freebsd-skq/sys/i386/xen/xen_machdep.c

1232 lines
31 KiB
C
Raw Normal View History

/*
*
* Copyright (c) 2004 Christian Limpach.
* Copyright (c) 2004-2006,2008 Kip Macy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Christian Limpach.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mount.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/reboot.h>
#include <sys/sysproto.h>
#include <machine/xen/xen-os.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/segments.h>
#include <machine/pcb.h>
#include <machine/stdarg.h>
#include <machine/vmparam.h>
#include <machine/cpu.h>
#include <machine/intr_machdep.h>
#include <machine/md_var.h>
#include <machine/asmacros.h>
#include <xen/hypervisor.h>
#include <machine/xen/xenvar.h>
#include <machine/xen/xenfunc.h>
#include <machine/xen/xenpmap.h>
#include <machine/xen/xenfunc.h>
#include <xen/interface/memory.h>
#include <machine/xen/features.h>
#ifdef SMP
#include <machine/privatespace.h>
#endif
#include <vm/vm_page.h>
#define IDTVEC(name) __CONCAT(X,name)
extern inthand_t
IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
IDTVEC(xmm), IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
int xendebug_flags;
start_info_t *xen_start_info;
shared_info_t *HYPERVISOR_shared_info;
xen_pfn_t *xen_machine_phys = machine_to_phys_mapping;
xen_pfn_t *xen_phys_machine;
2009-04-01 17:06:28 +00:00
xen_pfn_t *xen_pfn_to_mfn_frame_list[16];
xen_pfn_t *xen_pfn_to_mfn_frame_list_list;
int preemptable, init_first;
extern unsigned int avail_space;
void ni_cli(void);
void ni_sti(void);
void
ni_cli(void)
{
CTR0(KTR_SPARE2, "ni_cli disabling interrupts");
__asm__("pushl %edx;"
"pushl %eax;"
);
__cli();
__asm__("popl %eax;"
"popl %edx;"
);
}
void
ni_sti(void)
{
__asm__("pushl %edx;"
"pushl %esi;"
"pushl %eax;"
);
__sti();
__asm__("popl %eax;"
"popl %esi;"
"popl %edx;"
);
}
/*
* Modify the cmd_line by converting ',' to NULLs so that it is in a format
* suitable for the static env vars.
*/
char *
xen_setbootenv(char *cmd_line)
{
char *cmd_line_next;
/* Skip leading spaces */
for (; *cmd_line == ' '; cmd_line++);
printk("xen_setbootenv(): cmd_line='%s'\n", cmd_line);
for (cmd_line_next = cmd_line; strsep(&cmd_line_next, ",") != NULL;);
return cmd_line;
}
static struct
{
const char *ev;
int mask;
} howto_names[] = {
{"boot_askname", RB_ASKNAME},
{"boot_single", RB_SINGLE},
{"boot_nosync", RB_NOSYNC},
{"boot_halt", RB_ASKNAME},
{"boot_serial", RB_SERIAL},
{"boot_cdrom", RB_CDROM},
{"boot_gdb", RB_GDB},
{"boot_gdb_pause", RB_RESERVED1},
{"boot_verbose", RB_VERBOSE},
{"boot_multicons", RB_MULTIPLE},
{NULL, 0}
};
int
xen_boothowto(char *envp)
{
int i, howto = 0;
/* get equivalents from the environment */
for (i = 0; howto_names[i].ev != NULL; i++)
if (getenv(howto_names[i].ev) != NULL)
howto |= howto_names[i].mask;
return howto;
}
#define PRINTK_BUFSIZE 1024
void
printk(const char *fmt, ...)
{
__va_list ap;
int retval;
static char buf[PRINTK_BUFSIZE];
va_start(ap, fmt);
retval = vsnprintf(buf, PRINTK_BUFSIZE - 1, fmt, ap);
va_end(ap);
buf[retval] = 0;
(void)HYPERVISOR_console_write(buf, retval);
}
#define XPQUEUE_SIZE 128
struct mmu_log {
char *file;
int line;
};
#ifdef SMP
/* per-cpu queues and indices */
#ifdef INVARIANTS
static struct mmu_log xpq_queue_log[MAX_VIRT_CPUS][XPQUEUE_SIZE];
#endif
static int xpq_idx[MAX_VIRT_CPUS];
static mmu_update_t xpq_queue[MAX_VIRT_CPUS][XPQUEUE_SIZE];
#define XPQ_QUEUE_LOG xpq_queue_log[vcpu]
#define XPQ_QUEUE xpq_queue[vcpu]
#define XPQ_IDX xpq_idx[vcpu]
#define SET_VCPU() int vcpu = smp_processor_id()
#else
static mmu_update_t xpq_queue[XPQUEUE_SIZE];
static struct mmu_log xpq_queue_log[XPQUEUE_SIZE];
static int xpq_idx = 0;
#define XPQ_QUEUE_LOG xpq_queue_log
#define XPQ_QUEUE xpq_queue
#define XPQ_IDX xpq_idx
#define SET_VCPU()
#endif /* !SMP */
#define XPQ_IDX_INC atomic_add_int(&XPQ_IDX, 1);
#if 0
static void
xen_dump_queue(void)
{
int _xpq_idx = XPQ_IDX;
int i;
if (_xpq_idx <= 1)
return;
printk("xen_dump_queue(): %u entries\n", _xpq_idx);
for (i = 0; i < _xpq_idx; i++) {
printk(" val: %llx ptr: %llx\n", XPQ_QUEUE[i].val, XPQ_QUEUE[i].ptr);
}
}
#endif
static __inline void
_xen_flush_queue(void)
{
SET_VCPU();
int _xpq_idx = XPQ_IDX;
int error, i;
/* window of vulnerability here? */
if (__predict_true(gdtset))
critical_enter();
XPQ_IDX = 0;
/* Make sure index is cleared first to avoid double updates. */
error = HYPERVISOR_mmu_update((mmu_update_t *)&XPQ_QUEUE,
_xpq_idx, NULL, DOMID_SELF);
#if 0
if (__predict_true(gdtset))
for (i = _xpq_idx; i > 0;) {
if (i >= 3) {
CTR6(KTR_PMAP, "mmu:val: %lx ptr: %lx val: %lx "
"ptr: %lx val: %lx ptr: %lx",
(XPQ_QUEUE[i-1].val & 0xffffffff),
(XPQ_QUEUE[i-1].ptr & 0xffffffff),
(XPQ_QUEUE[i-2].val & 0xffffffff),
(XPQ_QUEUE[i-2].ptr & 0xffffffff),
(XPQ_QUEUE[i-3].val & 0xffffffff),
(XPQ_QUEUE[i-3].ptr & 0xffffffff));
