freebsd-skq/lib/libkse/thread/thr_private.h

1392 lines
38 KiB
C
Raw Normal View History

/*
* Copyright (c) 1995-1998 John Birrell <jb@cimlogic.com.au>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by John Birrell.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Private thread definitions for the uthread kernel.
*
1999-08-28 00:22:10 +00:00
* $FreeBSD$
*/
#ifndef _PTHREAD_PRIVATE_H
#define _PTHREAD_PRIVATE_H
/*
* Evaluate the storage class specifier.
*/
#ifdef GLOBAL_PTHREAD_PRIVATE
#define SCLASS
#else
#define SCLASS extern
#endif
/*
* Include files.
*/
#include <setjmp.h>
#include <signal.h>
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
#include <stdio.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/cdefs.h>
#include <sched.h>
#include <spinlock.h>
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
#include <pthread_np.h>
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
/*
* Define machine dependent macros to get and set the stack pointer
* from the supported contexts. Also define a macro to set the return
* address in a jmp_buf context.
*
* XXX - These need to be moved into architecture dependent support files.
*/
#if defined(__i386__)
#define GET_STACK_JB(jb) ((unsigned long)((jb)[0]._jb[2]))
#define GET_STACK_SJB(sjb) ((unsigned long)((sjb)[0]._sjb[2]))
#define GET_STACK_UC(ucp) ((unsigned long)((ucp)->uc_mcontext.mc_esp))
#define SET_STACK_JB(jb, stk) (jb)[0]._jb[2] = (int)(stk)
#define SET_STACK_SJB(sjb, stk) (sjb)[0]._sjb[2] = (int)(stk)
#define SET_STACK_UC(ucp, stk) (ucp)->uc_mcontext.mc_esp = (int)(stk)
#define FP_SAVE_UC(ucp) do { \
char *fdata; \
fdata = (char *) (ucp)->uc_mcontext.mc_fpregs; \
__asm__("fnsave %0": :"m"(*fdata)); \
} while (0)
#define FP_RESTORE_UC(ucp) do { \
char *fdata; \
fdata = (char *) (ucp)->uc_mcontext.mc_fpregs; \
__asm__("frstor %0": :"m"(*fdata)); \
} while (0)
#define SET_RETURN_ADDR_JB(jb, ra) (jb)[0]._jb[0] = (int)(ra)
#elif defined(__alpha__)
#include <machine/reg.h>
#define GET_STACK_JB(jb) ((unsigned long)((jb)[0]._jb[R_SP + 4]))
#define GET_STACK_SJB(sjb) ((unsigned long)((sjb)[0]._sjb[R_SP + 4]))
#define GET_STACK_UC(ucp) ((ucp)->uc_mcontext.mc_regs[R_SP])
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
#define SET_STACK_JB(jb, stk) (jb)[0]._jb[R_SP + 4] = (long)(stk)
#define SET_STACK_SJB(sjb, stk) (sjb)[0]._sjb[R_SP + 4] = (long)(stk)
#define SET_STACK_UC(ucp, stk) (ucp)->uc_mcontext.mc_regs[R_SP] = (unsigned long)(stk)
#define FP_SAVE_UC(ucp)
#define FP_RESTORE_UC(ucp)
#define SET_RETURN_ADDR_JB(jb, ra) do { \
(jb)[0]._jb[2] = (unsigned long)(ra) + 8UL; \
(jb)[0]._jb[R_RA + 4] = 0; \
(jb)[0]._jb[R_T12 + 4] = (long)(ra); \
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
} while (0)
#else
#error "Don't recognize this architecture!"
#endif
/*
* Kernel fatal error handler macro.
*/
#define PANIC(string) _thread_exit(__FILE__,__LINE__,string)
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
/* Output debug messages like this: */
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
#define stdout_debug(args...) do { \
char buf[128]; \
snprintf(buf, sizeof(buf), ##args); \
__sys_write(1, buf, strlen(buf)); \
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
} while (0)
#define stderr_debug(args...) do { \
char buf[128]; \
snprintf(buf, sizeof(buf), ##args); \
__sys_write(2, buf, strlen(buf)); \
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
} while (0)
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
* Priority queue manipulation macros (using pqe link):
*/
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
#define PTHREAD_PRIOQ_INSERT_HEAD(thrd) _pq_insert_head(&_readyq,thrd)
#define PTHREAD_PRIOQ_INSERT_TAIL(thrd) _pq_insert_tail(&_readyq,thrd)
#define PTHREAD_PRIOQ_REMOVE(thrd) _pq_remove(&_readyq,thrd)
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
#define PTHREAD_PRIOQ_FIRST() _pq_first(&_readyq)
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
* Waiting queue manipulation macros (using pqe link):
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
*/
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
#define PTHREAD_WAITQ_REMOVE(thrd) _waitq_remove(thrd)
#define PTHREAD_WAITQ_INSERT(thrd) _waitq_insert(thrd)
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
#if defined(_PTHREADS_INVARIANTS)
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
#define PTHREAD_WAITQ_CLEARACTIVE() _waitq_clearactive()
#define PTHREAD_WAITQ_SETACTIVE() _waitq_setactive()
#else
#define PTHREAD_WAITQ_CLEARACTIVE()
#define PTHREAD_WAITQ_SETACTIVE()
#endif
/*
* Work queue manipulation macros (using qe link):
*/
#define PTHREAD_WORKQ_INSERT(thrd) do { \
TAILQ_INSERT_TAIL(&_workq,thrd,qe); \
(thrd)->flags |= PTHREAD_FLAGS_IN_WORKQ; \
} while (0)
#define PTHREAD_WORKQ_REMOVE(thrd) do { \
TAILQ_REMOVE(&_workq,thrd,qe); \
(thrd)->flags &= ~PTHREAD_FLAGS_IN_WORKQ; \
} while (0)
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* State change macro without scheduling queue change:
*/
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
#define PTHREAD_SET_STATE(thrd, newstate) do { \
(thrd)->state = newstate; \
(thrd)->fname = __FILE__; \
(thrd)->lineno = __LINE__; \
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
} while (0)
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* State change macro with scheduling queue change - This must be
* called with preemption deferred (see thread_kern_sched_[un]defer).
