.stge_tx_tag) {
for (i = 0; i < STGE_TX_RING_CNT; i++) {
txd = &sc->sc_cdata.stge_txdesc[i];
if (txd->tx_dmamap) {
bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = 0;
}
}
bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
sc->sc_cdata.stge_tx_tag = NULL;
}
/* Rx buffers */
if (sc->sc_cdata.stge_rx_tag) {
for (i = 0; i < STGE_RX_RING_CNT; i++) {
rxd = &sc->sc_cdata.stge_rxdesc[i];
if (rxd->rx_dmamap) {
bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = 0;
}
}
if (sc->sc_cdata.stge_rx_sparemap) {
bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
sc->sc_cdata.stge_rx_sparemap);
sc->sc_cdata.stge_rx_sparemap = 0;
}
bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
sc->sc_cdata.stge_rx_tag = NULL;
}
if (sc->sc_cdata.stge_parent_tag) {
bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
sc->sc_cdata.stge_parent_tag = NULL;
}
}
/*
* stge_shutdown:
*
* Make sure the interface is stopped at reboot time.
*/
static int
stge_shutdown(device_t dev)
{
return (stge_suspend(dev));
}
static void
stge_setwol(struct stge_softc *sc)
{
struct ifnet *ifp;
uint8_t v;
STGE_LOCK_ASSERT(sc);
ifp = sc->sc_ifp;
v = CSR_READ_1(sc, STGE_WakeEvent);
/* Disable all WOL bits. */
v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
WE_WakeOnLanEnable);
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
CSR_WRITE_1(sc, STGE_WakeEvent, v);
/* Reset Tx and prevent transmission. */
CSR_WRITE_4(sc, STGE_AsicCtrl,
CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
/*
* TC9021 automatically reset link speed to 100Mbps when it's put
* into sleep so there is no need to try to resetting link speed.
*/
}
static int
stge_suspend(device_t dev)
{
struct stge_softc *sc;
sc = device_get_softc(dev);
STGE_LOCK(sc);
stge_stop(sc);
sc->sc_suspended = 1;
stge_setwol(sc);
STGE_UNLOCK(sc);
return (0);
}
static int
stge_resume(device_t dev)
{
struct stge_softc *sc;
struct ifnet *ifp;
uint8_t v;
sc = device_get_softc(dev);
STGE_LOCK(sc);
/*
* Clear WOL bits, so special frames wouldn't interfere
* normal Rx operation anymore.
*/
v = CSR_READ_1(sc, STGE_WakeEvent);
v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
WE_WakeOnLanEnable);
CSR_WRITE_1(sc, STGE_WakeEvent, v);
ifp = sc->sc_ifp;
if (ifp->if_flags & IFF_UP)
stge_init_locked(sc);
sc->sc_suspended = 0;
STGE_UNLOCK(sc);
return (0);
}
static void
stge_dma_wait(struct stge_softc *sc)
{
int i;
for (i = 0; i < STGE_TIMEOUT; i++) {
DELAY(2);
if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
break;
}
if (i == STGE_TIMEOUT)
device_printf(sc->sc_dev, "DMA wait timed out\n");
}
static int
stge_encap(struct stge_softc *sc, struct mbuf **m_head)
{
struct stge_txdesc *txd;
struct stge_tfd *tfd;
struct mbuf *m;
bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
int error, i, nsegs, si;
uint64_t csum_flags, tfc;
STGE_LOCK_ASSERT(sc);
if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
return (ENOBUFS);
error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_defrag(*m_head, M_DONTWAIT);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
m = *m_head;
csum_flags = 0;
if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
if (m->m_pkthdr.csum_flags & CSUM_IP)
csum_flags |= TFD_IPChecksumEnable;
if (m->m_pkthdr.csum_flags & CSUM_TCP)
csum_flags |= TFD_TCPChecksumEnable;
else if (m->m_pkthdr.csum_flags & CSUM_UDP)
csum_flags |= TFD_UDPChecksumEnable;
}
si = sc->sc_cdata.stge_tx_prod;
tfd = &sc->sc_rdata.stge_tx_ring[si];
for (i = 0; i < nsegs; i++)
tfd->tfd_frags[i].frag_word0 =
htole64(FRAG_ADDR(txsegs[i].ds_addr) |
FRAG_LEN(txsegs[i].ds_len));
sc->sc_cdata.stge_tx_cnt++;
tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
TFD_FragCount(nsegs) | csum_flags;
if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
tfc |= TFD_TxDMAIndicate;
/* Update producer index. */
sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
/* Check if we have a VLAN tag to insert. */
if (m->m_flags & M_VLANTAG)
tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
tfd->tfd_control = htole64(tfc);
/* Update Tx Queue. */
STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
txd->tx_m = m;
/* Sync descriptors. */
bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
sc->sc_cdata.stge_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* stge_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
static void
stge_start(struct ifnet *ifp)
{
struct stge_softc *sc;
sc = ifp->if_softc;
STGE_LOCK(sc);
stge_start_locked(ifp);
STGE_UNLOCK(sc);
}
static void
stge_start_locked(struct ifnet *ifp)
{
struct stge_softc *sc;
struct mbuf *m_head;
int enq;
sc = ifp->if_softc;
STGE_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || sc->sc_link == 0)
return;
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (stge_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
/* Transmit */
CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
/* Set a timeout in case the chip goes out to lunch. */
sc->sc_watchdog_timer = 5;
}
}
/*
* stge_watchdog:
*
* Watchdog timer handler.
