2002-02-01 18:16:02 +00:00
|
|
|
|
/* Calculate branch probabilities, and basic block execution counts.
|
|
|
|
|
Copyright (C) 1990, 1991, 1992, 1993, 1994, 1996, 1997, 1998, 1999,
|
2007-05-19 01:19:51 +00:00
|
|
|
|
2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
1999-08-26 09:30:50 +00:00
|
|
|
|
Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
|
|
|
|
|
based on some ideas from Dain Samples of UC Berkeley.
|
|
|
|
|
Further mangling by Bob Manson, Cygnus Support.
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
This file is part of GCC.
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
|
|
|
the terms of the GNU General Public License as published by the Free
|
|
|
|
|
Software Foundation; either version 2, or (at your option) any later
|
|
|
|
|
version.
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
|
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
|
for more details.
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
2002-02-01 18:16:02 +00:00
|
|
|
|
along with GCC; see the file COPYING. If not, write to the Free
|
2007-05-19 01:19:51 +00:00
|
|
|
|
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
|
|
|
|
02110-1301, USA. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Generate basic block profile instrumentation and auxiliary files.
|
|
|
|
|
Profile generation is optimized, so that not all arcs in the basic
|
|
|
|
|
block graph need instrumenting. First, the BB graph is closed with
|
|
|
|
|
one entry (function start), and one exit (function exit). Any
|
|
|
|
|
ABNORMAL_EDGE cannot be instrumented (because there is no control
|
|
|
|
|
path to place the code). We close the graph by inserting fake
|
|
|
|
|
EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal
|
|
|
|
|
edges that do not go to the exit_block. We ignore such abnormal
|
|
|
|
|
edges. Naturally these fake edges are never directly traversed,
|
|
|
|
|
and so *cannot* be directly instrumented. Some other graph
|
|
|
|
|
massaging is done. To optimize the instrumentation we generate the
|
|
|
|
|
BB minimal span tree, only edges that are not on the span tree
|
|
|
|
|
(plus the entry point) need instrumenting. From that information
|
|
|
|
|
all other edge counts can be deduced. By construction all fake
|
|
|
|
|
edges must be on the spanning tree. We also attempt to place
|
|
|
|
|
EDGE_CRITICAL edges on the spanning tree.
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
The auxiliary files generated are <dumpbase>.gcno (at compile time)
|
|
|
|
|
and <dumpbase>.gcda (at run time). The format is
|
2004-07-28 03:11:36 +00:00
|
|
|
|
described in full in gcov-io.h. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* ??? Register allocation should use basic block execution counts to
|
|
|
|
|
give preference to the most commonly executed blocks. */
|
|
|
|
|
|
|
|
|
|
/* ??? Should calculate branch probabilities before instrumenting code, since
|
|
|
|
|
then we can use arc counts to help decide which arcs to instrument. */
|
|
|
|
|
|
|
|
|
|
#include "config.h"
|
|
|
|
|
#include "system.h"
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#include "coretypes.h"
|
|
|
|
|
#include "tm.h"
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#include "rtl.h"
|
|
|
|
|
#include "flags.h"
|
|
|
|
|
#include "output.h"
|
|
|
|
|
#include "regs.h"
|
2002-02-01 18:16:02 +00:00
|
|
|
|
#include "expr.h"
|
|
|
|
|
#include "function.h"
|
1999-08-26 09:30:50 +00:00
|
|
|
|
#include "toplev.h"
|
2004-07-28 03:11:36 +00:00
|
|
|
|
#include "coverage.h"
|
|
|
|
|
#include "value-prof.h"
|
|
|
|
|
#include "tree.h"
|
2007-05-19 01:19:51 +00:00
|
|
|
|
#include "cfghooks.h"
|
|
|
|
|
#include "tree-flow.h"
|
|
|
|
|
#include "timevar.h"
|
|
|
|
|
#include "cfgloop.h"
|
|
|
|
|
#include "tree-pass.h"
|
|
|
|
|
|
|
|
|
|
/* Hooks for profiling. */
|
|
|
|
|
static struct profile_hooks* profile_hooks;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Additional information about the edges we need. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
struct edge_info {
|
|
|
|
|
unsigned int count_valid : 1;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Is on the spanning tree. */
|
|
|
|
|
unsigned int on_tree : 1;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Pretend this edge does not exist (it is abnormal and we've
|
|
|
|
|
inserted a fake to compensate). */
|
|
|
|
|
unsigned int ignore : 1;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct bb_info {
|
|
|
|
|
unsigned int count_valid : 1;
|
|
|
|
|
|
|
|
|
|
/* Number of successor and predecessor edges. */
|
|
|
|
|
gcov_type succ_count;
|
|
|
|
|
gcov_type pred_count;
|
|
|
|
|
};
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
#define EDGE_INFO(e) ((struct edge_info *) (e)->aux)
|
|
|
|
|
#define BB_INFO(b) ((struct bb_info *) (b)->aux)
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Counter summary from the last set of coverage counts read. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
const struct gcov_ctr_summary *profile_info;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* Collect statistics on the performance of this pass for the entire source
|
|
|
|
|
file. */
|
|
|
|
|
|
|
|
|
|
static int total_num_blocks;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
static int total_num_edges;
|
|
|
|
|
static int total_num_edges_ignored;
|
|
|
|
|
static int total_num_edges_instrumented;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
static int total_num_blocks_created;
|
|
|
|
|
static int total_num_passes;
|
|
|
|
|
static int total_num_times_called;
|
|
|
|
|
static int total_hist_br_prob[20];
|
|
|
|
|
static int total_num_never_executed;
|
|
|
|
|
static int total_num_branches;
|
|
|
|
|
|
|
|
|
|
/* Forward declarations. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
static void find_spanning_tree (struct edge_list *);
|
|
|
|
|
static unsigned instrument_edges (struct edge_list *);
|
2007-05-19 01:19:51 +00:00
|
|
|
|
static void instrument_values (histogram_values);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
static void compute_branch_probabilities (void);
|
2007-05-19 01:19:51 +00:00
|
|
|
|
static void compute_value_histograms (histogram_values);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
static gcov_type * get_exec_counts (void);
|
|
|
|
|
static basic_block find_group (basic_block);
|
|
|
|
|
static void union_groups (basic_block, basic_block);
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Add edge instrumentation code to the entire insn chain.