i -= 3;
} else if (i == 2) {
CTR4(KTR_PMAP, "mmu: val: %lx ptr: %lx val: %lx ptr: %lx",
(XPQ_QUEUE[i-1].val & 0xffffffff),
(XPQ_QUEUE[i-1].ptr & 0xffffffff),
(XPQ_QUEUE[i-2].val & 0xffffffff),
(XPQ_QUEUE[i-2].ptr & 0xffffffff));
i = 0;
} else {
CTR2(KTR_PMAP, "mmu: val: %lx ptr: %lx",
(XPQ_QUEUE[i-1].val & 0xffffffff),
(XPQ_QUEUE[i-1].ptr & 0xffffffff));
i = 0;
}
}
#endif
if (__predict_true(gdtset))
critical_exit();
if (__predict_false(error < 0)) {
for (i = 0; i < _xpq_idx; i++)
printf("val: %llx ptr: %llx\n",
XPQ_QUEUE[i].val, XPQ_QUEUE[i].ptr);
panic("Failed to execute MMU updates: %d", error);
}
}
void
xen_flush_queue(void)
{
SET_VCPU();
if (XPQ_IDX != 0) _xen_flush_queue();
}
static __inline void
xen_increment_idx(void)
{
SET_VCPU();
XPQ_IDX++;
if (__predict_false(XPQ_IDX == XPQUEUE_SIZE))
xen_flush_queue();
}
void
xen_check_queue(void)
{
#ifdef INVARIANTS
SET_VCPU();
KASSERT(XPQ_IDX == 0, ("pending operations XPQ_IDX=%d", XPQ_IDX));
#endif
}
void
xen_invlpg(vm_offset_t va)
{
struct mmuext_op op;
op.cmd = MMUEXT_INVLPG_ALL;
op.arg1.linear_addr = va & ~PAGE_MASK;
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_load_cr3(u_int val)
{
struct mmuext_op op;
#ifdef INVARIANTS
SET_VCPU();
KASSERT(XPQ_IDX == 0, ("pending operations XPQ_IDX=%d", XPQ_IDX));
#endif
op.cmd = MMUEXT_NEW_BASEPTR;
op.arg1.mfn = xpmap_ptom(val) >> PAGE_SHIFT;
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
#ifdef KTR
static __inline u_int
rebp(void)
{
u_int data;
__asm __volatile("movl 4(%%ebp),%0" : "=r" (data));
return (data);
}
#endif
u_int
read_eflags(void)
{
vcpu_info_t *_vcpu;
u_int eflags;
eflags = _read_eflags();
_vcpu = &HYPERVISOR_shared_info->vcpu_info[smp_processor_id()];
if (_vcpu->evtchn_upcall_mask)
eflags &= ~PSL_I;
return (eflags);
}
void
write_eflags(u_int eflags)
{
u_int intr;
CTR2(KTR_SPARE2, "%x xen_restore_flags eflags %x", rebp(), eflags);
intr = ((eflags & PSL_I) == 0);
__restore_flags(intr);
_write_eflags(eflags);
}
void
xen_cli(void)
{
CTR1(KTR_SPARE2, "%x xen_cli disabling interrupts", rebp());
__cli();
}
void
xen_sti(void)
{
CTR1(KTR_SPARE2, "%x xen_sti enabling interrupts", rebp());
__sti();
}
u_int
xen_rcr2(void)
{
return (HYPERVISOR_shared_info->vcpu_info[curcpu].arch.cr2);
}
void
_xen_machphys_update(vm_paddr_t mfn, vm_paddr_t pfn, char *file, int line)
{
SET_VCPU();
if (__predict_true(gdtset))
critical_enter();
XPQ_QUEUE[XPQ_IDX].ptr = (mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE;
XPQ_QUEUE[XPQ_IDX].val = pfn;
#ifdef INVARIANTS
XPQ_QUEUE_LOG[XPQ_IDX].file = file;
XPQ_QUEUE_LOG[XPQ_IDX].line = line;
#endif
xen_increment_idx();
if (__predict_true(gdtset))
critical_exit();
}
void
_xen_queue_pt_update(vm_paddr_t ptr, vm_paddr_t val, char *file, int line)
{
SET_VCPU();
if (__predict_true(gdtset))
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
KASSERT((ptr & 7) == 0, ("misaligned update"));
if (__predict_true(gdtset))
critical_enter();
XPQ_QUEUE[XPQ_IDX].ptr = ((uint64_t)ptr) | MMU_NORMAL_PT_UPDATE;
XPQ_QUEUE[XPQ_IDX].val = (uint64_t)val;
#ifdef INVARIANTS
XPQ_QUEUE_LOG[XPQ_IDX].file = file;
XPQ_QUEUE_LOG[XPQ_IDX].line = line;
#endif
xen_increment_idx();
if (__predict_true(gdtset))
critical_exit();
}
void
xen_pgdpt_pin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_PIN_L3_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_pgd_pin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_PIN_L2_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_pgd_unpin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_UNPIN_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_pt_pin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_PIN_L1_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
printk("xen_pt_pin(): mfn=%x\n", op.arg1.mfn);
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_pt_unpin(vm_paddr_t ma)
{
struct mmuext_op op;
op.cmd = MMUEXT_UNPIN_TABLE;
op.arg1.mfn = ma >> PAGE_SHIFT;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_set_ldt(vm_paddr_t ptr, unsigned long len)
{
struct mmuext_op op;
op.cmd = MMUEXT_SET_LDT;
op.arg1.linear_addr = ptr;
op.arg2.nr_ents = len;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void xen_tlb_flush(void)
{
struct mmuext_op op;
op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
xen_flush_queue();
PANIC_IF(HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0);
}
void
xen_update_descriptor(union descriptor *table, union descriptor *entry)
{
vm_paddr_t pa;
pt_entry_t *ptp;
ptp = vtopte((vm_offset_t)table);
pa = (*ptp & PG_FRAME) | ((vm_offset_t)table & PAGE_MASK);
if (HYPERVISOR_update_descriptor(pa, *(uint64_t *)entry))
panic("HYPERVISOR_update_descriptor failed\n");
}
#if 0
/*
* Bitmap is indexed by page number. If bit is set, the page is part of a
* xen_create_contiguous_region() area of memory.