*/
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
#if defined(_PTHREADS_INVARIANTS)
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
#include <assert.h>
#define PTHREAD_ASSERT(cond, msg) do { \
if (!(cond)) \
PANIC(msg); \
} while (0)
#define PTHREAD_ASSERT_NOT_IN_SYNCQ(thrd) \
PTHREAD_ASSERT((((thrd)->flags & PTHREAD_FLAGS_IN_SYNCQ) == 0), \
"Illegal call from signal handler");
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
#define PTHREAD_NEW_STATE(thrd, newstate) do { \
if (_thread_kern_new_state != 0) \
PANIC("Recursive PTHREAD_NEW_STATE"); \
_thread_kern_new_state = 1; \
if ((thrd)->state != newstate) { \
if ((thrd)->state == PS_RUNNING) { \
PTHREAD_PRIOQ_REMOVE(thrd); \
PTHREAD_WAITQ_INSERT(thrd); \
} else if (newstate == PS_RUNNING) { \
PTHREAD_WAITQ_REMOVE(thrd); \
PTHREAD_PRIOQ_INSERT_TAIL(thrd); \
} \
} \
_thread_kern_new_state = 0; \
PTHREAD_SET_STATE(thrd, newstate); \
} while (0)
#else
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
#define PTHREAD_ASSERT(cond, msg)
#define PTHREAD_ASSERT_NOT_IN_SYNCQ(thrd)
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
#define PTHREAD_NEW_STATE(thrd, newstate) do { \
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
if ((thrd)->state != newstate) { \
if ((thrd)->state == PS_RUNNING) { \
PTHREAD_PRIOQ_REMOVE(thrd); \
PTHREAD_WAITQ_INSERT(thrd); \
} else if (newstate == PS_RUNNING) { \
PTHREAD_WAITQ_REMOVE(thrd); \
PTHREAD_PRIOQ_INSERT_TAIL(thrd); \
} \
} \
PTHREAD_SET_STATE(thrd, newstate); \
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
} while (0)
#endif
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* Define the signals to be used for scheduling.
*/
#if defined(_PTHREADS_COMPAT_SCHED)
#define _ITIMER_SCHED_TIMER ITIMER_VIRTUAL
#define _SCHED_SIGNAL SIGVTALRM
#else
#define _ITIMER_SCHED_TIMER ITIMER_PROF
#define _SCHED_SIGNAL SIGPROF
#endif
/*
* Priority queues.
*
* XXX It'd be nice if these were contained in uthread_priority_queue.[ch].
*/
typedef struct pq_list {
TAILQ_HEAD(, pthread) pl_head; /* list of threads at this priority */
TAILQ_ENTRY(pq_list) pl_link; /* link for queue of priority lists */
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
int pl_prio; /* the priority of this list */
int pl_queued; /* is this in the priority queue */
} pq_list_t;
typedef struct pq_queue {
TAILQ_HEAD(, pq_list) pq_queue; /* queue of priority lists */
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
pq_list_t *pq_lists; /* array of all priority lists */
int pq_size; /* number of priority lists */
} pq_queue_t;
/*
* TailQ initialization values.
*/
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
#define TAILQ_INITIALIZER { NULL, NULL }
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* Mutex definitions.
*/
union pthread_mutex_data {
void *m_ptr;
int m_count;
};
struct pthread_mutex {
enum pthread_mutextype m_type;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
int m_protocol;
TAILQ_HEAD(mutex_head, pthread) m_queue;
struct pthread *m_owner;
union pthread_mutex_data m_data;
long m_flags;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
int m_refcount;
/*
* Used for priority inheritence and protection.
*
* m_prio - For priority inheritence, the highest active
* priority (threads locking the mutex inherit
* this priority). For priority protection, the
* ceiling priority of this mutex.
* m_saved_prio - mutex owners inherited priority before
* taking the mutex, restored when the owner
* unlocks the mutex.
*/
int m_prio;
int m_saved_prio;
/*
* Link for list of all mutexes a thread currently owns.
*/
TAILQ_ENTRY(pthread_mutex) m_qe;
/*
* Lock for accesses to this structure.
*/
spinlock_t lock;
};
/*
* Flags for mutexes.
*/
#define MUTEX_FLAGS_PRIVATE 0x01
#define MUTEX_FLAGS_INITED 0x02
#define MUTEX_FLAGS_BUSY 0x04
/*
* Static mutex initialization values.
*/
#define PTHREAD_MUTEX_STATIC_INITIALIZER \
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
{ PTHREAD_MUTEX_DEFAULT, PTHREAD_PRIO_NONE, TAILQ_INITIALIZER, \
NULL, { NULL }, MUTEX_FLAGS_PRIVATE, 0, 0, 0, TAILQ_INITIALIZER, \
_SPINLOCK_INITIALIZER }
struct pthread_mutex_attr {
enum pthread_mutextype m_type;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
int m_protocol;
int m_ceiling;
long m_flags;
};
#define PTHREAD_MUTEXATTR_STATIC_INITIALIZER \
{ PTHREAD_MUTEX_DEFAULT, PTHREAD_PRIO_NONE, 0, MUTEX_FLAGS_PRIVATE }
/*
* Condition variable definitions.
*/
enum pthread_cond_type {
COND_TYPE_FAST,
COND_TYPE_MAX
};
struct pthread_cond {
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
enum pthread_cond_type c_type;
TAILQ_HEAD(cond_head, pthread) c_queue;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
pthread_mutex_t c_mutex;
void *c_data;
long c_flags;
int c_seqno;
/*
* Lock for accesses to this structure.
*/
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
spinlock_t lock;
};
struct pthread_cond_attr {
enum pthread_cond_type c_type;
long c_flags;
};
/*
* Flags for condition variables.
*/
#define COND_FLAGS_PRIVATE 0x01
#define COND_FLAGS_INITED 0x02
#define COND_FLAGS_BUSY 0x04
/*
* Static cond initialization values.
*/
#define PTHREAD_COND_STATIC_INITIALIZER \
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
{ COND_TYPE_FAST, TAILQ_INITIALIZER, NULL, NULL, \
0, 0, _SPINLOCK_INITIALIZER }
/*
* Semaphore definitions.
*/
struct sem {
#define SEM_MAGIC ((u_int32_t) 0x09fa4012)
u_int32_t magic;
pthread_mutex_t lock;
pthread_cond_t gtzero;
u_int32_t count;
u_int32_t nwaiters;
};
/*
* Cleanup definitions.
*/
struct pthread_cleanup {
struct pthread_cleanup *next;
void (*routine) ();
void *routine_arg;
};
struct pthread_attr {
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
int sched_policy;
int sched_inherit;
int sched_interval;
int prio;
int suspend;
int flags;
void *arg_attr;
void (*cleanup_attr) ();
void *stackaddr_attr;
size_t stacksize_attr;
size_t guardsize_attr;
};
/*
* Thread creation state attributes.
*/
#define PTHREAD_CREATE_RUNNING 0
#define PTHREAD_CREATE_SUSPENDED 1
/*
* Additional state for a thread suspended with pthread_suspend_np().
*/
enum pthread_susp {
SUSP_NO, /* Not suspended. */
SUSP_YES, /* Suspended. */
SUSP_JOIN, /* Suspended, joining. */
SUSP_NOWAIT, /* Suspended, was in a mutex or condition queue. */
SUSP_MUTEX_WAIT,/* Suspended, still in a mutex queue. */
SUSP_COND_WAIT /* Suspended, still in a condition queue. */
};
/*
* Miscellaneous definitions.