*/
static void
stge_watchdog(struct stge_softc *sc)
{
struct ifnet *ifp;
STGE_LOCK_ASSERT(sc);
if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
return;
ifp = sc->sc_ifp;
if_printf(sc->sc_ifp, "device timeout\n");
ifp->if_oerrors++;
stge_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
stge_start_locked(ifp);
}
/*
* stge_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
static int
stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct stge_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu) {
ifp->if_mtu = ifr->ifr_mtu;
STGE_LOCK(sc);
stge_init_locked(sc);
STGE_UNLOCK(sc);
}
break;
case SIOCSIFFLAGS:
STGE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc->sc_if_flags)
& IFF_PROMISC) != 0)
stge_set_filter(sc);
} else {
if (sc->sc_detach == 0)
stge_init_locked(sc);
}
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
stge_stop(sc);
}
sc->sc_if_flags = ifp->if_flags;
STGE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
STGE_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
stge_set_multi(sc);
STGE_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->sc_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if ((mask & IFCAP_POLLING) != 0) {
if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
error = ether_poll_register(stge_poll, ifp);
if (error != 0)
break;
STGE_LOCK(sc);
CSR_WRITE_2(sc, STGE_IntEnable, 0);
ifp->if_capenable |= IFCAP_POLLING;
STGE_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
if (error != 0)
break;
STGE_LOCK(sc);
CSR_WRITE_2(sc, STGE_IntEnable,
sc->sc_IntEnable);
ifp->if_capenable &= ~IFCAP_POLLING;
STGE_UNLOCK(sc);
}
}
#endif
if ((mask & IFCAP_HWCSUM) != 0) {
ifp->if_capenable ^= IFCAP_HWCSUM;
if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
(IFCAP_HWCSUM & ifp->if_capabilities) != 0)
ifp->if_hwassist = STGE_CSUM_FEATURES;
else
ifp->if_hwassist = 0;
}
if ((mask & IFCAP_WOL) != 0 &&
(ifp->if_capabilities & IFCAP_WOL) != 0) {
if ((mask & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
}
if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
STGE_LOCK(sc);
stge_vlan_setup(sc);
STGE_UNLOCK(sc);
}
}
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
stge_link_task(void *arg, int pending)
{
struct stge_softc *sc;
struct mii_data *mii;
uint32_t v, ac;
int i;
sc = (struct stge_softc *)arg;
STGE_LOCK(sc);
mii = device_get_softc(sc->sc_miibus);
if (mii->mii_media_status & IFM_ACTIVE) {
if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
sc->sc_link = 1;
} else
sc->sc_link = 0;
sc->sc_MACCtrl = 0;
if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
sc->sc_MACCtrl |= MC_DuplexSelect;
if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) != 0)
sc->sc_MACCtrl |= MC_RxFlowControlEnable;
if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) != 0)
sc->sc_MACCtrl |= MC_TxFlowControlEnable;
/*
* Update STGE_MACCtrl register depending on link status.