*/
unsigned long *contiguous_bitmap;
static void
contiguous_bitmap_set(unsigned long first_page, unsigned long nr_pages)
{
unsigned long start_off, end_off, curr_idx, end_idx;
curr_idx = first_page / BITS_PER_LONG;
start_off = first_page & (BITS_PER_LONG-1);
end_idx = (first_page + nr_pages) / BITS_PER_LONG;
end_off = (first_page + nr_pages) & (BITS_PER_LONG-1);
if (curr_idx == end_idx) {
contiguous_bitmap[curr_idx] |=
((1UL<<end_off)-1) & -(1UL<<start_off);
} else {
contiguous_bitmap[curr_idx] |= -(1UL<<start_off);
while ( ++curr_idx < end_idx )
contiguous_bitmap[curr_idx] = ~0UL;
contiguous_bitmap[curr_idx] |= (1UL<<end_off)-1;
}
}
static void
contiguous_bitmap_clear(unsigned long first_page, unsigned long nr_pages)
{
unsigned long start_off, end_off, curr_idx, end_idx;
curr_idx = first_page / BITS_PER_LONG;
start_off = first_page & (BITS_PER_LONG-1);
end_idx = (first_page + nr_pages) / BITS_PER_LONG;
end_off = (first_page + nr_pages) & (BITS_PER_LONG-1);
if (curr_idx == end_idx) {
contiguous_bitmap[curr_idx] &=
-(1UL<<end_off) | ((1UL<<start_off)-1);
} else {
contiguous_bitmap[curr_idx] &= (1UL<<start_off)-1;
while ( ++curr_idx != end_idx )
contiguous_bitmap[curr_idx] = 0;
contiguous_bitmap[curr_idx] &= -(1UL<<end_off);
}
}
#endif
/* Ensure multi-page extents are contiguous in machine memory. */
int
xen_create_contiguous_region(vm_page_t pages, int npages)
{
unsigned long mfn, i, flags;
int order;
struct xen_memory_reservation reservation = {
.nr_extents = 1,
.extent_order = 0,
.domid = DOMID_SELF
};
set_xen_guest_handle(reservation.extent_start, &mfn);
balloon_lock(flags);
/* can currently only handle power of two allocation */
PANIC_IF(ffs(npages) != fls(npages));
/* 0. determine order */
order = (ffs(npages) == fls(npages)) ? fls(npages) - 1 : fls(npages);
/* 1. give away machine pages. */
for (i = 0; i < (1 << order); i++) {
int pfn;
pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
mfn = PFNTOMFN(pfn);
PFNTOMFN(pfn) = INVALID_P2M_ENTRY;
PANIC_IF(HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation) != 1);
}
/* 2. Get a new contiguous memory extent. */
reservation.extent_order = order;
/* xenlinux hardcodes this because of aacraid - maybe set to 0 if we're not
* running with a broxen driver XXXEN
*/
reservation.address_bits = 31;
if (HYPERVISOR_memory_op(XENMEM_increase_reservation, &reservation) != 1)
goto fail;
/* 3. Map the new extent in place of old pages. */
for (i = 0; i < (1 << order); i++) {
int pfn;
pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
xen_machphys_update(mfn+i, pfn);
PFNTOMFN(pfn) = mfn+i;
}
xen_tlb_flush();
#if 0
contiguous_bitmap_set(VM_PAGE_TO_PHYS(&pages[0]) >> PAGE_SHIFT, 1UL << order);
#endif
balloon_unlock(flags);
return 0;
fail:
reservation.extent_order = 0;
reservation.address_bits = 0;
for (i = 0; i < (1 << order); i++) {
int pfn;
pfn = VM_PAGE_TO_PHYS(&pages[i]) >> PAGE_SHIFT;
PANIC_IF(HYPERVISOR_memory_op(
XENMEM_increase_reservation, &reservation) != 1);
xen_machphys_update(mfn, pfn);
PFNTOMFN(pfn) = mfn;
}
xen_tlb_flush();
balloon_unlock(flags);
return ENOMEM;
}
void
xen_destroy_contiguous_region(void *addr, int npages)
{
unsigned long mfn, i, flags, order, pfn0;
struct xen_memory_reservation reservation = {
.nr_extents = 1,
.extent_order = 0,
.domid = DOMID_SELF
};
set_xen_guest_handle(reservation.extent_start, &mfn);
pfn0 = vtophys(addr) >> PAGE_SHIFT;
#if 0
scrub_pages(vstart, 1 << order);
#endif
/* can currently only handle power of two allocation */
PANIC_IF(ffs(npages) != fls(npages));
/* 0. determine order */
order = (ffs(npages) == fls(npages)) ? fls(npages) - 1 : fls(npages);
balloon_lock(flags);
#if 0
contiguous_bitmap_clear(vtophys(addr) >> PAGE_SHIFT, 1UL << order);
#endif
/* 1. Zap current PTEs, giving away the underlying pages. */
for (i = 0; i < (1 << order); i++) {
int pfn;
uint64_t new_val = 0;
pfn = vtomach((char *)addr + i*PAGE_SIZE) >> PAGE_SHIFT;
PANIC_IF(HYPERVISOR_update_va_mapping((vm_offset_t)((char *)addr + (i * PAGE_SIZE)), new_val, 0));
PFNTOMFN(pfn) = INVALID_P2M_ENTRY;
PANIC_IF(HYPERVISOR_memory_op(
XENMEM_decrease_reservation, &reservation) != 1);
}
/* 2. Map new pages in place of old pages. */
for (i = 0; i < (1 << order); i++) {
int pfn;
uint64_t new_val;
pfn = pfn0 + i;
PANIC_IF(HYPERVISOR_memory_op(XENMEM_increase_reservation, &reservation) != 1);
new_val = mfn << PAGE_SHIFT;
PANIC_IF(HYPERVISOR_update_va_mapping((vm_offset_t)addr + (i * PAGE_SIZE),
new_val, PG_KERNEL));
xen_machphys_update(mfn, pfn);
PFNTOMFN(pfn) = mfn;
}
xen_tlb_flush();
balloon_unlock(flags);
}
extern vm_offset_t proc0kstack;
extern int vm86paddr, vm86phystk;
char *bootmem_start, *bootmem_current, *bootmem_end;
pteinfo_t *pteinfo_list;
void initvalues(start_info_t *startinfo);
Improve the Xen para-virtualized device infrastructure of FreeBSD: o Add support for backend devices (e.g. blkback) o Implement extensions to the Xen para-virtualized block API to allow for larger and more outstanding I/Os. o Import a completely rewritten block back driver with support for fronting I/O to both raw devices and files. o General cleanup and documentation of the XenBus and XenStore support code. o Robustness and performance updates for the block front driver. o Fixes to the netfront driver. Sponsored by: Spectra Logic Corporation sys/xen/xenbus/init.txt: Deleted: This file explains the Linux method for XenBus device enumeration and thus does not apply to FreeBSD's NewBus approach. sys/xen/xenbus/xenbus_probe_backend.c: Deleted: Linux version of backend XenBus service routines. It was never ported to FreeBSD. See xenbusb.c, xenbusb_if.m, xenbusb_front.c xenbusb_back.c for details of FreeBSD's XenBus support. sys/xen/xenbus/xenbusvar.h: sys/xen/xenbus/xenbus_xs.c: sys/xen/xenbus/xenbus_comms.c: sys/xen/xenbus/xenbus_comms.h: sys/xen/xenstore/xenstorevar.h: sys/xen/xenstore/xenstore.c: Split XenStore into its own tree. XenBus is a software layer built on top of XenStore. The old arrangement and the naming of some structures and functions blurred these lines making it difficult to discern what services are provided by which layer and at what times these services are available (e.g. during system startup and shutdown). sys/xen/xenbus/xenbus_client.c: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_probe.c: sys/xen/xenbus/xenbusb.c: sys/xen/xenbus/xenbusb.h: Split up XenBus code into methods available for use by client drivers (xenbus.c) and code used by the XenBus "bus code" to enumerate, attach, detach, and service bus drivers. sys/xen/reboot.c: sys/dev/xen/control/control.c: Add a XenBus front driver for handling shutdown, reboot, suspend, and resume events published in the XenStore. Move all PV suspend/reboot support from reboot.c into this driver. sys/xen/blkif.h: New file from Xen vendor with macros and structures used by a block back driver to service requests from a VM running a different ABI (e.g. amd64 back with i386 front). sys/conf/files: Adjust kernel build spec for new XenBus/XenStore layout and added Xen functionality. sys/dev/xen/balloon/balloon.