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
F is the first insn of the chain.
|
2002-02-01 18:16:02 +00:00
|
|
|
|
NUM_BLOCKS is the number of basic blocks found in F. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
static unsigned
|
|
|
|
|
instrument_edges (struct edge_list *el)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
unsigned num_instr_edges = 0;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
int num_edges = NUM_EDGES (el);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
basic_block bb;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
edge e;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
edge_iterator ei;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
struct edge_info *inf = EDGE_INFO (e);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (!inf->ignore && !inf->on_tree)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
gcc_assert (!(e->flags & EDGE_ABNORMAL));
|
|
|
|
|
if (dump_file)
|
|
|
|
|
fprintf (dump_file, "Edge %d to %d instrumented%s\n",
|
2002-02-01 18:16:02 +00:00
|
|
|
|
e->src->index, e->dest->index,
|
|
|
|
|
EDGE_CRITICAL_P (e) ? " (and split)" : "");
|
2007-05-19 01:19:51 +00:00
|
|
|
|
(profile_hooks->gen_edge_profiler) (num_instr_edges++, e);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
total_num_blocks_created += num_edges;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file)
|
|
|
|
|
fprintf (dump_file, "%d edges instrumented\n", num_instr_edges);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
return num_instr_edges;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
/* Add code to measure histograms for values in list VALUES. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
static void
|
2007-05-19 01:19:51 +00:00
|
|
|
|
instrument_values (histogram_values values)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
unsigned i, t;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Emit code to generate the histograms before the insns. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
for (i = 0; i < VEC_length (histogram_value, values); i++)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
histogram_value hist = VEC_index (histogram_value, values, i);
|
|
|
|
|
switch (hist->type)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
case HIST_TYPE_INTERVAL:
|
|
|
|
|
t = GCOV_COUNTER_V_INTERVAL;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
break;
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
case HIST_TYPE_POW2:
|
|
|
|
|
t = GCOV_COUNTER_V_POW2;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
break;
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
case HIST_TYPE_SINGLE_VALUE:
|
|
|
|
|
t = GCOV_COUNTER_V_SINGLE;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
break;
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
case HIST_TYPE_CONST_DELTA:
|
|
|
|
|
t = GCOV_COUNTER_V_DELTA;
|
|
|
|
|
break;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
default:
|
2007-05-19 01:19:51 +00:00
|
|
|
|
gcc_unreachable ();
|
2004-07-28 03:11:36 +00:00
|
|
|
|
}
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (!coverage_counter_alloc (t, hist->n_counters))
|
2004-07-28 03:11:36 +00:00
|
|
|
|
continue;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
switch (hist->type)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
case HIST_TYPE_INTERVAL:
|
2007-05-19 01:19:51 +00:00
|
|
|
|
(profile_hooks->gen_interval_profiler) (hist, t, 0);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
break;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
case HIST_TYPE_POW2:
|
2007-05-19 01:19:51 +00:00
|
|
|
|
(profile_hooks->gen_pow2_profiler) (hist, t, 0);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
break;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
case HIST_TYPE_SINGLE_VALUE:
|
2007-05-19 01:19:51 +00:00
|
|
|
|
(profile_hooks->gen_one_value_profiler) (hist, t, 0);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
break;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
case HIST_TYPE_CONST_DELTA:
|
2007-05-19 01:19:51 +00:00
|
|
|
|
(profile_hooks->gen_const_delta_profiler) (hist, t, 0);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
break;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
default:
|
2007-05-19 01:19:51 +00:00
|
|
|
|
gcc_unreachable ();
|
2003-07-11 03:40:53 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Computes hybrid profile for all matching entries in da_file. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
static gcov_type *
|
|
|
|
|
get_exec_counts (void)
|
|
|
|
|
{
|
|
|
|
|
unsigned num_edges = 0;
|
|
|
|
|
basic_block bb;
|
|
|
|
|
gcov_type *counts;
|
|
|
|
|
|
|
|
|
|
/* Count the edges to be (possibly) instrumented. */
|
|
|
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
edge e;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
edge_iterator ei;
|
|
|
|
|
|
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
|
|
|
|
|
num_edges++;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
}
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
counts = get_coverage_counts (GCOV_COUNTER_ARCS, num_edges, &profile_info);
|
|
|
|
|
if (!counts)
|
|
|
|
|
return NULL;
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file && profile_info)
|
|
|
|
|
fprintf(dump_file, "Merged %u profiles with maximal count %u.\n",
|
2004-07-28 03:11:36 +00:00
|
|
|
|
profile_info->runs, (unsigned) profile_info->sum_max);
|
|
|
|
|
|
|
|
|
|
return counts;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Compute the branch probabilities for the various branches.
|
|
|
|
|
Annotate them accordingly. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
static void
|
2004-07-28 03:11:36 +00:00
|
|
|
|
compute_branch_probabilities (void)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
basic_block bb;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
int i;
|
|
|
|
|
int num_edges = 0;
|
|
|
|
|
int changes;
|
|
|
|
|
int passes;
|
|
|
|
|
int hist_br_prob[20];
|
|
|
|
|
int num_never_executed;
|
|
|
|
|
int num_branches;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
gcov_type *exec_counts = get_exec_counts ();
|
|
|
|
|
int exec_counts_pos = 0;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Very simple sanity checks so we catch bugs in our profiling code. */
|
|
|
|
|
if (profile_info)
|
|
|
|
|
{
|
|
|
|
|
if (profile_info->run_max * profile_info->runs < profile_info->sum_max)
|
|
|
|
|
{
|
|
|
|
|
error ("corrupted profile info: run_max * runs < sum_max");
|
|
|
|
|
exec_counts = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (profile_info->sum_all < profile_info->sum_max)
|
|
|
|
|
{
|
|
|
|
|
error ("corrupted profile info: sum_all is smaller than sum_max");
|
|
|
|
|
exec_counts = NULL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Attach extra info block to each bb. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
alloc_aux_for_blocks (sizeof (struct bb_info));
|
2003-07-11 03:40:53 +00:00
|
|
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
edge e;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
edge_iterator ei;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (!EDGE_INFO (e)->ignore)
|
|
|
|
|
BB_INFO (bb)->succ_count++;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (!EDGE_INFO (e)->ignore)
|
|
|
|
|
BB_INFO (bb)->pred_count++;
|
|
|
|
|
}
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Avoid predicting entry on exit nodes. */
|
|
|
|
|
BB_INFO (EXIT_BLOCK_PTR)->succ_count = 2;
|
|
|
|
|
BB_INFO (ENTRY_BLOCK_PTR)->pred_count = 2;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* For each edge not on the spanning tree, set its execution count from
|
|
|
|
|
the .da file. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* The first count in the .da file is the number of times that the function
|
|
|
|
|
was entered. This is the exec_count for block zero. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
edge e;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
edge_iterator ei;
|
|
|
|
|
|
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
num_edges++;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (exec_counts)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
e->count = exec_counts[exec_counts_pos++];
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (e->count > profile_info->sum_max)
|
|
|
|
|
{
|
|
|
|
|
error ("corrupted profile info: edge from %i to %i exceeds maximal count",
|
|
|
|
|
bb->index, e->dest->index);
|
|
|
|
|
}
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
2002-02-01 18:16:02 +00:00
|
|
|
|
e->count = 0;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
EDGE_INFO (e)->count_valid = 1;
|
|
|
|
|
BB_INFO (bb)->succ_count--;
|
|
|
|
|
BB_INFO (e->dest)->pred_count--;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
fprintf (dump_file, "\nRead edge from %i to %i, count:",
|
2002-02-01 18:16:02 +00:00
|
|
|
|
bb->index, e->dest->index);
|
2007-05-19 01:19:51 +00:00
|
|
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
(HOST_WIDEST_INT) e->count);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file)
|
|
|
|
|
fprintf (dump_file, "\n%d edge counts read\n", num_edges);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* For every block in the file,
|
2002-02-01 18:16:02 +00:00
|
|
|
|
- if every exit/entrance edge has a known count, then set the block count
|
|
|
|
|
- if the block count is known, and every exit/entrance edge but one has
|
|
|
|
|
a known execution count, then set the count of the remaining edge
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
As edge counts are set, decrement the succ/pred count, but don't delete
|
|
|
|
|
the edge, that way we can easily tell when all edges are known, or only
|
|
|
|
|
one edge is unknown. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* The order that the basic blocks are iterated through is important.