* (duplex, flow control etc)
*/
v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
v |= sc->sc_MACCtrl;
CSR_WRITE_4(sc, STGE_MACCtrl, v);
if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
/* Duplex setting changed, reset Tx/Rx functions. */
ac = CSR_READ_4(sc, STGE_AsicCtrl);
ac |= AC_TxReset | AC_RxReset;
CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
for (i = 0; i < STGE_TIMEOUT; i++) {
DELAY(100);
if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
break;
}
if (i == STGE_TIMEOUT)
device_printf(sc->sc_dev, "reset failed to complete\n");
}
STGE_UNLOCK(sc);
}
static __inline int
stge_tx_error(struct stge_softc *sc)
{
uint32_t txstat;
int error;
for (error = 0;;) {
txstat = CSR_READ_4(sc, STGE_TxStatus);
if ((txstat & TS_TxComplete) == 0)
break;
/* Tx underrun */
if ((txstat & TS_TxUnderrun) != 0) {
/*
* XXX
* There should be a more better way to recover
* from Tx underrun instead of a full reset.
*/
if (sc->sc_nerr++ < STGE_MAXERR)
device_printf(sc->sc_dev, "Tx underrun, "
"resetting...\n");
if (sc->sc_nerr == STGE_MAXERR)
device_printf(sc->sc_dev, "too many errors; "
"not reporting any more\n");
error = -1;
break;
}
/* Maximum/Late collisions, Re-enable Tx MAC. */
if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
CSR_WRITE_4(sc, STGE_MACCtrl,
(CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
MC_TxEnable);
}
return (error);
}
/*
* stge_intr:
*
* Interrupt service routine.
*/
static void
stge_intr(void *arg)
{
struct stge_softc *sc;
struct ifnet *ifp;
int reinit;
uint16_t status;
sc = (struct stge_softc *)arg;
ifp = sc->sc_ifp;
STGE_LOCK(sc);
#ifdef DEVICE_POLLING
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
goto done_locked;
#endif
status = CSR_READ_2(sc, STGE_IntStatus);
if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
goto done_locked;
/* Disable interrupts. */
for (reinit = 0;;) {
status = CSR_READ_2(sc, STGE_IntStatusAck);
status &= sc->sc_IntEnable;
if (status == 0)
break;
/* Host interface errors. */
if ((status & IS_HostError) != 0) {
device_printf(sc->sc_dev,
"Host interface error, resetting...\n");
reinit = 1;
goto force_init;
}
/* Receive interrupts. */
if ((status & IS_RxDMAComplete) != 0) {
stge_rxeof(sc);
if ((status & IS_RFDListEnd) != 0)
CSR_WRITE_4(sc, STGE_DMACtrl,
DMAC_RxDMAPollNow);
}
/* Transmit interrupts. */
if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
stge_txeof(sc);
/* Transmission errors.*/
if ((status & IS_TxComplete) != 0) {
if ((reinit = stge_tx_error(sc)) != 0)
break;
}
}
force_init:
if (reinit != 0)
stge_init_locked(sc);
/* Re-enable interrupts. */
CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
/* Try to get more packets going. */
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
stge_start_locked(ifp);
done_locked:
STGE_UNLOCK(sc);
}
/*
* stge_txeof:
*
* Helper; handle transmit interrupts.
*/
static void
stge_txeof(struct stge_softc *sc)
{
struct ifnet *ifp;
struct stge_txdesc *txd;
uint64_t control;
int cons;
STGE_LOCK_ASSERT(sc);
ifp = sc->sc_ifp;
txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
if (txd == NULL)
return;
bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (cons = sc->sc_cdata.stge_tx_cons;;
cons = (cons + 1) % STGE_TX_RING_CNT) {
if (sc->sc_cdata.stge_tx_cnt <= 0)
break;
control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
if ((control & TFD_TFDDone) == 0)
break;
sc->sc_cdata.stge_tx_cnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
/* Output counter is updated with statistics register */
m_freem(txd->tx_m);
txd->tx_m = NULL;
STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
}
sc->sc_cdata.stge_tx_cons = cons;
if (sc->sc_cdata.stge_tx_cnt == 0)
sc->sc_watchdog_timer = 0;
bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
sc->sc_cdata.stge_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static __inline void
stge_discard_rxbuf(struct stge_softc *sc, int idx)
{
struct stge_rfd *rfd;
rfd = &sc->sc_rdata.stge_rx_ring[idx];
rfd->rfd_status = 0;
}
#ifndef __NO_STRICT_ALIGNMENT
/*
* It seems that TC9021's DMA engine has alignment restrictions in
* DMA scatter operations. The first DMA segment has no address
* alignment restrictins but the rest should be aligned on 4(?) bytes
* boundary. Otherwise it would corrupt random memory. Since we don't
* know which one is used for the first segment in advance we simply
* don't align at all.
