freebsd-skq/usr.sbin/ppp/auth.c

319 lines
7.5 KiB
C
Raw Normal View History

1995-01-31 06:29:58 +00:00
/*
* PPP Secret Key Module
*
* Written by Toshiharu OHNO (tony-o@iij.ad.jp)
*
* Copyright (C) 1994, Internet Initiative Japan, Inc. All rights reserverd.
*
* Redistribution and use in source and binary forms are permitted
* provided that the above copyright notice and this paragraph are
* duplicated in all such forms and that any documentation,
* advertising materials, and other materials related to such
* distribution and use acknowledge that the software was developed
* by the Internet Initiative Japan, Inc. The name of the
* IIJ may not be used to endorse or promote products derived
* from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
1995-05-30 03:57:47 +00:00
*
* $Id: auth.c,v 1.36 1999/02/01 13:42:24 brian Exp $
1995-05-30 03:57:47 +00:00
*
1995-01-31 06:29:58 +00:00
* TODO:
* o Implement check against with registered IP addresses.
1995-01-31 06:29:58 +00:00
*/
#include <sys/param.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <sys/un.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>
#include <termios.h>
#include <unistd.h>
#include "mbuf.h"
#include "defs.h"
#include "log.h"
#include "timer.h"
1995-01-31 06:29:58 +00:00
#include "fsm.h"
#include "iplist.h"
#include "throughput.h"
#include "slcompress.h"
#include "lqr.h"
#include "hdlc.h"
1995-01-31 06:29:58 +00:00
#include "ipcp.h"
#include "auth.h"
#include "systems.h"
#include "lcp.h"
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
#include "ccp.h"
#include "link.h"
#include "descriptor.h"
#include "chat.h"
#include "lcpproto.h"
1998-03-16 22:52:54 +00:00
#include "filter.h"
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
#include "mp.h"
#ifndef NORADIUS
#include "radius.h"
#endif
#include "cbcp.h"
#include "chap.h"
#include "async.h"
#include "physical.h"
#include "datalink.h"
1998-03-13 21:07:46 +00:00
#include "bundle.h"
1995-01-31 06:29:58 +00:00
const char *
Auth2Nam(u_short auth)
{
switch (auth) {
case PROTO_PAP:
return "PAP";
case PROTO_CHAP:
return "CHAP";
case 0:
return "none";
}
return "unknown";
}
static int
auth_CheckPasswd(const char *name, const char *data, const char *key)
{
if (!strcmp(data, "*")) {
/* Then look up the real password database */
struct passwd *pw;
int result;
result = (pw = getpwnam(name)) &&
!strcmp(crypt(key, pw->pw_passwd), pw->pw_passwd);
endpwent();
return result;
}
return !strcmp(data, key);
}
int
auth_SetPhoneList(const char *name, char *phone, int phonelen)
{
FILE *fp;
int n;
char *vector[6];
char buff[LINE_LEN];
fp = OpenSecret(SECRETFILE);
if (fp != NULL) {
while (fgets(buff, sizeof buff, fp)) {
if (buff[0] == '#')
continue;
buff[strlen(buff) - 1] = '\0';
memset(vector, '\0', sizeof vector);
n = MakeArgs(buff, vector, VECSIZE(vector));
if (n < 5)
continue;
if (strcmp(vector[0], name) == 0) {
CloseSecret(fp);
if (*vector[4] == '\0')
return 0;
strncpy(phone, vector[4], phonelen - 1);
phone[phonelen - 1] = '\0';
return 1; /* Valid */
}
}
CloseSecret(fp);
}
*phone = '\0';
return 0;
}
int
auth_Select(struct bundle *bundle, const char *name)
{
FILE *fp;
int n;
char *vector[5];
char buff[LINE_LEN];
if (*name == '\0') {