*/
#define PTHREAD_STACK_DEFAULT 65536
/*
* Size of default red zone at the end of each stack. In actuality, this "red
* zone" is merely an unmapped region, except in the case of the initial stack.
* Since mmap() makes it possible to specify the maximum growth of a MAP_STACK
* region, an unmapped gap between thread stacks achieves the same effect as
* explicitly mapped red zones.
*/
#define PTHREAD_GUARD_DEFAULT PAGE_SIZE
/*
* Maximum size of initial thread's stack. This perhaps deserves to be larger
* than the stacks of other threads, since many applications are likely to run
* almost entirely on this stack.
*/
#define PTHREAD_STACK_INITIAL 0x100000
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
/* Size of the scheduler stack: */
#define SCHED_STACK_SIZE PAGE_SIZE
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
/*
* Define the different priority ranges. All applications have thread
* priorities constrained within 0-31. The threads library raises the
* priority when delivering signals in order to ensure that signal
* delivery happens (from the POSIX spec) "as soon as possible".
* In the future, the threads library will also be able to map specific
* threads into real-time (cooperating) processes or kernel threads.
* The RT and SIGNAL priorities will be used internally and added to
* thread base priorities so that the scheduling queue can handle both
* normal and RT priority threads with and without signal handling.
*
* The approach taken is that, within each class, signal delivery
* always has priority over thread execution.
*/
#define PTHREAD_DEFAULT_PRIORITY 15
#define PTHREAD_MIN_PRIORITY 0
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
#define PTHREAD_MAX_PRIORITY 31 /* 0x1F */
#define PTHREAD_SIGNAL_PRIORITY 32 /* 0x20 */
#define PTHREAD_RT_PRIORITY 64 /* 0x40 */
#define PTHREAD_FIRST_PRIORITY PTHREAD_MIN_PRIORITY
#define PTHREAD_LAST_PRIORITY \
(PTHREAD_MAX_PRIORITY + PTHREAD_SIGNAL_PRIORITY + PTHREAD_RT_PRIORITY)
#define PTHREAD_BASE_PRIORITY(prio) ((prio) & PTHREAD_MAX_PRIORITY)
/*
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
* Clock resolution in microseconds.
*/
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
#define CLOCK_RES_USEC 10000
#define CLOCK_RES_USEC_MIN 1000
/*
* Time slice period in microseconds.
*/
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
#define TIMESLICE_USEC 20000
/*
* Define a thread-safe macro to get the current time of day
* which is updated at regular intervals by the scheduling signal
* handler.
*/
#define GET_CURRENT_TOD(tv) \
do { \
tv.tv_sec = _sched_tod.tv_sec; \
tv.tv_usec = _sched_tod.tv_usec; \
} while (tv.tv_sec != _sched_tod.tv_sec)
struct pthread_key {
spinlock_t lock;
volatile int allocated;
volatile int count;
void (*destructor) ();
};
struct pthread_rwlockattr {
int pshared;
};
struct pthread_rwlock {
pthread_mutex_t lock; /* monitor lock */
int state; /* 0 = idle >0 = # of readers -1 = writer */
pthread_cond_t read_signal;
pthread_cond_t write_signal;
int blocked_writers;
};
/*
* Thread states.
*/
enum pthread_state {
PS_RUNNING,
PS_SIGTHREAD,
PS_MUTEX_WAIT,
PS_COND_WAIT,
PS_FDLR_WAIT,
PS_FDLW_WAIT,
PS_FDR_WAIT,
PS_FDW_WAIT,
PS_FILE_WAIT,
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
PS_POLL_WAIT,
PS_SELECT_WAIT,
PS_SLEEP_WAIT,
PS_WAIT_WAIT,
PS_SIGSUSPEND,
PS_SIGWAIT,
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
PS_SPINBLOCK,
PS_JOIN,
PS_SUSPENDED,
PS_DEAD,
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
PS_DEADLOCK,
PS_STATE_MAX
};
/*
* File descriptor locking definitions.
*/
#define FD_READ 0x1
#define FD_WRITE 0x2
#define FD_RDWR (FD_READ | FD_WRITE)
/*
* File descriptor table structure.
*/
struct fd_table_entry {
/*
* Lock for accesses to this file descriptor table
* entry. This is passed to _spinlock() to provide atomic
* access to this structure. It does *not* represent the
* state of the lock on the file descriptor.
*/
spinlock_t lock;
TAILQ_HEAD(, pthread) r_queue; /* Read queue. */
TAILQ_HEAD(, pthread) w_queue; /* Write queue. */
struct pthread *r_owner; /* Ptr to thread owning read lock. */
struct pthread *w_owner; /* Ptr to thread owning write lock. */
char *r_fname; /* Ptr to read lock source file name */
int r_lineno; /* Read lock source line number. */
char *w_fname; /* Ptr to write lock source file name */
int w_lineno; /* Write lock source line number. */
int r_lockcount; /* Count for FILE read locks. */
int w_lockcount; /* Count for FILE write locks. */
int flags; /* Flags used in open. */
};
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
struct pthread_poll_data {
int nfds;
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
struct pollfd *fds;
};
union pthread_wait_data {
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
pthread_mutex_t mutex;
pthread_cond_t cond;
const sigset_t *sigwait; /* Waiting on a signal in sigwait */
struct {
short fd; /* Used when thread waiting on fd */
short branch; /* Line number, for debugging. */
char *fname; /* Source file name for debugging.*/
} fd;
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
FILE *fp;
struct pthread_poll_data *poll_data;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
spinlock_t *spinlock;
struct pthread *thread;
};
/*
* Define a continuation routine that can be used to perform a
* transfer of control:
*/
typedef void (*thread_continuation_t) (void *);
struct pthread_signal_frame;
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
struct pthread_state_data {
struct pthread_signal_frame *psd_curframe;
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
sigset_t psd_sigmask;
struct timespec psd_wakeup_time;
union pthread_wait_data psd_wait_data;
enum pthread_state psd_state;
int psd_flags;
int psd_interrupted;
int psd_longjmp_val;
int psd_sigmask_seqno;
int psd_signo;
int psd_sig_defer_count;
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
/* XXX - What about thread->timeout and/or thread->error? */
};
/*
* Normally thread contexts are stored as jmp_bufs via _setjmp()/_longjmp(),
* but they may also be sigjmp_buf and ucontext_t. When a thread is
* interrupted by a signal, it's context is saved as a ucontext_t. An
* application is also free to use [_]longjmp()/[_]siglongjmp() to jump
* between contexts within the same thread. Future support will also
* include setcontext()/getcontext().
*
* Define an enumerated type that can identify the 4 different context
* types.
*/
typedef enum {
CTX_JB_NOSIG, /* context is jmp_buf without saved sigset */
CTX_JB, /* context is jmp_buf (with saved sigset) */
CTX_SJB, /* context is sigjmp_buf (with saved sigset) */
CTX_UC /* context is ucontext_t (with saved sigset) */
} thread_context_t;
/*
* There are 2 basic contexts that a frame may contain at any
* one time:
*
* o ctx - The context that the thread should return to after normal
* completion of the signal handler.