* To avoid copying over an entire frame to align, we allocate a new
* mbuf and copy ethernet header to the new mbuf. The new mbuf is
* prepended into the existing mbuf chain.
*/
static __inline struct mbuf *
stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
{
struct mbuf *n;
n = NULL;
if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
m->m_data += ETHER_HDR_LEN;
n = m;
} else {
MGETHDR(n, M_DONTWAIT, MT_DATA);
if (n != NULL) {
bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
m->m_data += ETHER_HDR_LEN;
m->m_len -= ETHER_HDR_LEN;
n->m_len = ETHER_HDR_LEN;
M_MOVE_PKTHDR(n, m);
n->m_next = m;
} else
m_freem(m);
}
return (n);
}
#endif
/*
* stge_rxeof:
*
* Helper; handle receive interrupts.
*/
static void
stge_rxeof(struct stge_softc *sc)
{
struct ifnet *ifp;
struct stge_rxdesc *rxd;
struct mbuf *mp, *m;
uint64_t status64;
uint32_t status;
int cons, prog;
STGE_LOCK_ASSERT(sc);
ifp = sc->sc_ifp;
bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
prog = 0;
for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
status = RFD_RxStatus(status64);
if ((status & RFD_RFDDone) == 0)
break;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (sc->sc_cdata.stge_rxcycles <= 0)
break;
sc->sc_cdata.stge_rxcycles--;
}
#endif
prog++;
rxd = &sc->sc_cdata.stge_rxdesc[cons];
mp = rxd->rx_m;
/*
* If the packet had an error, drop it. Note we count
* the error later in the periodic stats update.
*/
if ((status & RFD_FrameEnd) != 0 && (status &
(RFD_RxFIFOOverrun | RFD_RxRuntFrame |
RFD_RxAlignmentError | RFD_RxFCSError |
RFD_RxLengthError)) != 0) {
stge_discard_rxbuf(sc, cons);
if (sc->sc_cdata.stge_rxhead != NULL) {
m_freem(sc->sc_cdata.stge_rxhead);
STGE_RXCHAIN_RESET(sc);
}
continue;
}
/*
* Add a new receive buffer to the ring.
*/
if (stge_newbuf(sc, cons) != 0) {
ifp->if_iqdrops++;
stge_discard_rxbuf(sc, cons);
if (sc->sc_cdata.stge_rxhead != NULL) {
m_freem(sc->sc_cdata.stge_rxhead);
STGE_RXCHAIN_RESET(sc);
}
continue;
}
if ((status & RFD_FrameEnd) != 0)
mp->m_len = RFD_RxDMAFrameLen(status) -
sc->sc_cdata.stge_rxlen;
sc->sc_cdata.stge_rxlen += mp->m_len;
/* Chain mbufs. */
if (sc->sc_cdata.stge_rxhead == NULL) {
sc->sc_cdata.stge_rxhead = mp;
sc->sc_cdata.stge_rxtail = mp;
} else {
mp->m_flags &= ~M_PKTHDR;
sc->sc_cdata.stge_rxtail->m_next = mp;
sc->sc_cdata.stge_rxtail = mp;
}
if ((status & RFD_FrameEnd) != 0) {
m = sc->sc_cdata.stge_rxhead;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
if (m->m_pkthdr.len > sc->sc_if_framesize) {
m_freem(m);
STGE_RXCHAIN_RESET(sc);
continue;
}
/*
* Set the incoming checksum information for
* the packet.