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/blkfront/blkfront.c: sys/xen/xenbus/... sys/xen/xenstore/... o Rename XenStore APIs and structures from xenbus_* to xs_*. o Adjust to use of M_XENBUS and M_XENSTORE malloc types for allocation of objects returned by these APIs. o Adjust for changes in the bus interface for Xen drivers. sys/xen/xenbus/... sys/xen/xenstore/... Add Doxygen comments for these interfaces and the code that implements them. sys/dev/xen/blkback/blkback.c: o Rewrite the Block Back driver to attach properly via newbus, operate correctly in both PV and HVM mode regardless of domain (e.g. can be in a DOM other than 0), and to deal with the latest metadata available in XenStore for block devices. o Allow users to specify a file as a backend to blkback, in addition to character devices. Use the namei lookup of the backend path to automatically configure, based on file type, the appropriate backend method. The current implementation is limited to a single outstanding I/O at a time to file backed storage. sys/dev/xen/blkback/blkback.c: sys/xen/interface/io/blkif.h: sys/xen/blkif.h: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: Extend the Xen blkif API: Negotiable request size and number of requests. This change extends the information recorded in the XenStore allowing block front/back devices to negotiate for optimal I/O parameters. This has been achieved without sacrificing backward compatibility with drivers that are unaware of these protocol enhancements. The extensions center around the connection protocol which now includes these additions: o The back-end device publishes its maximum supported values for, request I/O size, the number of page segments that can be associated with a request, the maximum number of requests that can be concurrently active, and the maximum number of pages that can be in the shared request ring. These values are published before the back-end enters the XenbusStateInitWait state. o The front-end waits for the back-end to enter either the InitWait or Initialize state. At this point, the front end limits it's own capabilities to the lesser of the values it finds published by the backend, it's own maximums, or, should any back-end data be missing in the store, the values supported by the original protocol. It then initializes it's internal data structures including allocation of the shared ring, publishes its maximum capabilities to the XenStore and transitions to the Initialized state. o The back-end waits for the front-end to enter the Initalized state. At this point, the back end limits it's own capabilities to the lesser of the values it finds published by the frontend, it's own maximums, or, should any front-end data be missing in the store, the values supported by the original protocol. It then initializes it's internal data structures, attaches to the shared ring and transitions to the Connected state. o The front-end waits for the back-end to enter the Connnected state, transitions itself to the connected state, and can commence I/O. Although an updated front-end driver must be aware of the back-end's InitWait state, the back-end has been coded such that it can tolerate a front-end that skips this step and transitions directly to the Initialized state without waiting for the back-end. sys/xen/interface/io/blkif.h: o Increase BLKIF_MAX_SEGMENTS_PER_REQUEST to 255. This is the maximum number possible without changing the blkif request header structure (nr_segs is a uint8_t). o Add two new constants: BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK, and BLKIF_MAX_SEGMENTS_PER_SEGMENT_BLOCK. These respectively indicate the number of segments that can fit in the first ring-buffer entry of a request, and for each subsequent (sg element only) ring-buffer entry associated with the "header" ring-buffer entry of the request. o Add the blkif_request_segment_t typedef for segment elements. o Add the BLKRING_GET_SG_REQUEST() macro which wraps the RING_GET_REQUEST() macro and returns a properly cast pointer to an array of blkif_request_segment_ts. o Add the BLKIF_SEGS_TO_BLOCKS() macro which calculates the number of ring entries that will be consumed by a blkif request with the given number of segments. sys/xen/blkif.h: o Update for changes in interface/io/blkif.h macros. o Update the BLKIF_MAX_RING_REQUESTS() macro to take the ring size as an argument to allow this calculation on multi-page rings. o Add a companion macro to BLKIF_MAX_RING_REQUESTS(), BLKIF_RING_PAGES(). This macro determines the number of ring pages required in order to support a ring with the supplied number of request blocks. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: o Negotiate with the other-end with the following limits: Reqeust Size: MAXPHYS Max Segments: (MAXPHYS/PAGE_SIZE) + 1 Max Requests: 256 Max Ring Pages: Sufficient to support Max Requests with Max Segments. o Dynamically allocate request pools and segemnts-per-request. o Update ring allocation/attachment code to support a multi-page shared ring. o Update routines that access the shared ring to handle multi-block requests. sys/dev/xen/blkfront/blkfront.c: o Track blkfront allocations in a blkfront driver specific malloc pool. o Strip out XenStore transaction retry logic in the connection code. Transactions only need to be used when the update to multiple XenStore nodes must be atomic. That is not the case here. o Fully disable blkif_resume() until it can be fixed properly (it didn't work before this change). o Destroy bus-dma objects during device instance tear-down. o Properly handle backend devices with powef-of-2 sector sizes larger than 512b. sys/dev/xen/blkback/blkback.c: Advertise support for and implement the BLKIF_OP_WRITE_BARRIER and BLKIF_OP_FLUSH_DISKCACHE blkif opcodes using BIO_FLUSH and the BIO_ORDERED attribute of bios. sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: Fix various bugs in blkfront. o gnttab_alloc_grant_references() returns 0 for success and non-zero for failure. The check for < 0 is a leftover Linuxism. o When we negotiate with blkback and have to reduce some of our capabilities, print out the original and reduced capability before changing the local capability. So the user now gets the correct information. o Fix blkif_restart_queue_callback() formatting. Make sure we hold the mutex in that function before calling xb_startio(). o Fix a couple of KASSERT()s. o Fix a check in the xb_remove_* macro to be a little more specific. sys/xen/gnttab.h: sys/xen/gnttab.c: Define GNTTAB_LIST_END publicly as GRANT_REF_INVALID. sys/dev/xen/netfront/netfront.c: Use GRANT_REF_INVALID instead of driver private definitions of the same constant. sys/xen/gnttab.h: sys/xen/gnttab.c: Add the gnttab_end_foreign_access_references() API. This API allows a client to batch the release of an array of grant references, instead of coding a private for loop. The implementation takes advantage of this batching to reduce lock overhead to one acquisition and release per-batch instead of per-freed grant reference. While here, reduce the duration the gnttab_list_lock is held during gnttab_free_grant_references() operations. The search to find the tail of the incoming free list does not rely on global state and so can be performed without holding the lock. sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/evtchn/evtchn.c: sys/xen/xen_intr.h: o Implement the bind_interdomain_evtchn_to_irqhandler