ipcp_Setup(&bundle->ncp.ipcp, INADDR_NONE);
return 1;
}
#ifndef NORADIUS
if (bundle->radius.valid && bundle->radius.ip.s_addr != INADDR_NONE) {
/* We've got a radius IP - it overrides everything */
if (!ipcp_UseHisIPaddr(bundle, bundle->radius.ip))
return 0;
ipcp_Setup(&bundle->ncp.ipcp, bundle->radius.mask.s_addr);
/* Continue with ppp.secret in case we've got a new label */
}
#endif
fp = OpenSecret(SECRETFILE);
if (fp != NULL) {
while (fgets(buff, sizeof buff, fp)) {
if (buff[0] == '#')
continue;
buff[strlen(buff) - 1] = '\0';
memset(vector, '\0', sizeof vector);
n = MakeArgs(buff, vector, VECSIZE(vector));
if (n < 2)
continue;
if (strcmp(vector[0], name) == 0) {
CloseSecret(fp);
#ifndef NORADIUS
if (!bundle->radius.valid || bundle->radius.ip.s_addr == INADDR_NONE) {
#endif
if (n > 2 && *vector[2] && strcmp(vector[2], "*") &&
!ipcp_UseHisaddr(bundle, vector[2], 1))
return 0;
ipcp_Setup(&bundle->ncp.ipcp, INADDR_NONE);
#ifndef NORADIUS
}
#endif
if (n > 3 && *vector[3] && strcmp(vector[3], "*"))
bundle_SetLabel(bundle, vector[3]);
return 1; /* Valid */
}
}
CloseSecret(fp);
}
#ifndef NOPASSWDAUTH
/* Let 'em in anyway - they must have been in the passwd file */
ipcp_Setup(&bundle->ncp.ipcp, INADDR_NONE);
return 1;
#else
#ifndef NORADIUS
if (bundle->radius.valid)
return 1;
#endif
/* Disappeared from ppp.secret ??? */
return 0;
#endif
}
1995-01-31 06:29:58 +00:00
int
auth_Validate(struct bundle *bundle, const char *name,
const char *key, struct physical *physical)
1995-01-31 06:29:58 +00:00
{
/* Used by PAP routines */
1995-01-31 06:29:58 +00:00
FILE *fp;
int n;
char *vector[5];
char buff[LINE_LEN];
1995-01-31 06:29:58 +00:00
#ifndef NORADIUS
if (*bundle->radius.cfg.file)
return radius_Authenticate(&bundle->radius, bundle, name, key, NULL);
#endif
fp = OpenSecret(SECRETFILE);
if (fp != NULL) {
while (fgets(buff, sizeof buff, fp)) {
if (buff[0] == '#')
continue;
buff[strlen(buff) - 1] = 0;
memset(vector, '\0', sizeof vector);
n = MakeArgs(buff, vector, VECSIZE(vector));
if (n < 2)
continue;
if (strcmp(vector[0], name) == 0) {
CloseSecret(fp);
return auth_CheckPasswd(name, vector[1], key);
1995-01-31 06:29:58 +00:00
}
}
CloseSecret(fp);
1995-01-31 06:29:58 +00:00
}
#ifndef NOPASSWDAUTH
if (Enabled(bundle, OPT_PASSWDAUTH))
return auth_CheckPasswd(name, "*", key);
#endif
return 0; /* Invalid */
1995-01-31 06:29:58 +00:00
}
char *
auth_GetSecret(struct bundle *bundle, const char *name, int len,
struct physical *physical)
1995-01-31 06:29:58 +00:00
{
/* Used by CHAP routines */
1995-01-31 06:29:58 +00:00
FILE *fp;
int n;
char *vector[5];
static char buff[LINE_LEN];
1995-01-31 06:29:58 +00:00
fp = OpenSecret(SECRETFILE);
1995-01-31 06:29:58 +00:00
if (fp == NULL)
return (NULL);
while (fgets(buff, sizeof buff, fp)) {
1995-01-31 06:29:58 +00:00
if (buff[0] == '#')
continue;
buff[strlen(buff) - 1] = 0;
memset(vector, '\0', sizeof vector);
n = MakeArgs(buff, vector, VECSIZE(vector));
1995-01-31 06:29:58 +00:00
if (n < 2)
continue;
if (strlen(vector[0]) == len && strncmp(vector[0], name, len) == 0) {
CloseSecret(fp);
return vector[1];
1995-01-31 06:29:58 +00:00
}
}
CloseSecret(fp);
return (NULL); /* Invalid */
1995-01-31 06:29:58 +00:00
}
static void
AuthTimeout(void *vauthp)