*/
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
if ((status & RFD_IPDetected) != 0) {
m->m_pkthdr.csum_flags |=
CSUM_IP_CHECKED;
if ((status & RFD_IPError) == 0)
m->m_pkthdr.csum_flags |=
CSUM_IP_VALID;
}
if (((status & RFD_TCPDetected) != 0 &&
(status & RFD_TCPError) == 0) ||
((status & RFD_UDPDetected) != 0 &&
(status & RFD_UDPError) == 0)) {
m->m_pkthdr.csum_flags |=
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
m->m_pkthdr.csum_data = 0xffff;
}
}
#ifndef __NO_STRICT_ALIGNMENT
if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
if ((m = stge_fixup_rx(sc, m)) == NULL) {
STGE_RXCHAIN_RESET(sc);
continue;
}
}
#endif
/* Check for VLAN tagged packets. */
if ((status & RFD_VLANDetected) != 0 &&
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
m->m_pkthdr.ether_vtag = RFD_TCI(status64);
m->m_flags |= M_VLANTAG;
}
STGE_UNLOCK(sc);
/* Pass it on. */
(*ifp->if_input)(ifp, m);
STGE_LOCK(sc);
STGE_RXCHAIN_RESET(sc);
}
}
if (prog > 0) {
/* Update the consumer index. */
sc->sc_cdata.stge_rx_cons = cons;
bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
sc->sc_cdata.stge_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
#ifdef DEVICE_POLLING
static void
stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct stge_softc *sc;
uint16_t status;
sc = ifp->if_softc;
STGE_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
STGE_UNLOCK(sc);
return;
}
sc->sc_cdata.stge_rxcycles = count;
stge_rxeof(sc);
stge_txeof(sc);
if (cmd == POLL_AND_CHECK_STATUS) {
status = CSR_READ_2(sc, STGE_IntStatus);
status &= sc->sc_IntEnable;
if (status != 0) {
if ((status & IS_HostError) != 0) {
device_printf(sc->sc_dev,
"Host interface error, resetting...\n");
stge_init_locked(sc);
}
if ((status & IS_TxComplete) != 0) {
if (stge_tx_error(sc) != 0)
stge_init_locked(sc);
}
}
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
stge_start_locked(ifp);
STGE_UNLOCK(sc);
}
#endif /* DEVICE_POLLING */
/*
* stge_tick:
*
* One second timer, used to tick the MII.
*/
static void
stge_tick(void *arg)
{
struct stge_softc *sc;
struct mii_data *mii;
sc = (struct stge_softc *)arg;
STGE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->sc_miibus);
mii_tick(mii);
/* Update statistics counters. */
stge_stats_update(sc);
/*
* Relcaim any pending Tx descriptors to release mbufs in a
* timely manner as we don't generate Tx completion interrupts
* for every frame. This limits the delay to a maximum of one
* second.
*/
if (sc->sc_cdata.stge_tx_cnt != 0)
stge_txeof(sc);
stge_watchdog(sc);
callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
}
/*
* stge_stats_update:
*
* Read the TC9021 statistics counters.
*/
static void
stge_stats_update(struct stge_softc *sc)
{
struct ifnet *ifp;
STGE_LOCK_ASSERT(sc);
ifp = sc->sc_ifp;
CSR_READ_4(sc,STGE_OctetRcvOk);
ifp->if_ipackets += CSR_READ_4(sc, STGE_FramesRcvdOk);
ifp->if_ierrors += CSR_READ_2(sc, STGE_FramesLostRxErrors);
CSR_READ_4(sc, STGE_OctetXmtdOk);
ifp->if_opackets += CSR_READ_4(sc, STGE_FramesXmtdOk);
ifp->if_collisions +=
CSR_READ_4(sc, STGE_LateCollisions) +
CSR_READ_4(sc, STGE_MultiColFrames) +
CSR_READ_4(sc, STGE_SingleColFrames);
ifp->if_oerrors +=
CSR_READ_2(sc, STGE_FramesAbortXSColls) +
CSR_READ_2(sc, STGE_FramesWEXDeferal);
}
/*
* stge_reset:
*
* Perform a soft reset on the TC9021.
*/
static void
stge_reset(struct stge_softc *sc, uint32_t how)
{
uint32_t ac;
uint8_t v;
int i, dv;
STGE_LOCK_ASSERT(sc);
dv = 5000;
ac = CSR_READ_4(sc, STGE_AsicCtrl);
switch (how) {
case STGE_RESET_TX:
ac |= AC_TxReset | AC_FIFO;
dv = 100;
break;
case STGE_RESET_RX:
ac |= AC_RxReset | AC_FIFO;
dv = 100;
break;
case STGE_RESET_FULL:
default:
/*
* Only assert RstOut if we're fiber. We need GMII clocks
* to be present in order for the reset to complete on fiber
* cards.