API for HVM mode. This allows an HVM domain to serve back end devices to other domains. This API is already implemented for PV mode. o Synchronize the API between HVM and PV. sys/dev/xen/xenpci/xenpci.c: o Scan the full region of CPUID space in which the Xen VMM interface may be implemented. On systems using SuSE as a Dom0 where the Viridian API is also exported, the VMM interface is above the region we used to search. o Pass through bus_alloc_resource() calls so that XenBus drivers attaching on an HVM system can allocate unused physical address space from the nexus. The block back driver makes use of this facility. sys/i386/xen/xen_machdep.c: Use the correct type for accessing the statically mapped xenstore metadata. sys/xen/interface/hvm/params.h: sys/xen/xenstore/xenstore.c: Move hvm_get_parameter() to the correct global header file instead of as a private method to the XenStore. sys/xen/interface/io/protocols.h: Sync with vendor. sys/xeninterface/io/ring.h: Add macro for calculating the number of ring pages needed for an N deep ring. To avoid duplication within the macros, create and use the new __RING_HEADER_SIZE() macro. This macro calculates the size of the ring book keeping struct (producer/consumer indexes, etc.) that resides at the head of the ring. Add the __RING_PAGES() macro which calculates the number of shared ring pages required to support a ring with the given number of requests. These APIs are used to support the multi-page ring version of the Xen block API. sys/xeninterface/io/xenbus.h: Add Comments. sys/xen/xenbus/... o Refactor the FreeBSD XenBus support code to allow for both front and backend device attachments. o Make use of new config_intr_hook capabilities to allow front and back devices to be probed/attached in parallel. o Fix bugs in probe/attach state machine that could cause the system to hang when confronted with a failure either in the local domain or in a remote domain to which one of our driver instances is attaching. o Publish all required state to the XenStore on device detach and failure. The majority of the missing functionality was for serving as a back end since the typical "hot-plug" scripts in Dom0 don't handle the case of cleaning up for a "service domain" that is not itself. o Add dynamic sysctl nodes exposing the generic ivars of XenBus devices. o Add doxygen style comments to the majority of the code. o Cleanup types, formatting, etc. sys/xen/xenbus/xenbusb.c: Common code used by both front and back XenBus busses. sys/xen/xenbus/xenbusb_if.m: Method definitions for a XenBus bus. sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusb_back.c: XenBus bus specialization for front and back devices. MFC after: 1 month
2010-10-19 20:53:30 +00:00
struct xenstore_domain_interface;
extern struct xenstore_domain_interface *xen_store;
char *console_page;
void *
bootmem_alloc(unsigned int size)
{
char *retptr;
retptr = bootmem_current;
PANIC_IF(retptr + size > bootmem_end);
bootmem_current += size;
return retptr;
}
void
bootmem_free(void *ptr, unsigned int size)
{
char *tptr;
tptr = ptr;
PANIC_IF(tptr != bootmem_current - size ||
bootmem_current - size < bootmem_start);
bootmem_current -= size;
}
#if 0
static vm_paddr_t
xpmap_mtop2(vm_paddr_t mpa)
{
return ((machine_to_phys_mapping[mpa >> PAGE_SHIFT] << PAGE_SHIFT)
) | (mpa & ~PG_FRAME);
}
static pd_entry_t
xpmap_get_bootpde(vm_paddr_t va)
{
return ((pd_entry_t *)xen_start_info->pt_base)[va >> 22];
}
static pd_entry_t
xpmap_get_vbootpde(vm_paddr_t va)
{
pd_entry_t pde;
pde = xpmap_get_bootpde(va);
if ((pde & PG_V) == 0)
return (pde & ~PG_FRAME);
return (pde & ~PG_FRAME) |
(xpmap_mtop2(pde & PG_FRAME) + KERNBASE);
}
static pt_entry_t 8*
xpmap_get_bootptep(vm_paddr_t va)
{
pd_entry_t pde;
pde = xpmap_get_vbootpde(va);
if ((pde & PG_V) == 0)
return (void *)-1;
#define PT_MASK 0x003ff000 /* page table address bits */
return &(((pt_entry_t *)(pde & PG_FRAME))[(va & PT_MASK) >> PAGE_SHIFT]);
}
static pt_entry_t
xpmap_get_bootpte(vm_paddr_t va)
{
return xpmap_get_bootptep(va)[0];
}
#endif
#ifdef ADD_ISA_HOLE
static void
shift_phys_machine(unsigned long *phys_machine, int nr_pages)
{
unsigned long *tmp_page, *current_page, *next_page;
int i;
tmp_page = bootmem_alloc(PAGE_SIZE);
current_page = phys_machine + nr_pages - (PAGE_SIZE/sizeof(unsigned long));
next_page = current_page - (PAGE_SIZE/sizeof(unsigned long));
bcopy(phys_machine, tmp_page, PAGE_SIZE);
while (current_page > phys_machine) {
/* save next page */
bcopy(next_page, tmp_page, PAGE_SIZE);
/* shift down page */
bcopy(current_page, next_page, PAGE_SIZE);
/* finish swap */
bcopy(tmp_page, current_page, PAGE_SIZE);
current_page -= (PAGE_SIZE/sizeof(unsigned long));
next_page -= (PAGE_SIZE/sizeof(unsigned long));
}
bootmem_free(tmp_page, PAGE_SIZE);
for (i = 0; i < nr_pages; i++) {
xen_machphys_update(phys_machine[i], i);
}
memset(phys_machine, INVALID_P2M_ENTRY, PAGE_SIZE);
}
#endif /* ADD_ISA_HOLE */
2009-04-01 17:06:28 +00:00
/*
* Build a directory of the pages that make up our Physical to Machine
* mapping table. The Xen suspend/restore code uses this to find our
* mapping table.
*/
static void
init_frame_list_list(void *arg)
{
unsigned long nr_pages = xen_start_info->nr_pages;
#define FPP (PAGE_SIZE/sizeof(xen_pfn_t))
int i, j, k;
xen_pfn_to_mfn_frame_list_list = malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK);
for (i = 0, j = 0, k = -1; i < nr_pages;
i += FPP, j++) {
if ((j & (FPP - 1)) == 0) {
k++;
xen_pfn_to_mfn_frame_list[k] =
malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK);
xen_pfn_to_mfn_frame_list_list[k] =
VTOMFN(xen_pfn_to_mfn_frame_list[k]);
j = 0;
}
xen_pfn_to_mfn_frame_list[k][j] =
VTOMFN(&xen_phys_machine[i]);
}
HYPERVISOR_shared_info->arch.max_pfn = nr_pages;
HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list
= VTOMFN(xen_pfn_to_mfn_frame_list_list);
}
SYSINIT(init_fll, SI_SUB_DEVFS, SI_ORDER_ANY, init_frame_list_list, NULL);
extern unsigned long physfree;
int pdir, curoffset;
extern int nkpt;
extern uint32_t kernbase;
void
initvalues(start_info_t *startinfo)
{
vm_offset_t cur_space, cur_space_pt;
struct physdev_set_iopl set_iopl;
int l3_pages, l2_pages, l1_pages, offset;
vm_paddr_t console_page_ma, xen_store_ma;
vm_offset_t tmpva;
vm_paddr_t shinfo;
#ifdef PAE
vm_paddr_t IdlePDPTma, IdlePDPTnewma;
vm_paddr_t IdlePTDnewma[4];
pd_entry_t *IdlePDPTnew, *IdlePTDnew;
vm_paddr_t IdlePTDma[4];
#else
vm_paddr_t IdlePTDma[1];
#endif
unsigned long i;
int ncpus = MAXCPU;
nkpt = min(
min(
max((startinfo->nr_pages >> NPGPTD_SHIFT), nkpt),
NPGPTD*NPDEPG - KPTDI),
(HYPERVISOR_VIRT_START - KERNBASE) >> PDRSHIFT);
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
#ifdef notyet
/*
* need to install handler
*/
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments_notify);
#endif
xen_start_info = startinfo;
xen_phys_machine = (xen_pfn_t *)startinfo->mfn_list;
IdlePTD = (pd_entry_t *)((uint8_t *)startinfo->pt_base + PAGE_SIZE);
l1_pages = 0;
#ifdef PAE
l3_pages = 1;
l2_pages = 0;
IdlePDPT = (pd_entry_t *)startinfo->pt_base;
IdlePDPTma = xpmap_ptom(VTOP(startinfo->pt_base));
for (i = (KERNBASE >> 30);
(i < 4) && (IdlePDPT[i] != 0); i++)
l2_pages++;
/*
* Note that only one page directory has been allocated at this point.