|
|
|
|
|
Since the code that finds spanning trees starts with block 0, low numbered
|
2002-02-01 18:16:02 +00:00
|
|
|
|
edges are put on the spanning tree in preference to high numbered edges.
|
|
|
|
|
Hence, most instrumented edges are at the end. Graph solving works much
|
1999-08-26 09:30:50 +00:00
|
|
|
|
faster if we propagate numbers from the end to the start.
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
This takes an average of slightly more than 3 passes. */
|
|
|
|
|
|
|
|
|
|
changes = 1;
|
|
|
|
|
passes = 0;
|
|
|
|
|
while (changes)
|
|
|
|
|
{
|
|
|
|
|
passes++;
|
|
|
|
|
changes = 0;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
struct bb_info *bi = BB_INFO (bb);
|
|
|
|
|
if (! bi->count_valid)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (bi->succ_count == 0)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
edge e;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
edge_iterator ei;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
gcov_type total = 0;
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
total += e->count;
|
|
|
|
|
bb->count = total;
|
|
|
|
|
bi->count_valid = 1;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
changes = 1;
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
else if (bi->pred_count == 0)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
edge e;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
edge_iterator ei;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
gcov_type total = 0;
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
total += e->count;
|
|
|
|
|
bb->count = total;
|
|
|
|
|
bi->count_valid = 1;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
changes = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (bi->count_valid)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (bi->succ_count == 1)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
edge e;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
edge_iterator ei;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
gcov_type total = 0;
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* One of the counts will be invalid, but it is zero,
|
|
|
|
|
so adding it in also doesn't hurt. */
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
total += e->count;
|
|
|
|
|
|
|
|
|
|
/* Seedgeh for the invalid edge, and set its count. */
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
break;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Calculate count for remaining edge by conservation. */
|
|
|
|
|
total = bb->count - total;
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
gcc_assert (e);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
EDGE_INFO (e)->count_valid = 1;
|
|
|
|
|
e->count = total;
|
|
|
|
|
bi->succ_count--;
|
|
|
|
|
|
|
|
|
|
BB_INFO (e->dest)->pred_count--;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
changes = 1;
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (bi->pred_count == 1)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
edge e;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
edge_iterator ei;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
gcov_type total = 0;
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
/* One of the counts will be invalid, but it is zero,
|
|
|
|
|
so adding it in also doesn't hurt. */
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
total += e->count;
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Search for the invalid edge, and set its count. */
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
break;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Calculate count for remaining edge by conservation. */
|
|
|
|
|
total = bb->count - total + e->count;
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
gcc_assert (e);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
EDGE_INFO (e)->count_valid = 1;
|
|
|
|
|
e->count = total;
|
|
|
|
|
bi->pred_count--;
|
|
|
|
|
|
|
|
|
|
BB_INFO (e->src)->succ_count--;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
changes = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file)
|
|
|
|
|
dump_flow_info (dump_file, dump_flags);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
total_num_passes += passes;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file)
|
|
|
|
|
fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
/* If the graph has been correctly solved, every block will have a
|
|
|
|
|
succ and pred count of zero. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
FOR_EACH_BB (bb)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* For every edge, calculate its branch probability and add a reg_note
|
1999-08-26 09:30:50 +00:00
|
|
|
|
to the branch insn to indicate this. */
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < 20; i++)
|
|
|
|
|
hist_br_prob[i] = 0;
|
|
|
|
|
num_never_executed = 0;
|
|
|
|
|
num_branches = 0;
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
edge e;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
edge_iterator ei;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (bb->count < 0)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
error ("corrupted profile info: number of iterations for basic block %d thought to be %i",
|
|
|
|
|
bb->index, (int)bb->count);
|
|
|
|
|
bb->count = 0;
|
|
|
|
|
}
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
{
|
|
|
|
|
/* Function may return twice in the cased the called function is
|
|
|
|
|
setjmp or calls fork, but we can't represent this by extra
|
|
|
|
|
edge from the entry, since extra edge from the exit is
|
|
|
|
|
already present. We get negative frequency from the entry
|
|
|
|
|
point. */
|
|
|
|
|
if ((e->count < 0
|
|
|
|
|
&& e->dest == EXIT_BLOCK_PTR)
|
|
|
|
|
|| (e->count > bb->count
|
|
|
|
|
&& e->dest != EXIT_BLOCK_PTR))
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (block_ends_with_call_p (bb))
|
2004-07-28 03:11:36 +00:00
|
|
|
|
e->count = e->count < 0 ? 0 : bb->count;
|
|
|
|
|
}
|
|
|
|
|
if (e->count < 0 || e->count > bb->count)
|
|
|
|
|
{
|
|
|
|
|
error ("corrupted profile info: number of executions for edge %d-%d thought to be %i",
|
|
|
|
|
e->src->index, e->dest->index,
|
|
|
|
|
(int)e->count);
|
|
|
|
|
e->count = bb->count / 2;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
}
|
|
|
|
|
if (bb->count)
|
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
e->probability = (e->count * REG_BR_PROB_BASE + bb->count / 2) / bb->count;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (bb->index >= NUM_FIXED_BLOCKS
|
|
|
|
|
&& block_ends_with_condjump_p (bb)
|
|
|
|
|
&& EDGE_COUNT (bb->succs) >= 2)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
int prob;
|
|
|
|
|
edge e;
|
|
|
|
|
int index;
|
|
|
|
|
|
|
|
|
|
/* Find the branch edge. It is possible that we do have fake
|
|
|
|
|
edges here. */
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
|
|
|
if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU)))
|
|
|
|
|
break;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
prob = e->probability;
|
|
|
|
|
index = prob * 20 / REG_BR_PROB_BASE;
|
|
|
|
|
|
|
|
|
|
if (index == 20)
|
|
|
|
|
index = 19;
|
|
|
|
|
hist_br_prob[index]++;
|
|
|
|
|
|
1999-08-26 09:30:50 +00:00
|
|
|
|
num_branches++;
|
|
|
|
|
}
|
|
|
|
|
}
|
2007-05-19 01:19:51 +00:00
|
|
|
|
/* As a last resort, distribute the probabilities evenly.