* o sig_jb - The context just before the signal handler is invoked.
* Attempts at abnormal returns from user supplied signal handlers
* will return back to the signal context to perform any necessary
* cleanup.
*/
struct pthread_signal_frame {
/*
* This stores the threads state before the signal.
*/
struct pthread_state_data saved_state;
/*
* Threads return context; ctxtype identifies the type of context.
* For signal frame 0, these point to the context storage area
* within the pthread structure. When handling signals (frame > 0),
* these point to a context storage area that is allocated off the
* threads stack.
*/
union {
jmp_buf jb;
sigjmp_buf sigjb;
ucontext_t uc;
} ctx;
thread_context_t ctxtype;
int longjmp_val;
int signo; /* signal, arg 1 to sighandler */
int sig_has_args; /* use signal args if true */
ucontext_t uc;
siginfo_t siginfo;
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
};
/*
* Thread structure.
*/
struct pthread {
/*
* Magic value to help recognize a valid thread structure
* from an invalid one:
*/
#define PTHREAD_MAGIC ((u_int32_t) 0xd09ba115)
u_int32_t magic;
char *name;
u_int64_t uniqueid; /* for gdb */
/*
* Lock for accesses to this thread structure.
*/
spinlock_t lock;
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/* Queue entry for list of all threads: */
TAILQ_ENTRY(pthread) tle;
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/* Queue entry for list of dead threads: */
TAILQ_ENTRY(pthread) dle;
/*
* Thread start routine, argument, stack pointer and thread
* attributes.
*/
void *(*start_routine)(void *);
void *arg;
void *stack;
struct pthread_attr attr;
/*
* Threads return context; ctxtype identifies the type of context.
*/
union {
jmp_buf jb;
sigjmp_buf sigjb;
ucontext_t uc;
} ctx;
thread_context_t ctxtype;
int longjmp_val;
/*
* Used for tracking delivery of signal handlers.
*/
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
struct pthread_signal_frame *curframe;
/*
* Cancelability flags - the lower 2 bits are used by cancel
* definitions in pthread.h
*/
#define PTHREAD_AT_CANCEL_POINT 0x0004
#define PTHREAD_CANCELLING 0x0008
#define PTHREAD_CANCEL_NEEDED 0x0010
int cancelflags;
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
enum pthread_susp suspended;
thread_continuation_t continuation;
/*
* Current signal mask and pending signals.
*/
sigset_t sigmask;
sigset_t sigpend;
int sigmask_seqno;
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
int check_pending;
/* Thread state: */
enum pthread_state state;
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
/* Scheduling clock when this thread was last made active. */
long last_active;
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
/* Scheduling clock when this thread was last made inactive. */
long last_inactive;
/*
* Number of microseconds accumulated by this thread when
* time slicing is active.
*/
long slice_usec;
/*
* Time to wake up thread. This is used for sleeping threads and
* for any operation which may time out (such as select).
*/
struct timespec wakeup_time;
/* TRUE if operation has timed out. */
int timeout;
/*
* Error variable used instead of errno. The function __error()
* returns a pointer to this.
*/
int error;
/* Pointer to a thread that is waiting to join (NULL if no joiner). */
struct pthread *joiner;
/*
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
* The current thread can belong to only one scheduling queue at
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
* a time (ready or waiting queue). It can also belong to:
*
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
* o A queue of threads waiting for a mutex
* o A queue of threads waiting for a condition variable
* o A queue of threads waiting for a file descriptor lock
* o A queue of threads needing work done by the kernel thread
* (waiting for a spinlock or file I/O)
*
* A thread can also be joining a thread (the joiner field above).
*
* It must not be possible for a thread to belong to any of the
* above queues while it is handling a signal. Signal handlers
* may longjmp back to previous stack frames circumventing normal
* control flow. This could corrupt queue integrity if the thread
* retains membership in the queue. Therefore, if a thread is a
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
* member of one of these queues when a signal handler is invoked,
* it must remove itself from the queue before calling the signal
* handler and reinsert itself after normal return of the handler.
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
*
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
* Use pqe for the scheduling queue link (both ready and waiting),
* sqe for synchronization (mutex and condition variable) queue
* links, and qe for all other links.
*/
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
TAILQ_ENTRY(pthread) pqe; /* priority queue link */
TAILQ_ENTRY(pthread) sqe; /* synchronization queue link */
TAILQ_ENTRY(pthread) qe; /* all other queues link */
/* Wait data. */
union pthread_wait_data data;
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/*
* Allocated for converting select into poll.
*/
struct pthread_poll_data poll_data;
/*
* Set to TRUE if a blocking operation was
* interrupted by a signal:
*/
int interrupted;
/* Signal number when in state PS_SIGWAIT: */
int signo;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
* Set to non-zero when this thread has deferred signals.
* We allow for recursive deferral.
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
*/
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
int sig_defer_count;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* Set to TRUE if this thread should yield after undeferring
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
* signals.
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
*/
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
int yield_on_sig_undefer;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Miscellaneous flags; only set with signals deferred. */
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
int flags;
#define PTHREAD_FLAGS_PRIVATE 0x0001
#define PTHREAD_EXITING 0x0002
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
#define PTHREAD_FLAGS_IN_WAITQ 0x0004 /* in waiting queue using pqe link */
#define PTHREAD_FLAGS_IN_PRIOQ 0x0008 /* in priority queue using pqe link */
#define PTHREAD_FLAGS_IN_WORKQ 0x0010 /* in work queue using qe link */
#define PTHREAD_FLAGS_IN_FILEQ 0x0020 /* in file lock queue using qe link */
#define PTHREAD_FLAGS_IN_FDQ 0x0040 /* in fd lock queue using qe link */
#define PTHREAD_FLAGS_IN_CONDQ 0x0080 /* in condition queue using sqe link*/
#define PTHREAD_FLAGS_IN_MUTEXQ 0x0100 /* in mutex queue using sqe link */
#define PTHREAD_FLAGS_TRACE 0x0200 /* for debugging purposes */
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
#define PTHREAD_FLAGS_IN_SYNCQ \
(PTHREAD_FLAGS_IN_CONDQ | PTHREAD_FLAGS_IN_MUTEXQ)
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* Base priority is the user setable and retrievable priority
* of the thread. It is only affected by explicit calls to
* set thread priority and upon thread creation via a thread
* attribute or default priority.
*/
char base_priority;
/*
* Inherited priority is the priority a thread inherits by
* taking a priority inheritence or protection mutex. It
* is not affected by base priority changes. Inherited
* priority defaults to and remains 0 until a mutex is taken
* that is being waited on by any other thread whose priority
* is non-zero.