* Thus, if KERNBASE
*/
for (i = 0; i < l2_pages; i++)
IdlePTDma[i] = xpmap_ptom(VTOP(IdlePTD + i*PAGE_SIZE));
l2_pages = (l2_pages == 0) ? 1 : l2_pages;
#else
l3_pages = 0;
l2_pages = 1;
#endif
for (i = (((KERNBASE>>18) & PAGE_MASK)>>PAGE_SHIFT);
(i<l2_pages*NPDEPG) && (i<(VM_MAX_KERNEL_ADDRESS>>PDRSHIFT)); i++) {
if (IdlePTD[i] == 0)
break;
l1_pages++;
}
/* number of pages allocated after the pts + 1*/;
cur_space = xen_start_info->pt_base +
(l3_pages + l2_pages + l1_pages + 1)*PAGE_SIZE;
printk("initvalues(): wooh - availmem=%x,%x\n", avail_space, cur_space);
printk("KERNBASE=%x,pt_base=%x, VTOPFN(base)=%x, nr_pt_frames=%x\n",
KERNBASE,xen_start_info->pt_base, VTOPFN(xen_start_info->pt_base),
xen_start_info->nr_pt_frames);
xendebug_flags = 0; /* 0xffffffff; */
#ifdef ADD_ISA_HOLE
shift_phys_machine(xen_phys_machine, xen_start_info->nr_pages);
#endif
XENPRINTF("IdlePTD %p\n", IdlePTD);
XENPRINTF("nr_pages: %ld shared_info: 0x%lx flags: 0x%lx pt_base: 0x%lx "
"mod_start: 0x%lx mod_len: 0x%lx\n",
xen_start_info->nr_pages, xen_start_info->shared_info,
xen_start_info->flags, xen_start_info->pt_base,
xen_start_info->mod_start, xen_start_info->mod_len);
#ifdef PAE
IdlePDPTnew = (pd_entry_t *)cur_space; cur_space += PAGE_SIZE;
bzero(IdlePDPTnew, PAGE_SIZE);
IdlePDPTnewma = xpmap_ptom(VTOP(IdlePDPTnew));
IdlePTDnew = (pd_entry_t *)cur_space; cur_space += 4*PAGE_SIZE;
bzero(IdlePTDnew, 4*PAGE_SIZE);
for (i = 0; i < 4; i++)
IdlePTDnewma[i] =
xpmap_ptom(VTOP((uint8_t *)IdlePTDnew + i*PAGE_SIZE));
/*
* L3
*
* Copy the 4 machine addresses of the new PTDs in to the PDPT
*
*/
for (i = 0; i < 4; i++)
IdlePDPTnew[i] = IdlePTDnewma[i] | PG_V;
__asm__("nop;");
/*
*
* re-map the new PDPT read-only
*/
PT_SET_MA(IdlePDPTnew, IdlePDPTnewma | PG_V);
/*
*
* Unpin the current PDPT
*/
xen_pt_unpin(IdlePDPTma);
#endif /* PAE */
/* Map proc0's KSTACK */
proc0kstack = cur_space; cur_space += (KSTACK_PAGES * PAGE_SIZE);
printk("proc0kstack=%u\n", proc0kstack);
/* vm86/bios stack */
cur_space += PAGE_SIZE;
/* Map space for the vm86 region */
vm86paddr = (vm_offset_t)cur_space;
cur_space += (PAGE_SIZE * 3);
/* allocate 4 pages for bootmem allocator */
bootmem_start = bootmem_current = (char *)cur_space;
cur_space += (4 * PAGE_SIZE);
bootmem_end = (char *)cur_space;
/* allocate pages for gdt */
gdt = (union descriptor *)cur_space;
cur_space += PAGE_SIZE*ncpus;
/* allocate page for ldt */
ldt = (union descriptor *)cur_space; cur_space += PAGE_SIZE;
cur_space += PAGE_SIZE;
/* unmap remaining pages from initial chunk
*
*/
for (tmpva = cur_space; tmpva < (((uint32_t)&kernbase) + (l1_pages<<PDRSHIFT));
tmpva += PAGE_SIZE) {
bzero((char *)tmpva, PAGE_SIZE);
PT_SET_MA(tmpva, (vm_paddr_t)0);
}
PT_UPDATES_FLUSH();
memcpy(((uint8_t *)IdlePTDnew) + ((unsigned int)(KERNBASE >> 18)),
((uint8_t *)IdlePTD) + ((KERNBASE >> 18) & PAGE_MASK),
l1_pages*sizeof(pt_entry_t));
for (i = 0; i < 4; i++) {
PT_SET_MA((uint8_t *)IdlePTDnew + i*PAGE_SIZE,
IdlePTDnewma[i] | PG_V);
}
xen_load_cr3(VTOP(IdlePDPTnew));
xen_pgdpt_pin(xpmap_ptom(VTOP(IdlePDPTnew)));
/* allocate remainder of nkpt pages */
cur_space_pt = cur_space;
for (offset = (KERNBASE >> PDRSHIFT), i = l1_pages; i < nkpt;
i++, cur_space += PAGE_SIZE) {
pdir = (offset + i) / NPDEPG;
curoffset = ((offset + i) % NPDEPG);
if (((offset + i) << PDRSHIFT) == VM_MAX_KERNEL_ADDRESS)
break;
/*
* make sure that all the initial page table pages
* have been zeroed
*/
PT_SET_MA(cur_space,
xpmap_ptom(VTOP(cur_space)) | PG_V | PG_RW);
bzero((char *)cur_space, PAGE_SIZE);
PT_SET_MA(cur_space, (vm_paddr_t)0);
xen_pt_pin(xpmap_ptom(VTOP(cur_space)));
xen_queue_pt_update((vm_paddr_t)(IdlePTDnewma[pdir] +
curoffset*sizeof(vm_paddr_t)),
xpmap_ptom(VTOP(cur_space)) | PG_KERNEL);
PT_UPDATES_FLUSH();
}
for (i = 0; i < 4; i++) {
pdir = (PTDPTDI + i) / NPDEPG;
curoffset = (PTDPTDI + i) % NPDEPG;
xen_queue_pt_update((vm_paddr_t)(IdlePTDnewma[pdir] +
curoffset*sizeof(vm_paddr_t)),
IdlePTDnewma[i] | PG_V);
}
PT_UPDATES_FLUSH();
IdlePTD = IdlePTDnew;
IdlePDPT = IdlePDPTnew;
IdlePDPTma = IdlePDPTnewma;
HYPERVISOR_shared_info = (shared_info_t *)cur_space;
cur_space += PAGE_SIZE;
Improve the Xen para-virtualized device infrastructure of FreeBSD: o Add support for backend devices (e.g. blkback) o Implement extensions to the Xen para-virtualized block API to allow for larger and more outstanding I/Os. o Import a completely rewritten block back driver with support for fronting I/O to both raw devices and files. o General cleanup and documentation of the XenBus and XenStore support code. o Robustness and performance updates for the block front driver. o Fixes to the netfront driver. Sponsored by: Spectra Logic Corporation sys/xen/xenbus/init.txt: Deleted: This file explains the Linux method for XenBus device enumeration and thus does not apply to FreeBSD's NewBus approach. sys/xen/xenbus/xenbus_probe_backend.c: Deleted: Linux version of backend XenBus service routines. It was never ported to FreeBSD. See xenbusb.c, xenbusb_if.m, xenbusb_front.c xenbusb_back.c for details of FreeBSD's XenBus support. sys/xen/xenbus/xenbusvar.h: sys/xen/xenbus/xenbus_xs.c: sys/xen/xenbus/xenbus_comms.c: sys/xen/xenbus/xenbus_comms.h: sys/xen/xenstore/xenstorevar.h: sys/xen/xenstore/xenstore.c: Split XenStore into its own tree. XenBus is a software layer built on top of XenStore. The old arrangement and the naming of some structures and functions blurred these lines making it difficult to discern what services are provided by which layer and at what times these services are available (e.g. during system startup and shutdown). sys/xen/xenbus/xenbus_client.c: sys/xen/xenbus/xenbus.c: sys/xen/xenbus/xenbus_probe.c: sys/xen/xenbus/xenbusb.c: sys/xen/xenbus/xenbusb.h: Split up XenBus code into methods available for use by client drivers (xenbus.c) and code used by the XenBus "bus code" to enumerate, attach, detach, and service bus drivers. sys/xen/reboot.c: sys/dev/xen/control/control.c: Add a XenBus front driver for handling shutdown, reboot, suspend, and resume events published in the XenStore. Move all PV suspend/reboot support from reboot.c into this driver. sys/xen/blkif.h: New file from Xen vendor with macros and structures used by a block back driver to service requests from a VM running a different ABI (e.g. amd64 back with i386 front). sys/conf/files: Adjust kernel build spec for new XenBus/XenStore layout and added Xen functionality. sys/dev/xen/balloon/balloon.c: sys/dev/xen/netfront/netfront.c: sys/dev/xen/blkfront/blkfront.c: sys/xen/xenbus/... sys/xen/xenstore/... o Rename XenStore APIs and structures from xenbus_* to xs_*. o Adjust to use of M_XENBUS and M_XENSTORE malloc types for allocation of objects returned by these APIs. o Adjust for changes in the bus interface for Xen drivers. sys/xen/xenbus/... sys/xen/xenstore/... Add Doxygen comments for these interfaces and the code that implements them. sys/dev/xen/blkback/blkback.c: o Rewrite the Block Back driver to attach properly via newbus, operate correctly in both PV and HVM mode regardless of domain (e.g. can be in a DOM