|
|
|
|
|
Use simple heuristics that if there are normal edges,
|
2004-07-28 03:11:36 +00:00
|
|
|
|
give all abnormals frequency of 0, otherwise distribute the
|
|
|
|
|
frequency over abnormals (this is the case of noreturn
|
|
|
|
|
calls). */
|
2007-05-19 01:19:51 +00:00
|
|
|
|
else if (profile_status == PROFILE_ABSENT)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
int total = 0;
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
|
|
|
|
|
total ++;
|
|
|
|
|
if (total)
|
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
|
|
|
|
|
e->probability = REG_BR_PROB_BASE / total;
|
|
|
|
|
else
|
|
|
|
|
e->probability = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
total += EDGE_COUNT (bb->succs);
|
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
e->probability = REG_BR_PROB_BASE / total;
|
|
|
|
|
}
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (bb->index >= NUM_FIXED_BLOCKS
|
|
|
|
|
&& block_ends_with_condjump_p (bb)
|
|
|
|
|
&& EDGE_COUNT (bb->succs) >= 2)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
num_branches++, num_never_executed;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
2007-05-19 01:19:51 +00:00
|
|
|
|
counts_to_freqs ();
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
fprintf (dump_file, "%d branches\n", num_branches);
|
|
|
|
|
fprintf (dump_file, "%d branches never executed\n",
|
1999-08-26 09:30:50 +00:00
|
|
|
|
num_never_executed);
|
|
|
|
|
if (num_branches)
|
|
|
|
|
for (i = 0; i < 10; i++)
|
2007-05-19 01:19:51 +00:00
|
|
|
|
fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
|
2002-02-01 18:16:02 +00:00
|
|
|
|
(hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches,
|
|
|
|
|
5 * i, 5 * i + 5);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
total_num_branches += num_branches;
|
|
|
|
|
total_num_never_executed += num_never_executed;
|
|
|
|
|
for (i = 0; i < 20; i++)
|
|
|
|
|
total_hist_br_prob[i] += hist_br_prob[i];
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
fputc ('\n', dump_file);
|
|
|
|
|
fputc ('\n', dump_file);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
free_aux_for_blocks ();
|
2003-07-11 03:40:53 +00:00
|
|
|
|
}
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
/* Load value histograms values whose description is stored in VALUES array
|
|
|
|
|
from .gcda file. */
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
static void
|
2007-05-19 01:19:51 +00:00
|
|
|
|
compute_value_histograms (histogram_values values)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
unsigned i, j, t, any;
|
|
|
|
|
unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS];
|
|
|
|
|
gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
|
|
|
|
|
gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
|
|
|
|
|
gcov_type *aact_count;
|
|
|
|
|
|
|
|
|
|
for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
|
|
|
|
|
n_histogram_counters[t] = 0;
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
for (i = 0; i < VEC_length (histogram_value, values); i++)
|
|
|
|
|
{
|
|
|
|
|
histogram_value hist = VEC_index (histogram_value, values, i);
|
|
|
|
|
n_histogram_counters[(int) hist->type] += hist->n_counters;
|
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
|
|
|
|
any = 0;
|
|
|
|
|
for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (!n_histogram_counters[t])
|
2003-07-11 03:40:53 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
histogram_counts[t] = NULL;
|
|
|
|
|
continue;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
}
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
histogram_counts[t] =
|
|
|
|
|
get_coverage_counts (COUNTER_FOR_HIST_TYPE (t),
|
|
|
|
|
n_histogram_counters[t], NULL);
|
|
|
|
|
if (histogram_counts[t])
|
|
|
|
|
any = 1;
|
|
|
|
|
act_count[t] = histogram_counts[t];
|
2003-07-11 03:40:53 +00:00
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (!any)
|
|
|
|
|
return;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
for (i = 0; i < VEC_length (histogram_value, values); i++)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
histogram_value hist = VEC_index (histogram_value, values, i);
|
|
|
|
|
tree stmt = hist->hvalue.stmt;
|
|
|
|
|
stmt_ann_t ann = get_stmt_ann (stmt);
|
|
|
|
|
|
|
|
|
|
t = (int) hist->type;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
|
|
|
|
aact_count = act_count[t];
|
2007-05-19 01:19:51 +00:00
|
|
|
|
act_count[t] += hist->n_counters;
|
|
|
|
|
|
|
|
|
|
hist->hvalue.next = ann->histograms;
|
|
|
|
|
ann->histograms = hist;
|
|
|
|
|
hist->hvalue.counters = XNEWVEC (gcov_type, hist->n_counters);
|
|
|
|
|
for (j = 0; j < hist->n_counters; j++)
|
|
|
|
|
hist->hvalue.counters[j] = aact_count[j];
|
2004-07-28 03:11:36 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
|
|
|
|
|
if (histogram_counts[t])
|
|
|
|
|
free (histogram_counts[t]);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
/* The entry basic block will be moved around so that it has index=1,
|
|
|
|
|
there is nothing at index 0 and the exit is at n_basic_block. */
|
|
|
|
|
#define BB_TO_GCOV_INDEX(bb) ((bb)->index - 1)
|
|
|
|
|
/* When passed NULL as file_name, initialize.