*/
ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
(sc->sc_usefiber ? AC_RstOut : 0);
break;
}
CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
/* Account for reset problem at 10Mbps. */
DELAY(dv);
for (i = 0; i < STGE_TIMEOUT; i++) {
if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
break;
DELAY(dv);
}
if (i == STGE_TIMEOUT)
device_printf(sc->sc_dev, "reset failed to complete\n");
/* Set LED, from Linux IPG driver. */
ac = CSR_READ_4(sc, STGE_AsicCtrl);
ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
if ((sc->sc_led & 0x01) != 0)
ac |= AC_LEDMode;
if ((sc->sc_led & 0x03) != 0)
ac |= AC_LEDModeBit1;
if ((sc->sc_led & 0x08) != 0)
ac |= AC_LEDSpeed;
CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
/* Set PHY, from Linux IPG driver */
v = CSR_READ_1(sc, STGE_PhySet);
v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
v |= ((sc->sc_led & 0x70) >> 4);
CSR_WRITE_1(sc, STGE_PhySet, v);
}
/*
* stge_init: [ ifnet interface function ]
*
* Initialize the interface.
*/
static void
stge_init(void *xsc)
{
struct stge_softc *sc;
sc = (struct stge_softc *)xsc;
STGE_LOCK(sc);
stge_init_locked(sc);
STGE_UNLOCK(sc);
}
static void
stge_init_locked(struct stge_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint16_t eaddr[3];
uint32_t v;
int error;
STGE_LOCK_ASSERT(sc);
ifp = sc->sc_ifp;
mii = device_get_softc(sc->sc_miibus);
/*
* Cancel any pending I/O.
*/
stge_stop(sc);
/*
* Reset the chip to a known state.
*/
stge_reset(sc, STGE_RESET_FULL);
/* Init descriptors. */
error = stge_init_rx_ring(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"initialization failed: no memory for rx buffers\n");
stge_stop(sc);
goto out;
}
stge_init_tx_ring(sc);
/* Set the station address. */
bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
/*
* Set the statistics masks. Disable all the RMON stats,
* and disable selected stats in the non-RMON stats registers.
*/
CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
CSR_WRITE_4(sc, STGE_StatisticsMask,
(1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
(1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
(1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
(1U << 21));
/* Set up the receive filter. */
stge_set_filter(sc);
/* Program multicast filter. */
stge_set_multi(sc);
/*
* Give the transmit and receive ring to the chip.
*/
CSR_WRITE_4(sc, STGE_TFDListPtrHi,
STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
CSR_WRITE_4(sc, STGE_TFDListPtrLo,
STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
CSR_WRITE_4(sc, STGE_RFDListPtrHi,
STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
CSR_WRITE_4(sc, STGE_RFDListPtrLo,
STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
/*
* Initialize the Tx auto-poll period. It's OK to make this number
* large (255 is the max, but we use 127) -- we explicitly kick the
* transmit engine when there's actually a packet.
*/
CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
/* ..and the Rx auto-poll period. */
CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
/* Initialize the Tx start threshold. */
CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
/* Rx DMA thresholds, from Linux */
CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
/* Rx early threhold, from Linux */
CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
/* Tx DMA thresholds, from Linux */
CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
/*
* Initialize the Rx DMA interrupt control register. We
* request an interrupt after every incoming packet, but
* defer it for sc_rxint_dmawait us. When the number of
* interrupts pending reaches STGE_RXINT_NFRAME, we stop
* deferring the interrupt, and signal it immediately.
*/
CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
RDIC_RxFrameCount(sc->sc_rxint_nframe) |
RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
/*
* Initialize the interrupt mask.
*/
sc->sc_IntEnable = IS_HostError | IS_TxComplete |
IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
#ifdef DEVICE_POLLING
/* Disable interrupts if we are polling. */
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
CSR_WRITE_2(sc, STGE_IntEnable, 0);
else
#endif
CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
/*
* Configure the DMA engine.
* XXX Should auto-tune TxBurstLimit.
*/
CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
/*
* Send a PAUSE frame when we reach 29,696 bytes in the Rx
* FIFO, and send an un-PAUSE frame when we reach 3056 bytes
* in the Rx FIFO.
*/
CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
/*
* Set the maximum frame size.
*/
sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
/*
* Initialize MacCtrl -- do it before setting the media,
* as setting the media will actually program the register.
*
* Note: We have to poke the IFS value before poking
* anything else.
*/
/* Tx/Rx MAC should be disabled before programming IFS.*/
CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
stge_vlan_setup(sc);
if (sc->sc_rev >= 6) { /* >= B.2 */
/* Multi-frag frame bug work-around. */
CSR_WRITE_2(sc, STGE_DebugCtrl,
CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
/* Tx Poll Now bug work-around. */
CSR_WRITE_2(sc, STGE_DebugCtrl,
CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
/* Tx Poll Now bug work-around. */
CSR_WRITE_2(sc, STGE_DebugCtrl,
CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
}
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
CSR_WRITE_4(sc, STGE_MACCtrl, v);
/*
* It seems that transmitting frames without checking the state of
* Rx/Tx MAC wedge the hardware.