{
struct authinfo *authp = (struct authinfo *)vauthp;
timer_Stop(&authp->authtimer);
if (--authp->retry > 0) {
timer_Start(&authp->authtimer);
(*authp->ChallengeFunc)(authp, ++authp->id, authp->physical);
} else {
log_Printf(LogPHASE, "Auth: No response from server\n");
datalink_AuthNotOk(authp->physical->dl);
}
}
void
auth_Init(struct authinfo *authinfo)
{
memset(authinfo, '\0', sizeof(struct authinfo));
authinfo->cfg.fsmretry = DEF_FSMRETRY;
}
void
auth_StartChallenge(struct authinfo *authp, struct physical *physical,
void (*chal)(struct authinfo *, int, struct physical *))
{
authp->ChallengeFunc = chal;
authp->physical = physical;
timer_Stop(&authp->authtimer);
authp->authtimer.func = AuthTimeout;
o Move struct lcp and struct ccp into struct link. o Remove bundle2lcp(), bundle2ccp() and bundle2link(). They're too resource-hungry and we have `owner pointers' to do their job. o Make our FSM understand LCPs that are always ST_OPENED (with a minimum code that != 1). o Send FSM code rejects for invalid codes. o Make our bundle fsm_parent deal with multiple links. o Make timer diagnostics pretty and allow access via ~t in `term' mode (not just when logging debug) and `show timers'. Only show timers every second in debug mode, otherwise we get too many diagnostics to be useful (we probably still do). Also, don't restrict ~m in term mode to depend on debug logging. o Rationalise our bundles' phases. o Create struct mp (multilink protocol). This is both an NCP and a type of struct link. It feeds off other NCPs for output, passing fragmented packets into the queues of available datalinks. It also gets PROTO_MP input, reassembles the fragments into ppp frames, and passes them back to the HDLC layer that the fragments were passed from. ** It's not yet possible to enter multilink mode :-( ** o Add `set weight' (requires context) for deciding on a links weighting in multilink mode. Weighting is simplistic (and probably badly implemented) for now. o Remove the function pointers in struct link. They ended up only applying to physical links. o Configure our tun device with an MTU equal to the MRU from struct mp's LCP and a speed equal to the sum of our link speeds. o `show {lcp,ccp,proto}' and `set deflate' now have optional context and use ChooseLink() to decide on which `struct link' to use. This allows behaviour as before when in non-multilink mode, and allows access to the MP logical link in multilink mode. o Ignore reconnect and redial values when in -direct mode and when cleaning up. Always redial when in -ddial or -dedicated mode (unless cleaning up). o Tell our links to `staydown' when we close them due to a signal. o Remove remaining `#ifdef SIGALRM's (ppp doesn't function without alarms). o Don't bother strdup()ing our physical link name. o Various other cosmetic changes.
1998-04-03 19:21:56 +00:00
authp->authtimer.name = "auth";
authp->authtimer.load = authp->cfg.fsmretry * SECTICKS;
authp->authtimer.arg = (void *) authp;
authp->retry = 3;
authp->id = 1;
(*authp->ChallengeFunc)(authp, authp->id, physical);
timer_Start(&authp->authtimer);
}
void
auth_StopTimer(struct authinfo *authp)
{
timer_Stop(&authp->authtimer);
authp->physical = NULL;
}