|
|
|
|
|
When passed something else, output the necessary commands to change
|
|
|
|
|
line to LINE and offset to FILE_NAME. */
|
|
|
|
|
static void
|
|
|
|
|
output_location (char const *file_name, int line,
|
|
|
|
|
gcov_position_t *offset, basic_block bb)
|
|
|
|
|
{
|
|
|
|
|
static char const *prev_file_name;
|
|
|
|
|
static int prev_line;
|
|
|
|
|
bool name_differs, line_differs;
|
|
|
|
|
|
|
|
|
|
if (!file_name)
|
|
|
|
|
{
|
|
|
|
|
prev_file_name = NULL;
|
|
|
|
|
prev_line = -1;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
name_differs = !prev_file_name || strcmp (file_name, prev_file_name);
|
|
|
|
|
line_differs = prev_line != line;
|
|
|
|
|
|
|
|
|
|
if (name_differs || line_differs)
|
|
|
|
|
{
|
|
|
|
|
if (!*offset)
|
|
|
|
|
{
|
|
|
|
|
*offset = gcov_write_tag (GCOV_TAG_LINES);
|
|
|
|
|
gcov_write_unsigned (BB_TO_GCOV_INDEX (bb));
|
|
|
|
|
name_differs = line_differs=true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If this is a new source file, then output the
|
|
|
|
|
file's name to the .bb file. */
|
|
|
|
|
if (name_differs)
|
|
|
|
|
{
|
|
|
|
|
prev_file_name = file_name;
|
|
|
|
|
gcov_write_unsigned (0);
|
|
|
|
|
gcov_write_string (prev_file_name);
|
|
|
|
|
}
|
|
|
|
|
if (line_differs)
|
|
|
|
|
{
|
|
|
|
|
gcov_write_unsigned (line);
|
|
|
|
|
prev_line = line;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Instrument and/or analyze program behavior based on program flow graph.
|
|
|
|
|
In either case, this function builds a flow graph for the function being
|
|
|
|
|
compiled. The flow graph is stored in BB_GRAPH.
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in
|
|
|
|
|
the flow graph that are needed to reconstruct the dynamic behavior of the
|
|
|
|
|
flow graph.
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
|
|
|
|
|
information from a data file containing edge count information from previous
|
|
|
|
|
executions of the function being compiled. In this case, the flow graph is
|
|
|
|
|
annotated with actual execution counts, which are later propagated into the
|
|
|
|
|
rtl for optimization purposes.
|
|
|
|
|
|
|
|
|
|
Main entry point of this file. */
|
|
|
|
|
|
|
|
|
|
void
|
2004-07-28 03:11:36 +00:00
|
|
|
|
branch_prob (void)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2003-07-11 03:40:53 +00:00
|
|
|
|
basic_block bb;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
unsigned i;
|
|
|
|
|
unsigned num_edges, ignored_edges;
|
|
|
|
|
unsigned num_instrumented;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
struct edge_list *el;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
histogram_values values = NULL;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
total_num_times_called++;
|
|
|
|
|
|
|
|
|
|
flow_call_edges_add (NULL);
|
|
|
|
|
add_noreturn_fake_exit_edges ();
|
|
|
|
|
|
|
|
|
|
/* We can't handle cyclic regions constructed using abnormal edges.
|
|
|
|
|
To avoid these we replace every source of abnormal edge by a fake
|
|
|
|
|
edge from entry node and every destination by fake edge to exit.
|
|
|
|
|
This keeps graph acyclic and our calculation exact for all normal
|
|
|
|
|
edges except for exit and entrance ones.
|
|
|
|
|
|
|
|
|
|
We also add fake exit edges for each call and asm statement in the
|
|
|
|
|
basic, since it may not return. */
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
FOR_EACH_BB (bb)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
int need_exit_edge = 0, need_entry_edge = 0;
|
|
|
|
|
int have_exit_edge = 0, have_entry_edge = 0;
|
|
|
|
|
edge e;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
edge_iterator ei;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Functions returning multiple times are not handled by extra edges.
|
|
|
|
|
Instead we simply allow negative counts on edges from exit to the
|
|
|
|
|
block past call and corresponding probabilities. We can't go
|
|
|
|
|
with the extra edges because that would result in flowgraph that
|
|
|
|
|
needs to have fake edges outside the spanning tree. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
block_stmt_iterator bsi;
|
|
|
|
|
tree last = NULL;
|
|
|
|
|
|
|
|
|
|
/* It may happen that there are compiler generated statements
|
|
|
|
|
without a locus at all. Go through the basic block from the
|
|
|
|
|
last to the first statement looking for a locus. */
|
|
|
|
|
for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
|
|
|
|
|
{
|
|
|
|
|
last = bsi_stmt (bsi);
|
|
|
|
|
if (EXPR_LOCUS (last))
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Edge with goto locus might get wrong coverage info unless
|
|
|
|
|
it is the only edge out of BB.