*/
char inherited_priority;
/*
* Active priority is always the maximum of the threads base
* priority and inherited priority. When there is a change
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
* in either the base or inherited priority, the active
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
* priority must be recalculated.
*/
char active_priority;
/* Number of priority ceiling or protection mutexes owned. */
int priority_mutex_count;
/*
* Queue of currently owned mutexes.
*/
TAILQ_HEAD(, pthread_mutex) mutexq;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
void *ret;
const void **specific_data;
int specific_data_count;
/* Cleanup handlers Link List */
struct pthread_cleanup *cleanup;
char *fname; /* Ptr to source file name */
int lineno; /* Source line number. */
};
/*
* Global variables for the uthread kernel.
*/
SCLASS void *_usrstack
#ifdef GLOBAL_PTHREAD_PRIVATE
= (void *) USRSTACK;
#else
;
#endif
/* Kernel thread structure used when there are no running threads: */
SCLASS struct pthread _thread_kern_thread;
/* Ptr to the thread structure for the running thread: */
SCLASS struct pthread * volatile _thread_run
#ifdef GLOBAL_PTHREAD_PRIVATE
= &_thread_kern_thread;
#else
;
#endif
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Ptr to the thread structure for the last user thread to run: */
SCLASS struct pthread * volatile _last_user_thread
#ifdef GLOBAL_PTHREAD_PRIVATE
= &_thread_kern_thread;
#else
;
#endif
/*
* Ptr to the thread running in single-threaded mode or NULL if
* running multi-threaded (default POSIX behaviour).
*/
SCLASS struct pthread * volatile _thread_single
#ifdef GLOBAL_PTHREAD_PRIVATE
= NULL;
#else
;
#endif
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/* List of all threads: */
SCLASS TAILQ_HEAD(, pthread) _thread_list
#ifdef GLOBAL_PTHREAD_PRIVATE
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
= TAILQ_HEAD_INITIALIZER(_thread_list);
#else
;
#endif
/*
* Array of kernel pipe file descriptors that are used to ensure that
* no signals are missed in calls to _select.
*/
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
SCLASS int _thread_kern_pipe[2]
#ifdef GLOBAL_PTHREAD_PRIVATE
= {
-1,
-1
};
#else
;
#endif
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
SCLASS int volatile _queue_signals
#ifdef GLOBAL_PTHREAD_PRIVATE
= 0;
#else
;
#endif
SCLASS int _thread_kern_in_sched
#ifdef GLOBAL_PTHREAD_PRIVATE
= 0;
#else
;
#endif
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
SCLASS int _sig_in_handler
#ifdef GLOBAL_PTHREAD_PRIVATE
= 0;
#else
;
#endif
/* Time of day at last scheduling timer signal: */
SCLASS struct timeval volatile _sched_tod
#ifdef GLOBAL_PTHREAD_PRIVATE
= { 0, 0 };
#else
;
#endif
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
/*
* Current scheduling timer ticks; used as resource usage.
*/
SCLASS unsigned int volatile _sched_ticks
#ifdef GLOBAL_PTHREAD_PRIVATE
= 0;
#else
;
#endif
/* Dead threads: */
SCLASS TAILQ_HEAD(, pthread) _dead_list
#ifdef GLOBAL_PTHREAD_PRIVATE
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
= TAILQ_HEAD_INITIALIZER(_dead_list);
#else
;
#endif
/* Initial thread: */
SCLASS struct pthread *_thread_initial
#ifdef GLOBAL_PTHREAD_PRIVATE
= NULL;
#else
;
#endif
/* Default thread attributes: */
SCLASS struct pthread_attr pthread_attr_default
#ifdef GLOBAL_PTHREAD_PRIVATE
= { SCHED_RR, 0, TIMESLICE_USEC, PTHREAD_DEFAULT_PRIORITY,
PTHREAD_CREATE_RUNNING, PTHREAD_CREATE_JOINABLE, NULL, NULL, NULL,
PTHREAD_STACK_DEFAULT, PTHREAD_GUARD_DEFAULT };
#else
;
#endif
/* Default mutex attributes: */
SCLASS struct pthread_mutex_attr pthread_mutexattr_default
#ifdef GLOBAL_PTHREAD_PRIVATE
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
= { PTHREAD_MUTEX_DEFAULT, PTHREAD_PRIO_NONE, 0, 0 };
#else
;
#endif
/* Default condition variable attributes: */
SCLASS struct pthread_cond_attr pthread_condattr_default
#ifdef GLOBAL_PTHREAD_PRIVATE
= { COND_TYPE_FAST, 0 };
#else
;
#endif
/*
* Standard I/O file descriptors need special flag treatment since
* setting one to non-blocking does all on *BSD. Sigh. This array
* is used to store the initial flag settings.
*/
SCLASS int _pthread_stdio_flags[3];
/* File table information: */
SCLASS struct fd_table_entry **_thread_fd_table
#ifdef GLOBAL_PTHREAD_PRIVATE
= NULL;
#else
;
#endif
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/* Table for polling file descriptors: */
SCLASS struct pollfd *_thread_pfd_table
#ifdef GLOBAL_PTHREAD_PRIVATE
= NULL;
#else
;
#endif
SCLASS const int dtablecount
#ifdef GLOBAL_PTHREAD_PRIVATE
= 4096/sizeof(struct fd_table_entry);
#else
;
#endif
SCLASS int _thread_dtablesize /* Descriptor table size. */
#ifdef GLOBAL_PTHREAD_PRIVATE
= 0;
#else
;
#endif
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
SCLASS int _clock_res_usec /* Clock resolution in usec. */
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
#ifdef GLOBAL_PTHREAD_PRIVATE
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
= CLOCK_RES_USEC;
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
#else
;
#endif
/* Garbage collector mutex and condition variable. */
SCLASS pthread_mutex_t _gc_mutex
#ifdef GLOBAL_PTHREAD_PRIVATE
= NULL
#endif
;
SCLASS pthread_cond_t _gc_cond
#ifdef GLOBAL_PTHREAD_PRIVATE
= NULL
#endif
;
/*
* Array of signal actions for this process.
*/
SCLASS struct sigaction _thread_sigact[NSIG];
/*
* Array of counts of dummy handlers for SIG_DFL signals. This is used to
* assure that there is always a dummy signal handler installed while there is a
* thread sigwait()ing on the corresponding signal.
*/
SCLASS int _thread_dfl_count[NSIG];
/*
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
* Pending signals and mask for this process:
*/
SCLASS sigset_t _process_sigpending;
SCLASS sigset_t _process_sigmask
#ifdef GLOBAL_PTHREAD_PRIVATE
= { {0, 0, 0, 0} }
#endif
;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/*
* Scheduling queues:
*/
SCLASS pq_queue_t _readyq;
SCLASS TAILQ_HEAD(, pthread) _waitingq;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/*
* Work queue:
*/
SCLASS TAILQ_HEAD(, pthread) _workq;
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/* Tracks the number of threads blocked while waiting for a spinlock. */
SCLASS volatile int _spinblock_count
#ifdef GLOBAL_PTHREAD_PRIVATE
= 0
#endif
;
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
/* Used to maintain pending and active signals: */
struct sigstatus {
int pending; /* Is this a pending signal? */
int blocked; /*
* A handler is currently active for
* this signal; ignore subsequent
* signals until the handler is done.