other than 0), and to deal with the latest metadata available in XenStore for block devices. o Allow users to specify a file as a backend to blkback, in addition to character devices. Use the namei lookup of the backend path to automatically configure, based on file type, the appropriate backend method. The current implementation is limited to a single outstanding I/O at a time to file backed storage. sys/dev/xen/blkback/blkback.c: sys/xen/interface/io/blkif.h: sys/xen/blkif.h: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: Extend the Xen blkif API: Negotiable request size and number of requests. This change extends the information recorded in the XenStore allowing block front/back devices to negotiate for optimal I/O parameters. This has been achieved without sacrificing backward compatibility with drivers that are unaware of these protocol enhancements. The extensions center around the connection protocol which now includes these additions: o The back-end device publishes its maximum supported values for, request I/O size, the number of page segments that can be associated with a request, the maximum number of requests that can be concurrently active, and the maximum number of pages that can be in the shared request ring. These values are published before the back-end enters the XenbusStateInitWait state. o The front-end waits for the back-end to enter either the InitWait or Initialize state. At this point, the front end limits it's own capabilities to the lesser of the values it finds published by the backend, it's own maximums, or, should any back-end data be missing in the store, the values supported by the original protocol. It then initializes it's internal data structures including allocation of the shared ring, publishes its maximum capabilities to the XenStore and transitions to the Initialized state. o The back-end waits for the front-end to enter the Initalized state. At this point, the back end limits it's own capabilities to the lesser of the values it finds published by the frontend, it's own maximums, or, should any front-end data be missing in the store, the values supported by the original protocol. It then initializes it's internal data structures, attaches to the shared ring and transitions to the Connected state. o The front-end waits for the back-end to enter the Connnected state, transitions itself to the connected state, and can commence I/O. Although an updated front-end driver must be aware of the back-end's InitWait state, the back-end has been coded such that it can tolerate a front-end that skips this step and transitions directly to the Initialized state without waiting for the back-end. sys/xen/interface/io/blkif.h: o Increase BLKIF_MAX_SEGMENTS_PER_REQUEST to 255. This is the maximum number possible without changing the blkif request header structure (nr_segs is a uint8_t). o Add two new constants: BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK, and BLKIF_MAX_SEGMENTS_PER_SEGMENT_BLOCK. These respectively indicate the number of segments that can fit in the first ring-buffer entry of a request, and for each subsequent (sg element only) ring-buffer entry associated with the "header" ring-buffer entry of the request. o Add the blkif_request_segment_t typedef for segment elements. o Add the BLKRING_GET_SG_REQUEST() macro which wraps the RING_GET_REQUEST() macro and returns a properly cast pointer to an array of blkif_request_segment_ts. o Add the BLKIF_SEGS_TO_BLOCKS() macro which calculates the number of ring entries that will be consumed by a blkif request with the given number of segments. sys/xen/blkif.h: o Update for changes in interface/io/blkif.h macros. o Update the BLKIF_MAX_RING_REQUESTS() macro to take the ring size as an argument to allow this calculation on multi-page rings. o Add a companion macro to BLKIF_MAX_RING_REQUESTS(), BLKIF_RING_PAGES(). This macro determines the number of ring pages required in order to support a ring with the supplied number of request blocks. sys/dev/xen/blkback/blkback.c: sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: o Negotiate with the other-end with the following limits: Reqeust Size: MAXPHYS Max Segments: (MAXPHYS/PAGE_SIZE) + 1 Max Requests: 256 Max Ring Pages: Sufficient to support Max Requests with Max Segments. o Dynamically allocate request pools and segemnts-per-request. o Update ring allocation/attachment code to support a multi-page shared ring. o Update routines that access the shared ring to handle multi-block requests. sys/dev/xen/blkfront/blkfront.c: o Track blkfront allocations in a blkfront driver specific malloc pool. o Strip out XenStore transaction retry logic in the connection code. Transactions only need to be used when the update to multiple XenStore nodes must be atomic. That is not the case here. o Fully disable blkif_resume() until it can be fixed properly (it didn't work before this change). o Destroy bus-dma objects during device instance tear-down. o Properly handle backend devices with powef-of-2 sector sizes larger than 512b. sys/dev/xen/blkback/blkback.c: Advertise support for and implement the BLKIF_OP_WRITE_BARRIER and BLKIF_OP_FLUSH_DISKCACHE blkif opcodes using BIO_FLUSH and the BIO_ORDERED attribute of bios. sys/dev/xen/blkfront/blkfront.c: sys/dev/xen/blkfront/block.h: Fix various bugs in blkfront. o gnttab_alloc_grant_references() returns 0 for success and non-zero for failure. The check for < 0 is a leftover Linuxism. o When we negotiate with blkback and have to reduce some of our capabilities, print out the original and reduced capability before changing the local capability. So the user now gets the correct information. o Fix blkif_restart_queue_callback() formatting. Make sure we hold the mutex in that function before calling xb_startio(). o Fix a couple of KASSERT()s. o Fix a check in the xb_remove_* macro to be a little more specific. sys/xen/gnttab.h: sys/xen/gnttab.c: Define GNTTAB_LIST_END publicly as GRANT_REF_INVALID. sys/dev/xen/netfront/netfront.c: Use GRANT_REF_INVALID instead of driver private definitions of the same constant. sys/xen/gnttab.h: sys/xen/gnttab.c: Add the gnttab_end_foreign_access_references() API. This API allows a client to batch the release of an array of grant references, instead of coding a private for loop. The implementation takes advantage of this batching to reduce lock overhead to one acquisition and release per-batch instead of per-freed grant reference. While here, reduce the duration the gnttab_list_lock is held during gnttab_free_grant_references() operations. The search to find the tail of the incoming free list does not rely on global state and so can be performed without holding the lock. sys/dev/xen/xenpci/evtchn.c: sys/dev/xen/evtchn/evtchn.c: sys/xen/xen_intr.h: o Implement the bind_interdomain_evtchn_to_irqhandler API for HVM mode. This allows an HVM domain to serve back end devices to other domains. This API is already implemented for PV mode. o Synchronize the API between HVM and PV. sys/dev/xen/xenpci/xenpci.c: o Scan the full region of CPUID