|
|
|
|
|
Don't do that when the locuses match, so
|
|
|
|
|
if (blah) goto something;
|
|
|
|
|
is not computed twice. */
|
|
|
|
|
if (last && EXPR_LOCUS (last)
|
|
|
|
|
&& e->goto_locus
|
|
|
|
|
&& !single_succ_p (bb)
|
|
|
|
|
#ifdef USE_MAPPED_LOCATION
|
|
|
|
|
&& (LOCATION_FILE (e->goto_locus)
|
|
|
|
|
!= LOCATION_FILE (EXPR_LOCATION (last))
|
|
|
|
|
|| (LOCATION_LINE (e->goto_locus)
|
|
|
|
|
!= LOCATION_LINE (EXPR_LOCATION (last)))))
|
|
|
|
|
#else
|
|
|
|
|
&& (e->goto_locus->file != EXPR_LOCUS (last)->file
|
|
|
|
|
|| (e->goto_locus->line != EXPR_LOCUS (last)->line)))
|
|
|
|
|
#endif
|
|
|
|
|
{
|
|
|
|
|
basic_block new = split_edge (e);
|
|
|
|
|
single_succ_edge (new)->goto_locus = e->goto_locus;
|
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
|
|
|
|
|
&& e->dest != EXIT_BLOCK_PTR)
|
|
|
|
|
need_exit_edge = 1;
|
|
|
|
|
if (e->dest == EXIT_BLOCK_PTR)
|
|
|
|
|
have_exit_edge = 1;
|
|
|
|
|
}
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
|
|
|
|
|
&& e->src != ENTRY_BLOCK_PTR)
|
|
|
|
|
need_entry_edge = 1;
|
|
|
|
|
if (e->src == ENTRY_BLOCK_PTR)
|
|
|
|
|
have_entry_edge = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (need_exit_edge && !have_exit_edge)
|
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file)
|
|
|
|
|
fprintf (dump_file, "Adding fake exit edge to bb %i\n",
|
2002-02-01 18:16:02 +00:00
|
|
|
|
bb->index);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
|
|
|
|
if (need_entry_edge && !have_entry_edge)
|
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file)
|
|
|
|
|
fprintf (dump_file, "Adding fake entry edge to bb %i\n",
|
2002-02-01 18:16:02 +00:00
|
|
|
|
bb->index);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
make_edge (ENTRY_BLOCK_PTR, bb, EDGE_FAKE);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
el = create_edge_list ();
|
|
|
|
|
num_edges = NUM_EDGES (el);
|
|
|
|
|
alloc_aux_for_edges (sizeof (struct edge_info));
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* The basic blocks are expected to be numbered sequentially. */
|
|
|
|
|
compact_blocks ();
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
ignored_edges = 0;
|
|
|
|
|
for (i = 0 ; i < num_edges ; i++)
|
|
|
|
|
{
|
|
|
|
|
edge e = INDEX_EDGE (el, i);
|
|
|
|
|
e->count = 0;
|
|
|
|
|
|
|
|
|
|
/* Mark edges we've replaced by fake edges above as ignored. */
|
|
|
|
|
if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
|
|
|
|
|
&& e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
EDGE_INFO (e)->ignore = 1;
|
|
|
|
|
ignored_edges++;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Create spanning tree from basic block graph, mark each edge that is
|
|
|
|
|
on the spanning tree. We insert as many abnormal and critical edges
|
|
|
|
|
as possible to minimize number of edge splits necessary. */
|
|
|
|
|
|
|
|
|
|
find_spanning_tree (el);
|
|
|
|
|
|
|
|
|
|
/* Fake edges that are not on the tree will not be instrumented, so
|
|
|
|
|
mark them ignored. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
for (num_instrumented = i = 0; i < num_edges; i++)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
edge e = INDEX_EDGE (el, i);
|
|
|
|
|
struct edge_info *inf = EDGE_INFO (e);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
|
|
|
|
if (inf->ignore || inf->on_tree)
|
|
|
|
|
/*NOP*/;
|
|
|
|
|
else if (e->flags & EDGE_FAKE)
|
2003-07-11 03:40:53 +00:00
|
|
|
|
{
|
|
|
|
|
inf->ignore = 1;
|
|
|
|
|
ignored_edges++;
|
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
else
|
|
|
|
|
num_instrumented++;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
total_num_blocks += n_basic_blocks;
|
|
|
|
|
if (dump_file)
|
|
|
|
|
fprintf (dump_file, "%d basic blocks\n", n_basic_blocks);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
total_num_edges += num_edges;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file)
|
|
|
|
|
fprintf (dump_file, "%d edges\n", num_edges);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
total_num_edges_ignored += ignored_edges;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file)
|
|
|
|
|
fprintf (dump_file, "%d ignored edges\n", ignored_edges);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Write the data from which gcov can reconstruct the basic block
|
|
|
|
|
graph. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Basic block flags */
|
|
|
|
|
if (coverage_begin_output ())
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
gcov_position_t offset;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
offset = gcov_write_tag (GCOV_TAG_BLOCKS);
|
2007-05-19 01:19:51 +00:00
|
|
|
|
for (i = 0; i != (unsigned) (n_basic_blocks); i++)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
gcov_write_unsigned (0);
|
|
|
|
|
gcov_write_length (offset);
|
|
|
|
|
}
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Keep all basic block indexes nonnegative in the gcov output.
|
|
|
|
|
Index 0 is used for entry block, last index is for exit block.
|
|
|
|
|
*/
|
2007-05-19 01:19:51 +00:00
|
|
|
|
ENTRY_BLOCK_PTR->index = 1;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
EXIT_BLOCK_PTR->index = last_basic_block;
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
/* Arcs */
|
|
|
|
|
if (coverage_begin_output ())
|
|
|
|
|
{
|
|
|
|
|
gcov_position_t offset;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
edge e;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
edge_iterator ei;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
offset = gcov_write_tag (GCOV_TAG_ARCS);
|
|
|
|
|
gcov_write_unsigned (BB_TO_GCOV_INDEX (bb));
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
struct edge_info *i = EDGE_INFO (e);
|
|
|
|
|
if (!i->ignore)
|
|
|
|
|
{
|
2004-07-28 03:11:36 +00:00
|
|
|
|
unsigned flag_bits = 0;
|
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (i->on_tree)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
flag_bits |= GCOV_ARC_ON_TREE;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (e->flags & EDGE_FAKE)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
flag_bits |= GCOV_ARC_FAKE;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
if (e->flags & EDGE_FALLTHRU)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
flag_bits |= GCOV_ARC_FALLTHROUGH;
|
2007-05-19 01:19:51 +00:00
|
|
|
|
/* On trees we don't have fallthru flags, but we can
|
|
|
|
|
recompute them from CFG shape. */
|
|
|
|
|
if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