*/
stge_start_tx(sc);
stge_start_rx(sc);
sc->sc_link = 0;
/*
* Set the current media.
*/
mii_mediachg(mii);
/*
* Start the one second MII clock.
*/
callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
/*
* ...all done!
*/
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
out:
if (error != 0)
device_printf(sc->sc_dev, "interface not running\n");
}
static void
stge_vlan_setup(struct stge_softc *sc)
{
struct ifnet *ifp;
uint32_t v;
ifp = sc->sc_ifp;
/*
* The NIC always copy a VLAN tag regardless of STGE_MACCtrl
* MC_AutoVLANuntagging bit.
* MC_AutoVLANtagging bit selects which VLAN source to use
* between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
* bit has priority over MC_AutoVLANtagging bit. So we always
* use TFC instead of STGE_VLANTag register.
*/
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
v |= MC_AutoVLANuntagging;
else
v &= ~MC_AutoVLANuntagging;
CSR_WRITE_4(sc, STGE_MACCtrl, v);
}
/*
* Stop transmission on the interface.
*/
static void
stge_stop(struct stge_softc *sc)
{
struct ifnet *ifp;
struct stge_txdesc *txd;
struct stge_rxdesc *rxd;
uint32_t v;
int i;
STGE_LOCK_ASSERT(sc);
/*
* Stop the one second clock.
*/
callout_stop(&sc->sc_tick_ch);
sc->sc_watchdog_timer = 0;
/*
* Disable interrupts.
*/
CSR_WRITE_2(sc, STGE_IntEnable, 0);
/*
* Stop receiver, transmitter, and stats update.
*/
stge_stop_rx(sc);
stge_stop_tx(sc);
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
v |= MC_StatisticsDisable;
CSR_WRITE_4(sc, STGE_MACCtrl, v);
/*
* Stop the transmit and receive DMA.
*/
stge_dma_wait(sc);
CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
/*
* Free RX and TX mbufs still in the queues.
*/
for (i = 0; i < STGE_RX_RING_CNT; i++) {
rxd = &sc->sc_cdata.stge_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < STGE_TX_RING_CNT; i++) {
txd = &sc->sc_cdata.stge_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp = sc->sc_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->sc_link = 0;
}
static void
stge_start_tx(struct stge_softc *sc)
{
uint32_t v;
int i;
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
if ((v & MC_TxEnabled) != 0)
return;
v |= MC_TxEnable;
CSR_WRITE_4(sc, STGE_MACCtrl, v);
CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
for (i = STGE_TIMEOUT; i > 0; i--) {
DELAY(10);
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
if ((v & MC_TxEnabled) != 0)
break;
}
if (i == 0)
device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
}
static void
stge_start_rx(struct stge_softc *sc)
{
uint32_t v;
int i;
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
if ((v & MC_RxEnabled) != 0)
return;
v |= MC_RxEnable;
CSR_WRITE_4(sc, STGE_MACCtrl, v);
CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
for (i = STGE_TIMEOUT; i > 0; i--) {
DELAY(10);
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
if ((v & MC_RxEnabled) != 0)
break;
}
if (i == 0)
device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
}
static void
stge_stop_tx(struct stge_softc *sc)
{
uint32_t v;
int i;
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
if ((v & MC_TxEnabled) == 0)
return;
v |= MC_TxDisable;
CSR_WRITE_4(sc, STGE_MACCtrl, v);
for (i = STGE_TIMEOUT; i > 0; i--) {
DELAY(10);
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
if ((v & MC_TxEnabled) == 0)
break;
}
if (i == 0)
device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
}
static void
stge_stop_rx(struct stge_softc *sc)
{
uint32_t v;
int i;
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
if ((v & MC_RxEnabled) == 0)
return;
v |= MC_RxDisable;
CSR_WRITE_4(sc, STGE_MACCtrl, v);
for (i = STGE_TIMEOUT; i > 0; i--) {
DELAY(10);
v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
if ((v & MC_RxEnabled) == 0)
break;
}
if (i == 0)
device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
}
static void
stge_init_tx_ring(struct stge_softc *sc)
{
struct stge_ring_data *rd;
struct stge_txdesc *txd;
bus_addr_t addr;
int i;
STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
sc->sc_cdata.stge_tx_prod = 0;
sc->sc_cdata.stge_tx_cons = 0;