space in which the Xen VMM interface may be implemented. On systems using SuSE as a Dom0 where the Viridian API is also exported, the VMM interface is above the region we used to search. o Pass through bus_alloc_resource() calls so that XenBus drivers attaching on an HVM system can allocate unused physical address space from the nexus. The block back driver makes use of this facility. sys/i386/xen/xen_machdep.c: Use the correct type for accessing the statically mapped xenstore metadata. sys/xen/interface/hvm/params.h: sys/xen/xenstore/xenstore.c: Move hvm_get_parameter() to the correct global header file instead of as a private method to the XenStore. sys/xen/interface/io/protocols.h: Sync with vendor. sys/xeninterface/io/ring.h: Add macro for calculating the number of ring pages needed for an N deep ring. To avoid duplication within the macros, create and use the new __RING_HEADER_SIZE() macro. This macro calculates the size of the ring book keeping struct (producer/consumer indexes, etc.) that resides at the head of the ring. Add the __RING_PAGES() macro which calculates the number of shared ring pages required to support a ring with the given number of requests. These APIs are used to support the multi-page ring version of the Xen block API. sys/xeninterface/io/xenbus.h: Add Comments. sys/xen/xenbus/... o Refactor the FreeBSD XenBus support code to allow for both front and backend device attachments. o Make use of new config_intr_hook capabilities to allow front and back devices to be probed/attached in parallel. o Fix bugs in probe/attach state machine that could cause the system to hang when confronted with a failure either in the local domain or in a remote domain to which one of our driver instances is attaching. o Publish all required state to the XenStore on device detach and failure. The majority of the missing functionality was for serving as a back end since the typical "hot-plug" scripts in Dom0 don't handle the case of cleaning up for a "service domain" that is not itself. o Add dynamic sysctl nodes exposing the generic ivars of XenBus devices. o Add doxygen style comments to the majority of the code. o Cleanup types, formatting, etc. sys/xen/xenbus/xenbusb.c: Common code used by both front and back XenBus busses. sys/xen/xenbus/xenbusb_if.m: Method definitions for a XenBus bus. sys/xen/xenbus/xenbusb_front.c: sys/xen/xenbus/xenbusb_back.c: XenBus bus specialization for front and back devices. MFC after: 1 month
2010-10-19 20:53:30 +00:00
xen_store = (struct xenstore_domain_interface *)cur_space;
cur_space += PAGE_SIZE;
console_page = (char *)cur_space;
cur_space += PAGE_SIZE;
/*
* shared_info is an unsigned long so this will randomly break if
* it is allocated above 4GB - I guess people are used to that
* sort of thing with Xen ... sigh
*/
shinfo = xen_start_info->shared_info;
PT_SET_MA(HYPERVISOR_shared_info, shinfo | PG_KERNEL);
printk("#4\n");
xen_store_ma = (((vm_paddr_t)xen_start_info->store_mfn) << PAGE_SHIFT);
PT_SET_MA(xen_store, xen_store_ma | PG_KERNEL);
console_page_ma = (((vm_paddr_t)xen_start_info->console.domU.mfn) << PAGE_SHIFT);
PT_SET_MA(console_page, console_page_ma | PG_KERNEL);
printk("#5\n");
set_iopl.iopl = 1;
PANIC_IF(HYPERVISOR_physdev_op(PHYSDEVOP_SET_IOPL, &set_iopl));
printk("#6\n");
#if 0
/* add page table for KERNBASE */
xen_queue_pt_update(IdlePTDma + KPTDI*sizeof(vm_paddr_t),
xpmap_ptom(VTOP(cur_space) | PG_KERNEL));
xen_flush_queue();
#ifdef PAE
xen_queue_pt_update(pdir_shadow_ma[3] + KPTDI*sizeof(vm_paddr_t),
xpmap_ptom(VTOP(cur_space) | PG_V | PG_A));
#else
xen_queue_pt_update(pdir_shadow_ma + KPTDI*sizeof(vm_paddr_t),
xpmap_ptom(VTOP(cur_space) | PG_V | PG_A));
#endif
xen_flush_queue();
cur_space += PAGE_SIZE;
printk("#6\n");
#endif /* 0 */
#ifdef notyet
if (xen_start_info->flags & SIF_INITDOMAIN) {
/* Map first megabyte */
for (i = 0; i < (256 << PAGE_SHIFT); i += PAGE_SIZE)
PT_SET_MA(KERNBASE + i, i | PG_KERNEL | PG_NC_PCD);
xen_flush_queue();
}
#endif
/*
* re-map kernel text read-only
*
*/
for (i = (((vm_offset_t)&btext) & ~PAGE_MASK);
i < (((vm_offset_t)&etext) & ~PAGE_MASK); i += PAGE_SIZE)
PT_SET_MA(i, xpmap_ptom(VTOP(i)) | PG_V | PG_A);
printk("#7\n");
physfree = VTOP(cur_space);
init_first = physfree >> PAGE_SHIFT;
IdlePTD = (pd_entry_t *)VTOP(IdlePTD);
IdlePDPT = (pd_entry_t *)VTOP(IdlePDPT);
setup_xen_features();
printk("#8, proc0kstack=%u\n", proc0kstack);
}
trap_info_t trap_table[] = {
{ 0, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(div)},
{ 1, 0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(dbg)},
{ 3, 3|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(bpt)},
{ 4, 3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(ofl)},
/* This is UPL on Linux and KPL on BSD */
{ 5, 3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(bnd)},
{ 6, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(ill)},
{ 7, 0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(dna)},
/*
* { 8, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(XXX)},
* no handler for double fault
*/
{ 9, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(fpusegm)},
{10, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(tss)},
{11, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(missing)},
{12, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(stk)},
{13, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(prot)},
{14, 0|4, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(page)},
{15, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(rsvd)},
{16, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(fpu)},
{17, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(align)},
{18, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(mchk)},
{19, 0, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(xmm)},
{0x80, 3, GSEL(GCODE_SEL, SEL_KPL), (unsigned long) &IDTVEC(int0x80_syscall)},
{ 0, 0, 0, 0 }
};
/********** CODE WORTH KEEPING ABOVE HERE *****************/
void xen_failsafe_handler(void);
void
xen_failsafe_handler(void)
{
panic("xen_failsafe_handler called!\n");
}
void xen_handle_thread_switch(struct pcb *pcb);
/* This is called by cpu_switch() when switching threads. */
/* The pcb arg refers to the process control block of the */
/* next thread which is to run */
void
xen_handle_thread_switch(struct pcb *pcb)
{
uint32_t *a = (uint32_t *)&PCPU_GET(fsgs_gdt)[0];
uint32_t *b = (uint32_t *)&pcb->pcb_fsd;
multicall_entry_t mcl[3];
int i = 0;
/* Notify Xen of task switch */
mcl[i].op = __HYPERVISOR_stack_switch;
mcl[i].args[0] = GSEL(GDATA_SEL, SEL_KPL);
mcl[i++].args[1] = (unsigned long)pcb;
/* Check for update of fsd */
if (*a != *b || *(a+1) != *(b+1)) {
mcl[i].op = __HYPERVISOR_update_descriptor;
*(uint64_t *)&mcl[i].args[0] = vtomach((vm_offset_t)a);
*(uint64_t *)&mcl[i++].args[2] = *(uint64_t *)b;
}
a += 2;
b += 2;
/* Check for update of gsd */
if (*a != *b || *(a+1) != *(b+1)) {
mcl[i].op = __HYPERVISOR_update_descriptor;
*(uint64_t *)&mcl[i].args[0] = vtomach((vm_offset_t)a);
*(uint64_t *)&mcl[i++].args[2] = *(uint64_t *)b;
}
(void)HYPERVISOR_multicall(mcl, i);
}