|
|
|
|
|
&& e->src->next_bb == e->dest)
|
|
|
|
|
flag_bits |= GCOV_ARC_FALLTHROUGH;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
gcov_write_unsigned (BB_TO_GCOV_INDEX (e->dest));
|
|
|
|
|
gcov_write_unsigned (flag_bits);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
|
|
|
|
gcov_write_length (offset);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Line numbers. */
|
|
|
|
|
if (coverage_begin_output ())
|
|
|
|
|
{
|
|
|
|
|
gcov_position_t offset;
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
/* Initialize the output. */
|
|
|
|
|
output_location (NULL, 0, NULL, NULL);
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
FOR_EACH_BB (bb)
|
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
block_stmt_iterator bsi;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
|
|
|
|
offset = 0;
|
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (bb == ENTRY_BLOCK_PTR->next_bb)
|
|
|
|
|
{
|
|
|
|
|
expanded_location curr_location =
|
|
|
|
|
expand_location (DECL_SOURCE_LOCATION (current_function_decl));
|
|
|
|
|
output_location (curr_location.file, curr_location.line,
|
|
|
|
|
&offset, bb);
|
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
2004-07-28 03:11:36 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
tree stmt = bsi_stmt (bsi);
|
|
|
|
|
if (EXPR_HAS_LOCATION (stmt))
|
|
|
|
|
output_location (EXPR_FILENAME (stmt), EXPR_LINENO (stmt),
|
|
|
|
|
&offset, bb);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Notice GOTO expressions we eliminated while constructing the
|
|
|
|
|
CFG. */
|
|
|
|
|
if (single_succ_p (bb) && single_succ_edge (bb)->goto_locus)
|
|
|
|
|
{
|
|
|
|
|
/* ??? source_locus type is marked deprecated in input.h. */
|
|
|
|
|
source_locus curr_location = single_succ_edge (bb)->goto_locus;
|
|
|
|
|
/* ??? The FILE/LINE API is inconsistent for these cases. */
|
|
|
|
|
#ifdef USE_MAPPED_LOCATION
|
|
|
|
|
output_location (LOCATION_FILE (curr_location),
|
|
|
|
|
LOCATION_LINE (curr_location), &offset, bb);
|
|
|
|
|
#else
|
|
|
|
|
output_location (curr_location->file, curr_location->line,
|
|
|
|
|
&offset, bb);
|
|
|
|
|
#endif
|
2004-07-28 03:11:36 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (offset)
|
|
|
|
|
{
|
|
|
|
|
/* A file of NULL indicates the end of run. */
|
|
|
|
|
gcov_write_unsigned (0);
|
|
|
|
|
gcov_write_string (NULL);
|
|
|
|
|
gcov_write_length (offset);
|
|
|
|
|
}
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
}
|
2007-05-19 01:19:51 +00:00
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
|
|
|
|
|
EXIT_BLOCK_PTR->index = EXIT_BLOCK;
|
|
|
|
|
#undef BB_TO_GCOV_INDEX
|
|
|
|
|
|
|
|
|
|
if (flag_profile_values)
|
2007-05-19 01:19:51 +00:00
|
|
|
|
find_values_to_profile (&values);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
if (flag_branch_probabilities)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
{
|
|
|
|
|
compute_branch_probabilities ();
|
|
|
|
|
if (flag_profile_values)
|
2007-05-19 01:19:51 +00:00
|
|
|
|
compute_value_histograms (values);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
remove_fake_edges ();
|
|
|
|
|
|
|
|
|
|
/* For each edge not on the spanning tree, add counting code. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (profile_arc_flag
|
|
|
|
|
&& coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented))
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
unsigned n_instrumented;
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
profile_hooks->init_edge_profiler ();
|
|
|
|
|
|
|
|
|
|
n_instrumented = instrument_edges (el);
|
|
|
|
|
|
|
|
|
|
gcc_assert (n_instrumented == num_instrumented);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
|
|
|
|
if (flag_profile_values)
|
2007-05-19 01:19:51 +00:00
|
|
|
|
instrument_values (values);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
|
|
|
|
/* Commit changes done by instrumentation. */
|
2007-05-19 01:19:51 +00:00
|
|
|
|
bsi_commit_edge_inserts ();
|
2002-02-01 18:16:02 +00:00
|
|
|
|
}
|
|
|
|
|
|
2004-07-28 03:11:36 +00:00
|
|
|
|
free_aux_for_edges ();
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
VEC_free (histogram_value, heap, values);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
free_edge_list (el);
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (flag_branch_probabilities)
|
|
|
|
|
profile_status = PROFILE_READ;
|
|
|
|
|
coverage_end_function ();
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Union find algorithm implementation for the basic blocks using
|
|
|
|
|
aux fields. */
|
|
|
|
|
|
|
|
|
|
static basic_block
|
2004-07-28 03:11:36 +00:00
|
|
|
|
find_group (basic_block bb)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
|
|
|
|
basic_block group = bb, bb1;
|
|
|
|
|
|
|
|
|
|
while ((basic_block) group->aux != group)
|
|
|
|
|
group = (basic_block) group->aux;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
/* Compress path. */
|
|
|
|
|
while ((basic_block) bb->aux != group)
|
|
|
|
|
{
|
|
|
|
|
bb1 = (basic_block) bb->aux;
|
|
|
|
|
bb->aux = (void *) group;
|
|
|
|
|
bb = bb1;
|
|
|
|
|
}
|
|
|
|
|
return group;
|
|
|
|
|
}
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
static void
|
2004-07-28 03:11:36 +00:00
|
|
|
|
union_groups (basic_block bb1, basic_block bb2)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
basic_block bb1g = find_group (bb1);
|
|
|
|
|
basic_block bb2g = find_group (bb2);
|
|
|
|
|
|
|
|
|
|
/* ??? I don't have a place for the rank field. OK. Lets go w/o it,
|
|
|
|
|
this code is unlikely going to be performance problem anyway. */
|
2007-05-19 01:19:51 +00:00
|
|
|
|
gcc_assert (bb1g != bb2g);
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
2002-02-01 18:16:02 +00:00
|
|
|
|
bb1g->aux = bb2g;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This function searches all of the edges in the program flow graph, and puts
|
|
|
|
|
as many bad edges as possible onto the spanning tree. Bad edges include
|
|
|
|
|
abnormals edges, which can't be instrumented at the moment. Since it is
|
2003-07-11 03:40:53 +00:00
|
|
|
|
possible for fake edges to form a cycle, we will have to develop some
|
2002-02-01 18:16:02 +00:00
|
|
|
|
better way in the future. Also put critical edges to the tree, since they
|
|
|
|
|
are more expensive to instrument. */
|
1999-08-26 09:30:50 +00:00
|
|
|
|
|
|
|
|
|
static void
|
2004-07-28 03:11:36 +00:00
|
|
|
|