*/
int signo; /* arg 1 to signal handler */
siginfo_t siginfo; /* arg 2 to signal handler */
ucontext_t uc; /* arg 3 to signal handler */
};
SCLASS struct sigstatus _thread_sigq[NSIG];
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/* Indicates that the signal queue needs to be checked. */
SCLASS volatile int _sigq_check_reqd
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
#ifdef GLOBAL_PTHREAD_PRIVATE
= 0
#endif
;
/* The signal stack. */
SCLASS struct sigaltstack _thread_sigstack;
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
/* Thread switch hook. */
SCLASS pthread_switch_routine_t _sched_switch_hook
#ifdef GLOBAL_PTHREAD_PRIVATE
= NULL
#endif
;
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
/*
* Declare the kernel scheduler jump buffer and stack:
*/
SCLASS jmp_buf _thread_kern_sched_jb;
SCLASS void * _thread_kern_sched_stack
#ifdef GLOBAL_PTHREAD_PRIVATE
= NULL
#endif
;
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/* Used for _PTHREADS_INVARIANTS checking. */
SCLASS int _thread_kern_new_state
#ifdef GLOBAL_PTHREAD_PRIVATE
= 0
#endif
;
/* Undefine the storage class specifier: */
#undef SCLASS
#ifdef _LOCK_DEBUG
#define _FD_LOCK(_fd,_type,_ts) _thread_fd_lock_debug(_fd, _type, \
_ts, __FILE__, __LINE__)
#define _FD_UNLOCK(_fd,_type) _thread_fd_unlock_debug(_fd, _type, \
__FILE__, __LINE__)
#else
#define _FD_LOCK(_fd,_type,_ts) _thread_fd_lock(_fd, _type, _ts)
#define _FD_UNLOCK(_fd,_type) _thread_fd_unlock(_fd, _type)
#endif
/*
* Function prototype definitions.
*/
__BEGIN_DECLS
char *__ttyname_basic(int);
char *__ttyname_r_basic(int, char *, size_t);
char *ttyname_r(int, char *, size_t);
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
void _cond_wait_backout(pthread_t);
void _fd_lock_backout(pthread_t);
int _find_thread(pthread_t);
struct pthread *_get_curthread(void);
void _set_curthread(struct pthread *);
void *_thread_stack_alloc(size_t, size_t);
void _thread_stack_free(void *, size_t, size_t);
int _thread_create(pthread_t *,const pthread_attr_t *,void *(*start_routine)(void *),void *,pthread_t);
int _thread_fd_lock(int, int, struct timespec *);
int _thread_fd_lock_debug(int, int, struct timespec *,char *fname,int lineno);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
int _mutex_cv_lock(pthread_mutex_t *);
int _mutex_cv_unlock(pthread_mutex_t *);
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
void _mutex_lock_backout(pthread_t);
void _mutex_notify_priochange(pthread_t);
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
int _mutex_reinit(pthread_mutex_t *);
void _mutex_unlock_private(pthread_t);
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
int _cond_reinit(pthread_cond_t *);
int _pq_alloc(struct pq_queue *, int, int);
int _pq_init(struct pq_queue *);
[ The author's description... ] o Runnable threads are now maintained in priority queues. The implementation requires two things: 1.) The priority queues must be protected during insertion and removal of threads. Since the kernel scheduler must modify the priority queues, a spinlock for protection cannot be used. The functions _thread_kern_sched_defer() and _thread_kern_sched_undefer() were added to {un}defer kernel scheduler activation. 2.) A thread (active) priority change can be performed only when the thread is removed from the priority queue. The implementation uses a threads active priority when inserting it into the queue. A by-product is that thread switches are much faster. A separate queue is used for waiting and/or blocked threads, and it is searched at most 2 times in the kernel scheduler when there are active threads. It should be possible to reduce this to once by combining polling of threads waiting on I/O with the loop that looks for timed out threads and the minimum timeout value. o Functions to defer kernel scheduler activation were added. These are _thread_kern_sched_defer() and _thread_kern_sched_undefer() and may be called recursively. These routines do not block the scheduling signal, but latch its occurrence. The signal handler will not call the kernel scheduler when the running thread has deferred scheduling, but it will be called when running thread undefers scheduling. o Added support for _POSIX_THREAD_PRIORITY_SCHEDULING. All the POSIX routines required by this should now be implemented. One note, SCHED_OTHER, SCHED_FIFO, and SCHED_RR are required to be defined by including pthread.h. These defines are currently in sched.h. I modified pthread.h to include sched.h but don't know if this is the proper thing to do. o Added support for priority protection and inheritence mutexes. This allows definition of _POSIX_THREAD_PRIO_PROTECT and _POSIX_THREAD_PRIO_INHERIT. o Added additional error checks required by POSIX for mutexes and condition variables. o Provided a wrapper for sigpending which is marked as a hidden syscall. o Added a non-portable function as a debugging aid to allow an application to monitor thread context switches. An application can install a routine that gets called everytime a thread (explicitly created by the application) gets context switched. The routine gets passed the pthread IDs of the threads that are being switched in and out. Submitted by: Dan Eischen <eischen@vigrid.com> Changes by me: o Added a PS_SPINBLOCK state to deal with the priority inversion problem most often (I think) seen by threads calling malloc/free/realloc. o Dispatch signals to the running thread directly rather than at a context switch to avoid the situation where the switch never occurs.