sc->sc_cdata.stge_tx_cnt = 0;
rd = &sc->sc_rdata;
bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
for (i = 0; i < STGE_TX_RING_CNT; i++) {
if (i == (STGE_TX_RING_CNT - 1))
addr = STGE_TX_RING_ADDR(sc, 0);
else
addr = STGE_TX_RING_ADDR(sc, i + 1);
rd->stge_tx_ring[i].tfd_next = htole64(addr);
rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
txd = &sc->sc_cdata.stge_txdesc[i];
STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
}
bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
sc->sc_cdata.stge_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
stge_init_rx_ring(struct stge_softc *sc)
{
struct stge_ring_data *rd;
bus_addr_t addr;
int i;
sc->sc_cdata.stge_rx_cons = 0;
STGE_RXCHAIN_RESET(sc);
rd = &sc->sc_rdata;
bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
for (i = 0; i < STGE_RX_RING_CNT; i++) {
if (stge_newbuf(sc, i) != 0)
return (ENOBUFS);
if (i == (STGE_RX_RING_CNT - 1))
addr = STGE_RX_RING_ADDR(sc, 0);
else
addr = STGE_RX_RING_ADDR(sc, i + 1);
rd->stge_rx_ring[i].rfd_next = htole64(addr);
rd->stge_rx_ring[i].rfd_status = 0;
}
bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
sc->sc_cdata.stge_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* stge_newbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
static int
stge_newbuf(struct stge_softc *sc, int idx)
{
struct stge_rxdesc *rxd;
struct stge_rfd *rfd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
/*
* The hardware requires 4bytes aligned DMA address when JUMBO
* frame is used.
*/
if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
m_adj(m, ETHER_ALIGN);
if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc->sc_cdata.stge_rxdesc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
sc->sc_cdata.stge_rx_sparemap = map;
bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
rfd = &sc->sc_rdata.stge_rx_ring[idx];
rfd->rfd_frag.frag_word0 =
htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
rfd->rfd_status = 0;
return (0);
}
/*
* stge_set_filter:
*
* Set up the receive filter.
*/
static void
stge_set_filter(struct stge_softc *sc)
{
struct ifnet *ifp;
uint16_t mode;
STGE_LOCK_ASSERT(sc);
ifp = sc->sc_ifp;
mode = CSR_READ_2(sc, STGE_ReceiveMode);
mode |= RM_ReceiveUnicast;
if ((ifp->if_flags & IFF_BROADCAST) != 0)
mode |= RM_ReceiveBroadcast;
else
mode &= ~RM_ReceiveBroadcast;
if ((ifp->if_flags & IFF_PROMISC) != 0)
mode |= RM_ReceiveAllFrames;
else
mode &= ~RM_ReceiveAllFrames;
CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
}
static void
stge_set_multi(struct stge_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t crc;
uint32_t mchash[2];
uint16_t mode;
int count;
STGE_LOCK_ASSERT(sc);
ifp = sc->sc_ifp;
mode = CSR_READ_2(sc, STGE_ReceiveMode);
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if ((ifp->if_flags & IFF_PROMISC) != 0)
mode |= RM_ReceiveAllFrames;
else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
mode |= RM_ReceiveMulticast;
CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
return;
}
/* clear existing filters. */
CSR_WRITE_4(sc, STGE_HashTable0, 0);
CSR_WRITE_4(sc, STGE_HashTable1, 0);
/*
* Set up the multicast address filter by passing all multicast
* addresses through a CRC generator, and then using the low-order
* 6 bits as an index into the 64 bit multicast hash table. The
* high order bits select the register, while the rest of the bits
* select the bit within the register.
*/
bzero(mchash, sizeof(mchash));
count = 0;
IF_ADDR_LOCK(sc->sc_ifp);
TAILQ_FOREACH(ifma, &sc->sc_ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
/* Just want the 6 least significant bits. */
crc &= 0x3f;
/* Set the corresponding bit in the hash table. */
mchash[crc >> 5] |= 1 << (crc & 0x1f);
count++;
}
IF_ADDR_UNLOCK(ifp);
mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
if (count > 0)
mode |= RM_ReceiveMulticastHash;
else
mode &= ~RM_ReceiveMulticastHash;
CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (!arg1)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
}
static int
sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
}