find_spanning_tree (struct edge_list *el)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2002-02-01 18:16:02 +00:00
|
|
|
|
int i;
|
|
|
|
|
int num_edges = NUM_EDGES (el);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
basic_block bb;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* We use aux field for standard union-find algorithm. */
|
2003-07-11 03:40:53 +00:00
|
|
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
|
|
|
|
bb->aux = bb;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
|
|
|
|
|
/* Add fake edge exit to entry we can't instrument. */
|
|
|
|
|
union_groups (EXIT_BLOCK_PTR, ENTRY_BLOCK_PTR);
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* First add all abnormal edges to the tree unless they form a cycle. Also
|
|
|
|
|
add all edges to EXIT_BLOCK_PTR to avoid inserting profiling code behind
|
|
|
|
|
setting return value from function. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
for (i = 0; i < num_edges; i++)
|
|
|
|
|
{
|
|
|
|
|
edge e = INDEX_EDGE (el, i);
|
2003-07-11 03:40:53 +00:00
|
|
|
|
if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE))
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|| e->dest == EXIT_BLOCK_PTR)
|
2002-02-01 18:16:02 +00:00
|
|
|
|
&& !EDGE_INFO (e)->ignore
|
|
|
|
|
&& (find_group (e->src) != find_group (e->dest)))
|
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file)
|
|
|
|
|
fprintf (dump_file, "Abnormal edge %d to %d put to tree\n",
|
2003-07-11 03:40:53 +00:00
|
|
|
|
e->src->index, e->dest->index);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
EDGE_INFO (e)->on_tree = 1;
|
|
|
|
|
union_groups (e->src, e->dest);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
/* Now insert all critical edges to the tree unless they form a cycle. */
|
2002-02-01 18:16:02 +00:00
|
|
|
|
for (i = 0; i < num_edges; i++)
|
|
|
|
|
{
|
|
|
|
|
edge e = INDEX_EDGE (el, i);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (EDGE_CRITICAL_P (e) && !EDGE_INFO (e)->ignore
|
|
|
|
|
&& find_group (e->src) != find_group (e->dest))
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file)
|
|
|
|
|
fprintf (dump_file, "Critical edge %d to %d put to tree\n",
|
2003-07-11 03:40:53 +00:00
|
|
|
|
e->src->index, e->dest->index);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
EDGE_INFO (e)->on_tree = 1;
|
|
|
|
|
union_groups (e->src, e->dest);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* And now the rest. */
|
|
|
|
|
for (i = 0; i < num_edges; i++)
|
|
|
|
|
{
|
|
|
|
|
edge e = INDEX_EDGE (el, i);
|
2004-07-28 03:11:36 +00:00
|
|
|
|
if (!EDGE_INFO (e)->ignore
|
|
|
|
|
&& find_group (e->src) != find_group (e->dest))
|
2002-02-01 18:16:02 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file)
|
|
|
|
|
fprintf (dump_file, "Normal edge %d to %d put to tree\n",
|
2003-07-11 03:40:53 +00:00
|
|
|
|
e->src->index, e->dest->index);
|
2002-02-01 18:16:02 +00:00
|
|
|
|
EDGE_INFO (e)->on_tree = 1;
|
|
|
|
|
union_groups (e->src, e->dest);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2003-07-11 03:40:53 +00:00
|
|
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
|
|
|
|
bb->aux = NULL;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Perform file-level initialization for branch-prob processing. */
|
|
|
|
|
|
|
|
|
|
void
|
2004-07-28 03:11:36 +00:00
|
|
|
|
init_branch_prob (void)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
total_num_blocks = 0;
|
2002-02-01 18:16:02 +00:00
|
|
|
|
total_num_edges = 0;
|
|
|
|
|
total_num_edges_ignored = 0;
|
|
|
|
|
total_num_edges_instrumented = 0;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
total_num_blocks_created = 0;
|
|
|
|
|
total_num_passes = 0;
|
|
|
|
|
total_num_times_called = 0;
|
|
|
|
|
total_num_branches = 0;
|
|
|
|
|
total_num_never_executed = 0;
|
|
|
|
|
for (i = 0; i < 20; i++)
|
|
|
|
|
total_hist_br_prob[i] = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Performs file-level cleanup after branch-prob processing
|
|
|
|
|
is completed. */
|
|
|
|
|
|
|
|
|
|
void
|
2004-07-28 03:11:36 +00:00
|
|
|
|
end_branch_prob (void)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
if (dump_file)
|
1999-08-26 09:30:50 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
fprintf (dump_file, "\n");
|
|
|
|
|
fprintf (dump_file, "Total number of blocks: %d\n",
|
2002-02-01 18:16:02 +00:00
|
|
|
|
total_num_blocks);
|
2007-05-19 01:19:51 +00:00
|
|
|
|
fprintf (dump_file, "Total number of edges: %d\n", total_num_edges);
|
|
|
|
|
fprintf (dump_file, "Total number of ignored edges: %d\n",
|
2002-02-01 18:16:02 +00:00
|
|
|
|
total_num_edges_ignored);
|
2007-05-19 01:19:51 +00:00
|
|
|
|
fprintf (dump_file, "Total number of instrumented edges: %d\n",
|
2002-02-01 18:16:02 +00:00
|
|
|
|
total_num_edges_instrumented);
|
2007-05-19 01:19:51 +00:00
|
|
|
|
fprintf (dump_file, "Total number of blocks created: %d\n",
|
1999-08-26 09:30:50 +00:00
|
|
|
|
total_num_blocks_created);
|
2007-05-19 01:19:51 +00:00
|
|
|
|
fprintf (dump_file, "Total number of graph solution passes: %d\n",
|
1999-08-26 09:30:50 +00:00
|
|
|
|
total_num_passes);
|
|
|
|
|
if (total_num_times_called != 0)
|
2007-05-19 01:19:51 +00:00
|
|
|
|
fprintf (dump_file, "Average number of graph solution passes: %d\n",
|
1999-08-26 09:30:50 +00:00
|
|
|
|
(total_num_passes + (total_num_times_called >> 1))
|
|
|
|
|
/ total_num_times_called);
|
2007-05-19 01:19:51 +00:00
|
|
|
|
fprintf (dump_file, "Total number of branches: %d\n",
|
2002-02-01 18:16:02 +00:00
|
|
|
|
total_num_branches);
|
2007-05-19 01:19:51 +00:00
|
|
|
|
fprintf (dump_file, "Total number of branches never executed: %d\n",
|
1999-08-26 09:30:50 +00:00
|
|
|
|
total_num_never_executed);
|
|
|
|
|
if (total_num_branches)
|
|
|
|
|
{
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < 10; i++)
|
2007-05-19 01:19:51 +00:00
|
|
|
|
fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
|
1999-08-26 09:30:50 +00:00
|
|
|
|
(total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
|
|
|
|
|
/ total_num_branches, 5*i, 5*i+5);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
/* Set up hooks to enable tree-based profiling. */
|
2004-07-28 03:11:36 +00:00
|
|
|
|
|
2007-05-19 01:19:51 +00:00
|
|
|
|
void
|
|
|
|
|
tree_register_profile_hooks (void)
|
2004-07-28 03:11:36 +00:00
|
|
|
|
{
|
2007-05-19 01:19:51 +00:00
|
|
|
|
gcc_assert (ir_type ());
|
|
|
|
|
profile_hooks = &tree_profile_hooks;
|
1999-08-26 09:30:50 +00:00
|
|
|
|
}
|
2003-07-11 03:40:53 +00:00
|
|
|
|
|