1999-03-23 05:07:56 +00:00
void _pq_remove(struct pq_queue *pq, struct pthread *);
void _pq_insert_head(struct pq_queue *pq, struct pthread *);
void _pq_insert_tail(struct pq_queue *pq, struct pthread *);
struct pthread *_pq_first(struct pq_queue *pq);
void *_pthread_getspecific(pthread_key_t);
int _pthread_key_create(pthread_key_t *, void (*) (void *));
int _pthread_key_delete(pthread_key_t);
int _pthread_mutex_destroy(pthread_mutex_t *);
int _pthread_mutex_init(pthread_mutex_t *, const pthread_mutexattr_t *);
int _pthread_mutex_lock(pthread_mutex_t *);
int _pthread_mutex_trylock(pthread_mutex_t *);
int _pthread_mutex_unlock(pthread_mutex_t *);
int _pthread_mutexattr_init(pthread_mutexattr_t *);
int _pthread_mutexattr_destroy(pthread_mutexattr_t *);
int _pthread_mutexattr_settype(pthread_mutexattr_t *, int);
int _pthread_once(pthread_once_t *, void (*) (void));
pthread_t _pthread_self(void);
int _pthread_setspecific(pthread_key_t, const void *);
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
void _waitq_insert(pthread_t pthread);
void _waitq_remove(pthread_t pthread);
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
#if defined(_PTHREADS_INVARIANTS)
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
void _waitq_setactive(void);
void _waitq_clearactive(void);
#endif
void _thread_exit(char *, int, char *);
void _thread_exit_cleanup(void);
void _thread_fd_unlock(int, int);
void _thread_fd_unlock_debug(int, int, char *, int);
void _thread_fd_unlock_owned(pthread_t);
void *_thread_cleanup(pthread_t);
void _thread_cleanupspecific(void);
void _thread_dump_info(void);
void _thread_init(void);
sigset_t change (part 5 of 5) ----------------------------- Most of the userland changes are in libc. For both the alpha and the i386 setjmp has been changed to accomodate for the new sigset_t. Internally, libc is mostly rewritten to use the new syscalls. The exception is in compat-43/sigcompat.c The POSIX thread library has also been rewritten to use the new sigset_t. Except, that it currently only handles NSIG signals instead of the maximum _SIG_MAXSIG. This should not be a problem because current applications don't use any signals higher than NSIG. There are version bumps for the following libraries: libdialog libreadline libc libc_r libedit libftpio libss These libraries either a) have one of the modified structures visible in the interface, or b) use sigset_t internally and may cause breakage if new binaries are used against libraries that don't have the sigset_t change. This not an immediate issue, but will be as soon as applications start using the new range to its fullest. NOTE: libncurses already had an version bump and has not been given one now. NOTE: doscmd is a real casualty and has been disconnected for the moment. Reconnection will eventually happen after doscmd has been fixed. I'm aware that being the last one to touch it, I'm automaticly promoted to being maintainer. According to good taste this means that I will receive a badge which either will be glued or mechanically stapled, drilled or otherwise violently forced onto me :-) NOTE: pcvt/vttest cannot be compiled with -traditional. The change cause sys/types to be included along the way which contains the const and volatile modifiers. I don't consider this a solution, but more a workaround.
1999-09-29 15:18:46 +00:00
void _thread_kern_sched(ucontext_t *);
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
void _thread_kern_scheduler(void);
void _thread_kern_sched_frame(struct pthread_signal_frame *psf);
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
void _thread_kern_sched_sig(void);
void _thread_kern_sched_state(enum pthread_state, char *fname, int lineno);
void _thread_kern_sched_state_unlock(enum pthread_state state,
spinlock_t *lock, char *fname, int lineno);
void _thread_kern_set_timeout(const struct timespec *);
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
void _thread_kern_sig_defer(void);
void _thread_kern_sig_undefer(void);
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
void _thread_sig_handler(int, siginfo_t *, ucontext_t *);
void _thread_sig_check_pending(pthread_t pthread);
void _thread_sig_handle_pending(void);
void _thread_sig_send(pthread_t pthread, int sig);
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
void _thread_sig_wrapper(void);
void _thread_sigframe_restore(pthread_t thread, struct pthread_signal_frame *psf);
void _thread_start(void);
Implement zero system call thread switching. Performance of thread switches should be on par with that under scheduler activations. o Timing is achieved through the use of a fixed interval timer (ITIMER_PROF) to count scheduling ticks instead of retrieving the time-of-day upon every thread switch and calculating elapsed real time. o Polling for I/O readiness is performed once for each scheduling tick instead of every thread switch. o The non-signal saving/restoring versions of setjmp/longjmp are used to save and restore thread contexts. This may allow the removal of _THREAD_SAFE macros from setjmp() and longjmp() - needs more investigation. Change signal handling so that signals are handled in the context of the thread that is receiving the signal. When signals are dispatched to a thread, a special signal handling frame is created on top of the target threads stack. The frame contains the threads saved state information and a new context in which the thread can run. The applications signal handler is invoked through a wrapper routine that knows how to restore the threads saved state and unwind to previous frames. Fix interruption of threads due to signals. Some states were being improperly interrupted while other states were not being interrupted. This should fix several PRs. Signal handlers, which are invoked as a result of a process signal (not by pthread_kill()), are now called with the code (or siginfo_t if SA_SIGINFO was set in sa_flags) and sigcontext_t as received from the process signal handler. Modify the search for a thread to which a signal is delivered. The search algorithm is now: o First thread found in sigwait() with signal in wait mask. o First thread found sigsuspend()'d on the signal. o Current thread if signal is unmasked. o First thread found with signal unmasked. Collapse machine dependent support into macros defined in pthread_private.h. These should probably eventually be moved into separate MD files. Change the range of settable priorities to be compliant with POSIX (0-31). The threads library uses higher priorities internally for real-time threads (not yet implemented) and threads executing signal handlers. Real-time threads and threads running signal handlers add 64 and 32, respectively, to a threads base priority. Some other small changes and cleanups. PR: 17757 18559 21943 Reviewed by: jasone
2000-10-13 22:12:32 +00:00
void _thread_seterrno(pthread_t, int);
int _thread_fd_table_init(int fd);
pthread_addr_t _thread_gc(pthread_addr_t);
void _thread_enter_cancellation_point(void);
void _thread_leave_cancellation_point(void);
void _thread_cancellation_point(void);
/* #include <sys/acl.h> */
#ifdef _SYS_ACL_H
int __sys___acl_aclcheck_fd(int, acl_type_t, struct acl *);
int __sys___acl_delete_fd(int, acl_type_t);
int __sys___acl_get_fd(int, acl_type_t, struct acl *);
int __sys___acl_set_fd(int, acl_type_t, struct acl *);
#endif
/* #include <sys/aio.h> */
#ifdef _SYS_AIO_H_
int __sys_aio_suspend(const struct aiocb * const[], int, const struct timespec *);
#endif
/* #include <sys/capability.h> */
#ifdef _SYS_CAPABILITY_H
int __sys___cap_get_fd(int, struct cap *);
int __sys___cap_set_fd(int, struct cap *);
#endif
/* #include <sys/event.h> */
#ifdef _SYS_EVENT_H_
int __sys_kevent(int, const struct kevent *, int, struct kevent *,
int, const struct timespec *);
#endif
/* #include <sys/ioctl.h> */
#ifdef _SYS_IOCTL_H_
int __sys_ioctl(int, unsigned long, ...);
#endif
/* #include <sys/mman.h> */
#ifdef _SYS_MMAN_H_
int __sys_msync(void *, size_t, int);
#endif
/* #include <sys/mount.h> */
#ifdef _SYS_MOUNT_H_
int __sys_fstatfs(int, struct statfs *);
#endif
/* #include <sys/socket.h> */
#ifdef _SYS_SOCKET_H_
int __sys_accept(int, struct sockaddr *, socklen_t *);
int __sys_bind(int, const struct sockaddr *, socklen_t);
int __sys_connect(int, const struct sockaddr *, socklen_t);
int __sys_getpeername(int, struct sockaddr *, socklen_t *);
int __sys_getsockname(int, struct sockaddr *, socklen_t *);
int __sys_getsockopt(int, int, int, void *, socklen_t *);
int __sys_listen(int, int);
ssize_t __sys_recvfrom(int, void *, size_t, int, struct sockaddr *, socklen_t *);
ssize_t __sys_recvmsg(int, struct msghdr *, int);
int __sys_sendfile(int, int, off_t, size_t, struct sf_hdtr *, off_t *, int);
ssize_t __sys_sendmsg(int, const struct msghdr *, int);
ssize_t __sys_sendto(int, const void *,size_t, int, const struct sockaddr *, socklen_t);
int __sys_setsockopt(int, int, int, const void *, socklen_t);
int __sys_shutdown(int, int);
int __sys_socket(int, int, int);
int __sys_socketpair(int, int, int, int *);
#endif
/* #include <sys/stat.h> */
#ifdef _SYS_STAT_H_
int __sys_fchflags(int, u_long);
int __sys_fchmod(int, mode_t);
int __sys_fstat(int, struct stat *);
#endif
/* #include <sys/uio.h> */
#ifdef _SYS_UIO_H_
ssize_t __sys_readv(int, const struct iovec *, int);
ssize_t __sys_writev(int, const struct iovec *, int);
#endif
/* #include <sys/wait.h> */
#ifdef WNOHANG
pid_t __sys_wait4(pid_t, int *, int, struct rusage *);
#endif
/* #include <dirent.h> */
#ifdef _DIRENT_H_
int __sys_getdirentries(int, char *, int, long *);
#endif
/* #include <fcntl.h> */
#ifdef _SYS_FCNTL_H_
int __sys_fcntl(int, int, ...);
int __sys_flock(int, int);
int __sys_open(const char *, int, ...);
#endif
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
/* #include <poll.h> */
#ifdef _SYS_POLL_H_
int __sys_poll(struct pollfd *, unsigned, int);
In the words of the author: o The polling mechanism for I/O readiness was changed from select() to poll(). In additon, a wrapped version of poll() is now provided. o The wrapped select routine now converts each fd_set to a poll array so that the thread scheduler doesn't have to perform a bitwise search for selected fds each time file descriptors are polled for I/O readiness. o The thread scheduler was modified to use a new queue (_workq) for threads that need work. Threads waiting for I/O readiness and spinblocks are added to the work queue in addition to the waiting queue. This reduces the time spent forming/searching the array of file descriptors being polled. o The waiting queue (_waitingq) is now maintained in order of thread wakeup time. This allows the thread scheduler to find the nearest wakeup time by looking at the first thread in the queue instead of searching the entire queue. o Removed file descriptor locking for select/poll routines. An application should not rely on the threads library for providing this locking; if necessary, the application should use mutexes to protect selecting/polling of file descriptors. o Retrieve and use the kernel clock rate/resolution at startup instead of hardcoding the clock resolution to 10 msec (tested with kernel running at 1000 HZ). o All queues have been changed to use queue.h macros. These include the queues of all threads, dead threads, and threads waiting for file descriptor locks. o Added reinitialization of the GC mutex and condition variable after a fork. Also prevented reallocation of the ready queue after a fork. o Prevented the wrapped close routine from closing the thread kernel pipes. o Initialized file descriptor table for stdio entries at thread init. o Provided additional flags to indicate to what queues threads belong. o Moved TAILQ initialization for statically allocated mutex and condition variables to after the spinlock. o Added dispatching of signals to pthread_kill. Removing the dispatching of signals from thread activation broke sigsuspend when pthread_kill was used to send a signal to a thread. o Temporarily set the state of a thread to PS_SUSPENDED when it is first created and placed in the list of threads so that it will not be accidentally scheduled before becoming a member of one of the scheduling queues. o Change the signal handler to queue signals to the thread kernel pipe if the scheduling queues are protected. When scheduling queues are unprotected, signals are then dequeued and handled. o Ensured that all installed signal handlers block the scheduling signal and that the scheduling signal handler blocks all other signals. This ensures that the signal handler is only interruptible for and by non-scheduling signals. An atomic lock is used to decide which instance of the signal handler will handle pending signals. o Removed _lock_thread_list and _unlock_thread_list as they are no longer used to protect the thread list. o Added missing RCS IDs to modified files. o Added checks for appropriate queue membership and activity when adding, removing, and searching the scheduling queues. These checks add very little overhead and are enabled when compiled with _PTHREADS_INVARIANTS defined. Suggested and implemented by Tor Egge with some modification by me. o Close a race condition in uthread_close. (Tor Egge) o Protect the scheduling queues while modifying them in pthread_cond_signal and _thread_fd_unlock. (Tor Egge) o Ensure that when a thread gets a mutex, the mutex is on that threads list of owned mutexes. (Tor Egge) o Set the kernel-in-scheduler flag in _thread_kern_sched_state and _thread_kern_sched_state_unlock to prevent a scheduling signal from calling the scheduler again. (Tor Egge) o Don't use TAILQ_FOREACH macro while searching the waiting queue for threads in a sigwait state, because a change of state destroys the TAILQ link. It is actually safe to do so, though, because once a sigwaiting thread is found, the loop ends and the function returns. (Tor Egge) o When dispatching signals to threads, make the thread inherit the signal deferral flag of the currently running thread. (Tor Egge) Submitted by: Daniel Eischen <eischen@vigrid.com> and Tor Egge <Tor.Egge@fast.no>
1999-06-20 08:28:48 +00:00
#endif
/* #include <signal.h> */
#ifdef _SIGNAL_H_
int __sys_sigaction(int, const struct sigaction *, struct sigaction *);
int __sys_sigaltstack(const struct sigaltstack *, struct sigaltstack *);
int __sys_sigprocmask(int, const sigset_t *, sigset_t *);
int __sys_sigreturn(ucontext_t *);
#endif
/* #include <unistd.h> */
#ifdef _UNISTD_H_
int __sys_close(int);
int __sys_dup(int);
int __sys_dup2(int, int);
int __sys_execve(const char *, char * const *, char * const *);
void __sys_exit(int);
int __sys_fchown(int, uid_t, gid_t);
pid_t __sys_fork(void);
long __sys_fpathconf(int, int);
int __sys_fsync(int);
int __sys_pipe(int *);
ssize_t __sys_read(int, void *, size_t);
ssize_t __sys_write(int, const void *, size_t);
#endif
/* #include <setjmp.h> */
#ifdef _SETJMP_H_
2000-01-20 21:53:59 +00:00
extern void __siglongjmp(sigjmp_buf, int) __dead2;
extern void __longjmp(jmp_buf, int) __dead2;
extern void ___longjmp(jmp_buf, int) __dead2;
#endif
__END_DECLS
#endif /* !_PTHREAD_PRIVATE_H */